aboutsummaryrefslogtreecommitdiff
path: root/.venv/lib/python3.12/site-packages/numpy/core/tests/test_nditer.py
diff options
context:
space:
mode:
Diffstat (limited to '.venv/lib/python3.12/site-packages/numpy/core/tests/test_nditer.py')
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/core/tests/test_nditer.py3348
1 files changed, 3348 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/numpy/core/tests/test_nditer.py b/.venv/lib/python3.12/site-packages/numpy/core/tests/test_nditer.py
new file mode 100644
index 00000000..9f639c4c
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/core/tests/test_nditer.py
@@ -0,0 +1,3348 @@
+import sys
+import pytest
+
+import textwrap
+import subprocess
+
+import numpy as np
+import numpy.core._multiarray_tests as _multiarray_tests
+from numpy import array, arange, nditer, all
+from numpy.testing import (
+ assert_, assert_equal, assert_array_equal, assert_raises,
+ IS_WASM, HAS_REFCOUNT, suppress_warnings, break_cycles
+ )
+
+
+def iter_multi_index(i):
+ ret = []
+ while not i.finished:
+ ret.append(i.multi_index)
+ i.iternext()
+ return ret
+
+def iter_indices(i):
+ ret = []
+ while not i.finished:
+ ret.append(i.index)
+ i.iternext()
+ return ret
+
+def iter_iterindices(i):
+ ret = []
+ while not i.finished:
+ ret.append(i.iterindex)
+ i.iternext()
+ return ret
+
+@pytest.mark.skipif(not HAS_REFCOUNT, reason="Python lacks refcounts")
+def test_iter_refcount():
+ # Make sure the iterator doesn't leak
+
+ # Basic
+ a = arange(6)
+ dt = np.dtype('f4').newbyteorder()
+ rc_a = sys.getrefcount(a)
+ rc_dt = sys.getrefcount(dt)
+ with nditer(a, [],
+ [['readwrite', 'updateifcopy']],
+ casting='unsafe',
+ op_dtypes=[dt]) as it:
+ assert_(not it.iterationneedsapi)
+ assert_(sys.getrefcount(a) > rc_a)
+ assert_(sys.getrefcount(dt) > rc_dt)
+ # del 'it'
+ it = None
+ assert_equal(sys.getrefcount(a), rc_a)
+ assert_equal(sys.getrefcount(dt), rc_dt)
+
+ # With a copy
+ a = arange(6, dtype='f4')
+ dt = np.dtype('f4')
+ rc_a = sys.getrefcount(a)
+ rc_dt = sys.getrefcount(dt)
+ it = nditer(a, [],
+ [['readwrite']],
+ op_dtypes=[dt])
+ rc2_a = sys.getrefcount(a)
+ rc2_dt = sys.getrefcount(dt)
+ it2 = it.copy()
+ assert_(sys.getrefcount(a) > rc2_a)
+ assert_(sys.getrefcount(dt) > rc2_dt)
+ it = None
+ assert_equal(sys.getrefcount(a), rc2_a)
+ assert_equal(sys.getrefcount(dt), rc2_dt)
+ it2 = None
+ assert_equal(sys.getrefcount(a), rc_a)
+ assert_equal(sys.getrefcount(dt), rc_dt)
+
+ del it2 # avoid pyflakes unused variable warning
+
+def test_iter_best_order():
+ # The iterator should always find the iteration order
+ # with increasing memory addresses
+
+ # Test the ordering for 1-D to 5-D shapes
+ for shape in [(5,), (3, 4), (2, 3, 4), (2, 3, 4, 3), (2, 3, 2, 2, 3)]:
+ a = arange(np.prod(shape))
+ # Test each combination of positive and negative strides
+ for dirs in range(2**len(shape)):
+ dirs_index = [slice(None)]*len(shape)
+ for bit in range(len(shape)):
+ if ((2**bit) & dirs):
+ dirs_index[bit] = slice(None, None, -1)
+ dirs_index = tuple(dirs_index)
+
+ aview = a.reshape(shape)[dirs_index]
+ # C-order
+ i = nditer(aview, [], [['readonly']])
+ assert_equal([x for x in i], a)
+ # Fortran-order
+ i = nditer(aview.T, [], [['readonly']])
+ assert_equal([x for x in i], a)
+ # Other order
+ if len(shape) > 2:
+ i = nditer(aview.swapaxes(0, 1), [], [['readonly']])
+ assert_equal([x for x in i], a)
+
+def test_iter_c_order():
+ # Test forcing C order
+
+ # Test the ordering for 1-D to 5-D shapes
+ for shape in [(5,), (3, 4), (2, 3, 4), (2, 3, 4, 3), (2, 3, 2, 2, 3)]:
+ a = arange(np.prod(shape))
+ # Test each combination of positive and negative strides
+ for dirs in range(2**len(shape)):
+ dirs_index = [slice(None)]*len(shape)
+ for bit in range(len(shape)):
+ if ((2**bit) & dirs):
+ dirs_index[bit] = slice(None, None, -1)
+ dirs_index = tuple(dirs_index)
+
+ aview = a.reshape(shape)[dirs_index]
+ # C-order
+ i = nditer(aview, order='C')
+ assert_equal([x for x in i], aview.ravel(order='C'))
+ # Fortran-order
+ i = nditer(aview.T, order='C')
+ assert_equal([x for x in i], aview.T.ravel(order='C'))
+ # Other order
+ if len(shape) > 2:
+ i = nditer(aview.swapaxes(0, 1), order='C')
+ assert_equal([x for x in i],
+ aview.swapaxes(0, 1).ravel(order='C'))
+
+def test_iter_f_order():
+ # Test forcing F order
+
+ # Test the ordering for 1-D to 5-D shapes
+ for shape in [(5,), (3, 4), (2, 3, 4), (2, 3, 4, 3), (2, 3, 2, 2, 3)]:
+ a = arange(np.prod(shape))
+ # Test each combination of positive and negative strides
+ for dirs in range(2**len(shape)):
+ dirs_index = [slice(None)]*len(shape)
+ for bit in range(len(shape)):
+ if ((2**bit) & dirs):
+ dirs_index[bit] = slice(None, None, -1)
+ dirs_index = tuple(dirs_index)
+
+ aview = a.reshape(shape)[dirs_index]
+ # C-order
+ i = nditer(aview, order='F')
+ assert_equal([x for x in i], aview.ravel(order='F'))
+ # Fortran-order
+ i = nditer(aview.T, order='F')
+ assert_equal([x for x in i], aview.T.ravel(order='F'))
+ # Other order
+ if len(shape) > 2:
+ i = nditer(aview.swapaxes(0, 1), order='F')
+ assert_equal([x for x in i],
+ aview.swapaxes(0, 1).ravel(order='F'))
+
+def test_iter_c_or_f_order():
+ # Test forcing any contiguous (C or F) order
+
+ # Test the ordering for 1-D to 5-D shapes
+ for shape in [(5,), (3, 4), (2, 3, 4), (2, 3, 4, 3), (2, 3, 2, 2, 3)]:
+ a = arange(np.prod(shape))
+ # Test each combination of positive and negative strides
+ for dirs in range(2**len(shape)):
+ dirs_index = [slice(None)]*len(shape)
+ for bit in range(len(shape)):
+ if ((2**bit) & dirs):
+ dirs_index[bit] = slice(None, None, -1)
+ dirs_index = tuple(dirs_index)
+
+ aview = a.reshape(shape)[dirs_index]
+ # C-order
+ i = nditer(aview, order='A')
+ assert_equal([x for x in i], aview.ravel(order='A'))
+ # Fortran-order
+ i = nditer(aview.T, order='A')
+ assert_equal([x for x in i], aview.T.ravel(order='A'))
+ # Other order
+ if len(shape) > 2:
+ i = nditer(aview.swapaxes(0, 1), order='A')
+ assert_equal([x for x in i],
+ aview.swapaxes(0, 1).ravel(order='A'))
+
+def test_nditer_multi_index_set():
+ # Test the multi_index set
+ a = np.arange(6).reshape(2, 3)
+ it = np.nditer(a, flags=['multi_index'])
+
+ # Removes the iteration on two first elements of a[0]
+ it.multi_index = (0, 2,)
+
+ assert_equal([i for i in it], [2, 3, 4, 5])
+
+@pytest.mark.skipif(not HAS_REFCOUNT, reason="Python lacks refcounts")
+def test_nditer_multi_index_set_refcount():
+ # Test if the reference count on index variable is decreased
+
+ index = 0
+ i = np.nditer(np.array([111, 222, 333, 444]), flags=['multi_index'])
+
+ start_count = sys.getrefcount(index)
+ i.multi_index = (index,)
+ end_count = sys.getrefcount(index)
+
+ assert_equal(start_count, end_count)
+
+def test_iter_best_order_multi_index_1d():
+ # The multi-indices should be correct with any reordering
+
+ a = arange(4)
+ # 1D order
+ i = nditer(a, ['multi_index'], [['readonly']])
+ assert_equal(iter_multi_index(i), [(0,), (1,), (2,), (3,)])
+ # 1D reversed order
+ i = nditer(a[::-1], ['multi_index'], [['readonly']])
+ assert_equal(iter_multi_index(i), [(3,), (2,), (1,), (0,)])
+
+def test_iter_best_order_multi_index_2d():
+ # The multi-indices should be correct with any reordering
+
+ a = arange(6)
+ # 2D C-order
+ i = nditer(a.reshape(2, 3), ['multi_index'], [['readonly']])
+ assert_equal(iter_multi_index(i), [(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2)])
+ # 2D Fortran-order
+ i = nditer(a.reshape(2, 3).copy(order='F'), ['multi_index'], [['readonly']])
+ assert_equal(iter_multi_index(i), [(0, 0), (1, 0), (0, 1), (1, 1), (0, 2), (1, 2)])
+ # 2D reversed C-order
+ i = nditer(a.reshape(2, 3)[::-1], ['multi_index'], [['readonly']])
+ assert_equal(iter_multi_index(i), [(1, 0), (1, 1), (1, 2), (0, 0), (0, 1), (0, 2)])
+ i = nditer(a.reshape(2, 3)[:, ::-1], ['multi_index'], [['readonly']])
+ assert_equal(iter_multi_index(i), [(0, 2), (0, 1), (0, 0), (1, 2), (1, 1), (1, 0)])
+ i = nditer(a.reshape(2, 3)[::-1, ::-1], ['multi_index'], [['readonly']])
+ assert_equal(iter_multi_index(i), [(1, 2), (1, 1), (1, 0), (0, 2), (0, 1), (0, 0)])
+ # 2D reversed Fortran-order
+ i = nditer(a.reshape(2, 3).copy(order='F')[::-1], ['multi_index'], [['readonly']])
+ assert_equal(iter_multi_index(i), [(1, 0), (0, 0), (1, 1), (0, 1), (1, 2), (0, 2)])
+ i = nditer(a.reshape(2, 3).copy(order='F')[:, ::-1],
+ ['multi_index'], [['readonly']])
+ assert_equal(iter_multi_index(i), [(0, 2), (1, 2), (0, 1), (1, 1), (0, 0), (1, 0)])
+ i = nditer(a.reshape(2, 3).copy(order='F')[::-1, ::-1],
+ ['multi_index'], [['readonly']])
+ assert_equal(iter_multi_index(i), [(1, 2), (0, 2), (1, 1), (0, 1), (1, 0), (0, 0)])
+
+def test_iter_best_order_multi_index_3d():
+ # The multi-indices should be correct with any reordering
+
+ a = arange(12)
+ # 3D C-order
+ i = nditer(a.reshape(2, 3, 2), ['multi_index'], [['readonly']])
+ assert_equal(iter_multi_index(i),
+ [(0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1), (0, 2, 0), (0, 2, 1),
+ (1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1), (1, 2, 0), (1, 2, 1)])
+ # 3D Fortran-order
+ i = nditer(a.reshape(2, 3, 2).copy(order='F'), ['multi_index'], [['readonly']])
+ assert_equal(iter_multi_index(i),
+ [(0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 1, 0), (0, 2, 0), (1, 2, 0),
+ (0, 0, 1), (1, 0, 1), (0, 1, 1), (1, 1, 1), (0, 2, 1), (1, 2, 1)])
+ # 3D reversed C-order
+ i = nditer(a.reshape(2, 3, 2)[::-1], ['multi_index'], [['readonly']])
+ assert_equal(iter_multi_index(i),
+ [(1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1), (1, 2, 0), (1, 2, 1),
+ (0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1), (0, 2, 0), (0, 2, 1)])
+ i = nditer(a.reshape(2, 3, 2)[:, ::-1], ['multi_index'], [['readonly']])
+ assert_equal(iter_multi_index(i),
+ [(0, 2, 0), (0, 2, 1), (0, 1, 0), (0, 1, 1), (0, 0, 0), (0, 0, 1),
+ (1, 2, 0), (1, 2, 1), (1, 1, 0), (1, 1, 1), (1, 0, 0), (1, 0, 1)])
+ i = nditer(a.reshape(2, 3, 2)[:,:, ::-1], ['multi_index'], [['readonly']])
+ assert_equal(iter_multi_index(i),
+ [(0, 0, 1), (0, 0, 0), (0, 1, 1), (0, 1, 0), (0, 2, 1), (0, 2, 0),
+ (1, 0, 1), (1, 0, 0), (1, 1, 1), (1, 1, 0), (1, 2, 1), (1, 2, 0)])
+ # 3D reversed Fortran-order
+ i = nditer(a.reshape(2, 3, 2).copy(order='F')[::-1],
+ ['multi_index'], [['readonly']])
+ assert_equal(iter_multi_index(i),
+ [(1, 0, 0), (0, 0, 0), (1, 1, 0), (0, 1, 0), (1, 2, 0), (0, 2, 0),
+ (1, 0, 1), (0, 0, 1), (1, 1, 1), (0, 1, 1), (1, 2, 1), (0, 2, 1)])
+ i = nditer(a.reshape(2, 3, 2).copy(order='F')[:, ::-1],
+ ['multi_index'], [['readonly']])
+ assert_equal(iter_multi_index(i),
+ [(0, 2, 0), (1, 2, 0), (0, 1, 0), (1, 1, 0), (0, 0, 0), (1, 0, 0),
+ (0, 2, 1), (1, 2, 1), (0, 1, 1), (1, 1, 1), (0, 0, 1), (1, 0, 1)])
+ i = nditer(a.reshape(2, 3, 2).copy(order='F')[:,:, ::-1],
+ ['multi_index'], [['readonly']])
+ assert_equal(iter_multi_index(i),
+ [(0, 0, 1), (1, 0, 1), (0, 1, 1), (1, 1, 1), (0, 2, 1), (1, 2, 1),
+ (0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 1, 0), (0, 2, 0), (1, 2, 0)])
+
+def test_iter_best_order_c_index_1d():
+ # The C index should be correct with any reordering
+
+ a = arange(4)
+ # 1D order
+ i = nditer(a, ['c_index'], [['readonly']])
+ assert_equal(iter_indices(i), [0, 1, 2, 3])
+ # 1D reversed order
+ i = nditer(a[::-1], ['c_index'], [['readonly']])
+ assert_equal(iter_indices(i), [3, 2, 1, 0])
+
+def test_iter_best_order_c_index_2d():
+ # The C index should be correct with any reordering
+
+ a = arange(6)
+ # 2D C-order
+ i = nditer(a.reshape(2, 3), ['c_index'], [['readonly']])
+ assert_equal(iter_indices(i), [0, 1, 2, 3, 4, 5])
+ # 2D Fortran-order
+ i = nditer(a.reshape(2, 3).copy(order='F'),
+ ['c_index'], [['readonly']])
+ assert_equal(iter_indices(i), [0, 3, 1, 4, 2, 5])
+ # 2D reversed C-order
+ i = nditer(a.reshape(2, 3)[::-1], ['c_index'], [['readonly']])
+ assert_equal(iter_indices(i), [3, 4, 5, 0, 1, 2])
+ i = nditer(a.reshape(2, 3)[:, ::-1], ['c_index'], [['readonly']])
+ assert_equal(iter_indices(i), [2, 1, 0, 5, 4, 3])
+ i = nditer(a.reshape(2, 3)[::-1, ::-1], ['c_index'], [['readonly']])
+ assert_equal(iter_indices(i), [5, 4, 3, 2, 1, 0])
+ # 2D reversed Fortran-order
+ i = nditer(a.reshape(2, 3).copy(order='F')[::-1],
+ ['c_index'], [['readonly']])
+ assert_equal(iter_indices(i), [3, 0, 4, 1, 5, 2])
+ i = nditer(a.reshape(2, 3).copy(order='F')[:, ::-1],
+ ['c_index'], [['readonly']])
+ assert_equal(iter_indices(i), [2, 5, 1, 4, 0, 3])
+ i = nditer(a.reshape(2, 3).copy(order='F')[::-1, ::-1],
+ ['c_index'], [['readonly']])
+ assert_equal(iter_indices(i), [5, 2, 4, 1, 3, 0])
+
+def test_iter_best_order_c_index_3d():
+ # The C index should be correct with any reordering
+
+ a = arange(12)
+ # 3D C-order
+ i = nditer(a.reshape(2, 3, 2), ['c_index'], [['readonly']])
+ assert_equal(iter_indices(i),
+ [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11])
+ # 3D Fortran-order
+ i = nditer(a.reshape(2, 3, 2).copy(order='F'),
+ ['c_index'], [['readonly']])
+ assert_equal(iter_indices(i),
+ [0, 6, 2, 8, 4, 10, 1, 7, 3, 9, 5, 11])
+ # 3D reversed C-order
+ i = nditer(a.reshape(2, 3, 2)[::-1], ['c_index'], [['readonly']])
+ assert_equal(iter_indices(i),
+ [6, 7, 8, 9, 10, 11, 0, 1, 2, 3, 4, 5])
+ i = nditer(a.reshape(2, 3, 2)[:, ::-1], ['c_index'], [['readonly']])
+ assert_equal(iter_indices(i),
+ [4, 5, 2, 3, 0, 1, 10, 11, 8, 9, 6, 7])
+ i = nditer(a.reshape(2, 3, 2)[:,:, ::-1], ['c_index'], [['readonly']])
+ assert_equal(iter_indices(i),
+ [1, 0, 3, 2, 5, 4, 7, 6, 9, 8, 11, 10])
+ # 3D reversed Fortran-order
+ i = nditer(a.reshape(2, 3, 2).copy(order='F')[::-1],
+ ['c_index'], [['readonly']])
+ assert_equal(iter_indices(i),
+ [6, 0, 8, 2, 10, 4, 7, 1, 9, 3, 11, 5])
+ i = nditer(a.reshape(2, 3, 2).copy(order='F')[:, ::-1],
+ ['c_index'], [['readonly']])
+ assert_equal(iter_indices(i),
+ [4, 10, 2, 8, 0, 6, 5, 11, 3, 9, 1, 7])
+ i = nditer(a.reshape(2, 3, 2).copy(order='F')[:,:, ::-1],
+ ['c_index'], [['readonly']])
+ assert_equal(iter_indices(i),
+ [1, 7, 3, 9, 5, 11, 0, 6, 2, 8, 4, 10])
+
+def test_iter_best_order_f_index_1d():
+ # The Fortran index should be correct with any reordering
+
+ a = arange(4)
+ # 1D order
+ i = nditer(a, ['f_index'], [['readonly']])
+ assert_equal(iter_indices(i), [0, 1, 2, 3])
+ # 1D reversed order
+ i = nditer(a[::-1], ['f_index'], [['readonly']])
+ assert_equal(iter_indices(i), [3, 2, 1, 0])
+
+def test_iter_best_order_f_index_2d():
+ # The Fortran index should be correct with any reordering
+
+ a = arange(6)
+ # 2D C-order
+ i = nditer(a.reshape(2, 3), ['f_index'], [['readonly']])
+ assert_equal(iter_indices(i), [0, 2, 4, 1, 3, 5])
+ # 2D Fortran-order
+ i = nditer(a.reshape(2, 3).copy(order='F'),
+ ['f_index'], [['readonly']])
+ assert_equal(iter_indices(i), [0, 1, 2, 3, 4, 5])
+ # 2D reversed C-order
+ i = nditer(a.reshape(2, 3)[::-1], ['f_index'], [['readonly']])
+ assert_equal(iter_indices(i), [1, 3, 5, 0, 2, 4])
