aboutsummaryrefslogtreecommitdiff
path: root/.venv/lib/python3.12/site-packages/numpy/core/tests/test_overrides.py
diff options
context:
space:
mode:
Diffstat (limited to '.venv/lib/python3.12/site-packages/numpy/core/tests/test_overrides.py')
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/core/tests/test_overrides.py759
1 files changed, 759 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/numpy/core/tests/test_overrides.py b/.venv/lib/python3.12/site-packages/numpy/core/tests/test_overrides.py
new file mode 100644
index 00000000..5924358e
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/core/tests/test_overrides.py
@@ -0,0 +1,759 @@
+import inspect
+import sys
+import os
+import tempfile
+from io import StringIO
+from unittest import mock
+
+import numpy as np
+from numpy.testing import (
+ assert_, assert_equal, assert_raises, assert_raises_regex)
+from numpy.core.overrides import (
+ _get_implementing_args, array_function_dispatch,
+ verify_matching_signatures)
+from numpy.compat import pickle
+import pytest
+
+
+def _return_not_implemented(self, *args, **kwargs):
+ return NotImplemented
+
+
+# need to define this at the top level to test pickling
+@array_function_dispatch(lambda array: (array,))
+def dispatched_one_arg(array):
+ """Docstring."""
+ return 'original'
+
+
+@array_function_dispatch(lambda array1, array2: (array1, array2))
+def dispatched_two_arg(array1, array2):
+ """Docstring."""
+ return 'original'
+
+
+class TestGetImplementingArgs:
+
+ def test_ndarray(self):
+ array = np.array(1)
+
+ args = _get_implementing_args([array])
+ assert_equal(list(args), [array])
+
+ args = _get_implementing_args([array, array])
+ assert_equal(list(args), [array])
+
+ args = _get_implementing_args([array, 1])
+ assert_equal(list(args), [array])
+
+ args = _get_implementing_args([1, array])
+ assert_equal(list(args), [array])
+
+ def test_ndarray_subclasses(self):
+
+ class OverrideSub(np.ndarray):
+ __array_function__ = _return_not_implemented
+
+ class NoOverrideSub(np.ndarray):
+ pass
+
+ array = np.array(1).view(np.ndarray)
+ override_sub = np.array(1).view(OverrideSub)
+ no_override_sub = np.array(1).view(NoOverrideSub)
+
+ args = _get_implementing_args([array, override_sub])
+ assert_equal(list(args), [override_sub, array])
+
+ args = _get_implementing_args([array, no_override_sub])
+ assert_equal(list(args), [no_override_sub, array])
+
+ args = _get_implementing_args(
+ [override_sub, no_override_sub])
+ assert_equal(list(args), [override_sub, no_override_sub])
+
+ def test_ndarray_and_duck_array(self):
+
+ class Other:
+ __array_function__ = _return_not_implemented
+
+ array = np.array(1)
+ other = Other()
+
+ args = _get_implementing_args([other, array])
+ assert_equal(list(args), [other, array])
+
+ args = _get_implementing_args([array, other])
+ assert_equal(list(args), [array, other])
+
+ def test_ndarray_subclass_and_duck_array(self):
+
+ class OverrideSub(np.ndarray):
+ __array_function__ = _return_not_implemented
+
+ class Other:
+ __array_function__ = _return_not_implemented
+
+ array = np.array(1)
+ subarray = np.array(1).view(OverrideSub)
+ other = Other()
+
+ assert_equal(_get_implementing_args([array, subarray, other]),
+ [subarray, array, other])
+ assert_equal(_get_implementing_args([array, other, subarray]),
+ [subarray, array, other])
+
+ def test_many_duck_arrays(self):
+
+ class A:
+ __array_function__ = _return_not_implemented
