about summary refs log tree commit diff
path: root/.venv/lib/python3.12/site-packages/numpy/core/tests/test_overrides.py
diff options
context:
space:
mode:
Diffstat (limited to '.venv/lib/python3.12/site-packages/numpy/core/tests/test_overrides.py')
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/core/tests/test_overrides.py759
1 files changed, 759 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/numpy/core/tests/test_overrides.py b/.venv/lib/python3.12/site-packages/numpy/core/tests/test_overrides.py
new file mode 100644
index 00000000..5924358e
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/core/tests/test_overrides.py
@@ -0,0 +1,759 @@
+import inspect
+import sys
+import os
+import tempfile
+from io import StringIO
+from unittest import mock
+
+import numpy as np
+from numpy.testing import (
+    assert_, assert_equal, assert_raises, assert_raises_regex)
+from numpy.core.overrides import (
+    _get_implementing_args, array_function_dispatch,
+    verify_matching_signatures)
+from numpy.compat import pickle
+import pytest
+
+
+def _return_not_implemented(self, *args, **kwargs):
+    return NotImplemented
+
+
+# need to define this at the top level to test pickling
+@array_function_dispatch(lambda array: (array,))
+def dispatched_one_arg(array):
+    """Docstring."""
+    return 'original'
+
+
+@array_function_dispatch(lambda array1, array2: (array1, array2))
+def dispatched_two_arg(array1, array2):
+    """Docstring."""
+    return 'original'
+
+
+class TestGetImplementingArgs:
+
+    def test_ndarray(self):
+        array = np.array(1)
+
+        args = _get_implementing_args([array])
+        assert_equal(list(args), [array])
+
+        args = _get_implementing_args([array, array])
+        assert_equal(list(args), [array])
+
+        args = _get_implementing_args([array, 1])
+        assert_equal(list(args), [array])
+
+        args = _get_implementing_args([1, array])
+        assert_equal(list(args), [array])
+
+    def test_ndarray_subclasses(self):
+
+        class OverrideSub(np.ndarray):
+            __array_function__ = _return_not_implemented
+
+        class NoOverrideSub(np.ndarray):
+            pass
+
+        array = np.array(1).view(np.ndarray)
+        override_sub = np.array(1).view(OverrideSub)
+        no_override_sub = np.array(1).view(NoOverrideSub)
+
+        args = _get_implementing_args([array, override_sub])
+        assert_equal(list(args), [override_sub, array])
+
+        args = _get_implementing_args([array, no_override_sub])
+        assert_equal(list(args), [no_override_sub, array])
+
+        args = _get_implementing_args(
+            [override_sub, no_override_sub])
+        assert_equal(list(args), [override_sub, no_override_sub])
+
+    def test_ndarray_and_duck_array(self):
+
+        class Other:
+            __array_function__ = _return_not_implemented
+
+        array = np.array(1)
+        other = Other()
+
+        args = _get_implementing_args([other, array])
+        assert_equal(list(args), [other, array])
+
+        args = _get_implementing_args([array, other])
+        assert_equal(list(args), [array, other])
+
+    def test_ndarray_subclass_and_duck_array(self):
+
+        class OverrideSub(np.ndarray):
+            __array_function__ = _return_not_implemented
+
+        class Other:
+            __array_function__ = _return_not_implemented
+
+        array = np.array(1)
+        subarray = np.array(1).view(OverrideSub)
+        other = Other()
+
+        assert_equal(_get_implementing_args([array, subarray, other]),
+                     [subarray, array, other])
+        assert_equal(_get_implementing_args([array, other, subarray]),
+                     [subarray, array, other])
+
+    def test_many_duck_arrays(self):
+
+        class A:
+            __array_function__ = _return_not_implemented
+
+        class B(A):
+            __array_function__ = _return_not_implemented
+
+        class C(A):
+            __array_function__ = _return_not_implemented
+
+        class D:
+            __array_function__ = _return_not_implemented
+
+        a = A()