+ i = nditer(a.reshape(2, 3)[:, ::-1], ['f_index'], [['readonly']])
+ assert_equal(iter_indices(i), [4, 2, 0, 5, 3, 1])
+ i = nditer(a.reshape(2, 3)[::-1, ::-1], ['f_index'], [['readonly']])
+ assert_equal(iter_indices(i), [5, 3, 1, 4, 2, 0])
+ # 2D reversed Fortran-order
+ i = nditer(a.reshape(2, 3).copy(order='F')[::-1],
+ ['f_index'], [['readonly']])
+ assert_equal(iter_indices(i), [1, 0, 3, 2, 5, 4])
+ i = nditer(a.reshape(2, 3).copy(order='F')[:, ::-1],
+ ['f_index'], [['readonly']])
+ assert_equal(iter_indices(i), [4, 5, 2, 3, 0, 1])
+ i = nditer(a.reshape(2, 3).copy(order='F')[::-1, ::-1],
+ ['f_index'], [['readonly']])
+ assert_equal(iter_indices(i), [5, 4, 3, 2, 1, 0])
+
+def test_iter_best_order_f_index_3d():
+ # The Fortran index should be correct with any reordering
+
+ a = arange(12)
+ # 3D C-order
+ i = nditer(a.reshape(2, 3, 2), ['f_index'], [['readonly']])
+ assert_equal(iter_indices(i),
+ [0, 6, 2, 8, 4, 10, 1, 7, 3, 9, 5, 11])
+ # 3D Fortran-order
+ i = nditer(a.reshape(2, 3, 2).copy(order='F'),
+ ['f_index'], [['readonly']])
+ assert_equal(iter_indices(i),
+ [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11])
+ # 3D reversed C-order
+ i = nditer(a.reshape(2, 3, 2)[::-1], ['f_index'], [['readonly']])
+ assert_equal(iter_indices(i),
+ [1, 7, 3, 9, 5, 11, 0, 6, 2, 8, 4, 10])
+ i = nditer(a.reshape(2, 3, 2)[:, ::-1], ['f_index'], [['readonly']])
+ assert_equal(iter_indices(i),
+ [4, 10, 2, 8, 0, 6, 5, 11, 3, 9, 1, 7])
+ i = nditer(a.reshape(2, 3, 2)[:,:, ::-1], ['f_index'], [['readonly']])
+ assert_equal(iter_indices(i),
+ [6, 0, 8, 2, 10, 4, 7, 1, 9, 3, 11, 5])
+ # 3D reversed Fortran-order
+ i = nditer(a.reshape(2, 3, 2).copy(order='F')[::-1],
+ ['f_index'], [['readonly']])
+ assert_equal(iter_indices(i),
+ [1, 0, 3, 2, 5, 4, 7, 6, 9, 8, 11, 10])
+ i = nditer(a.reshape(2, 3, 2).copy(order='F')[:, ::-1],
+ ['f_index'], [['readonly']])
+ assert_equal(iter_indices(i),
+ [4, 5, 2, 3, 0, 1, 10, 11, 8, 9, 6, 7])
+ i = nditer(a.reshape(2, 3, 2).copy(order='F')[:,:, ::-1],
+ ['f_index'], [['readonly']])
+ assert_equal(iter_indices(i),
+ [6, 7, 8, 9, 10, 11, 0, 1, 2, 3, 4, 5])
+
+def test_iter_no_inner_full_coalesce():
+ # Check no_inner iterators which coalesce into a single inner loop
+
+ for shape in [(5,), (3, 4), (2, 3, 4), (2, 3, 4, 3), (2, 3, 2, 2, 3)]:
+ size = np.prod(shape)
+ a = arange(size)
+ # Test each combination of forward and backwards indexing
+ for dirs in range(2**len(shape)):
+ dirs_index = [slice(None)]*len(shape)
+ for bit in range(len(shape)):
+ if ((2**bit) & dirs):
+ dirs_index[bit] = slice(None, None, -1)
+ dirs_index = tuple(dirs_index)
+
+ aview = a.reshape(shape)[dirs_index]
+ # C-order
+ i = nditer(aview, ['external_loop'], [['readonly']])
+ assert_equal(i.ndim, 1)
+ assert_equal(i[0].shape, (size,))
+ # Fortran-order
+ i = nditer(aview.T, ['external_loop'], [['readonly']])
+ assert_equal(i.ndim, 1)
+ assert_equal(i[0].shape, (size,))
+ # Other order
+ if len(shape) > 2:
+ i = nditer(aview.swapaxes(0, 1),
+ ['external_loop'], [['readonly']])
+ assert_equal(i.ndim, 1)
+ assert_equal(i[0].shape, (size,))
+
+def test_iter_no_inner_dim_coalescing():
+ # Check no_inner iterators whose dimensions may not coalesce completely
+
+ # Skipping the last element in a dimension prevents coalescing
+ # with the next-bigger dimension
+ a = arange(24).reshape(2, 3, 4)[:,:, :-1]
+ i = nditer(a, ['external_loop'], [['readonly']])
+ assert_equal(i.ndim, 2)
+ assert_equal(i[0].shape, (3,))
+ a = arange(24).reshape(2, 3, 4)[:, :-1,:]
+ i = nditer(a, ['external_loop'], [['readonly']])
+ assert_equal(i.ndim, 2)
+ assert_equal(i[0].shape, (8,))
+ a = arange(24).reshape(2, 3, 4)[:-1,:,:]
+ i = nditer(a, ['external_loop'], [['readonly']])
+ assert_equal(i.ndim, 1)
+ assert_equal(i[0].shape, (12,))
+
+ # Even with lots of 1-sized dimensions, should still coalesce
+ a = arange(24).reshape(1, 1, 2, 1, 1, 3, 1, 1, 4, 1, 1)
+ i = nditer(a, ['external_loop'], [['readonly']])
+ assert_equal(i.ndim, 1)
+ assert_equal(i[0].shape, (24,))
+
+def test_iter_dim_coalescing():
+ # Check that the correct number of dimensions are coalesced
+
+ # Tracking a multi-index disables coalescing
+ a = arange(24).reshape(2, 3, 4)
+ i = nditer(a, ['multi_index'], [['readonly']])
+ assert_equal(i.ndim, 3)
+
+ # A tracked index can allow coalescing if it's compatible with the array
+ a3d = arange(24).reshape(2, 3, 4)
+ i = nditer(a3d, ['c_index'], [['readonly']])
+ assert_equal(i.ndim, 1)
+ i = nditer(a3d.swapaxes(0, 1), ['c_index'], [['readonly']])
+ assert_equal(i.ndim, 3)
+ i = nditer(a3d.T, ['c_index'], [['readonly']])
+ assert_equal(i.ndim, 3)
+ i = nditer(a3d.T, ['f_index'], [['readonly']])
+ assert_equal(i.ndim, 1)
+ i = nditer(a3d.T.swapaxes(0, 1), ['f_index'], [['readonly']])
+ assert_equal(i.ndim, 3)
+
+ # When C or F order is forced, coalescing may still occur
+ a3d = arange(24).reshape(2, 3, 4)
+ i = nditer(a3d, order='C')
+ assert_equal(i.ndim, 1)
+ i = nditer(a3d.T, order='C')
+ assert_equal(i.ndim, 3)
+ i = nditer(a3d, order='F')
+ assert_equal(i.ndim, 3)
+ i = nditer(a3d.T, order='F')
+ assert_equal(i.ndim, 1)
+ i = nditer(a3d, order='A')
+ assert_equal(i.ndim, 1)
+ i = nditer(a3d.T, order='A')
+ assert_equal(i.ndim, 1)
+
+def test_iter_broadcasting():
+ # Standard NumPy broadcasting rules
+
+ # 1D with scalar
+ i = nditer([arange(6), np.int32(2)], ['multi_index'], [['readonly']]*2)
+ assert_equal(i.itersize, 6)
+ assert_equal(i.shape, (6,))
+
+ # 2D with scalar
+ i = nditer([arange(6).reshape(2, 3), np.int32(2)],
+ ['multi_index'], [['readonly']]*2)
+ assert_equal(i.itersize, 6)
+ assert_equal(i.shape, (2, 3))
+ # 2D with 1D
+ i = nditer([arange(6).reshape(2, 3), arange(3)],
+ ['multi_index'], [['readonly']]*2)
+ assert_equal(i.itersize, 6)
+ assert_equal(i.shape, (2, 3))
+ i = nditer([arange(2).reshape(2, 1), arange(3)],
+ ['multi_index'], [['readonly']]*2)
+ assert_equal(i.itersize, 6)
+ assert_equal(i.shape, (2, 3))
+ # 2D with 2D
+ i = nditer([arange(2).reshape(2, 1), arange(3).reshape(1, 3)],
+ ['multi_index'], [['readonly']]*2)
+ assert_equal(i.itersize, 6)
+ assert_equal(i.shape, (2, 3))
+
+ # 3D with scalar
+ i = nditer([np.int32(2), arange(24).reshape(4, 2, 3)],
+ ['multi_index'], [['readonly']]*2)
+ assert_equal(i.itersize, 24)
+ assert_equal(i.shape, (4, 2, 3))
+ # 3D with 1D
+ i = nditer([arange(3), arange(24).reshape(4, 2, 3)],
+ ['multi_index'], [['readonly']]*2)
+ assert_equal(i.itersize, 24)
+ assert_equal(i.shape, (4, 2, 3))
+ i = nditer([arange(3), arange(8).reshape(4, 2, 1)],
+ ['multi_index'], [['readonly']]*2)
+ assert_equal(i.itersize, 24)
+ assert_equal(i.shape, (4, 2, 3))
+ # 3D with 2D
+ i = nditer([arange(6).reshape(2, 3), arange(24).reshape(4, 2, 3)],
+ ['multi_index'], [['readonly']]*2)
+ assert_equal(i.itersize, 24)
+ assert_equal(i.shape, (4, 2, 3))
+ i = nditer([arange(2).reshape(2, 1), arange(24).reshape(4, 2, 3)],
+ ['multi_index'], [['readonly']]*2)
+ assert_equal(i.itersize, 24)
+ assert_equal(i.shape, (4, 2, 3))
+ i = nditer([arange(3).reshape(1, 3), arange(8).reshape(4, 2, 1)],
+ ['multi_index'], [['readonly']]*2)
+ assert_equal(i.itersize, 24)
+ assert_equal(i.shape, (4, 2, 3))
+ # 3D with 3D
+ i = nditer([arange(2).reshape(1, 2, 1), arange(3).reshape(1, 1, 3),
+ arange(4).reshape(4, 1, 1)],
+ ['multi_index'], [['readonly']]*3)
+ assert_equal(i.itersize, 24)
+ assert_equal(i.shape, (4, 2, 3))
+ i = nditer([arange(6).reshape(1, 2, 3), arange(4).reshape(4, 1, 1)],
+ ['multi_index'], [['readonly']]*2)
+ assert_equal(i.itersize, 24)
+ assert_equal(i.shape, (4, 2, 3))
+ i = nditer([arange(24).reshape(4, 2, 3), arange(12).reshape(4, 1, 3)],
+ ['multi_index'], [['readonly']]*2)
+ assert_equal(i.itersize, 24)
+ assert_equal(i.shape, (4, 2, 3))
+
+def test_iter_itershape():
+ # Check that allocated outputs work with a specified shape
+ a = np.arange(6, dtype='i2').reshape(2, 3)
+ i = nditer([a, None], [], [['readonly'], ['writeonly', 'allocate']],
+ op_axes=[[0, 1, None], None],
+ itershape=(-1, -1, 4))
+ assert_equal(i.operands[1].shape, (2, 3, 4))
+ assert_equal(i.operands[1].strides, (24, 8, 2))
+
+ i = nditer([a.T, None], [], [['readonly'], ['writeonly', 'allocate']],
+ op_axes=[[0, 1, None], None],
+ itershape=(-1, -1, 4))
+ assert_equal(i.operands[1].shape, (3, 2, 4))
+ assert_equal(i.operands[1].strides, (8, 24, 2))
+
+ i = nditer([a.T, None], [], [['readonly'], ['writeonly', 'allocate']],
+ order='F',
+ op_axes=[[0, 1, None], None],
+ itershape=(-1, -1, 4))
+ assert_equal(i.operands[1].shape, (3, 2, 4))
+ assert_equal(i.operands[1].strides, (2, 6, 12))
+
+ # If we specify 1 in the itershape, it shouldn't allow broadcasting
+ # of that dimension to a bigger value
+ assert_raises(ValueError, nditer, [a, None], [],
+ [['readonly'], ['writeonly', 'allocate']],
+ op_axes=[[0, 1, None], None],
+ itershape=(-1, 1, 4))
+ # Test bug that for no op_axes but itershape, they are NULLed correctly
+ i = np.nditer([np.ones(2), None, None], itershape=(2,))
+
+def test_iter_broadcasting_errors():
+ # Check that errors are thrown for bad broadcasting shapes
+
+ # 1D with 1D
+ assert_raises(ValueError, nditer, [arange(2), arange(3)],
+ [], [['readonly']]*2)
+ # 2D with 1D
+ assert_raises(ValueError, nditer,
+ [arange(6).reshape(2, 3), arange(2)],
+ [], [['readonly']]*2)
+ # 2D with 2D
+ assert_raises(ValueError, nditer,
+ [arange(6).reshape(2, 3), arange(9).reshape(3, 3)],
+ [], [['readonly']]*2)
+ assert_raises(ValueError, nditer,
+ [arange(6).reshape(2, 3), arange(4).reshape(2, 2)],
+ [], [['readonly']]*2)
+ # 3D with 3D
+ assert_raises(ValueError, nditer,
+ [arange(36).reshape(3, 3, 4), arange(24).reshape(2, 3, 4)],
+ [], [['readonly']]*2)
+ assert_raises(ValueError, nditer,
+ [arange(8).reshape(2, 4, 1), arange(24).reshape(2, 3, 4)],
+ [], [['readonly']]*2)
+
+ # Verify that the error message mentions the right shapes
+ try:
+ nditer([arange(2).reshape(1, 2, 1),
+ arange(3).reshape(1, 3),
+ arange(6).reshape(2, 3)],
+ [],
+ [['readonly'], ['readonly'], ['writeonly', 'no_broadcast']])
+ raise AssertionError('Should have raised a broadcast error')
+ except ValueError as e:
+ msg = str(e)
+ # The message should contain the shape of the 3rd operand
+ assert_(msg.find('(2,3)') >= 0,
+ 'Message "%s" doesn\'t contain operand shape (2,3)' % msg)
+ # The message should contain the broadcast shape
+ assert_(msg.find('(1,2,3)') >= 0,
+ 'Message "%s" doesn\'t contain broadcast shape (1,2,3)' % msg)
+
+ try:
+ nditer([arange(6).reshape(2, 3), arange(2)],
+ [],
+ [['readonly'], ['readonly']],
+ op_axes=[[0, 1], [0, np.newaxis]],
+ itershape=(4, 3))
+ raise AssertionError('Should have raised a broadcast error')
+ except ValueError as e:
+ msg = str(e)
+ # The message should contain "shape->remappedshape" for each operand
+ assert_(msg.find('(2,3)->(2,3)') >= 0,
+ 'Message "%s" doesn\'t contain operand shape (2,3)->(2,3)' % msg)
+ assert_(msg.find('(2,)->(2,newaxis)') >= 0,
+ ('Message "%s" doesn\'t contain remapped operand shape' +
+ '(2,)->(2,newaxis)') % msg)
+ # The message should contain the itershape parameter
+ assert_(msg.find('(4,3)') >= 0,
+ 'Message "%s" doesn\'t contain itershape parameter (4,3)' % msg)
+
+ try:
+ nditer([np.zeros((2, 1, 1)), np.zeros((2,))],
+ [],
+ [['writeonly', 'no_broadcast'], ['readonly']])
+ raise AssertionError('Should have raised a broadcast error')
+ except ValueError as e:
+ msg = str(e)
+ # The message should contain the shape of the bad operand
+ assert_(msg.find('(2,1,1)') >= 0,
+ 'Message "%s" doesn\'t contain operand shape (2,1,1)' % msg)
+ # The message should contain the broadcast shape
+ assert_(msg.find('(2,1,2)') >= 0,
+ 'Message "%s" doesn\'t contain the broadcast shape (2,1,2)' % msg)
+
+def test_iter_flags_errors():
+ # Check that bad combinations of flags produce errors
+
+ a = arange(6)
+
+ # Not enough operands
+ assert_raises(ValueError, nditer, [], [], [])
+ # Too many operands
+ assert_raises(ValueError, nditer, [a]*100, [], [['readonly']]*100)
+ # Bad global flag
+ assert_raises(ValueError, nditer, [a], ['bad flag'], [['readonly']])
+ # Bad op flag
+ assert_raises(ValueError, nditer, [a], [], [['readonly', 'bad flag']])
+ # Bad order parameter
+ assert_raises(ValueError, nditer, [a], [], [['readonly']], order='G')
+ # Bad casting parameter
+ assert_raises(ValueError, nditer, [a], [], [['readonly']], casting='noon')
+ # op_flags must match ops
+ assert_raises(ValueError, nditer, [a]*3, [], [['readonly']]*2)
+ # Cannot track both a C and an F index
+ assert_raises(ValueError, nditer, a,
+ ['c_index', 'f_index'], [['readonly']])
+ # Inner iteration and multi-indices/indices are incompatible
+ assert_raises(ValueError, nditer, a,
+ ['external_loop', 'multi_index'], [['readonly']])
+ assert_raises(ValueError, nditer, a,
+ ['external_loop', 'c_index'], [['readonly']])
+ assert_raises(ValueError, nditer, a,
+ ['external_loop', 'f_index'], [['readonly']])
+ # Must specify exactly one of readwrite/readonly/writeonly per operand
+ assert_raises(ValueError, nditer, a, [], [[]])
+ assert_raises(ValueError, nditer, a, [], [['readonly', 'writeonly']])
+ assert_raises(ValueError, nditer, a, [], [['readonly', 'readwrite']])
+ assert_raises(ValueError, nditer, a, [], [['writeonly', 'readwrite']])
+ assert_raises(ValueError, nditer, a,
+ [], [['readonly', 'writeonly', 'readwrite']])
+ # Python scalars are always readonly
+ assert_raises(TypeError, nditer, 1.5, [], [['writeonly']])
+ assert_raises(TypeError, nditer, 1.5, [], [['readwrite']])
+ # Array scalars are always readonly
+ assert_raises(TypeError, nditer, np.int32(1), [], [['writeonly']])
+ assert_raises(TypeError, nditer, np.int32(1), [], [['readwrite']])
+ # Check readonly array
+ a.flags.writeable = False
+ assert_raises(ValueError, nditer, a, [], [['writeonly']])
+ assert_raises(ValueError, nditer, a, [], [['readwrite']])
+ a.flags.writeable = True
+ # Multi-indices available only with the multi_index flag
+ i = nditer(arange(6), [], [['readonly']])
+ assert_raises(ValueError, lambda i:i.multi_index, i)
+ # Index available only with an index flag
+ assert_raises(ValueError, lambda i:i.index, i)
+ # GotoCoords and GotoIndex incompatible with buffering or no_inner
+
+ def assign_multi_index(i):
+ i.multi_index = (0,)
+
+ def assign_index(i):
+ i.index = 0
+
+ def assign_iterindex(i):
+ i.iterindex = 0
+
+ def assign_iterrange(i):
+ i.iterrange = (0, 1)
+ i = nditer(arange(6), ['external_loop'])
+ assert_raises(ValueError, assign_multi_index, i)
+ assert_raises(ValueError, assign_index, i)
+ assert_raises(ValueError, assign_iterindex, i)
+ assert_raises(ValueError, assign_iterrange, i)
+ i = nditer(arange(6), ['buffered'])
+ assert_raises(ValueError, assign_multi_index, i)
+ assert_raises(ValueError, assign_index, i)
+ assert_raises(ValueError, assign_iterrange, i)
+ # Can't iterate if size is zero
+ assert_raises(ValueError, nditer, np.array([]))
+
+def test_iter_slice():
+ a, b, c = np.arange(3), np.arange(3), np.arange(3.)