+
+ class B(A):
+ __array_function__ = _return_not_implemented
+
+ class C(A):
+ __array_function__ = _return_not_implemented
+
+ class D:
+ __array_function__ = _return_not_implemented
+
+ a = A()
+ b = B()
+ c = C()
+ d = D()
+
+ assert_equal(_get_implementing_args([1]), [])
+ assert_equal(_get_implementing_args([a]), [a])
+ assert_equal(_get_implementing_args([a, 1]), [a])
+ assert_equal(_get_implementing_args([a, a, a]), [a])
+ assert_equal(_get_implementing_args([a, d, a]), [a, d])
+ assert_equal(_get_implementing_args([a, b]), [b, a])
+ assert_equal(_get_implementing_args([b, a]), [b, a])
+ assert_equal(_get_implementing_args([a, b, c]), [b, c, a])
+ assert_equal(_get_implementing_args([a, c, b]), [c, b, a])
+
+ def test_too_many_duck_arrays(self):
+ namespace = dict(__array_function__=_return_not_implemented)
+ types = [type('A' + str(i), (object,), namespace) for i in range(33)]
+ relevant_args = [t() for t in types]
+
+ actual = _get_implementing_args(relevant_args[:32])
+ assert_equal(actual, relevant_args[:32])
+
+ with assert_raises_regex(TypeError, 'distinct argument types'):
+ _get_implementing_args(relevant_args)
+
+
+class TestNDArrayArrayFunction:
+
+ def test_method(self):
+
+ class Other:
+ __array_function__ = _return_not_implemented
+
+ class NoOverrideSub(np.ndarray):
+ pass
+
+ class OverrideSub(np.ndarray):
+ __array_function__ = _return_not_implemented
+
+ array = np.array([1])
+ other = Other()
+ no_override_sub = array.view(NoOverrideSub)
+ override_sub = array.view(OverrideSub)
+
+ result = array.__array_function__(func=dispatched_two_arg,
+ types=(np.ndarray,),
+ args=(array, 1.), kwargs={})
+ assert_equal(result, 'original')
+
+ result = array.__array_function__(func=dispatched_two_arg,
+ types=(np.ndarray, Other),
+ args=(array, other), kwargs={})
+ assert_(result is NotImplemented)
+
+ result = array.__array_function__(func=dispatched_two_arg,
+ types=(np.ndarray, NoOverrideSub),
+ args=(array, no_override_sub),
+ kwargs={})
+ assert_equal(result, 'original')
+
+ result = array.__array_function__(func=dispatched_two_arg,
+ types=(np.ndarray, OverrideSub),
+ args=(array, override_sub),
+ kwargs={})
+ assert_equal(result, 'original')
+
+ with assert_raises_regex(TypeError, 'no implementation found'):
+ np.concatenate((array, other))
+
+ expected = np.concatenate((array, array))
+ result = np.concatenate((array, no_override_sub))
+ assert_equal(result, expected.view(NoOverrideSub))
+ result = np.concatenate((array, override_sub))
+ assert_equal(result, expected.view(OverrideSub))
+
+ def test_no_wrapper(self):
+ # This shouldn't happen unless a user intentionally calls
+ # __array_function__ with invalid arguments, but check that we raise
+ # an appropriate error all the same.
+ array = np.array(1)
+ func = lambda x: x
+ with assert_raises_regex(AttributeError, '_implementation'):
+ array.__array_function__(func=func, types=(np.ndarray,),
+ args=(array,), kwargs={})
+
+
+class TestArrayFunctionDispatch:
+
+ def test_pickle(self):
+ for proto in range(2, pickle.HIGHEST_PROTOCOL + 1):
+ roundtripped = pickle.loads(
+ pickle.dumps(dispatched_one_arg, protocol=proto))
+ assert_(roundtripped is dispatched_one_arg)
+
+ def test_name_and_docstring(self):
+ assert_equal(dispatched_one_arg.__name__, 'dispatched_one_arg')
+ if sys.flags.optimize < 2:
+ assert_equal(dispatched_one_arg.__doc__, 'Docstring.')