+        b = B()
+        c = C()
+        d = D()
+
+        assert_equal(_get_implementing_args([1]), [])
+        assert_equal(_get_implementing_args([a]), [a])
+        assert_equal(_get_implementing_args([a, 1]), [a])
+        assert_equal(_get_implementing_args([a, a, a]), [a])
+        assert_equal(_get_implementing_args([a, d, a]), [a, d])
+        assert_equal(_get_implementing_args([a, b]), [b, a])
+        assert_equal(_get_implementing_args([b, a]), [b, a])
+        assert_equal(_get_implementing_args([a, b, c]), [b, c, a])
+        assert_equal(_get_implementing_args([a, c, b]), [c, b, a])
+
+    def test_too_many_duck_arrays(self):
+        namespace = dict(__array_function__=_return_not_implemented)
+        types = [type('A' + str(i), (object,), namespace) for i in range(33)]
+        relevant_args = [t() for t in types]
+
+        actual = _get_implementing_args(relevant_args[:32])
+        assert_equal(actual, relevant_args[:32])
+
+        with assert_raises_regex(TypeError, 'distinct argument types'):
+            _get_implementing_args(relevant_args)
+
+
+class TestNDArrayArrayFunction:
+
+    def test_method(self):
+
+        class Other:
+            __array_function__ = _return_not_implemented
+
+        class NoOverrideSub(np.ndarray):
+            pass
+
+        class OverrideSub(np.ndarray):
+            __array_function__ = _return_not_implemented
+
+        array = np.array([1])
+        other = Other()
+        no_override_sub = array.view(NoOverrideSub)
+        override_sub = array.view(OverrideSub)
+
+        result = array.__array_function__(func=dispatched_two_arg,
+                                          types=(np.ndarray,),
+                                          args=(array, 1.), kwargs={})
+        assert_equal(result, 'original')
+
+        result = array.__array_function__(func=dispatched_two_arg,
+                                          types=(np.ndarray, Other),
+                                          args=(array, other), kwargs={})
+        assert_(result is NotImplemented)
+
+        result = array.__array_function__(func=dispatched_two_arg,
+                                          types=(np.ndarray, NoOverrideSub),
+                                          args=(array, no_override_sub),
+                                          kwargs={})
+        assert_equal(result, 'original')
+
+        result = array.__array_function__(func=dispatched_two_arg,
+                                          types=(np.ndarray, OverrideSub),
+                                          args=(array, override_sub),
+                                          kwargs={})
+        assert_equal(result, 'original')
+
+        with assert_raises_regex(TypeError, 'no implementation found'):
+            np.concatenate((array, other))
+
+        expected = np.concatenate((array, array))
+        result = np.concatenate((array, no_override_sub))
+        assert_equal(result, expected.view(NoOverrideSub))
+        result = np.concatenate((array, override_sub))
+        assert_equal(result, expected.view(OverrideSub))
+
+    def test_no_wrapper(self):
+        # This shouldn't happen unless a user intentionally calls
+        # __array_function__ with invalid arguments, but check that we raise
+        # an appropriate error all the same.
+        array = np.array(1)
+        func = lambda x: x
+        with assert_raises_regex(AttributeError, '_implementation'):
+            array.__array_function__(func=func, types=(np.ndarray,),
+                                     args=(array,), kwargs={})
+
+
+class TestArrayFunctionDispatch:
+
+    def test_pickle(self):
+        for proto in range(2, pickle.HIGHEST_PROTOCOL + 1):
+            roundtripped = pickle.loads(
+                    pickle.dumps(dispatched_one_arg, protocol=proto))
+            assert_(roundtripped is dispatched_one_arg)
+
+    def test_name_and_docstring(self):
+        assert_equal(dispatched_one_arg.__name__, 'dispatched_one_arg')
+        if sys.flags.optimize < 2:
+            assert_equal(dispatched_one_arg.__doc__, 'Docstring.')