+ i = nditer([a, b, c], [], ['readwrite'])
+ with i:
+ i[0:2] = (3, 3)
+ assert_equal(a, [3, 1, 2])
+ assert_equal(b, [3, 1, 2])
+ assert_equal(c, [0, 1, 2])
+ i[1] = 12
+ assert_equal(i[0:2], [3, 12])
+
+def test_iter_assign_mapping():
+ a = np.arange(24, dtype='f8').reshape(2, 3, 4).T
+ it = np.nditer(a, [], [['readwrite', 'updateifcopy']],
+ casting='same_kind', op_dtypes=[np.dtype('f4')])
+ with it:
+ it.operands[0][...] = 3
+ it.operands[0][...] = 14
+ assert_equal(a, 14)
+ it = np.nditer(a, [], [['readwrite', 'updateifcopy']],
+ casting='same_kind', op_dtypes=[np.dtype('f4')])
+ with it:
+ x = it.operands[0][-1:1]
+ x[...] = 14
+ it.operands[0][...] = -1234
+ assert_equal(a, -1234)
+ # check for no warnings on dealloc
+ x = None
+ it = None
+
+def test_iter_nbo_align_contig():
+ # Check that byte order, alignment, and contig changes work
+
+ # Byte order change by requesting a specific dtype
+ a = np.arange(6, dtype='f4')
+ au = a.byteswap().newbyteorder()
+ assert_(a.dtype.byteorder != au.dtype.byteorder)
+ i = nditer(au, [], [['readwrite', 'updateifcopy']],
+ casting='equiv',
+ op_dtypes=[np.dtype('f4')])
+ with i:
+ # context manager triggers WRITEBACKIFCOPY on i at exit
+ assert_equal(i.dtypes[0].byteorder, a.dtype.byteorder)
+ assert_equal(i.operands[0].dtype.byteorder, a.dtype.byteorder)
+ assert_equal(i.operands[0], a)
+ i.operands[0][:] = 2
+ assert_equal(au, [2]*6)
+ del i # should not raise a warning
+ # Byte order change by requesting NBO
+ a = np.arange(6, dtype='f4')
+ au = a.byteswap().newbyteorder()
+ assert_(a.dtype.byteorder != au.dtype.byteorder)
+ with nditer(au, [], [['readwrite', 'updateifcopy', 'nbo']],
+ casting='equiv') as i:
+ # context manager triggers UPDATEIFCOPY on i at exit
+ assert_equal(i.dtypes[0].byteorder, a.dtype.byteorder)
+ assert_equal(i.operands[0].dtype.byteorder, a.dtype.byteorder)
+ assert_equal(i.operands[0], a)
+ i.operands[0][:] = 12345
+ i.operands[0][:] = 2
+ assert_equal(au, [2]*6)
+
+ # Unaligned input
+ a = np.zeros((6*4+1,), dtype='i1')[1:]
+ a.dtype = 'f4'
+ a[:] = np.arange(6, dtype='f4')
+ assert_(not a.flags.aligned)
+ # Without 'aligned', shouldn't copy
+ i = nditer(a, [], [['readonly']])
+ assert_(not i.operands[0].flags.aligned)
+ assert_equal(i.operands[0], a)
+ # With 'aligned', should make a copy
+ with nditer(a, [], [['readwrite', 'updateifcopy', 'aligned']]) as i:
+ assert_(i.operands[0].flags.aligned)
+ # context manager triggers UPDATEIFCOPY on i at exit
+ assert_equal(i.operands[0], a)
+ i.operands[0][:] = 3
+ assert_equal(a, [3]*6)
+
+ # Discontiguous input
+ a = arange(12)
+ # If it is contiguous, shouldn't copy
+ i = nditer(a[:6], [], [['readonly']])
+ assert_(i.operands[0].flags.contiguous)
+ assert_equal(i.operands[0], a[:6])
+ # If it isn't contiguous, should buffer
+ i = nditer(a[::2], ['buffered', 'external_loop'],
+ [['readonly', 'contig']],
+ buffersize=10)
+ assert_(i[0].flags.contiguous)
+ assert_equal(i[0], a[::2])
+
+def test_iter_array_cast():
+ # Check that arrays are cast as requested
+
+ # No cast 'f4' -> 'f4'
+ a = np.arange(6, dtype='f4').reshape(2, 3)
+ i = nditer(a, [], [['readwrite']], op_dtypes=[np.dtype('f4')])
+ with i:
+ assert_equal(i.operands[0], a)
+ assert_equal(i.operands[0].dtype, np.dtype('f4'))
+
+ # Byte-order cast '<f4' -> '>f4'
+ a = np.arange(6, dtype='<f4').reshape(2, 3)
+ with nditer(a, [], [['readwrite', 'updateifcopy']],
+ casting='equiv',
+ op_dtypes=[np.dtype('>f4')]) as i:
+ assert_equal(i.operands[0], a)
+ assert_equal(i.operands[0].dtype, np.dtype('>f4'))
+
+ # Safe case 'f4' -> 'f8'
+ a = np.arange(24, dtype='f4').reshape(2, 3, 4).swapaxes(1, 2)
+ i = nditer(a, [], [['readonly', 'copy']],
+ casting='safe',
+ op_dtypes=[np.dtype('f8')])
+ assert_equal(i.operands[0], a)
+ assert_equal(i.operands[0].dtype, np.dtype('f8'))
+ # The memory layout of the temporary should match a (a is (48,4,16))
+ # except negative strides get flipped to positive strides.
+ assert_equal(i.operands[0].strides, (96, 8, 32))
+ a = a[::-1,:, ::-1]
+ i = nditer(a, [], [['readonly', 'copy']],
+ casting='safe',
+ op_dtypes=[np.dtype('f8')])
+ assert_equal(i.operands[0], a)
+ assert_equal(i.operands[0].dtype, np.dtype('f8'))
+ assert_equal(i.operands[0].strides, (96, 8, 32))
+
+ # Same-kind cast 'f8' -> 'f4' -> 'f8'
+ a = np.arange(24, dtype='f8').reshape(2, 3, 4).T
+ with nditer(a, [],
+ [['readwrite', 'updateifcopy']],
+ casting='same_kind',
+ op_dtypes=[np.dtype('f4')]) as i:
+ assert_equal(i.operands[0], a)
+ assert_equal(i.operands[0].dtype, np.dtype('f4'))
+ assert_equal(i.operands[0].strides, (4, 16, 48))
+ # Check that WRITEBACKIFCOPY is activated at exit
+ i.operands[0][2, 1, 1] = -12.5
+ assert_(a[2, 1, 1] != -12.5)
+ assert_equal(a[2, 1, 1], -12.5)
+
+ a = np.arange(6, dtype='i4')[::-2]
+ with nditer(a, [],
+ [['writeonly', 'updateifcopy']],
+ casting='unsafe',
+ op_dtypes=[np.dtype('f4')]) as i:
+ assert_equal(i.operands[0].dtype, np.dtype('f4'))
+ # Even though the stride was negative in 'a', it
+ # becomes positive in the temporary
+ assert_equal(i.operands[0].strides, (4,))
+ i.operands[0][:] = [1, 2, 3]
+ assert_equal(a, [1, 2, 3])
+
+def test_iter_array_cast_errors():
+ # Check that invalid casts are caught
+
+ # Need to enable copying for casts to occur
+ assert_raises(TypeError, nditer, arange(2, dtype='f4'), [],
+ [['readonly']], op_dtypes=[np.dtype('f8')])
+ # Also need to allow casting for casts to occur
+ assert_raises(TypeError, nditer, arange(2, dtype='f4'), [],
+ [['readonly', 'copy']], casting='no',
+ op_dtypes=[np.dtype('f8')])
+ assert_raises(TypeError, nditer, arange(2, dtype='f4'), [],
+ [['readonly', 'copy']], casting='equiv',
+ op_dtypes=[np.dtype('f8')])
+ assert_raises(TypeError, nditer, arange(2, dtype='f8'), [],
+ [['writeonly', 'updateifcopy']],
+ casting='no',
+ op_dtypes=[np.dtype('f4')])
+ assert_raises(TypeError, nditer, arange(2, dtype='f8'), [],
+ [['writeonly', 'updateifcopy']],
+ casting='equiv',
+ op_dtypes=[np.dtype('f4')])
+ # '<f4' -> '>f4' should not work with casting='no'
+ assert_raises(TypeError, nditer, arange(2, dtype='<f4'), [],
+ [['readonly', 'copy']], casting='no',
+ op_dtypes=[np.dtype('>f4')])
+ # 'f4' -> 'f8' is a safe cast, but 'f8' -> 'f4' isn't
+ assert_raises(TypeError, nditer, arange(2, dtype='f4'), [],
+ [['readwrite', 'updateifcopy']],
+ casting='safe',
+ op_dtypes=[np.dtype('f8')])
+ assert_raises(TypeError, nditer, arange(2, dtype='f8'), [],
+ [['readwrite', 'updateifcopy']],
+ casting='safe',
+ op_dtypes=[np.dtype('f4')])
+ # 'f4' -> 'i4' is neither a safe nor a same-kind cast
+ assert_raises(TypeError, nditer, arange(2, dtype='f4'), [],
+ [['readonly', 'copy']],
+ casting='same_kind',
+ op_dtypes=[np.dtype('i4')])
+ assert_raises(TypeError, nditer, arange(2, dtype='i4'), [],
+ [['writeonly', 'updateifcopy']],
+ casting='same_kind',
+ op_dtypes=[np.dtype('f4')])
+
+def test_iter_scalar_cast():
+ # Check that scalars are cast as requested
+
+ # No cast 'f4' -> 'f4'
+ i = nditer(np.float32(2.5), [], [['readonly']],
+ op_dtypes=[np.dtype('f4')])
+ assert_equal(i.dtypes[0], np.dtype('f4'))
+ assert_equal(i.value.dtype, np.dtype('f4'))
+ assert_equal(i.value, 2.5)
+ # Safe cast 'f4' -> 'f8'
+ i = nditer(np.float32(2.5), [],
+ [['readonly', 'copy']],
+ casting='safe',
+ op_dtypes=[np.dtype('f8')])
+ assert_equal(i.dtypes[0], np.dtype('f8'))
+ assert_equal(i.value.dtype, np.dtype('f8'))
+ assert_equal(i.value, 2.5)
+ # Same-kind cast 'f8' -> 'f4'
+ i = nditer(np.float64(2.5), [],
+ [['readonly', 'copy']],
+ casting='same_kind',
+ op_dtypes=[np.dtype('f4')])
+ assert_equal(i.dtypes[0], np.dtype('f4'))
+ assert_equal(i.value.dtype, np.dtype('f4'))
+ assert_equal(i.value, 2.5)
+ # Unsafe cast 'f8' -> 'i4'
+ i = nditer(np.float64(3.0), [],
+ [['readonly', 'copy']],
+ casting='unsafe',
+ op_dtypes=[np.dtype('i4')])
+ assert_equal(i.dtypes[0], np.dtype('i4'))
+ assert_equal(i.value.dtype, np.dtype('i4'))
+ assert_equal(i.value, 3)
+ # Readonly scalars may be cast even without setting COPY or BUFFERED
+ i = nditer(3, [], [['readonly']], op_dtypes=[np.dtype('f8')])
+ assert_equal(i[0].dtype, np.dtype('f8'))
+ assert_equal(i[0], 3.)