+
+ def test_interface(self):
+
+ class MyArray:
+ def __array_function__(self, func, types, args, kwargs):
+ return (self, func, types, args, kwargs)
+
+ original = MyArray()
+ (obj, func, types, args, kwargs) = dispatched_one_arg(original)
+ assert_(obj is original)
+ assert_(func is dispatched_one_arg)
+ assert_equal(set(types), {MyArray})
+ # assert_equal uses the overloaded np.iscomplexobj() internally
+ assert_(args == (original,))
+ assert_equal(kwargs, {})
+
+ def test_not_implemented(self):
+
+ class MyArray:
+ def __array_function__(self, func, types, args, kwargs):
+ return NotImplemented
+
+ array = MyArray()
+ with assert_raises_regex(TypeError, 'no implementation found'):
+ dispatched_one_arg(array)
+
+ def test_where_dispatch(self):
+
+ class DuckArray:
+ def __array_function__(self, ufunc, method, *inputs, **kwargs):
+ return "overridden"
+
+ array = np.array(1)
+ duck_array = DuckArray()
+
+ result = np.std(array, where=duck_array)
+
+ assert_equal(result, "overridden")
+
+
+class TestVerifyMatchingSignatures:
+
+ def test_verify_matching_signatures(self):
+
+ verify_matching_signatures(lambda x: 0, lambda x: 0)
+ verify_matching_signatures(lambda x=None: 0, lambda x=None: 0)
+ verify_matching_signatures(lambda x=1: 0, lambda x=None: 0)
+
+ with assert_raises(RuntimeError):
+ verify_matching_signatures(lambda a: 0, lambda b: 0)
+ with assert_raises(RuntimeError):
+ verify_matching_signatures(lambda x: 0, lambda x=None: 0)
+ with assert_raises(RuntimeError):
+ verify_matching_signatures(lambda x=None: 0, lambda y=None: 0)
+ with assert_raises(RuntimeError):
+ verify_matching_signatures(lambda x=1: 0, lambda y=1: 0)
+
+ def test_array_function_dispatch(self):
+
+ with assert_raises(RuntimeError):
+ @array_function_dispatch(lambda x: (x,))
+ def f(y):
+ pass
+
+ # should not raise
+ @array_function_dispatch(lambda x: (x,), verify=False)
+ def f(y):
+ pass
+
+
+def _new_duck_type_and_implements():
+ """Create a duck array type and implements functions."""
+ HANDLED_FUNCTIONS = {}
+
+ class MyArray:
+ def __array_function__(self, func, types, args, kwargs):
+ if func not in HANDLED_FUNCTIONS:
+ return NotImplemented
+ if not all(issubclass(t, MyArray) for t in types):
+ return NotImplemented
+ return HANDLED_FUNCTIONS[func](*args, **kwargs)
+
+ def implements(numpy_function):
+ """Register an __array_function__ implementations."""
+ def decorator(func):
+ HANDLED_FUNCTIONS[numpy_function] = func
+ return func
+ return decorator
+
+ return (MyArray, implements)
+
+
+class TestArrayFunctionImplementation:
+
+ def test_one_arg(self):
+ MyArray, implements = _new_duck_type_and_implements()
+
+ @implements(dispatched_one_arg)
+ def _(array):
+ return 'myarray'
+
+ assert_equal(dispatched_one_arg(1), 'original')
+ assert_equal(dispatched_one_arg(MyArray()), 'myarray')
+
+ def test_optional_args(self):
+ MyArray, implements = _new_duck_type_and_implements()
+
+ @array_function_dispatch(lambda array, option=None: (array,))
+ def func_with_option(array, option='default'):
+ return option
+
+ @implements(func_with_option)
+ def my_array_func_with_option(array, new_option='myarray'):
+ return new_option
+
+ # we don't need to implement every option on __array_function__
+ # implementations
+ assert_equal(func_with_option(1), 'default')
+ assert_equal(func_with_option(1, option='extra'), 'extra')
+ assert_equal(func_with_option(MyArray()), 'myarray')
+ with assert_raises(TypeError):
+ func_with_option(MyArray(), option='extra')
+
+ # but new options on implementations can't be used
+ result = my_array_func_with_option(MyArray(), new_option='yes')
+ assert_equal(result, 'yes')
+ with assert_raises(TypeError):
+ func_with_option(MyArray(), new_option='no')
+
+ def test_not_implemented(self):
+ MyArray, implements = _new_duck_type_and_implements()
+
+ @array_function_dispatch(lambda array: (array,), module='my')
+ def func(array):
+ return array
+
+ array = np.array(1)
+ assert_(func(array) is array)
+ assert_equal(func.__module__, 'my')
+
+ with assert_raises_regex(
+ TypeError, "no implementation found for 'my.func'"):
+ func(MyArray())
+
+ @pytest.mark.parametrize("name", ["concatenate", "mean", "asarray"])
+ def test_signature_error_message_simple(self, name):
+ func = getattr(np, name)
+ try:
+ # all of these functions need an argument:
+ func()
+ except TypeError as e:
+ exc = e
+
+ assert exc.args[0].startswith(f"{name}()")
+
+ def test_signature_error_message(self):
+ # The lambda function will be named "<lambda>", but the TypeError
+ # should show the name as "func"
+ def _dispatcher():
+ return ()
+
+ @array_function_dispatch(_dispatcher)
+ def func():
+ pass
+
+ try:
+ func._implementation(bad_arg=3)
+ except TypeError as e:
+ expected_exception = e
+
+ try:
+ func(bad_arg=3)
+ raise AssertionError("must fail")
+ except TypeError as exc:
+ if exc.args[0].startswith("_dispatcher"):
+ # We replace the qualname currently, but it used `__name__`
+ # (relevant functions have the same name and qualname anyway)
+ pytest.skip("Python version is not using __qualname__ for "
+ "TypeError formatting.")