+
+    def test_interface(self):
+
+        class MyArray:
+            def __array_function__(self, func, types, args, kwargs):
+                return (self, func, types, args, kwargs)
+
+        original = MyArray()
+        (obj, func, types, args, kwargs) = dispatched_one_arg(original)
+        assert_(obj is original)
+        assert_(func is dispatched_one_arg)
+        assert_equal(set(types), {MyArray})
+        # assert_equal uses the overloaded np.iscomplexobj() internally
+        assert_(args == (original,))
+        assert_equal(kwargs, {})
+
+    def test_not_implemented(self):
+
+        class MyArray:
+            def __array_function__(self, func, types, args, kwargs):
+                return NotImplemented
+
+        array = MyArray()
+        with assert_raises_regex(TypeError, 'no implementation found'):
+            dispatched_one_arg(array)
+
+    def test_where_dispatch(self):
+
+        class DuckArray:
+            def __array_function__(self, ufunc, method, *inputs, **kwargs):
+                return "overridden"
+
+        array = np.array(1)
+        duck_array = DuckArray()
+
+        result = np.std(array, where=duck_array)
+
+        assert_equal(result, "overridden")
+
+
+class TestVerifyMatchingSignatures:
+
+    def test_verify_matching_signatures(self):
+
+        verify_matching_signatures(lambda x: 0, lambda x: 0)
+        verify_matching_signatures(lambda x=None: 0, lambda x=None: 0)
+        verify_matching_signatures(lambda x=1: 0, lambda x=None: 0)
+
+        with assert_raises(RuntimeError):
+            verify_matching_signatures(lambda a: 0, lambda b: 0)
+        with assert_raises(RuntimeError):
+            verify_matching_signatures(lambda x: 0, lambda x=None: 0)
+        with assert_raises(RuntimeError):
+            verify_matching_signatures(lambda x=None: 0, lambda y=None: 0)
+        with assert_raises(RuntimeError):
+            verify_matching_signatures(lambda x=1: 0, lambda y=1: 0)
+
+    def test_array_function_dispatch(self):
+
+        with assert_raises(RuntimeError):
+            @array_function_dispatch(lambda x: (x,))
+            def f(y):
+                pass
+
+        # should not raise
+        @array_function_dispatch(lambda x: (x,), verify=False)
+        def f(y):
+            pass
+
+
+def _new_duck_type_and_implements():
+    """Create a duck array type and implements functions."""
+    HANDLED_FUNCTIONS = {}
+
+    class MyArray:
+        def __array_function__(self, func, types, args, kwargs):
+            if func not in HANDLED_FUNCTIONS:
+                return NotImplemented
+            if not all(issubclass(t, MyArray) for t in types):
+                return NotImplemented
+            return HANDLED_FUNCTIONS[func](*args, **kwargs)
+
+    def implements(numpy_function):
+        """Register an __array_function__ implementations."""
+        def decorator(func):
+            HANDLED_FUNCTIONS[numpy_function] = func
+            return func
+        return decorator
+
+    return (MyArray, implements)
+
+
+class TestArrayFunctionImplementation:
+
+    def test_one_arg(self):
+        MyArray, implements = _new_duck_type_and_implements()
+
+        @implements(dispatched_one_arg)
+        def _(array):
+            return 'myarray'
+
+        assert_equal(dispatched_one_arg(1), 'original')
+        assert_equal(dispatched_one_arg(MyArray()), 'myarray')
+
+    def test_optional_args(self):
+        MyArray, implements = _new_duck_type_and_implements()
+
+        @array_function_dispatch(lambda array, option=None: (array,))
+        def func_with_option(array, option='default'):
+            return option
+
+        @implements(func_with_option)
+        def my_array_func_with_option(array, new_option='myarray'):
+            return new_option
+
+        # we don't need to implement every option on __array_function__
+        # implementations
+        assert_equal(func_with_option(1), 'default')
+        assert_equal(func_with_option(1, option='extra'), 'extra')
+        assert_equal(func_with_option(MyArray()), 'myarray')
+        with assert_raises(TypeError):
+            func_with_option(MyArray(), option='extra')
+
+        # but new options on implementations can't be used
+        result = my_array_func_with_option(MyArray(), new_option='yes')
+        assert_equal(result, 'yes')
+        with assert_raises(TypeError):
+            func_with_option(MyArray(), new_option='no')
+
+    def test_not_implemented(self):
+        MyArray, implements = _new_duck_type_and_implements()
+
+        @array_function_dispatch(lambda array: (array,), module='my')
+        def func(array):
+            return array
+
+        array = np.array(1)
+        assert_(func(array) is array)
+        assert_equal(func.__module__, 'my')
+
+        with assert_raises_regex(
+                TypeError, "no implementation found for 'my.func'"):
+            func(MyArray())
+
+    @pytest.mark.parametrize("name", ["concatenate", "mean", "asarray"])
+    def test_signature_error_message_simple(self, name):
+        func = getattr(np, name)
+        try:
+            # all of these functions need an argument:
+            func()
+        except TypeError as e:
+            exc = e
+
+        assert exc.args[0].startswith(f"{name}()")
+
+    def test_signature_error_message(self):
+        # The lambda function will be named "<lambda>", but the TypeError
+        # should show the name as "func"
+        def _dispatcher():
+            return ()
+
+        @array_function_dispatch(_dispatcher)
+        def func():
+            pass
+
+        try:
+            func._implementation(bad_arg=3)
+        except TypeError as e:
+            expected_exception = e
+
+        try:
+            func(bad_arg=3)
+            raise AssertionError("must fail")
+        except TypeError as exc:
+            if exc.args[0].startswith("_dispatcher"):
+                # We replace the qualname currently, but it used `__name__`
+                # (relevant functions have the same name and qualname anyway)
+                pytest.skip("Python version is not using __qualname__ for "
+                            "TypeError formatting.")