+
+def test_iter_scalar_cast_errors():
+ # Check that invalid casts are caught
+
+ # Need to allow copying/buffering for write casts of scalars to occur
+ assert_raises(TypeError, nditer, np.float32(2), [],
+ [['readwrite']], op_dtypes=[np.dtype('f8')])
+ assert_raises(TypeError, nditer, 2.5, [],
+ [['readwrite']], op_dtypes=[np.dtype('f4')])
+ # 'f8' -> 'f4' isn't a safe cast if the value would overflow
+ assert_raises(TypeError, nditer, np.float64(1e60), [],
+ [['readonly']],
+ casting='safe',
+ op_dtypes=[np.dtype('f4')])
+ # 'f4' -> 'i4' is neither a safe nor a same-kind cast
+ assert_raises(TypeError, nditer, np.float32(2), [],
+ [['readonly']],
+ casting='same_kind',
+ op_dtypes=[np.dtype('i4')])
+
+def test_iter_object_arrays_basic():
+ # Check that object arrays work
+
+ obj = {'a':3,'b':'d'}
+ a = np.array([[1, 2, 3], None, obj, None], dtype='O')
+ if HAS_REFCOUNT:
+ rc = sys.getrefcount(obj)
+
+ # Need to allow references for object arrays
+ assert_raises(TypeError, nditer, a)
+ if HAS_REFCOUNT:
+ assert_equal(sys.getrefcount(obj), rc)
+
+ i = nditer(a, ['refs_ok'], ['readonly'])
+ vals = [x_[()] for x_ in i]
+ assert_equal(np.array(vals, dtype='O'), a)
+ vals, i, x = [None]*3
+ if HAS_REFCOUNT:
+ assert_equal(sys.getrefcount(obj), rc)
+
+ i = nditer(a.reshape(2, 2).T, ['refs_ok', 'buffered'],
+ ['readonly'], order='C')
+ assert_(i.iterationneedsapi)
+ vals = [x_[()] for x_ in i]
+ assert_equal(np.array(vals, dtype='O'), a.reshape(2, 2).ravel(order='F'))
+ vals, i, x = [None]*3
+ if HAS_REFCOUNT:
+ assert_equal(sys.getrefcount(obj), rc)
+
+ i = nditer(a.reshape(2, 2).T, ['refs_ok', 'buffered'],
+ ['readwrite'], order='C')
+ with i:
+ for x in i:
+ x[...] = None
+ vals, i, x = [None]*3
+ if HAS_REFCOUNT:
+ assert_(sys.getrefcount(obj) == rc-1)
+ assert_equal(a, np.array([None]*4, dtype='O'))
+
+def test_iter_object_arrays_conversions():
+ # Conversions to/from objects
+ a = np.arange(6, dtype='O')
+ i = nditer(a, ['refs_ok', 'buffered'], ['readwrite'],
+ casting='unsafe', op_dtypes='i4')
+ with i:
+ for x in i:
+ x[...] += 1
+ assert_equal(a, np.arange(6)+1)
+
+ a = np.arange(6, dtype='i4')
+ i = nditer(a, ['refs_ok', 'buffered'], ['readwrite'],
+ casting='unsafe', op_dtypes='O')
+ with i:
+ for x in i:
+ x[...] += 1
+ assert_equal(a, np.arange(6)+1)
+
+ # Non-contiguous object array
+ a = np.zeros((6,), dtype=[('p', 'i1'), ('a', 'O')])
+ a = a['a']
+ a[:] = np.arange(6)
+ i = nditer(a, ['refs_ok', 'buffered'], ['readwrite'],
+ casting='unsafe', op_dtypes='i4')
+ with i:
+ for x in i:
+ x[...] += 1
+ assert_equal(a, np.arange(6)+1)
+
+ #Non-contiguous value array
+ a = np.zeros((6,), dtype=[('p', 'i1'), ('a', 'i4')])
+ a = a['a']
+ a[:] = np.arange(6) + 98172488
+ i = nditer(a, ['refs_ok', 'buffered'], ['readwrite'],
+ casting='unsafe', op_dtypes='O')
+ with i:
+ ob = i[0][()]
+ if HAS_REFCOUNT:
+ rc = sys.getrefcount(ob)
+ for x in i:
+ x[...] += 1
+ if HAS_REFCOUNT:
+ assert_(sys.getrefcount(ob) == rc-1)
+ assert_equal(a, np.arange(6)+98172489)
+
+def test_iter_common_dtype():
+ # Check that the iterator finds a common data type correctly
+
+ i = nditer([array([3], dtype='f4'), array([0], dtype='f8')],
+ ['common_dtype'],
+ [['readonly', 'copy']]*2,
+ casting='safe')
+ assert_equal(i.dtypes[0], np.dtype('f8'))
+ assert_equal(i.dtypes[1], np.dtype('f8'))
+ i = nditer([array([3], dtype='i4'), array([0], dtype='f4')],
+ ['common_dtype'],
+ [['readonly', 'copy']]*2,
+ casting='safe')
+ assert_equal(i.dtypes[0], np.dtype('f8'))
+ assert_equal(i.dtypes[1], np.dtype('f8'))
+ i = nditer([array([3], dtype='f4'), array(0, dtype='f8')],
+ ['common_dtype'],
+ [['readonly', 'copy']]*2,
+ casting='same_kind')
+ assert_equal(i.dtypes[0], np.dtype('f4'))
+ assert_equal(i.dtypes[1], np.dtype('f4'))
+ i = nditer([array([3], dtype='u4'), array(0, dtype='i4')],
+ ['common_dtype'],
+ [['readonly', 'copy']]*2,
+ casting='safe')
+ assert_equal(i.dtypes[0], np.dtype('u4'))
+ assert_equal(i.dtypes[1], np.dtype('u4'))
+ i = nditer([array([3], dtype='u4'), array(-12, dtype='i4')],
+ ['common_dtype'],
+ [['readonly', 'copy']]*2,
+ casting='safe')
+ assert_equal(i.dtypes[0], np.dtype('i8'))
+ assert_equal(i.dtypes[1], np.dtype('i8'))
+ i = nditer([array([3], dtype='u4'), array(-12, dtype='i4'),
+ array([2j], dtype='c8'), array([9], dtype='f8')],
+ ['common_dtype'],
+ [['readonly', 'copy']]*4,
+ casting='safe')
+ assert_equal(i.dtypes[0], np.dtype('c16'))
+ assert_equal(i.dtypes[1], np.dtype('c16'))
+ assert_equal(i.dtypes[2], np.dtype('c16'))
+ assert_equal(i.dtypes[3], np.dtype('c16'))
+ assert_equal(i.value, (3, -12, 2j, 9))
+
+ # When allocating outputs, other outputs aren't factored in
+ i = nditer([array([3], dtype='i4'), None, array([2j], dtype='c16')], [],
+ [['readonly', 'copy'],
+ ['writeonly', 'allocate'],
+ ['writeonly']],
+ casting='safe')
+ assert_equal(i.dtypes[0], np.dtype('i4'))
+ assert_equal(i.dtypes[1], np.dtype('i4'))
+ assert_equal(i.dtypes[2], np.dtype('c16'))
+ # But, if common data types are requested, they are
+ i = nditer([array([3], dtype='i4'), None, array([2j], dtype='c16')],
+ ['common_dtype'],
+ [['readonly', 'copy'],
+ ['writeonly', 'allocate'],
+ ['writeonly']],
+ casting='safe')
+ assert_equal(i.dtypes[0], np.dtype('c16'))
+ assert_equal(i.dtypes[1], np.dtype('c16'))
+ assert_equal(i.dtypes[2], np.dtype('c16'))
+
+def test_iter_copy_if_overlap():
+ # Ensure the iterator makes copies on read/write overlap, if requested
+
+ # Copy not needed, 1 op
+ for flag in ['readonly', 'writeonly', 'readwrite']:
+ a = arange(10)
+ i = nditer([a], ['copy_if_overlap'], [[flag]])
+ with i:
+ assert_(i.operands[0] is a)
+
+ # Copy needed, 2 ops, read-write overlap
+ x = arange(10)
+ a = x[1:]
+ b = x[:-1]
+ with nditer([a, b], ['copy_if_overlap'], [['readonly'], ['readwrite']]) as i:
+ assert_(not np.shares_memory(*i.operands))
+
+ # Copy not needed with elementwise, 2 ops, exactly same arrays
+ x = arange(10)
+ a = x
+ b = x
+ i = nditer([a, b], ['copy_if_overlap'], [['readonly', 'overlap_assume_elementwise'],
+ ['readwrite', 'overlap_assume_elementwise']])
+ with i:
+ assert_(i.operands[0] is a and i.operands[1] is b)
+ with nditer([a, b], ['copy_if_overlap'], [['readonly'], ['readwrite']]) as i:
+ assert_(i.operands[0] is a and not np.shares_memory(i.operands[1], b))
+
+ # Copy not needed, 2 ops, no overlap
+ x = arange(10)
+ a = x[::2]
+ b = x[1::2]
+ i = nditer([a, b], ['copy_if_overlap'], [['readonly'], ['writeonly']])
+ assert_(i.operands[0] is a and i.operands[1] is b)
+
+ # Copy needed, 2 ops, read-write overlap
+ x = arange(4, dtype=np.int8)
+ a = x[3:]
+ b = x.view(np.int32)[:1]
+ with nditer([a, b], ['copy_if_overlap'], [['readonly'], ['writeonly']]) as i:
+ assert_(not np.shares_memory(*i.operands))
+
+ # Copy needed, 3 ops, read-write overlap
+ for flag in ['writeonly', 'readwrite']:
+ x = np.ones([10, 10])
+ a = x
+ b = x.T
+ c = x
+ with nditer([a, b, c], ['copy_if_overlap'],
+ [['readonly'], ['readonly'], [flag]]) as i:
+ a2, b2, c2 = i.operands
+ assert_(not np.shares_memory(a2, c2))
+ assert_(not np.shares_memory(b2, c2))
+
+ # Copy not needed, 3 ops, read-only overlap
+ x = np.ones([10, 10])
+ a = x
+ b = x.T
+ c = x
+ i = nditer([a, b, c], ['copy_if_overlap'],
+ [['readonly'], ['readonly'], ['readonly']])
+ a2, b2, c2 = i.operands
+ assert_(a is a2)
+ assert_(b is b2)
+ assert_(c is c2)
+
+ # Copy not needed, 3 ops, read-only overlap
+ x = np.ones([10, 10])
+ a = x
+ b = np.ones([10, 10])
+ c = x.T
+ i = nditer([a, b, c], ['copy_if_overlap'],
+ [['readonly'], ['writeonly'], ['readonly']])
+ a2, b2, c2 = i.operands
+ assert_(a is a2)
+ assert_(b is b2)
+ assert_(c is c2)
+
+ # Copy not needed, 3 ops, write-only overlap
+ x = np.arange(7)
+ a = x[:3]
+ b = x[3:6]
+ c = x[4:7]
+ i = nditer([a, b, c], ['copy_if_overlap'],
+ [['readonly'], ['writeonly'], ['writeonly']])
+ a2, b2, c2 = i.operands
+ assert_(a is a2)
+ assert_(b is b2)
+ assert_(c is c2)
+
+def test_iter_op_axes():
+ # Check that custom axes work
+
+ # Reverse the axes
+ a = arange(6).reshape(2, 3)
+ i = nditer([a, a.T], [], [['readonly']]*2, op_axes=[[0, 1], [1, 0]])
+ assert_(all([x == y for (x, y) in i]))
+ a = arange(24).reshape(2, 3, 4)
+ i = nditer([a.T, a], [], [['readonly']]*2, op_axes=[[2, 1, 0], None])
+ assert_(all([x == y for (x, y) in i]))
+
+ # Broadcast 1D to any dimension
+ a = arange(1, 31).reshape(2, 3, 5)
+ b = arange(1, 3)
+ i = nditer([a, b], [], [['readonly']]*2, op_axes=[None, [0, -1, -1]])
+ assert_equal([x*y for (x, y) in i], (a*b.reshape(2, 1, 1)).ravel())
+ b = arange(1, 4)
+ i = nditer([a, b], [], [['readonly']]*2, op_axes=[None, [-1, 0, -1]])
+ assert_equal([x*y for (x, y) in i], (a*b.reshape(1, 3, 1)).ravel())
+ b = arange(1, 6)
+ i = nditer([a, b], [], [['readonly']]*2,
+ op_axes=[None, [np.newaxis, np.newaxis, 0]])
+ assert_equal([x*y for (x, y) in i], (a*b.reshape(1, 1, 5)).ravel())
+
+ # Inner product-style broadcasting
+ a = arange(24).reshape(2, 3, 4)
+ b = arange(40).reshape(5, 2, 4)
+ i = nditer([a, b], ['multi_index'], [['readonly']]*2,
+ op_axes=[[0, 1, -1, -1], [-1, -1, 0, 1]])
+ assert_equal(i.shape, (2, 3, 5, 2))
+
+ # Matrix product-style broadcasting
+ a = arange(12).reshape(3, 4)
+ b = arange(20).reshape(4, 5)
+ i = nditer([a, b], ['multi_index'], [['readonly']]*2,
+ op_axes=[[0, -1], [-1, 1]])
+ assert_equal(i.shape, (3, 5))
+
+def test_iter_op_axes_errors():
+ # Check that custom axes throws errors for bad inputs
+
+ # Wrong number of items in op_axes
+ a = arange(6).reshape(2, 3)
+ assert_raises(ValueError, nditer, [a, a], [], [['readonly']]*2,
+ op_axes=[[0], [1], [0]])
+ # Out of bounds items in op_axes
+ assert_raises(ValueError, nditer, [a, a], [], [['readonly']]*2,
+ op_axes=[[2, 1], [0, 1]])
+ assert_raises(ValueError, nditer, [a, a], [], [['readonly']]*2,
+ op_axes=[[0, 1], [2, -1]])
+ # Duplicate items in op_axes
+ assert_raises(ValueError, nditer, [a, a], [], [['readonly']]*2,
+ op_axes=[[0, 0], [0, 1]])
+ assert_raises(ValueError, nditer, [a, a], [], [['readonly']]*2,
+ op_axes=[[0, 1], [1, 1]])
+
+ # Different sized arrays in op_axes
+ assert_raises(ValueError, nditer, [a, a], [], [['readonly']]*2,
+ op_axes=[[0, 1], [0, 1, 0]])
+
+ # Non-broadcastable dimensions in the result
+ assert_raises(ValueError, nditer, [a, a], [], [['readonly']]*2,
+ op_axes=[[0, 1], [1, 0]])
+
+def test_iter_copy():
+ # Check that copying the iterator works correctly
+ a = arange(24).reshape(2, 3, 4)
+
+ # Simple iterator
+ i = nditer(a)
+ j = i.copy()
+ assert_equal([x[()] for x in i], [x[()] for x in j])
+
+ i.iterindex = 3
+ j = i.copy()
+ assert_equal([x[()] for x in i], [x[()] for x in j])
+
+ # Buffered iterator
+ i = nditer(a, ['buffered', 'ranged'], order='F', buffersize=3)
+ j = i.copy()
+ assert_equal([x[()] for x in i], [x[()] for x in j])
+
+ i.iterindex = 3
+ j = i.copy()
+ assert_equal([x[()] for x in i], [x[()] for x in j])
+
+ i.iterrange = (3, 9)
+ j = i.copy()
+ assert_equal([x[()] for x in i], [x[()] for x in j])
+
+ i.iterrange = (2, 18)
+ next(i)
+ next(i)
+ j = i.copy()
+ assert_equal([x[()] for x in i], [x[()] for x in j])
+
+ # Casting iterator
+ with nditer(a, ['buffered'], order='F', casting='unsafe',
+ op_dtypes='f8', buffersize=5) as i:
+ j = i.copy()
+ assert_equal([x[()] for x in j], a.ravel(order='F'))
+
+ a = arange(24, dtype='<i4').reshape(2, 3, 4)
+ with nditer(a, ['buffered'], order='F', casting='unsafe',
+ op_dtypes='>f8', buffersize=5) as i:
+ j = i.copy()
+ assert_equal([x[()] for x in j], a.ravel(order='F'))
+
+
+@pytest.mark.parametrize("dtype", np.typecodes["All"])
+@pytest.mark.parametrize("loop_dtype", np.typecodes["All"])
+@pytest.mark.filterwarnings("ignore::numpy.ComplexWarning")
+def test_iter_copy_casts(dtype, loop_dtype):
+ # Ensure the dtype is never flexible:
+ if loop_dtype.lower() == "m":
+ loop_dtype = loop_dtype + "[ms]"
+ elif np.dtype(loop_dtype).itemsize == 0:
+ loop_dtype = loop_dtype + "50"
+
+ # Make things a bit more interesting by requiring a byte-swap as well:
+ arr = np.ones(1000, dtype=np.dtype(dtype).newbyteorder())
+ try:
+ expected = arr.astype(loop_dtype)
+ except Exception:
+ # Some casts are not possible, do not worry about them
+ return
+
+ it = np.nditer((arr,), ["buffered", "external_loop", "refs_ok"],
+ op_dtypes=[loop_dtype], casting="unsafe")
+
+ if np.issubdtype(np.dtype(loop_dtype), np.number):
+ # Casting to strings may be strange, but for simple dtypes do not rely
+ # on the cast being correct:
+ assert_array_equal(expected, np.ones(1000, dtype=loop_dtype))
+
+ it_copy = it.copy()
+ res = next(it)
+ del it
+ res_copy = next(it_copy)
+ del it_copy
+
+ assert_array_equal(res, expected)
+ assert_array_equal(res_copy, expected)
+
+
+def test_iter_copy_casts_structured():
+ # Test a complicated structured dtype for casting, as it requires
+ # both multiple steps and a more complex casting setup.
+ # Includes a structured -> unstructured (any to object), and many other
+ # casts, which cause this to require all steps in the casting machinery
+ # one level down as well as the iterator copy (which uses NpyAuxData clone)
+ in_dtype = np.dtype([("a", np.dtype("i,")),
+ ("b", np.dtype(">i,<i,>d,S17,>d,(3)f,O,i1"))])
+ out_dtype = np.dtype([("a", np.dtype("O")),
+ ("b", np.dtype(">i,>i,S17,>d,>U3,(3)d,i1,O"))])
+ arr = np.ones(1000, dtype=in_dtype)
+
+ it = np.nditer((arr,), ["buffered", "external_loop", "refs_ok"],
+ op_dtypes=[out_dtype], casting="unsafe")
+ it_copy = it.copy()
+
+ res1 = next(it)
+ del it
+ res2 = next(it_copy)
+ del it_copy
+
+ expected = arr["a"].astype(out_dtype["a"])
+ assert_array_equal(res1["a"], expected)
+ assert_array_equal(res2["a"], expected)
+
+ for field in in_dtype["b"].names:
+ # Note that the .base avoids the subarray field
+ expected = arr["b"][field].astype(out_dtype["b"][field].base)
+ assert_array_equal(res1["b"][field], expected)
+ assert_array_equal(res2["b"][field], expected)
+
+
+def test_iter_copy_casts_structured2():
+ # Similar to the above, this is a fairly arcane test to cover internals
+ in_dtype = np.dtype([("a", np.dtype("O,O")),
+ ("b", np.dtype("(5)O,(3)O,(1,)O,(1,)i,(1,)O"))])
+ out_dtype = np.dtype([("a", np.dtype("O")),
+ ("b", np.dtype("O,(3)i,(4)O,(4)O,(4)i"))])
+
+ arr = np.ones(1, dtype=in_dtype)
+ it = np.nditer((arr,), ["buffered", "external_loop", "refs_ok"],
+ op_dtypes=[out_dtype], casting="unsafe")
+ it_copy = it.copy()
+
+ res1 = next(it)
+ del it
+ res2 = next(it_copy)
+ del it_copy
+
+ # Array of two structured scalars:
+ for res in res1, res2:
+ # Cast to tuple by getitem, which may be weird and changable?:
+ assert type(res["a"][0]) == tuple
+ assert res["a"][0] == (1, 1)
+
+ for res in res1, res2:
+ assert_array_equal(res["b"]["f0"][0], np.ones(5, dtype=object))
+ assert_array_equal(res["b"]["f1"], np.ones((1, 3), dtype="i"))
+ assert res["b"]["f2"].shape == (1, 4)
+ assert_array_equal(res["b"]["f2"][0], np.ones(4, dtype=object))
+ assert_array_equal(res["b"]["f3"][0], np.ones(4, dtype=object))
+ assert_array_equal(res["b"]["f3"][0], np.ones(4, dtype="i"))
+
+
+def test_iter_allocate_output_simple():
+ # Check that the iterator will properly allocate outputs
+
+ # Simple case
+ a = arange(6)
+ i = nditer([a, None], [], [['readonly'], ['writeonly', 'allocate']],
+ op_dtypes=[None, np.dtype('f4')])
+ assert_equal(i.operands[1].shape, a.shape)
+ assert_equal(i.operands[1].dtype, np.dtype('f4'))
+
+def test_iter_allocate_output_buffered_readwrite():
+ # Allocated output with buffering + delay_bufalloc
+
+ a = arange(6)
+ i = nditer([a, None], ['buffered', 'delay_bufalloc'],
+ [['readonly'], ['allocate', 'readwrite']])
+ with i:
+ i.operands[1][:] = 1
+ i.reset()
+ for x in i:
+ x[1][...] += x[0][...]