+
+ assert exc.args == expected_exception.args
+
+ @pytest.mark.parametrize("value", [234, "this func is not replaced"])
+ def test_dispatcher_error(self, value):
+ # If the dispatcher raises an error, we must not attempt to mutate it
+ error = TypeError(value)
+
+ def dispatcher():
+ raise error
+
+ @array_function_dispatch(dispatcher)
+ def func():
+ return 3
+
+ try:
+ func()
+ raise AssertionError("must fail")
+ except TypeError as exc:
+ assert exc is error # unmodified exception
+
+ def test_properties(self):
+ # Check that str and repr are sensible
+ func = dispatched_two_arg
+ assert str(func) == str(func._implementation)
+ repr_no_id = repr(func).split("at ")[0]
+ repr_no_id_impl = repr(func._implementation).split("at ")[0]
+ assert repr_no_id == repr_no_id_impl
+
+ @pytest.mark.parametrize("func", [
+ lambda x, y: 0, # no like argument
+ lambda like=None: 0, # not keyword only
+ lambda *, like=None, a=3: 0, # not last (not that it matters)
+ ])
+ def test_bad_like_sig(self, func):
+ # We sanity check the signature, and these should fail.
+ with pytest.raises(RuntimeError):
+ array_function_dispatch()(func)
+
+ def test_bad_like_passing(self):
+ # Cover internal sanity check for passing like as first positional arg
+ def func(*, like=None):
+ pass
+
+ func_with_like = array_function_dispatch()(func)
+ with pytest.raises(TypeError):
+ func_with_like()
+ with pytest.raises(TypeError):
+ func_with_like(like=234)
+
+ def test_too_many_args(self):
+ # Mainly a unit-test to increase coverage
+ objs = []
+ for i in range(40):
+ class MyArr:
+ def __array_function__(self, *args, **kwargs):
+ return NotImplemented
+
+ objs.append(MyArr())
+
+ def _dispatch(*args):
+ return args
+
+ @array_function_dispatch(_dispatch)
+ def func(*args):
+ pass
+
+ with pytest.raises(TypeError, match="maximum number"):
+ func(*objs)
+
+
+
+class TestNDArrayMethods:
+
+ def test_repr(self):
+ # gh-12162: should still be defined even if __array_function__ doesn't
+ # implement np.array_repr()
+
+ class MyArray(np.ndarray):
+ def __array_function__(*args, **kwargs):
+ return NotImplemented
+
+ array = np.array(1).view(MyArray)
+ assert_equal(repr(array), 'MyArray(1)')
+ assert_equal(str(array), '1')
+
+
+class TestNumPyFunctions:
+
+ def test_set_module(self):
+ assert_equal(np.sum.__module__, 'numpy')
+ assert_equal(np.char.equal.__module__, 'numpy.char')
+ assert_equal(np.fft.fft.__module__, 'numpy.fft')
+ assert_equal(np.linalg.solve.__module__, 'numpy.linalg')
+
+ def test_inspect_sum(self):
+ signature = inspect.signature(np.sum)
+ assert_('axis' in signature.parameters)
+
+ def test_override_sum(self):
+ MyArray, implements = _new_duck_type_and_implements()
+
+ @implements(np.sum)
+ def _(array):
+ return 'yes'
+
+ assert_equal(np.sum(MyArray()), 'yes')
+
+ def test_sum_on_mock_array(self):
+
+ # We need a proxy for mocks because __array_function__ is only looked
+ # up in the class dict
+ class ArrayProxy:
+ def __init__(self, value):
+ self.value = value
+ def __array_function__(self, *args, **kwargs):
+ return self.value.__array_function__(*args, **kwargs)
+ def __array__(self, *args, **kwargs):
+ return self.value.__array__(*args, **kwargs)
+
+ proxy = ArrayProxy(mock.Mock(spec=ArrayProxy))
+ proxy.value.__array_function__.return_value = 1
+ result = np.sum(proxy)
+ assert_equal(result, 1)
+ proxy.value.__array_function__.assert_called_once_with(
+ np.sum, (ArrayProxy,), (proxy,), {})
+ proxy.value.__array__.assert_not_called()
+
+ def test_sum_forwarding_implementation(self):
+
+ class MyArray(np.ndarray):
+
+ def sum(self, axis, out):
+ return 'summed'
+