+
+            assert exc.args == expected_exception.args
+
+    @pytest.mark.parametrize("value", [234, "this func is not replaced"])
+    def test_dispatcher_error(self, value):
+        # If the dispatcher raises an error, we must not attempt to mutate it
+        error = TypeError(value)
+
+        def dispatcher():
+            raise error
+
+        @array_function_dispatch(dispatcher)
+        def func():
+            return 3
+
+        try:
+            func()
+            raise AssertionError("must fail")
+        except TypeError as exc:
+            assert exc is error  # unmodified exception
+
+    def test_properties(self):
+        # Check that str and repr are sensible
+        func = dispatched_two_arg
+        assert str(func) == str(func._implementation)
+        repr_no_id = repr(func).split("at ")[0]
+        repr_no_id_impl = repr(func._implementation).split("at ")[0]
+        assert repr_no_id == repr_no_id_impl
+
+    @pytest.mark.parametrize("func", [
+            lambda x, y: 0,  # no like argument
+            lambda like=None: 0,  # not keyword only
+            lambda *, like=None, a=3: 0,  # not last (not that it matters)
+        ])
+    def test_bad_like_sig(self, func):
+        # We sanity check the signature, and these should fail.
+        with pytest.raises(RuntimeError):
+            array_function_dispatch()(func)
+
+    def test_bad_like_passing(self):
+        # Cover internal sanity check for passing like as first positional arg
+        def func(*, like=None):
+            pass
+
+        func_with_like = array_function_dispatch()(func)
+        with pytest.raises(TypeError):
+            func_with_like()
+        with pytest.raises(TypeError):
+            func_with_like(like=234)
+
+    def test_too_many_args(self):
+        # Mainly a unit-test to increase coverage
+        objs = []
+        for i in range(40):
+            class MyArr:
+                def __array_function__(self, *args, **kwargs):
+                    return NotImplemented
+
+            objs.append(MyArr())
+
+        def _dispatch(*args):
+            return args
+
+        @array_function_dispatch(_dispatch)
+        def func(*args):
+            pass
+
+        with pytest.raises(TypeError, match="maximum number"):
+            func(*objs)
+
+
+
+class TestNDArrayMethods:
+
+    def test_repr(self):
+        # gh-12162: should still be defined even if __array_function__ doesn't
+        # implement np.array_repr()
+
+        class MyArray(np.ndarray):
+            def __array_function__(*args, **kwargs):
+                return NotImplemented
+
+        array = np.array(1).view(MyArray)
+        assert_equal(repr(array), 'MyArray(1)')
+        assert_equal(str(array), '1')
+
+
+class TestNumPyFunctions:
+
+    def test_set_module(self):
+        assert_equal(np.sum.__module__, 'numpy')
+        assert_equal(np.char.equal.__module__, 'numpy.char')
+        assert_equal(np.fft.fft.__module__, 'numpy.fft')
+        assert_equal(np.linalg.solve.__module__, 'numpy.linalg')
+
+    def test_inspect_sum(self):
+        signature = inspect.signature(np.sum)
+        assert_('axis' in signature.parameters)
+
+    def test_override_sum(self):
+        MyArray, implements = _new_duck_type_and_implements()
+
+        @implements(np.sum)
+        def _(array):
+            return 'yes'
+
+        assert_equal(np.sum(MyArray()), 'yes')
+
+    def test_sum_on_mock_array(self):
+
+        # We need a proxy for mocks because __array_function__ is only looked
+        # up in the class dict
+        class ArrayProxy:
+            def __init__(self, value):
+                self.value = value
+            def __array_function__(self, *args, **kwargs):
+                return self.value.__array_function__(*args, **kwargs)
+            def __array__(self, *args, **kwargs):
+                return self.value.__array__(*args, **kwargs)
+
+        proxy = ArrayProxy(mock.Mock(spec=ArrayProxy))
+        proxy.value.__array_function__.return_value = 1
+        result = np.sum(proxy)
+        assert_equal(result, 1)
+        proxy.value.__array_function__.assert_called_once_with(
+            np.sum, (ArrayProxy,), (proxy,), {})
+        proxy.value.__array__.assert_not_called()
+
+    def test_sum_forwarding_implementation(self):
+
+        class MyArray(np.ndarray):
+
+            def sum(self, axis, out):