+ assert_equal(i.operands[1], a+1)
+
+def test_iter_allocate_output_itorder():
+ # The allocated output should match the iteration order
+
+ # C-order input, best iteration order
+ a = arange(6, dtype='i4').reshape(2, 3)
+ i = nditer([a, None], [], [['readonly'], ['writeonly', 'allocate']],
+ op_dtypes=[None, np.dtype('f4')])
+ assert_equal(i.operands[1].shape, a.shape)
+ assert_equal(i.operands[1].strides, a.strides)
+ assert_equal(i.operands[1].dtype, np.dtype('f4'))
+ # F-order input, best iteration order
+ a = arange(24, dtype='i4').reshape(2, 3, 4).T
+ i = nditer([a, None], [], [['readonly'], ['writeonly', 'allocate']],
+ op_dtypes=[None, np.dtype('f4')])
+ assert_equal(i.operands[1].shape, a.shape)
+ assert_equal(i.operands[1].strides, a.strides)
+ assert_equal(i.operands[1].dtype, np.dtype('f4'))
+ # Non-contiguous input, C iteration order
+ a = arange(24, dtype='i4').reshape(2, 3, 4).swapaxes(0, 1)
+ i = nditer([a, None], [],
+ [['readonly'], ['writeonly', 'allocate']],
+ order='C',
+ op_dtypes=[None, np.dtype('f4')])
+ assert_equal(i.operands[1].shape, a.shape)
+ assert_equal(i.operands[1].strides, (32, 16, 4))
+ assert_equal(i.operands[1].dtype, np.dtype('f4'))
+
+def test_iter_allocate_output_opaxes():
+ # Specifying op_axes should work
+
+ a = arange(24, dtype='i4').reshape(2, 3, 4)
+ i = nditer([None, a], [], [['writeonly', 'allocate'], ['readonly']],
+ op_dtypes=[np.dtype('u4'), None],
+ op_axes=[[1, 2, 0], None])
+ assert_equal(i.operands[0].shape, (4, 2, 3))
+ assert_equal(i.operands[0].strides, (4, 48, 16))
+ assert_equal(i.operands[0].dtype, np.dtype('u4'))
+
+def test_iter_allocate_output_types_promotion():
+ # Check type promotion of automatic outputs
+
+ i = nditer([array([3], dtype='f4'), array([0], dtype='f8'), None], [],
+ [['readonly']]*2+[['writeonly', 'allocate']])
+ assert_equal(i.dtypes[2], np.dtype('f8'))
+ i = nditer([array([3], dtype='i4'), array([0], dtype='f4'), None], [],
+ [['readonly']]*2+[['writeonly', 'allocate']])
+ assert_equal(i.dtypes[2], np.dtype('f8'))
+ i = nditer([array([3], dtype='f4'), array(0, dtype='f8'), None], [],
+ [['readonly']]*2+[['writeonly', 'allocate']])
+ assert_equal(i.dtypes[2], np.dtype('f4'))
+ i = nditer([array([3], dtype='u4'), array(0, dtype='i4'), None], [],
+ [['readonly']]*2+[['writeonly', 'allocate']])
+ assert_equal(i.dtypes[2], np.dtype('u4'))
+ i = nditer([array([3], dtype='u4'), array(-12, dtype='i4'), None], [],
+ [['readonly']]*2+[['writeonly', 'allocate']])
+ assert_equal(i.dtypes[2], np.dtype('i8'))
+
+def test_iter_allocate_output_types_byte_order():
+ # Verify the rules for byte order changes
+
+ # When there's just one input, the output type exactly matches
+ a = array([3], dtype='u4').newbyteorder()
+ i = nditer([a, None], [],
+ [['readonly'], ['writeonly', 'allocate']])
+ assert_equal(i.dtypes[0], i.dtypes[1])
+ # With two or more inputs, the output type is in native byte order
+ i = nditer([a, a, None], [],
+ [['readonly'], ['readonly'], ['writeonly', 'allocate']])
+ assert_(i.dtypes[0] != i.dtypes[2])
+ assert_equal(i.dtypes[0].newbyteorder('='), i.dtypes[2])
+
+def test_iter_allocate_output_types_scalar():
+ # If the inputs are all scalars, the output should be a scalar
+
+ i = nditer([None, 1, 2.3, np.float32(12), np.complex128(3)], [],
+ [['writeonly', 'allocate']] + [['readonly']]*4)
+ assert_equal(i.operands[0].dtype, np.dtype('complex128'))
+ assert_equal(i.operands[0].ndim, 0)
+
+def test_iter_allocate_output_subtype():
+ # Make sure that the subtype with priority wins
+ class MyNDArray(np.ndarray):
+ __array_priority__ = 15
+
+ # subclass vs ndarray
+ a = np.array([[1, 2], [3, 4]]).view(MyNDArray)
+ b = np.arange(4).reshape(2, 2).T
+ i = nditer([a, b, None], [],
+ [['readonly'], ['readonly'], ['writeonly', 'allocate']])
+ assert_equal(type(a), type(i.operands[2]))
+ assert_(type(b) is not type(i.operands[2]))
+ assert_equal(i.operands[2].shape, (2, 2))
+
+ # If subtypes are disabled, we should get back an ndarray.
+ i = nditer([a, b, None], [],
+ [['readonly'], ['readonly'],
+ ['writeonly', 'allocate', 'no_subtype']])
+ assert_equal(type(b), type(i.operands[2]))
+ assert_(type(a) is not type(i.operands[2]))
+ assert_equal(i.operands[2].shape, (2, 2))
+
+def test_iter_allocate_output_errors():
+ # Check that the iterator will throw errors for bad output allocations
+
+ # Need an input if no output data type is specified
+ a = arange(6)
+ assert_raises(TypeError, nditer, [a, None], [],
+ [['writeonly'], ['writeonly', 'allocate']])
+ # Allocated output should be flagged for writing
+ assert_raises(ValueError, nditer, [a, None], [],
+ [['readonly'], ['allocate', 'readonly']])
+ # Allocated output can't have buffering without delayed bufalloc
+ assert_raises(ValueError, nditer, [a, None], ['buffered'],
+ ['allocate', 'readwrite'])
+ # Must specify dtype if there are no inputs (cannot promote existing ones;
+ # maybe this should use the 'f4' here, but it does not historically.)
+ assert_raises(TypeError, nditer, [None, None], [],
+ [['writeonly', 'allocate'],
+ ['writeonly', 'allocate']],
+ op_dtypes=[None, np.dtype('f4')])
+ # If using op_axes, must specify all the axes
+ a = arange(24, dtype='i4').reshape(2, 3, 4)
+ assert_raises(ValueError, nditer, [a, None], [],
+ [['readonly'], ['writeonly', 'allocate']],
+ op_dtypes=[None, np.dtype('f4')],
+ op_axes=[None, [0, np.newaxis, 1]])
+ # If using op_axes, the axes must be within bounds
+ assert_raises(ValueError, nditer, [a, None], [],
+ [['readonly'], ['writeonly', 'allocate']],
+ op_dtypes=[None, np.dtype('f4')],
+ op_axes=[None, [0, 3, 1]])
+ # If using op_axes, there can't be duplicates
+ assert_raises(ValueError, nditer, [a, None], [],
+ [['readonly'], ['writeonly', 'allocate']],
+ op_dtypes=[None, np.dtype('f4')],
+ op_axes=[None, [0, 2, 1, 0]])
+ # Not all axes may be specified if a reduction. If there is a hole
+ # in op_axes, this is an error.
+ a = arange(24, dtype='i4').reshape(2, 3, 4)
+ assert_raises(ValueError, nditer, [a, None], ["reduce_ok"],
+ [['readonly'], ['readwrite', 'allocate']],
+ op_dtypes=[None, np.dtype('f4')],
+ op_axes=[None, [0, np.newaxis, 2]])
+
+def test_all_allocated():
+ # When no output and no shape is given, `()` is used as shape.
+ i = np.nditer([None], op_dtypes=["int64"])
+ assert i.operands[0].shape == ()
+ assert i.dtypes == (np.dtype("int64"),)
+
+ i = np.nditer([None], op_dtypes=["int64"], itershape=(2, 3, 4))
+ assert i.operands[0].shape == (2, 3, 4)
+
+def test_iter_remove_axis():
+ a = arange(24).reshape(2, 3, 4)
+
+ i = nditer(a, ['multi_index'])
+ i.remove_axis(1)
+ assert_equal([x for x in i], a[:, 0,:].ravel())
+
+ a = a[::-1,:,:]
+ i = nditer(a, ['multi_index'])
+ i.remove_axis(0)
+ assert_equal([x for x in i], a[0,:,:].ravel())
+
+def test_iter_remove_multi_index_inner_loop():
+ # Check that removing multi-index support works
+
+ a = arange(24).reshape(2, 3, 4)
+
+ i = nditer(a, ['multi_index'])
+ assert_equal(i.ndim, 3)
+ assert_equal(i.shape, (2, 3, 4))
+ assert_equal(i.itviews[0].shape, (2, 3, 4))
+
+ # Removing the multi-index tracking causes all dimensions to coalesce
+ before = [x for x in i]
+ i.remove_multi_index()
+ after = [x for x in i]
+
+ assert_equal(before, after)
+ assert_equal(i.ndim, 1)
+ assert_raises(ValueError, lambda i:i.shape, i)
+ assert_equal(i.itviews[0].shape, (24,))
+
+ # Removing the inner loop means there's just one iteration
+ i.reset()
+ assert_equal(i.itersize, 24)
+ assert_equal(i[0].shape, tuple())
+ i.enable_external_loop()
+ assert_equal(i.itersize, 24)
+ assert_equal(i[0].shape, (24,))
+ assert_equal(i.value, arange(24))
+
+def test_iter_iterindex():
+ # Make sure iterindex works
+
+ buffersize = 5
+ a = arange(24).reshape(4, 3, 2)
+ for flags in ([], ['buffered']):
+ i = nditer(a, flags, buffersize=buffersize)
+ assert_equal(iter_iterindices(i), list(range(24)))
+ i.iterindex = 2
+ assert_equal(iter_iterindices(i), list(range(2, 24)))
+
+ i = nditer(a, flags, order='F', buffersize=buffersize)
+ assert_equal(iter_iterindices(i), list(range(24)))
+ i.iterindex = 5
+ assert_equal(iter_iterindices(i), list(range(5, 24)))
+
+ i = nditer(a[::-1], flags, order='F', buffersize=buffersize)
+ assert_equal(iter_iterindices(i), list(range(24)))
+ i.iterindex = 9
+ assert_equal(iter_iterindices(i), list(range(9, 24)))
+
+ i = nditer(a[::-1, ::-1], flags, order='C', buffersize=buffersize)
+ assert_equal(iter_iterindices(i), list(range(24)))
+ i.iterindex = 13
+ assert_equal(iter_iterindices(i), list(range(13, 24)))
+
+ i = nditer(a[::1, ::-1], flags, buffersize=buffersize)
+ assert_equal(iter_iterindices(i), list(range(24)))
+ i.iterindex = 23
+ assert_equal(iter_iterindices(i), list(range(23, 24)))
+ i.reset()
+ i.iterindex = 2
+ assert_equal(iter_iterindices(i), list(range(2, 24)))
+
+def test_iter_iterrange():
+ # Make sure getting and resetting the iterrange works
+
+ buffersize = 5
+ a = arange(24, dtype='i4').reshape(4, 3, 2)
+ a_fort = a.ravel(order='F')
+
+ i = nditer(a, ['ranged'], ['readonly'], order='F',
+ buffersize=buffersize)
+ assert_equal(i.iterrange, (0, 24))
+ assert_equal([x[()] for x in i], a_fort)
+ for r in [(0, 24), (1, 2), (3, 24), (5, 5), (0, 20), (23, 24)]:
+ i.iterrange = r
+ assert_equal(i.iterrange, r)
+ assert_equal([x[()] for x in i], a_fort[r[0]:r[1]])
+
+ i = nditer(a, ['ranged', 'buffered'], ['readonly'], order='F',
+ op_dtypes='f8', buffersize=buffersize)
+ assert_equal(i.iterrange, (0, 24))
+ assert_equal([x[()] for x in i], a_fort)
+ for r in [(0, 24), (1, 2), (3, 24), (5, 5), (0, 20), (23, 24)]:
+ i.iterrange = r
+ assert_equal(i.iterrange, r)
+ assert_equal([x[()] for x in i], a_fort[r[0]:r[1]])
+
+ def get_array(i):
+ val = np.array([], dtype='f8')
+ for x in i:
+ val = np.concatenate((val, x))
+ return val
+
+ i = nditer(a, ['ranged', 'buffered', 'external_loop'],
+ ['readonly'], order='F',
+ op_dtypes='f8', buffersize=buffersize)
+ assert_equal(i.iterrange, (0, 24))
+ assert_equal(get_array(i), a_fort)
+ for r in [(0, 24), (1, 2), (3, 24), (5, 5), (0, 20), (23, 24)]:
+ i.iterrange = r
+ assert_equal(i.iterrange, r)
+ assert_equal(get_array(i), a_fort[r[0]:r[1]])
+
+def test_iter_buffering():
+ # Test buffering with several buffer sizes and types
+ arrays = []
+ # F-order swapped array
+ arrays.append(np.arange(24,
+ dtype='c16').reshape(2, 3, 4).T.newbyteorder().byteswap())
+ # Contiguous 1-dimensional array
+ arrays.append(np.arange(10, dtype='f4'))
+ # Unaligned array
+ a = np.zeros((4*16+1,), dtype='i1')[1:]
+ a.dtype = 'i4'
+ a[:] = np.arange(16, dtype='i4')
+ arrays.append(a)
+ # 4-D F-order array
+ arrays.append(np.arange(120, dtype='i4').reshape(5, 3, 2, 4).T)
+ for a in arrays:
+ for buffersize in (1, 2, 3, 5, 8, 11, 16, 1024):
+ vals = []
+ i = nditer(a, ['buffered', 'external_loop'],
+ [['readonly', 'nbo', 'aligned']],
+ order='C',
+ casting='equiv',
+ buffersize=buffersize)
+ while not i.finished:
+ assert_(i[0].size <= buffersize)
+ vals.append(i[0].copy())
+ i.iternext()
+ assert_equal(np.concatenate(vals), a.ravel(order='C'))
+
+def test_iter_write_buffering():
+ # Test that buffering of writes is working
+
+ # F-order swapped array
+ a = np.arange(24).reshape(2, 3, 4).T.newbyteorder().byteswap()
+ i = nditer(a, ['buffered'],
+ [['readwrite', 'nbo', 'aligned']],
+ casting='equiv',
+ order='C',
+ buffersize=16)
+ x = 0
+ with i:
+ while not i.finished:
+ i[0] = x
+ x += 1
+ i.iternext()
+ assert_equal(a.ravel(order='C'), np.arange(24))
+
+def test_iter_buffering_delayed_alloc():
+ # Test that delaying buffer allocation works
+
+ a = np.arange(6)
+ b = np.arange(1, dtype='f4')
+ i = nditer([a, b], ['buffered', 'delay_bufalloc', 'multi_index', 'reduce_ok'],
+ ['readwrite'],
+ casting='unsafe',
+ op_dtypes='f4')
+ assert_(i.has_delayed_bufalloc)
+ assert_raises(ValueError, lambda i:i.multi_index, i)
+ assert_raises(ValueError, lambda i:i[0], i)
+ assert_raises(ValueError, lambda i:i[0:2], i)
+
+ def assign_iter(i):
+ i[0] = 0
+ assert_raises(ValueError, assign_iter, i)
+
+ i.reset()
+ assert_(not i.has_delayed_bufalloc)
+ assert_equal(i.multi_index, (0,))
+ with i:
+ assert_equal(i[0], 0)
+ i[1] = 1
+ assert_equal(i[0:2], [0, 1])
+ assert_equal([[x[0][()], x[1][()]] for x in i], list(zip(range(6), [1]*6)))
+
+def test_iter_buffered_cast_simple():
+ # Test that buffering can handle a simple cast
+
+ a = np.arange(10, dtype='f4')
+ i = nditer(a, ['buffered', 'external_loop'],
+ [['readwrite', 'nbo', 'aligned']],
+ casting='same_kind',
+ op_dtypes=[np.dtype('f8')],
+ buffersize=3)
+ with i:
+ for v in i:
+ v[...] *= 2
+
+ assert_equal(a, 2*np.arange(10, dtype='f4'))
+
+def test_iter_buffered_cast_byteswapped():
+ # Test that buffering can handle a cast which requires swap->cast->swap
+
+ a = np.arange(10, dtype='f4').newbyteorder().byteswap()
+ i = nditer(a, ['buffered', 'external_loop'],
+ [['readwrite', 'nbo', 'aligned']],
+ casting='same_kind',
+ op_dtypes=[np.dtype('f8').newbyteorder()],
+ buffersize=3)
+ with i:
+ for v in i:
+ v[...] *= 2
+
+ assert_equal(a, 2*np.arange(10, dtype='f4'))
+
+ with suppress_warnings() as sup:
+ sup.filter(np.ComplexWarning)
+
+ a = np.arange(10, dtype='f8').newbyteorder().byteswap()
+ i = nditer(a, ['buffered', 'external_loop'],
+ [['readwrite', 'nbo', 'aligned']],
+ casting='unsafe',
+ op_dtypes=[np.dtype('c8').newbyteorder()],
+ buffersize=3)
+ with i:
+ for v in i:
+ v[...] *= 2
+