+ def __array_function__(self, func, types, args, kwargs):
+ return super().__array_function__(func, types, args, kwargs)
+
+ # note: the internal implementation of np.sum() calls the .sum() method
+ array = np.array(1).view(MyArray)
+ assert_equal(np.sum(array), 'summed')
+
+
+class TestArrayLike:
+ def setup_method(self):
+ class MyArray():
+ def __init__(self, function=None):
+ self.function = function
+
+ def __array_function__(self, func, types, args, kwargs):
+ assert func is getattr(np, func.__name__)
+ try:
+ my_func = getattr(self, func.__name__)
+ except AttributeError:
+ return NotImplemented
+ return my_func(*args, **kwargs)
+
+ self.MyArray = MyArray
+
+ class MyNoArrayFunctionArray():
+ def __init__(self, function=None):
+ self.function = function
+
+ self.MyNoArrayFunctionArray = MyNoArrayFunctionArray
+
+ def add_method(self, name, arr_class, enable_value_error=False):
+ def _definition(*args, **kwargs):
+ # Check that `like=` isn't propagated downstream
+ assert 'like' not in kwargs
+
+ if enable_value_error and 'value_error' in kwargs:
+ raise ValueError
+
+ return arr_class(getattr(arr_class, name))
+ setattr(arr_class, name, _definition)
+
+ def func_args(*args, **kwargs):
+ return args, kwargs
+
+ def test_array_like_not_implemented(self):
+ self.add_method('array', self.MyArray)
+
+ ref = self.MyArray.array()
+
+ with assert_raises_regex(TypeError, 'no implementation found'):
+ array_like = np.asarray(1, like=ref)
+
+ _array_tests = [
+ ('array', *func_args((1,))),
+ ('asarray', *func_args((1,))),
+ ('asanyarray', *func_args((1,))),
+ ('ascontiguousarray', *func_args((2, 3))),
+ ('asfortranarray', *func_args((2, 3))),
+ ('require', *func_args((np.arange(6).reshape(2, 3),),
+ requirements=['A', 'F'])),
+ ('empty', *func_args((1,))),
+ ('full', *func_args((1,), 2)),
+ ('ones', *func_args((1,))),
+ ('zeros', *func_args((1,))),
+ ('arange', *func_args(3)),
+ ('frombuffer', *func_args(b'\x00' * 8, dtype=int)),
+ ('fromiter', *func_args(range(3), dtype=int)),
+ ('fromstring', *func_args('1,2', dtype=int, sep=',')),
+ ('loadtxt', *func_args(lambda: StringIO('0 1\n2 3'))),
+ ('genfromtxt', *func_args(lambda: StringIO('1,2.1'),
+ dtype=[('int', 'i8'), ('float', 'f8')],
+ delimiter=',')),
+ ]
+
+ @pytest.mark.parametrize('function, args, kwargs', _array_tests)
+ @pytest.mark.parametrize('numpy_ref', [True, False])
+ def test_array_like(self, function, args, kwargs, numpy_ref):
+ self.add_method('array', self.MyArray)
+ self.add_method(function, self.MyArray)
+ np_func = getattr(np, function)
+ my_func = getattr(self.MyArray, function)
+
+ if numpy_ref is True:
+ ref = np.array(1)
+ else:
+ ref = self.MyArray.array()
+
+ like_args = tuple(a() if callable(a) else a for a in args)
+ array_like = np_func(*like_args, **kwargs, like=ref)
+
+ if numpy_ref is True:
+ assert type(array_like) is np.ndarray
+
+ np_args = tuple(a() if callable(a) else a for a in args)
+ np_arr = np_func(*np_args, **kwargs)
+
+ # Special-case np.empty to ensure values match
+ if function == "empty":
+ np_arr.fill(1)
+ array_like.fill(1)
+
+ assert_equal(array_like, np_arr)
+ else:
+ assert type(array_like) is self.MyArray
+ assert array_like.function is my_func
+
+ @pytest.mark.parametrize('function, args, kwargs', _array_tests)
+ @pytest.mark.parametrize('ref', [1, [1], "MyNoArrayFunctionArray"])
+ def test_no_array_function_like(self, function, args, kwargs, ref):
+ self.add_method('array', self.MyNoArrayFunctionArray)
+ self.add_method(function, self.MyNoArrayFunctionArray)
+ np_func = getattr(np, function)
+
+ # Instantiate ref if it's the MyNoArrayFunctionArray class