+                return 'summed'
+
+            def __array_function__(self, func, types, args, kwargs):
+                return super().__array_function__(func, types, args, kwargs)
+
+        # note: the internal implementation of np.sum() calls the .sum() method
+        array = np.array(1).view(MyArray)
+        assert_equal(np.sum(array), 'summed')
+
+
+class TestArrayLike:
+    def setup_method(self):
+        class MyArray():
+            def __init__(self, function=None):
+                self.function = function
+
+            def __array_function__(self, func, types, args, kwargs):
+                assert func is getattr(np, func.__name__)
+                try:
+                    my_func = getattr(self, func.__name__)
+                except AttributeError:
+                    return NotImplemented
+                return my_func(*args, **kwargs)
+
+        self.MyArray = MyArray
+
+        class MyNoArrayFunctionArray():
+            def __init__(self, function=None):
+                self.function = function
+
+        self.MyNoArrayFunctionArray = MyNoArrayFunctionArray
+
+    def add_method(self, name, arr_class, enable_value_error=False):
+        def _definition(*args, **kwargs):
+            # Check that `like=` isn't propagated downstream
+            assert 'like' not in kwargs
+
+            if enable_value_error and 'value_error' in kwargs:
+                raise ValueError
+
+            return arr_class(getattr(arr_class, name))
+        setattr(arr_class, name, _definition)
+
+    def func_args(*args, **kwargs):
+        return args, kwargs
+
+    def test_array_like_not_implemented(self):
+        self.add_method('array', self.MyArray)
+
+        ref = self.MyArray.array()
+
+        with assert_raises_regex(TypeError, 'no implementation found'):
+            array_like = np.asarray(1, like=ref)
+
+    _array_tests = [
+        ('array', *func_args((1,))),
+        ('asarray', *func_args((1,))),
+        ('asanyarray', *func_args((1,))),
+        ('ascontiguousarray', *func_args((2, 3))),
+        ('asfortranarray', *func_args((2, 3))),
+        ('require', *func_args((np.arange(6).reshape(2, 3),),
+                               requirements=['A', 'F'])),
+        ('empty', *func_args((1,))),
+        ('full', *func_args((1,), 2)),
+        ('ones', *func_args((1,))),
+        ('zeros', *func_args((1,))),
+        ('arange', *func_args(3)),
+        ('frombuffer', *func_args(b'\x00' * 8, dtype=int)),
+        ('fromiter', *func_args(range(3), dtype=int)),
+        ('fromstring', *func_args('1,2', dtype=int, sep=',')),
+        ('loadtxt', *func_args(lambda: StringIO('0 1\n2 3'))),
+        ('genfromtxt', *func_args(lambda: StringIO('1,2.1'),
+                                  dtype=[('int', 'i8'), ('float', 'f8')],
+                                  delimiter=',')),
+    ]
+
+    @pytest.mark.parametrize('function, args, kwargs', _array_tests)
+    @pytest.mark.parametrize('numpy_ref', [True, False])
+    def test_array_like(self, function, args, kwargs, numpy_ref):
+        self.add_method('array', self.MyArray)
+        self.add_method(function, self.MyArray)
+        np_func = getattr(np, function)
+        my_func = getattr(self.MyArray, function)
+
+        if numpy_ref is True:
+            ref = np.array(1)
+        else:
+            ref = self.MyArray.array()
+
+        like_args = tuple(a() if callable(a) else a for a in args)
+        array_like = np_func(*like_args, **kwargs, like=ref)
+
+        if numpy_ref is True:
+            assert type(array_like) is np.ndarray
+
+            np_args = tuple(a() if callable(a) else a for a in args)
+            np_arr = np_func(*np_args, **kwargs)
+
+            # Special-case np.empty to ensure values match
+            if function == "empty":
+                np_arr.fill(1)
+                array_like.fill(1)
+
+            assert_equal(array_like, np_arr)
+        else:
+            assert type(array_like) is self.MyArray
+            assert array_like.function is my_func
+
+    @pytest.mark.parametrize('function, args, kwargs', _array_tests)
+    @pytest.mark.parametrize('ref', [1, [1], "MyNoArrayFunctionArray"])
+    def test_no_array_function_like(self, function, args, kwargs, ref):
+        self.add_method('array', self.MyNoArrayFunctionArray)
+        self.add_method(function, self.MyNoArrayFunctionArray)