+ assert_equal(a, 2*np.arange(10, dtype='f8'))
+
+def test_iter_buffered_cast_byteswapped_complex():
+ # Test that buffering can handle a cast which requires swap->cast->copy
+
+ a = np.arange(10, dtype='c8').newbyteorder().byteswap()
+ a += 2j
+ i = nditer(a, ['buffered', 'external_loop'],
+ [['readwrite', 'nbo', 'aligned']],
+ casting='same_kind',
+ op_dtypes=[np.dtype('c16')],
+ buffersize=3)
+ with i:
+ for v in i:
+ v[...] *= 2
+ assert_equal(a, 2*np.arange(10, dtype='c8') + 4j)
+
+ a = np.arange(10, dtype='c8')
+ a += 2j
+ i = nditer(a, ['buffered', 'external_loop'],
+ [['readwrite', 'nbo', 'aligned']],
+ casting='same_kind',
+ op_dtypes=[np.dtype('c16').newbyteorder()],
+ buffersize=3)
+ with i:
+ for v in i:
+ v[...] *= 2
+ assert_equal(a, 2*np.arange(10, dtype='c8') + 4j)
+
+ a = np.arange(10, dtype=np.clongdouble).newbyteorder().byteswap()
+ a += 2j
+ i = nditer(a, ['buffered', 'external_loop'],
+ [['readwrite', 'nbo', 'aligned']],
+ casting='same_kind',
+ op_dtypes=[np.dtype('c16')],
+ buffersize=3)
+ with i:
+ for v in i:
+ v[...] *= 2
+ assert_equal(a, 2*np.arange(10, dtype=np.clongdouble) + 4j)
+
+ a = np.arange(10, dtype=np.longdouble).newbyteorder().byteswap()
+ i = nditer(a, ['buffered', 'external_loop'],
+ [['readwrite', 'nbo', 'aligned']],
+ casting='same_kind',
+ op_dtypes=[np.dtype('f4')],
+ buffersize=7)
+ with i:
+ for v in i:
+ v[...] *= 2
+ assert_equal(a, 2*np.arange(10, dtype=np.longdouble))
+
+def test_iter_buffered_cast_structured_type():
+ # Tests buffering of structured types
+
+ # simple -> struct type (duplicates the value)
+ sdt = [('a', 'f4'), ('b', 'i8'), ('c', 'c8', (2, 3)), ('d', 'O')]
+ a = np.arange(3, dtype='f4') + 0.5
+ i = nditer(a, ['buffered', 'refs_ok'], ['readonly'],
+ casting='unsafe',
+ op_dtypes=sdt)
+ vals = [np.array(x) for x in i]
+ assert_equal(vals[0]['a'], 0.5)
+ assert_equal(vals[0]['b'], 0)
+ assert_equal(vals[0]['c'], [[(0.5)]*3]*2)
+ assert_equal(vals[0]['d'], 0.5)
+ assert_equal(vals[1]['a'], 1.5)
+ assert_equal(vals[1]['b'], 1)
+ assert_equal(vals[1]['c'], [[(1.5)]*3]*2)
+ assert_equal(vals[1]['d'], 1.5)
+ assert_equal(vals[0].dtype, np.dtype(sdt))
+
+ # object -> struct type
+ sdt = [('a', 'f4'), ('b', 'i8'), ('c', 'c8', (2, 3)), ('d', 'O')]
+ a = np.zeros((3,), dtype='O')
+ a[0] = (0.5, 0.5, [[0.5, 0.5, 0.5], [0.5, 0.5, 0.5]], 0.5)
+ a[1] = (1.5, 1.5, [[1.5, 1.5, 1.5], [1.5, 1.5, 1.5]], 1.5)
+ a[2] = (2.5, 2.5, [[2.5, 2.5, 2.5], [2.5, 2.5, 2.5]], 2.5)
+ if HAS_REFCOUNT:
+ rc = sys.getrefcount(a[0])
+ i = nditer(a, ['buffered', 'refs_ok'], ['readonly'],
+ casting='unsafe',
+ op_dtypes=sdt)
+ vals = [x.copy() for x in i]
+ assert_equal(vals[0]['a'], 0.5)
+ assert_equal(vals[0]['b'], 0)
+ assert_equal(vals[0]['c'], [[(0.5)]*3]*2)
+ assert_equal(vals[0]['d'], 0.5)
+ assert_equal(vals[1]['a'], 1.5)
+ assert_equal(vals[1]['b'], 1)
+ assert_equal(vals[1]['c'], [[(1.5)]*3]*2)
+ assert_equal(vals[1]['d'], 1.5)
+ assert_equal(vals[0].dtype, np.dtype(sdt))
+ vals, i, x = [None]*3
+ if HAS_REFCOUNT:
+ assert_equal(sys.getrefcount(a[0]), rc)
+
+ # single-field struct type -> simple
+ sdt = [('a', 'f4')]
+ a = np.array([(5.5,), (8,)], dtype=sdt)
+ i = nditer(a, ['buffered', 'refs_ok'], ['readonly'],
+ casting='unsafe',
+ op_dtypes='i4')
+ assert_equal([x_[()] for x_ in i], [5, 8])
+
+ # make sure multi-field struct type -> simple doesn't work
+ sdt = [('a', 'f4'), ('b', 'i8'), ('d', 'O')]
+ a = np.array([(5.5, 7, 'test'), (8, 10, 11)], dtype=sdt)
+ assert_raises(TypeError, lambda: (
+ nditer(a, ['buffered', 'refs_ok'], ['readonly'],
+ casting='unsafe',
+ op_dtypes='i4')))
+
+ # struct type -> struct type (field-wise copy)
+ sdt1 = [('a', 'f4'), ('b', 'i8'), ('d', 'O')]
+ sdt2 = [('d', 'u2'), ('a', 'O'), ('b', 'f8')]
+ a = np.array([(1, 2, 3), (4, 5, 6)], dtype=sdt1)
+ i = nditer(a, ['buffered', 'refs_ok'], ['readonly'],
+ casting='unsafe',
+ op_dtypes=sdt2)
+ assert_equal(i[0].dtype, np.dtype(sdt2))
+ assert_equal([np.array(x_) for x_ in i],
+ [np.array((1, 2, 3), dtype=sdt2),
+ np.array((4, 5, 6), dtype=sdt2)])
+
+
+def test_iter_buffered_cast_structured_type_failure_with_cleanup():
+ # make sure struct type -> struct type with different
+ # number of fields fails
+ sdt1 = [('a', 'f4'), ('b', 'i8'), ('d', 'O')]
+ sdt2 = [('b', 'O'), ('a', 'f8')]
+ a = np.array([(1, 2, 3), (4, 5, 6)], dtype=sdt1)
+
+ for intent in ["readwrite", "readonly", "writeonly"]:
+ # This test was initially designed to test an error at a different
+ # place, but will now raise earlier to to the cast not being possible:
+ # `assert np.can_cast(a.dtype, sdt2, casting="unsafe")` fails.
+ # Without a faulty DType, there is probably no reliable
+ # way to get the initial tested behaviour.
+ simple_arr = np.array([1, 2], dtype="i,i") # requires clean up
+ with pytest.raises(TypeError):
+ nditer((simple_arr, a), ['buffered', 'refs_ok'], [intent, intent],
+ casting='unsafe', op_dtypes=["f,f", sdt2])
+
+
+def test_buffered_cast_error_paths():
+ with pytest.raises(ValueError):
+ # The input is cast into an `S3` buffer
+ np.nditer((np.array("a", dtype="S1"),), op_dtypes=["i"],
+ casting="unsafe", flags=["buffered"])
+
+ # The `M8[ns]` is cast into the `S3` output
+ it = np.nditer((np.array(1, dtype="i"),), op_dtypes=["S1"],
+ op_flags=["writeonly"], casting="unsafe", flags=["buffered"])
+ with pytest.raises(ValueError):
+ with it:
+ buf = next(it)
+ buf[...] = "a" # cannot be converted to int.
+
+@pytest.mark.skipif(IS_WASM, reason="Cannot start subprocess")
+@pytest.mark.skipif(not HAS_REFCOUNT, reason="PyPy seems to not hit this.")
+def test_buffered_cast_error_paths_unraisable():
+ # The following gives an unraisable error. Pytest sometimes captures that
+ # (depending python and/or pytest version). So with Python>=3.8 this can
+ # probably be cleaned out in the future to check for
+ # pytest.PytestUnraisableExceptionWarning:
+ code = textwrap.dedent("""
+ import numpy as np
+
+ it = np.nditer((np.array(1, dtype="i"),), op_dtypes=["S1"],
+ op_flags=["writeonly"], casting="unsafe", flags=["buffered"])
+ buf = next(it)
+ buf[...] = "a"
+ del buf, it # Flushing only happens during deallocate right now.
+ """)
+ res = subprocess.check_output([sys.executable, "-c", code],
+ stderr=subprocess.STDOUT, text=True)
+ assert "ValueError" in res
+
+
+def test_iter_buffered_cast_subarray():
+ # Tests buffering of subarrays
+
+ # one element -> many (copies it to all)
+ sdt1 = [('a', 'f4')]
+ sdt2 = [('a', 'f8', (3, 2, 2))]
+ a = np.zeros((6,), dtype=sdt1)
+ a['a'] = np.arange(6)
+ i = nditer(a, ['buffered', 'refs_ok'], ['readonly'],
+ casting='unsafe',
+ op_dtypes=sdt2)
+ assert_equal(i[0].dtype, np.dtype(sdt2))
+ for x, count in zip(i, list(range(6))):
+ assert_(np.all(x['a'] == count))
+
+ # one element -> many -> back (copies it to all)
+ sdt1 = [('a', 'O', (1, 1))]
+ sdt2 = [('a', 'O', (3, 2, 2))]
+ a = np.zeros((6,), dtype=sdt1)
+ a['a'][:, 0, 0] = np.arange(6)
+ i = nditer(a, ['buffered', 'refs_ok'], ['readwrite'],
+ casting='unsafe',
+ op_dtypes=sdt2)
+ with i:
+ assert_equal(i[0].dtype, np.dtype(sdt2))
+ count = 0
+ for x in i:
+ assert_(np.all(x['a'] == count))
+ x['a'][0] += 2
+ count += 1
+ assert_equal(a['a'], np.arange(6).reshape(6, 1, 1)+2)
+
+ # many -> one element -> back (copies just element 0)
+ sdt1 = [('a', 'O', (3, 2, 2))]
+ sdt2 = [('a', 'O', (1,))]
+ a = np.zeros((6,), dtype=sdt1)
+ a['a'][:, 0, 0, 0] = np.arange(6)
+ i = nditer(a, ['buffered', 'refs_ok'], ['readwrite'],
+ casting='unsafe',
+ op_dtypes=sdt2)
+ with i:
+ assert_equal(i[0].dtype, np.dtype(sdt2))
+ count = 0
+ for x in i:
+ assert_equal(x['a'], count)
+ x['a'] += 2
+ count += 1
+ assert_equal(a['a'], np.arange(6).reshape(6, 1, 1, 1)*np.ones((1, 3, 2, 2))+2)
+
+ # many -> one element -> back (copies just element 0)
+ sdt1 = [('a', 'f8', (3, 2, 2))]
+ sdt2 = [('a', 'O', (1,))]
+ a = np.zeros((6,), dtype=sdt1)
+ a['a'][:, 0, 0, 0] = np.arange(6)
+ i = nditer(a, ['buffered', 'refs_ok'], ['readonly'],
+ casting='unsafe',
+ op_dtypes=sdt2)
+ assert_equal(i[0].dtype, np.dtype(sdt2))
+ count = 0
+ for x in i:
+ assert_equal(x['a'], count)
+ count += 1
+
+ # many -> one element (copies just element 0)
+ sdt1 = [('a', 'O', (3, 2, 2))]
+ sdt2 = [('a', 'f4', (1,))]
+ a = np.zeros((6,), dtype=sdt1)
+ a['a'][:, 0, 0, 0] = np.arange(6)
+ i = nditer(a, ['buffered', 'refs_ok'], ['readonly'],
+ casting='unsafe',
+ op_dtypes=sdt2)
+ assert_equal(i[0].dtype, np.dtype(sdt2))
+ count = 0
+ for x in i:
+ assert_equal(x['a'], count)
+ count += 1
+
+ # many -> matching shape (straightforward copy)
+ sdt1 = [('a', 'O', (3, 2, 2))]
+ sdt2 = [('a', 'f4', (3, 2, 2))]
+ a = np.zeros((6,), dtype=sdt1)
+ a['a'] = np.arange(6*3*2*2).reshape(6, 3, 2, 2)
+ i = nditer(a, ['buffered', 'refs_ok'], ['readonly'],
+ casting='unsafe',
+ op_dtypes=sdt2)
+ assert_equal(i[0].dtype, np.dtype(sdt2))
+ count = 0
+ for x in i:
+ assert_equal(x['a'], a[count]['a'])
+ count += 1
+
+ # vector -> smaller vector (truncates)
+ sdt1 = [('a', 'f8', (6,))]
+ sdt2 = [('a', 'f4', (2,))]
+ a = np.zeros((6,), dtype=sdt1)
+ a['a'] = np.arange(6*6).reshape(6, 6)
+ i = nditer(a, ['buffered', 'refs_ok'], ['readonly'],
+ casting='unsafe',
+ op_dtypes=sdt2)
+ assert_equal(i[0].dtype, np.dtype(sdt2))
+ count = 0
+ for x in i:
+ assert_equal(x['a'], a[count]['a'][:2])
+ count += 1
+
+ # vector -> bigger vector (pads with zeros)
+ sdt1 = [('a', 'f8', (2,))]
+ sdt2 = [('a', 'f4', (6,))]
+ a = np.zeros((6,), dtype=sdt1)
+ a['a'] = np.arange(6*2).reshape(6, 2)
+ i = nditer(a, ['buffered', 'refs_ok'], ['readonly'],
+ casting='unsafe',
+ op_dtypes=sdt2)
+ assert_equal(i[0].dtype, np.dtype(sdt2))
+ count = 0
+ for x in i:
+ assert_equal(x['a'][:2], a[count]['a'])
+ assert_equal(x['a'][2:], [0, 0, 0, 0])
+ count += 1
+
+ # vector -> matrix (broadcasts)
+ sdt1 = [('a', 'f8', (2,))]
+ sdt2 = [('a', 'f4', (2, 2))]
+ a = np.zeros((6,), dtype=sdt1)
+ a['a'] = np.arange(6*2).reshape(6, 2)
+ i = nditer(a, ['buffered', 'refs_ok'], ['readonly'],
+ casting='unsafe',
+ op_dtypes=sdt2)
+ assert_equal(i[0].dtype, np.dtype(sdt2))
+ count = 0
+ for x in i:
+ assert_equal(x['a'][0], a[count]['a'])
+ assert_equal(x['a'][1], a[count]['a'])
+ count += 1
+
+ # vector -> matrix (broadcasts and zero-pads)
+ sdt1 = [('a', 'f8', (2, 1))]
+ sdt2 = [('a', 'f4', (3, 2))]
+ a = np.zeros((6,), dtype=sdt1)
+ a['a'] = np.arange(6*2).reshape(6, 2, 1)
+ i = nditer(a, ['buffered', 'refs_ok'], ['readonly'],
+ casting='unsafe',
+ op_dtypes=sdt2)
+ assert_equal(i[0].dtype, np.dtype(sdt2))
+ count = 0
+ for x in i:
+ assert_equal(x['a'][:2, 0], a[count]['a'][:, 0])
+ assert_equal(x['a'][:2, 1], a[count]['a'][:, 0])
+ assert_equal(x['a'][2,:], [0, 0])
+ count += 1
+
+ # matrix -> matrix (truncates and zero-pads)
+ sdt1 = [('a', 'f8', (2, 3))]
+ sdt2 = [('a', 'f4', (3, 2))]
+ a = np.zeros((6,), dtype=sdt1)
+ a['a'] = np.arange(6*2*3).reshape(6, 2, 3)
+ i = nditer(a, ['buffered', 'refs_ok'], ['readonly'],
+ casting='unsafe',
+ op_dtypes=sdt2)
+ assert_equal(i[0].dtype, np.dtype(sdt2))
+ count = 0
+ for x in i:
+ assert_equal(x['a'][:2, 0], a[count]['a'][:, 0])
+ assert_equal(x['a'][:2, 1], a[count]['a'][:, 1])
+ assert_equal(x['a'][2,:], [0, 0])
+ count += 1
+
+def test_iter_buffering_badwriteback():
+ # Writing back from a buffer cannot combine elements
+
+ # a needs write buffering, but had a broadcast dimension
+ a = np.arange(6).reshape(2, 3, 1)
+ b = np.arange(12).reshape(2, 3, 2)
+ assert_raises(ValueError, nditer, [a, b],
+ ['buffered', 'external_loop'],
+ [['readwrite'], ['writeonly']],
+ order='C')
+
+ # But if a is readonly, it's fine
+ nditer([a, b], ['buffered', 'external_loop'],
+ [['readonly'], ['writeonly']],
+ order='C')
+
+ # If a has just one element, it's fine too (constant 0 stride, a reduction)
+ a = np.arange(1).reshape(1, 1, 1)
+ nditer([a, b], ['buffered', 'external_loop', 'reduce_ok'],
+ [['readwrite'], ['writeonly']],
+ order='C')
+
+ # check that it fails on other dimensions too
+ a = np.arange(6).reshape(1, 3, 2)
+ assert_raises(ValueError, nditer, [a, b],
+ ['buffered', 'external_loop'],
+ [['readwrite'], ['writeonly']],
+ order='C')
+ a = np.arange(4).reshape(2, 1, 2)
+ assert_raises(ValueError, nditer, [a, b],
+ ['buffered', 'external_loop'],
+ [['readwrite'], ['writeonly']],
+ order='C')
+
+def test_iter_buffering_string():
+ # Safe casting disallows shrinking strings
+ a = np.array(['abc', 'a', 'abcd'], dtype=np.bytes_)
+ assert_equal(a.dtype, np.dtype('S4'))
+ assert_raises(TypeError, nditer, a, ['buffered'], ['readonly'],
+ op_dtypes='S2')
+ i = nditer(a, ['buffered'], ['readonly'], op_dtypes='S6')
+ assert_equal(i[0], b'abc')
+ assert_equal(i[0].dtype, np.dtype('S6'))
+
+ a = np.array(['abc', 'a', 'abcd'], dtype=np.str_)
+ assert_equal(a.dtype, np.dtype('U4'))
+ assert_raises(TypeError, nditer, a, ['buffered'], ['readonly'],
+ op_dtypes='U2')
+ i = nditer(a, ['buffered'], ['readonly'], op_dtypes='U6')
+ assert_equal(i[0], 'abc')
+ assert_equal(i[0].dtype, np.dtype('U6'))
+
+def test_iter_buffering_growinner():
+ # Test that the inner loop grows when no buffering is needed
+ a = np.arange(30)
+ i = nditer(a, ['buffered', 'growinner', 'external_loop'],
+ buffersize=5)
+ # Should end up with just one inner loop here
+ assert_equal(i[0].size, a.size)
+
+
+@pytest.mark.slow
+def test_iter_buffered_reduce_reuse():
+ # large enough array for all views, including negative strides.