+ if ref == "MyNoArrayFunctionArray":
+ ref = self.MyNoArrayFunctionArray.array()
+
+ like_args = tuple(a() if callable(a) else a for a in args)
+
+ with assert_raises_regex(TypeError,
+ 'The `like` argument must be an array-like that implements'):
+ np_func(*like_args, **kwargs, like=ref)
+
+ @pytest.mark.parametrize('numpy_ref', [True, False])
+ def test_array_like_fromfile(self, numpy_ref):
+ self.add_method('array', self.MyArray)
+ self.add_method("fromfile", self.MyArray)
+
+ if numpy_ref is True:
+ ref = np.array(1)
+ else:
+ ref = self.MyArray.array()
+
+ data = np.random.random(5)
+
+ with tempfile.TemporaryDirectory() as tmpdir:
+ fname = os.path.join(tmpdir, "testfile")
+ data.tofile(fname)
+
+ array_like = np.fromfile(fname, like=ref)
+ if numpy_ref is True:
+ assert type(array_like) is np.ndarray
+ np_res = np.fromfile(fname, like=ref)
+ assert_equal(np_res, data)
+ assert_equal(array_like, np_res)
+ else:
+ assert type(array_like) is self.MyArray
+ assert array_like.function is self.MyArray.fromfile
+
+ def test_exception_handling(self):
+ self.add_method('array', self.MyArray, enable_value_error=True)
+
+ ref = self.MyArray.array()
+
+ with assert_raises(TypeError):
+ # Raises the error about `value_error` being invalid first
+ np.array(1, value_error=True, like=ref)
+
+ @pytest.mark.parametrize('function, args, kwargs', _array_tests)
+ def test_like_as_none(self, function, args, kwargs):
+ self.add_method('array', self.MyArray)
+ self.add_method(function, self.MyArray)
+ np_func = getattr(np, function)
+
+ like_args = tuple(a() if callable(a) else a for a in args)
+ # required for loadtxt and genfromtxt to init w/o error.
+ like_args_exp = tuple(a() if callable(a) else a for a in args)
+
+ array_like = np_func(*like_args, **kwargs, like=None)
+ expected = np_func(*like_args_exp, **kwargs)
+ # Special-case np.empty to ensure values match
+ if function == "empty":
+ array_like.fill(1)
+ expected.fill(1)
+ assert_equal(array_like, expected)
+
+
+def test_function_like():
+ # We provide a `__get__` implementation, make sure it works
+ assert type(np.mean) is np.core._multiarray_umath._ArrayFunctionDispatcher
+
+ class MyClass:
+ def __array__(self):
+ # valid argument to mean:
+ return np.arange(3)
+
+ func1 = staticmethod(np.mean)
+ func2 = np.mean
+ func3 = classmethod(np.mean)
+
+ m = MyClass()
+ assert m.func1([10]) == 10
+ assert m.func2() == 1 # mean of the arange
+ with pytest.raises(TypeError, match="unsupported operand type"):
+ # Tries to operate on the class
+ m.func3()
+
+ # Manual binding also works (the above may shortcut):
+ bound = np.mean.__get__(m, MyClass)
+ assert bound() == 1
+
+ bound = np.mean.__get__(None, MyClass) # unbound actually
+ assert bound([10]) == 10
+
+ bound = np.mean.__get__(MyClass) # classmethod
+ with pytest.raises(TypeError, match="unsupported operand type"):
+ bound()
+
+
+def test_scipy_trapz_support_shim():
+ # SciPy 1.10 and earlier "clone" trapz in this way, so we have a
+ # support shim in place: https://github.com/scipy/scipy/issues/17811
+ # That should be removed eventually. This test copies what SciPy does.
+ # Hopefully removable 1 year after SciPy 1.11; shim added to NumPy 1.25.
+ import types
+ import functools
+
+ def _copy_func(f):
+ # Based on http://stackoverflow.com/a/6528148/190597 (Glenn Maynard)
+ g = types.FunctionType(f.__code__, f.__globals__, name=f.__name__,
+ argdefs=f.__defaults__, closure=f.__closure__)
+ g = functools.update_wrapper(g, f)
+ g.__kwdefaults__ = f.__kwdefaults__
+ return g
+
+ trapezoid = _copy_func(np.trapz)
+
+ assert np.trapz([1, 2]) == trapezoid([1, 2])