+        np_func = getattr(np, function)
+
+        # Instantiate ref if it's the MyNoArrayFunctionArray class
+        if ref == "MyNoArrayFunctionArray":
+            ref = self.MyNoArrayFunctionArray.array()
+
+        like_args = tuple(a() if callable(a) else a for a in args)
+
+        with assert_raises_regex(TypeError,
+                'The `like` argument must be an array-like that implements'):
+            np_func(*like_args, **kwargs, like=ref)
+
+    @pytest.mark.parametrize('numpy_ref', [True, False])
+    def test_array_like_fromfile(self, numpy_ref):
+        self.add_method('array', self.MyArray)
+        self.add_method("fromfile", self.MyArray)
+
+        if numpy_ref is True:
+            ref = np.array(1)
+        else:
+            ref = self.MyArray.array()
+
+        data = np.random.random(5)
+
+        with tempfile.TemporaryDirectory() as tmpdir:
+            fname = os.path.join(tmpdir, "testfile")
+            data.tofile(fname)
+
+            array_like = np.fromfile(fname, like=ref)
+            if numpy_ref is True:
+                assert type(array_like) is np.ndarray
+                np_res = np.fromfile(fname, like=ref)
+                assert_equal(np_res, data)
+                assert_equal(array_like, np_res)
+            else:
+                assert type(array_like) is self.MyArray
+                assert array_like.function is self.MyArray.fromfile
+
+    def test_exception_handling(self):
+        self.add_method('array', self.MyArray, enable_value_error=True)
+
+        ref = self.MyArray.array()
+
+        with assert_raises(TypeError):
+            # Raises the error about `value_error` being invalid first
+            np.array(1, value_error=True, like=ref)
+
+    @pytest.mark.parametrize('function, args, kwargs', _array_tests)
+    def test_like_as_none(self, function, args, kwargs):
+        self.add_method('array', self.MyArray)
+        self.add_method(function, self.MyArray)
+        np_func = getattr(np, function)
+
+        like_args = tuple(a() if callable(a) else a for a in args)
+        # required for loadtxt and genfromtxt to init w/o error.
+        like_args_exp = tuple(a() if callable(a) else a for a in args)
+
+        array_like = np_func(*like_args, **kwargs, like=None)
+        expected = np_func(*like_args_exp, **kwargs)
+        # Special-case np.empty to ensure values match
+        if function == "empty":
+            array_like.fill(1)
+            expected.fill(1)
+        assert_equal(array_like, expected)
+
+
+def test_function_like():
+    # We provide a `__get__` implementation, make sure it works
+    assert type(np.mean) is np.core._multiarray_umath._ArrayFunctionDispatcher 
+
+    class MyClass:
+        def __array__(self):
+            # valid argument to mean:
+            return np.arange(3)
+
+        func1 = staticmethod(np.mean)
+        func2 = np.mean
+        func3 = classmethod(np.mean)
+
+    m = MyClass()
+    assert m.func1([10]) == 10
+    assert m.func2() == 1  # mean of the arange
+    with pytest.raises(TypeError, match="unsupported operand type"):
+        # Tries to operate on the class
+        m.func3()
+
+    # Manual binding also works (the above may shortcut):
+    bound = np.mean.__get__(m, MyClass)
+    assert bound() == 1
+
+    bound = np.mean.__get__(None, MyClass)  # unbound actually
+    assert bound([10]) == 10
+
+    bound = np.mean.__get__(MyClass)  # classmethod
+    with pytest.raises(TypeError, match="unsupported operand type"):
+        bound()
+
+
+def test_scipy_trapz_support_shim():
+    # SciPy 1.10 and earlier "clone" trapz in this way, so we have a
+    # support shim in place: https://github.com/scipy/scipy/issues/17811
+    # That should be removed eventually.  This test copies what SciPy does.
+    # Hopefully removable 1 year after SciPy 1.11; shim added to NumPy 1.25.
+    import types
+    import functools
+
+    def _copy_func(f):
+        # Based on http://stackoverflow.com/a/6528148/190597 (Glenn Maynard)
+        g = types.FunctionType(f.__code__, f.__globals__, name=f.__name__,
+                            argdefs=f.__defaults__, closure=f.__closure__)
+        g = functools.update_wrapper(g, f)
+        g.__kwdefaults__ = f.__kwdefaults__
+        return g
+
+    trapezoid = _copy_func(np.trapz)
+
+    assert np.trapz([1, 2]) == trapezoid([1, 2])