+ a = np.arange(2*3**5)[3**5:3**5+1]
+ flags = ['buffered', 'delay_bufalloc', 'multi_index', 'reduce_ok', 'refs_ok']
+ op_flags = [('readonly',), ('readwrite', 'allocate')]
+ op_axes_list = [[(0, 1, 2), (0, 1, -1)], [(0, 1, 2), (0, -1, -1)]]
+ # wrong dtype to force buffering
+ op_dtypes = [float, a.dtype]
+
+ def get_params():
+ for xs in range(-3**2, 3**2 + 1):
+ for ys in range(xs, 3**2 + 1):
+ for op_axes in op_axes_list:
+ # last stride is reduced and because of that not
+ # important for this test, as it is the inner stride.
+ strides = (xs * a.itemsize, ys * a.itemsize, a.itemsize)
+ arr = np.lib.stride_tricks.as_strided(a, (3, 3, 3), strides)
+
+ for skip in [0, 1]:
+ yield arr, op_axes, skip
+
+ for arr, op_axes, skip in get_params():
+ nditer2 = np.nditer([arr.copy(), None],
+ op_axes=op_axes, flags=flags, op_flags=op_flags,
+ op_dtypes=op_dtypes)
+ with nditer2:
+ nditer2.operands[-1][...] = 0
+ nditer2.reset()
+ nditer2.iterindex = skip
+
+ for (a2_in, b2_in) in nditer2:
+ b2_in += a2_in.astype(np.int_)
+
+ comp_res = nditer2.operands[-1]
+
+ for bufsize in range(0, 3**3):
+ nditer1 = np.nditer([arr, None],
+ op_axes=op_axes, flags=flags, op_flags=op_flags,
+ buffersize=bufsize, op_dtypes=op_dtypes)
+ with nditer1:
+ nditer1.operands[-1][...] = 0
+ nditer1.reset()
+ nditer1.iterindex = skip
+
+ for (a1_in, b1_in) in nditer1:
+ b1_in += a1_in.astype(np.int_)
+
+ res = nditer1.operands[-1]
+ assert_array_equal(res, comp_res)
+
+
+def test_iter_no_broadcast():
+ # Test that the no_broadcast flag works
+ a = np.arange(24).reshape(2, 3, 4)
+ b = np.arange(6).reshape(2, 3, 1)
+ c = np.arange(12).reshape(3, 4)
+
+ nditer([a, b, c], [],
+ [['readonly', 'no_broadcast'],
+ ['readonly'], ['readonly']])
+ assert_raises(ValueError, nditer, [a, b, c], [],
+ [['readonly'], ['readonly', 'no_broadcast'], ['readonly']])
+ assert_raises(ValueError, nditer, [a, b, c], [],
+ [['readonly'], ['readonly'], ['readonly', 'no_broadcast']])
+
+
+class TestIterNested:
+
+ def test_basic(self):
+ # Test nested iteration basic usage
+ a = arange(12).reshape(2, 3, 2)
+
+ i, j = np.nested_iters(a, [[0], [1, 2]])
+ vals = [list(j) for _ in i]
+ assert_equal(vals, [[0, 1, 2, 3, 4, 5], [6, 7, 8, 9, 10, 11]])
+
+ i, j = np.nested_iters(a, [[0, 1], [2]])
+ vals = [list(j) for _ in i]
+ assert_equal(vals, [[0, 1], [2, 3], [4, 5], [6, 7], [8, 9], [10, 11]])
+
+ i, j = np.nested_iters(a, [[0, 2], [1]])
+ vals = [list(j) for _ in i]
+ assert_equal(vals, [[0, 2, 4], [1, 3, 5], [6, 8, 10], [7, 9, 11]])
+
+ def test_reorder(self):
+ # Test nested iteration basic usage
+ a = arange(12).reshape(2, 3, 2)
+
+ # In 'K' order (default), it gets reordered
+ i, j = np.nested_iters(a, [[0], [2, 1]])
+ vals = [list(j) for _ in i]
+ assert_equal(vals, [[0, 1, 2, 3, 4, 5], [6, 7, 8, 9, 10, 11]])
+
+ i, j = np.nested_iters(a, [[1, 0], [2]])
+ vals = [list(j) for _ in i]
+ assert_equal(vals, [[0, 1], [2, 3], [4, 5], [6, 7], [8, 9], [10, 11]])
+
+ i, j = np.nested_iters(a, [[2, 0], [1]])
+ vals = [list(j) for _ in i]
+ assert_equal(vals, [[0, 2, 4], [1, 3, 5], [6, 8, 10], [7, 9, 11]])
+
+ # In 'C' order, it doesn't
+ i, j = np.nested_iters(a, [[0], [2, 1]], order='C')
+ vals = [list(j) for _ in i]
+ assert_equal(vals, [[0, 2, 4, 1, 3, 5], [6, 8, 10, 7, 9, 11]])
+
+ i, j = np.nested_iters(a, [[1, 0], [2]], order='C')
+ vals = [list(j) for _ in i]
+ assert_equal(vals, [[0, 1], [6, 7], [2, 3], [8, 9], [4, 5], [10, 11]])
+
+ i, j = np.nested_iters(a, [[2, 0], [1]], order='C')
+ vals = [list(j) for _ in i]
+ assert_equal(vals, [[0, 2, 4], [6, 8, 10], [1, 3, 5], [7, 9, 11]])
+
+ def test_flip_axes(self):
+ # Test nested iteration with negative axes
+ a = arange(12).reshape(2, 3, 2)[::-1, ::-1, ::-1]
+
+ # In 'K' order (default), the axes all get flipped
+ i, j = np.nested_iters(a, [[0], [1, 2]])
+ vals = [list(j) for _ in i]
+ assert_equal(vals, [[0, 1, 2, 3, 4, 5], [6, 7, 8, 9, 10, 11]])
+
+ i, j = np.nested_iters(a, [[0, 1], [2]])
+ vals = [list(j) for _ in i]
+ assert_equal(vals, [[0, 1], [2, 3], [4, 5], [6, 7], [8, 9], [10, 11]])
+
+ i, j = np.nested_iters(a, [[0, 2], [1]])
+ vals = [list(j) for _ in i]
+ assert_equal(vals, [[0, 2, 4], [1, 3, 5], [6, 8, 10], [7, 9, 11]])
+
+ # In 'C' order, flipping axes is disabled
+ i, j = np.nested_iters(a, [[0], [1, 2]], order='C')
+ vals = [list(j) for _ in i]
+ assert_equal(vals, [[11, 10, 9, 8, 7, 6], [5, 4, 3, 2, 1, 0]])
+
+ i, j = np.nested_iters(a, [[0, 1], [2]], order='C')
+ vals = [list(j) for _ in i]
+ assert_equal(vals, [[11, 10], [9, 8], [7, 6], [5, 4], [3, 2], [1, 0]])
+
+ i, j = np.nested_iters(a, [[0, 2], [1]], order='C')
+ vals = [list(j) for _ in i]
+ assert_equal(vals, [[11, 9, 7], [10, 8, 6], [5, 3, 1], [4, 2, 0]])
+
+ def test_broadcast(self):
+ # Test nested iteration with broadcasting
+ a = arange(2).reshape(2, 1)
+ b = arange(3).reshape(1, 3)
+
+ i, j = np.nested_iters([a, b], [[0], [1]])
+ vals = [list(j) for _ in i]
+ assert_equal(vals, [[[0, 0], [0, 1], [0, 2]], [[1, 0], [1, 1], [1, 2]]])
+
+ i, j = np.nested_iters([a, b], [[1], [0]])
+ vals = [list(j) for _ in i]
+ assert_equal(vals, [[[0, 0], [1, 0]], [[0, 1], [1, 1]], [[0, 2], [1, 2]]])
+
+ def test_dtype_copy(self):
+ # Test nested iteration with a copy to change dtype
+
+ # copy
+ a = arange(6, dtype='i4').reshape(2, 3)
+ i, j = np.nested_iters(a, [[0], [1]],
+ op_flags=['readonly', 'copy'],
+ op_dtypes='f8')
+ assert_equal(j[0].dtype, np.dtype('f8'))
+ vals = [list(j) for _ in i]
+ assert_equal(vals, [[0, 1, 2], [3, 4, 5]])
+ vals = None
+
+ # writebackifcopy - using context manager
+ a = arange(6, dtype='f4').reshape(2, 3)
+ i, j = np.nested_iters(a, [[0], [1]],
+ op_flags=['readwrite', 'updateifcopy'],
+ casting='same_kind',
+ op_dtypes='f8')
+ with i, j:
+ assert_equal(j[0].dtype, np.dtype('f8'))
+ for x in i:
+ for y in j:
+ y[...] += 1
+ assert_equal(a, [[0, 1, 2], [3, 4, 5]])
+ assert_equal(a, [[1, 2, 3], [4, 5, 6]])
+
+ # writebackifcopy - using close()
+ a = arange(6, dtype='f4').reshape(2, 3)
+ i, j = np.nested_iters(a, [[0], [1]],
+ op_flags=['readwrite', 'updateifcopy'],
+ casting='same_kind',
+ op_dtypes='f8')
+ assert_equal(j[0].dtype, np.dtype('f8'))
+ for x in i:
+ for y in j:
+ y[...] += 1
+ assert_equal(a, [[0, 1, 2], [3, 4, 5]])
+ i.close()
+ j.close()
+ assert_equal(a, [[1, 2, 3], [4, 5, 6]])
+
+ def test_dtype_buffered(self):
+ # Test nested iteration with buffering to change dtype
+
+ a = arange(6, dtype='f4').reshape(2, 3)
+ i, j = np.nested_iters(a, [[0], [1]],
+ flags=['buffered'],
+ op_flags=['readwrite'],
+ casting='same_kind',
+ op_dtypes='f8')
+ assert_equal(j[0].dtype, np.dtype('f8'))
+ for x in i:
+ for y in j:
+ y[...] += 1
+ assert_equal(a, [[1, 2, 3], [4, 5, 6]])
+
+ def test_0d(self):
+ a = np.arange(12).reshape(2, 3, 2)
+ i, j = np.nested_iters(a, [[], [1, 0, 2]])
+ vals = [list(j) for _ in i]
+ assert_equal(vals, [[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]])
+
+ i, j = np.nested_iters(a, [[1, 0, 2], []])
+ vals = [list(j) for _ in i]
+ assert_equal(vals, [[0], [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11]])
+
+ i, j, k = np.nested_iters(a, [[2, 0], [], [1]])
+ vals = []
+ for x in i:
+ for y in j:
+ vals.append([z for z in k])
+ assert_equal(vals, [[0, 2, 4], [1, 3, 5], [6, 8, 10], [7, 9, 11]])
+
+ def test_iter_nested_iters_dtype_buffered(self):
+ # Test nested iteration with buffering to change dtype
+
+ a = arange(6, dtype='f4').reshape(2, 3)
+ i, j = np.nested_iters(a, [[0], [1]],
+ flags=['buffered'],
+ op_flags=['readwrite'],
+ casting='same_kind',
+ op_dtypes='f8')
+ with i, j:
+ assert_equal(j[0].dtype, np.dtype('f8'))
+ for x in i:
+ for y in j:
+ y[...] += 1
+ assert_equal(a, [[1, 2, 3], [4, 5, 6]])
+
+def test_iter_reduction_error():
+
+ a = np.arange(6)
+ assert_raises(ValueError, nditer, [a, None], [],
+ [['readonly'], ['readwrite', 'allocate']],
+ op_axes=[[0], [-1]])
+
+ a = np.arange(6).reshape(2, 3)
+ assert_raises(ValueError, nditer, [a, None], ['external_loop'],
+ [['readonly'], ['readwrite', 'allocate']],
+ op_axes=[[0, 1], [-1, -1]])
+
+def test_iter_reduction():
+ # Test doing reductions with the iterator
+
+ a = np.arange(6)
+ i = nditer([a, None], ['reduce_ok'],
+ [['readonly'], ['readwrite', 'allocate']],
+ op_axes=[[0], [-1]])
+ # Need to initialize the output operand to the addition unit
+ with i:
+ i.operands[1][...] = 0
+ # Do the reduction
+ for x, y in i:
+ y[...] += x
+ # Since no axes were specified, should have allocated a scalar
+ assert_equal(i.operands[1].ndim, 0)
+ assert_equal(i.operands[1], np.sum(a))
+
+ a = np.arange(6).reshape(2, 3)
+ i = nditer([a, None], ['reduce_ok', 'external_loop'],
+ [['readonly'], ['readwrite', 'allocate']],
+ op_axes=[[0, 1], [-1, -1]])
+ # Need to initialize the output operand to the addition unit
+ with i:
+ i.operands[1][...] = 0
+ # Reduction shape/strides for the output
+ assert_equal(i[1].shape, (6,))
+ assert_equal(i[1].strides, (0,))
+ # Do the reduction
+ for x, y in i:
+ # Use a for loop instead of ``y[...] += x``
+ # (equivalent to ``y[...] = y[...].copy() + x``),
+ # because y has zero strides we use for the reduction
+ for j in range(len(y)):
+ y[j] += x[j]
+ # Since no axes were specified, should have allocated a scalar
+ assert_equal(i.operands[1].ndim, 0)
+ assert_equal(i.operands[1], np.sum(a))
+
+ # This is a tricky reduction case for the buffering double loop
+ # to handle
+ a = np.ones((2, 3, 5))
+ it1 = nditer([a, None], ['reduce_ok', 'external_loop'],
+ [['readonly'], ['readwrite', 'allocate']],
+ op_axes=[None, [0, -1, 1]])
+ it2 = nditer([a, None], ['reduce_ok', 'external_loop',
+ 'buffered', 'delay_bufalloc'],
+ [['readonly'], ['readwrite', 'allocate']],
+ op_axes=[None, [0, -1, 1]], buffersize=10)
+ with it1, it2:
+ it1.operands[1].fill(0)
+ it2.operands[1].fill(0)
+ it2.reset()
+ for x in it1:
+ x[1][...] += x[0]
+ for x in it2:
+ x[1][...] += x[0]
+ assert_equal(it1.operands[1], it2.operands[1])
+ assert_equal(it2.operands[1].sum(), a.size)
+
+def test_iter_buffering_reduction():
+ # Test doing buffered reductions with the iterator
+
+ a = np.arange(6)
+ b = np.array(0., dtype='f8').byteswap().newbyteorder()
+ i = nditer([a, b], ['reduce_ok', 'buffered'],
+ [['readonly'], ['readwrite', 'nbo']],
+ op_axes=[[0], [-1]])
+ with i:
+ assert_equal(i[1].dtype, np.dtype('f8'))
+ assert_(i[1].dtype != b.dtype)
+ # Do the reduction
+ for x, y in i:
+ y[...] += x
+ # Since no axes were specified, should have allocated a scalar
+ assert_equal(b, np.sum(a))
+
+ a = np.arange(6).reshape(2, 3)
+ b = np.array([0, 0], dtype='f8').byteswap().newbyteorder()
+ i = nditer([a, b], ['reduce_ok', 'external_loop', 'buffered'],
+ [['readonly'], ['readwrite', 'nbo']],
+ op_axes=[[0, 1], [0, -1]])
+ # Reduction shape/strides for the output
+ with i:
+ assert_equal(i[1].shape, (3,))
+ assert_equal(i[1].strides, (0,))
+ # Do the reduction
+ for x, y in i:
+ # Use a for loop instead of ``y[...] += x``
+ # (equivalent to ``y[...] = y[...].copy() + x``),
+ # because y has zero strides we use for the reduction
+ for j in range(len(y)):
+ y[j] += x[j]
+ assert_equal(b, np.sum(a, axis=1))
+
+ # Iterator inner double loop was wrong on this one
+ p = np.arange(2) + 1
+ it = np.nditer([p, None],
+ ['delay_bufalloc', 'reduce_ok', 'buffered', 'external_loop'],
+ [['readonly'], ['readwrite', 'allocate']],
+ op_axes=[[-1, 0], [-1, -1]],
+ itershape=(2, 2))
+ with it:
+ it.operands[1].fill(0)
+ it.reset()
+ assert_equal(it[0], [1, 2, 1, 2])
+
+ # Iterator inner loop should take argument contiguity into account
+ x = np.ones((7, 13, 8), np.int8)[4:6,1:11:6,1:5].transpose(1, 2, 0)
+ x[...] = np.arange(x.size).reshape(x.shape)
+ y_base = np.arange(4*4, dtype=np.int8).reshape(4, 4)
+ y_base_copy = y_base.copy()
+ y = y_base[::2,:,None]
+
+ it = np.nditer([y, x],
+ ['buffered', 'external_loop', 'reduce_ok'],
+ [['readwrite'], ['readonly']])
+ with it:
+ for a, b in it:
+ a.fill(2)
+
+ assert_equal(y_base[1::2], y_base_copy[1::2])
+ assert_equal(y_base[::2], 2)
+
+def test_iter_buffering_reduction_reuse_reduce_loops():
+ # There was a bug triggering reuse of the reduce loop inappropriately,
+ # which caused processing to happen in unnecessarily small chunks
+ # and overran the buffer.
+
+ a = np.zeros((2, 7))
+ b = np.zeros((1, 7))
+ it = np.nditer([a, b], flags=['reduce_ok', 'external_loop', 'buffered'],
+ op_flags=[['readonly'], ['readwrite']],
+ buffersize=5)
+
+ with it:
+ bufsizes = [x.shape[0] for x, y in it]
+ assert_equal(bufsizes, [5, 2, 5, 2])
+ assert_equal(sum(bufsizes), a.size)
+
+def test_iter_writemasked_badinput():
+ a = np.zeros((2, 3))
+ b = np.zeros((3,))
+ m = np.array([[True, True, False], [False, True, False]])
+ m2 = np.array([True, True, False])
+ m3 = np.array([0, 1, 1], dtype='u1')
+ mbad1 = np.array([0, 1, 1], dtype='i1')
+ mbad2 = np.array([0, 1, 1], dtype='f4')
+
+ # Need an 'arraymask' if any operand is 'writemasked'
+ assert_raises(ValueError, nditer, [a, m], [],
+ [['readwrite', 'writemasked'], ['readonly']])
+
+ # A 'writemasked' operand must not be readonly
+ assert_raises(ValueError, nditer, [a, m], [],
+ [['readonly', 'writemasked'], ['readonly', 'arraymask']])
+
+ # 'writemasked' and 'arraymask' may not be used together
+ assert_raises(ValueError, nditer, [a, m], [],
+ [['readonly'], ['readwrite', 'arraymask', 'writemasked']])
+
+ # 'arraymask' may only be specified once
+ assert_raises(ValueError, nditer, [a, m, m2], [],
+ [['readwrite', 'writemasked'],
+ ['readonly', 'arraymask'],
+ ['readonly', 'arraymask']])
+
+ # An 'arraymask' with nothing 'writemasked' also doesn't make sense
+ assert_raises(ValueError, nditer, [a, m], [],
+ [['readwrite'], ['readonly', 'arraymask']])
+
+ # A writemasked reduction requires a similarly smaller mask
+ assert_raises(ValueError, nditer, [a, b, m], ['reduce_ok'],
+ [['readonly'],
+ ['readwrite', 'writemasked'],
+ ['readonly', 'arraymask']])
+ # But this should work with a smaller/equal mask to the reduction operand
+ np.nditer([a, b, m2], ['reduce_ok'],
+ [['readonly'],
+ ['readwrite', 'writemasked'],
+ ['readonly', 'arraymask']])
+ # The arraymask itself cannot be a reduction
+ assert_raises(ValueError, nditer, [a, b, m2], ['reduce_ok'],
+ [['readonly'],
+ ['readwrite', 'writemasked'],
+ ['readwrite', 'arraymask']])
+
+ # A uint8 mask is ok too
+ np.nditer([a, m3], ['buffered'],
+ [['readwrite', 'writemasked'],
+ ['readonly', 'arraymask']],
+ op_dtypes=['f4', None],
+ casting='same_kind')
+ # An int8 mask isn't ok
+ assert_raises(TypeError, np.nditer, [a, mbad1], ['buffered'],
+ [['readwrite', 'writemasked'],
+ ['readonly', 'arraymask']],
+ op_dtypes=['f4', None],
+ casting='same_kind')
+ # A float32 mask isn't ok
+ assert_raises(TypeError, np.nditer, [a, mbad2], ['buffered'],
+ [['readwrite', 'writemasked'],
+ ['readonly', 'arraymask']],
+ op_dtypes=['f4', None],
+ casting='same_kind')
+
+
+def _is_buffered(iterator):
+ try:
+ iterator.itviews
+ except ValueError:
+ return True
+ return False
+
+@pytest.mark.parametrize("a",
+ [np.zeros((3,), dtype='f8'),
+ np.zeros((9876, 3*5), dtype='f8')[::2, :],
+ np.zeros((4, 312, 124, 3), dtype='f8')[::2, :, ::2, :],
+ # Also test with the last dimension strided (so it does not fit if
+ # there is repeated access)
+ np.zeros((9,), dtype='f8')[::3],
+ np.zeros((9876, 3*10), dtype='f8')[::2, ::5],
+ np.zeros((4, 312, 124, 3), dtype='f8')[::2, :, ::2, ::-1]])
+def test_iter_writemasked(a):
+ # Note, the slicing above is to ensure that nditer cannot combine multiple
+ # axes into one. The repetition is just to make things a bit more
+ # interesting.
+ shape = a.shape
+ reps = shape[-1] // 3
+ msk = np.empty(shape, dtype=bool)
+ msk[...] = [True, True, False] * reps
+
+ # When buffering is unused, 'writemasked' effectively does nothing.
+ # It's up to the user of the iterator to obey the requested semantics.
+ it = np.nditer([a, msk], [],
+ [['readwrite', 'writemasked'],
+ ['readonly', 'arraymask']])
+ with it:
+ for x, m in it:
+ x[...] = 1
+ # Because we violated the semantics, all the values became 1
+ assert_equal(a, np.broadcast_to([1, 1, 1] * reps, shape))
+
+ # Even if buffering is enabled, we still may be accessing the array
+ # directly.
+ it = np.nditer([a, msk], ['buffered'],
+ [['readwrite', 'writemasked'],
+ ['readonly', 'arraymask']])
+ # @seberg: I honestly don't currently understand why a "buffered" iterator
+ # would end up not using a buffer for the small array here at least when
+ # "writemasked" is used, that seems confusing... Check by testing for
+ # actual memory overlap!
+ is_buffered = True
+ with it:
+ for x, m in it:
+ x[...] = 2.5
+ if np.may_share_memory(x, a):
+ is_buffered = False
+
+ if not is_buffered:
+ # Because we violated the semantics, all the values became 2.5
+ assert_equal(a, np.broadcast_to([2.5, 2.5, 2.5] * reps, shape))
+ else:
+ # For large sizes, the iterator may be buffered:
+ assert_equal(a, np.broadcast_to([2.5, 2.5, 1] * reps, shape))
+ a[...] = 2.5
+
+ # If buffering will definitely happening, for instance because of
+ # a cast, only the items selected by the mask will be copied back from
+ # the buffer.
+ it = np.nditer([a, msk], ['buffered'],
+ [['readwrite', 'writemasked'],
+ ['readonly', 'arraymask']],
+ op_dtypes=['i8', None],
+ casting='unsafe')
+ with it:
+ for x, m in it:
+ x[...] = 3
+ # Even though we violated the semantics, only the selected values
+ # were copied back
+ assert_equal(a, np.broadcast_to([3, 3, 2.5] * reps, shape))
+
+
+@pytest.mark.parametrize(["mask", "mask_axes"], [
+ # Allocated operand (only broadcasts with -1)
+ (None, [-1, 0]),
+ # Reduction along the first dimension (with and without op_axes)
+ (np.zeros((1, 4), dtype="bool"), [0, 1]),
+ (np.zeros((1, 4), dtype="bool"), None),
+ # Test 0-D and -1 op_axes
+ (np.zeros(4, dtype="bool"), [-1, 0]),
+ (np.zeros((), dtype="bool"), [-1, -1]),
+ (np.zeros((), dtype="bool"), None)])
+def test_iter_writemasked_broadcast_error(mask, mask_axes):
+ # This assumes that a readwrite mask makes sense. This is likely not the
+ # case and should simply be deprecated.
+ arr = np.zeros((3, 4))
+ itflags = ["reduce_ok"]
+ mask_flags = ["arraymask", "readwrite", "allocate"]
+ a_flags = ["writeonly", "writemasked"]
+ if mask_axes is None:
+ op_axes = None
+ else:
+ op_axes = [mask_axes, [0, 1]]
+
+ with assert_raises(ValueError):
+ np.nditer((mask, arr), flags=itflags, op_flags=[mask_flags, a_flags],
+ op_axes=op_axes)
+
+
+def test_iter_writemasked_decref():
+ # force casting (to make it interesting) by using a structured dtype.
+ arr = np.arange(10000).astype(">i,O")
+ original = arr.copy()
+ mask = np.random.randint(0, 2, size=10000).astype(bool)
+
+ it = np.nditer([arr, mask], ['buffered', "refs_ok"],
+ [['readwrite', 'writemasked'],
+ ['readonly', 'arraymask']],
+ op_dtypes=["<i,O", "?"])
+ singleton = object()
+ if HAS_REFCOUNT:
+ count = sys.getrefcount(singleton)
+ for buf, mask_buf in it:
+ buf[...] = (3, singleton)
+
+ del buf, mask_buf, it # delete everything to ensure correct cleanup
+
+ if HAS_REFCOUNT:
+ # The buffer would have included additional items, they must be
+ # cleared correctly:
+ assert sys.getrefcount(singleton) - count == np.count_nonzero(mask)
+
+ assert_array_equal(arr[~mask], original[~mask])
+ assert (arr[mask] == np.array((3, singleton), arr.dtype)).all()
+ del arr
+
+ if HAS_REFCOUNT:
+ assert sys.getrefcount(singleton) == count
+
+
+def test_iter_non_writable_attribute_deletion():
+ it = np.nditer(np.ones(2))
+ attr = ["value", "shape", "operands", "itviews", "has_delayed_bufalloc",
+ "iterationneedsapi", "has_multi_index", "has_index", "dtypes",
+ "ndim", "nop", "itersize", "finished"]
+
+ for s in attr:
+ assert_raises(AttributeError, delattr, it, s)
+
+
+def test_iter_writable_attribute_deletion():
+ it = np.nditer(np.ones(2))
+ attr = [ "multi_index", "index", "iterrange", "iterindex"]
+ for s in attr:
+ assert_raises(AttributeError, delattr, it, s)
+
+
+def test_iter_element_deletion():
+ it = np.nditer(np.ones(3))
+ try:
+ del it[1]
+ del it[1:2]
+ except TypeError:
+ pass
+ except Exception:
+ raise AssertionError
+
+def test_iter_allocated_array_dtypes():
+ # If the dtype of an allocated output has a shape, the shape gets
+ # tacked onto the end of the result.
+ it = np.nditer(([1, 3, 20], None), op_dtypes=[None, ('i4', (2,))])
+ for a, b in it:
+ b[0] = a - 1
+ b[1] = a + 1
+ assert_equal(it.operands[1], [[0, 2], [2, 4], [19, 21]])
+
+ # Check the same (less sensitive) thing when `op_axes` with -1 is given.
+ it = np.nditer(([[1, 3, 20]], None), op_dtypes=[None, ('i4', (2,))],
+ flags=["reduce_ok"], op_axes=[None, (-1, 0)])
+ for a, b in it:
+ b[0] = a - 1
+ b[1] = a + 1
+ assert_equal(it.operands[1], [[0, 2], [2, 4], [19, 21]])
+
+ # Make sure this works for scalars too
+ it = np.nditer((10, 2, None), op_dtypes=[None, None, ('i4', (2, 2))])
+ for a, b, c in it:
+ c[0, 0] = a - b
+ c[0, 1] = a + b
+ c[1, 0] = a * b
+ c[1, 1] = a / b
+ assert_equal(it.operands[2], [[8, 12], [20, 5]])
+
+
+def test_0d_iter():
+ # Basic test for iteration of 0-d arrays:
+ i = nditer([2, 3], ['multi_index'], [['readonly']]*2)
+ assert_equal(i.ndim, 0)
+ assert_equal(next(i), (2, 3))
+ assert_equal(i.multi_index, ())
+ assert_equal(i.iterindex, 0)
+ assert_raises(StopIteration, next, i)
+ # test reset:
+ i.reset()
+ assert_equal(next(i), (2, 3))
+ assert_raises(StopIteration, next, i)
+
+ # test forcing to 0-d
+ i = nditer(np.arange(5), ['multi_index'], [['readonly']], op_axes=[()])
+ assert_equal(i.ndim, 0)
+ assert_equal(len(i), 1)
+
+ i = nditer(np.arange(5), ['multi_index'], [['readonly']],
+ op_axes=[()], itershape=())
+ assert_equal(i.ndim, 0)
+ assert_equal(len(i), 1)
+
+ # passing an itershape alone is not enough, the op_axes are also needed
+ with assert_raises(ValueError):
+ nditer(np.arange(5), ['multi_index'], [['readonly']], itershape=())
+
+ # Test a more complex buffered casting case (same as another test above)
+ sdt = [('a', 'f4'), ('b', 'i8'), ('c', 'c8', (2, 3)), ('d', 'O')]
+ a = np.array(0.5, dtype='f4')
+ i = nditer(a, ['buffered', 'refs_ok'], ['readonly'],
+ casting='unsafe', op_dtypes=sdt)
+ vals = next(i)
+ assert_equal(vals['a'], 0.5)
+ assert_equal(vals['b'], 0)
+ assert_equal(vals['c'], [[(0.5)]*3]*2)
+ assert_equal(vals['d'], 0.5)
+
+def test_object_iter_cleanup():
+ # see gh-18450
+ # object arrays can raise a python exception in ufunc inner loops using
+ # nditer, which should cause iteration to stop & cleanup. There were bugs
+ # in the nditer cleanup when decref'ing object arrays.
+ # This test would trigger valgrind "uninitialized read" before the bugfix.
+ assert_raises(TypeError, lambda: np.zeros((17000, 2), dtype='f4') * None)
+
+ # this more explicit code also triggers the invalid access
+ arr = np.arange(np.BUFSIZE * 10).reshape(10, -1).astype(str)
+ oarr = arr.astype(object)
+ oarr[:, -1] = None
+ assert_raises(TypeError, lambda: np.add(oarr[:, ::-1], arr[:, ::-1]))
+
+ # followup: this tests for a bug introduced in the first pass of gh-18450,
+ # caused by an incorrect fallthrough of the TypeError
+ class T:
+ def __bool__(self):
+ raise TypeError("Ambiguous")
+ assert_raises(TypeError, np.logical_or.reduce,
+ np.array([T(), T()], dtype='O'))
+
+def test_object_iter_cleanup_reduce():
+ # Similar as above, but a complex reduction case that was previously
+ # missed (see gh-18810).
+ # The following array is special in that it cannot be flattened:
+ arr = np.array([[None, 1], [-1, -1], [None, 2], [-1, -1]])[::2]
+ with pytest.raises(TypeError):
+ np.sum(arr)
+
+@pytest.mark.parametrize("arr", [
+ np.ones((8000, 4, 2), dtype=object)[:, ::2, :],
+ np.ones((8000, 4, 2), dtype=object, order="F")[:, ::2, :],
+ np.ones((8000, 4, 2), dtype=object)[:, ::2, :].copy("F")])
+def test_object_iter_cleanup_large_reduce(arr):
+ # More complicated calls are possible for large arrays:
+ out = np.ones(8000, dtype=np.intp)
+ # force casting with `dtype=object`
+ res = np.sum(arr, axis=(1, 2), dtype=object, out=out)
+ assert_array_equal(res, np.full(8000, 4, dtype=object))
+
+def test_iter_too_large():
+ # The total size of the iterator must not exceed the maximum intp due
+ # to broadcasting. Dividing by 1024 will keep it small enough to
+ # give a legal array.
+ size = np.iinfo(np.intp).max // 1024
+ arr = np.lib.stride_tricks.as_strided(np.zeros(1), (size,), (0,))
+ assert_raises(ValueError, nditer, (arr, arr[:, None]))
+ # test the same for multiindex. That may get more interesting when
+ # removing 0 dimensional axis is allowed (since an iterator can grow then)
+ assert_raises(ValueError, nditer,
+ (arr, arr[:, None]), flags=['multi_index'])
+
+
+def test_iter_too_large_with_multiindex():
+ # When a multi index is being tracked, the error is delayed this
+ # checks the delayed error messages and getting below that by
+ # removing an axis.
+ base_size = 2**10
+ num = 1
+ while base_size**num < np.iinfo(np.intp).max:
+ num += 1
+
+ shape_template = [1, 1] * num
+ arrays = []
+ for i in range(num):
+ shape = shape_template[:]
+ shape[i * 2] = 2**10
+ arrays.append(np.empty(shape))
+ arrays = tuple(arrays)
+
+ # arrays are now too large to be broadcast. The different modes test
+ # different nditer functionality with or without GIL.
+ for mode in range(6):
+ with assert_raises(ValueError):
+ _multiarray_tests.test_nditer_too_large(arrays, -1, mode)
+ # but if we do nothing with the nditer, it can be constructed:
+ _multiarray_tests.test_nditer_too_large(arrays, -1, 7)
+
+ # When an axis is removed, things should work again (half the time):
+ for i in range(num):
+ for mode in range(6):
+ # an axis with size 1024 is removed:
+ _multiarray_tests.test_nditer_too_large(arrays, i*2, mode)
+ # an axis with size 1 is removed:
+ with assert_raises(ValueError):
+ _multiarray_tests.test_nditer_too_large(arrays, i*2 + 1, mode)
+
+def test_writebacks():
+ a = np.arange(6, dtype='f4')
+ au = a.byteswap().newbyteorder()
+ assert_(a.dtype.byteorder != au.dtype.byteorder)
+ it = nditer(au, [], [['readwrite', 'updateifcopy']],
+ casting='equiv', op_dtypes=[np.dtype('f4')])
+ with it:
+ it.operands[0][:] = 100
+ assert_equal(au, 100)
+ # do it again, this time raise an error,
+ it = nditer(au, [], [['readwrite', 'updateifcopy']],
+ casting='equiv', op_dtypes=[np.dtype('f4')])
+ try:
+ with it:
+ assert_equal(au.flags.writeable, False)
+ it.operands[0][:] = 0
+ raise ValueError('exit context manager on exception')
+ except:
+ pass
+ assert_equal(au, 0)
+ assert_equal(au.flags.writeable, True)
+ # cannot reuse i outside context manager
+ assert_raises(ValueError, getattr, it, 'operands')
+
+ it = nditer(au, [], [['readwrite', 'updateifcopy']],
+ casting='equiv', op_dtypes=[np.dtype('f4')])
+ with it:
+ x = it.operands[0]
+ x[:] = 6
+ assert_(x.flags.writebackifcopy)
+ assert_equal(au, 6)
+ assert_(not x.flags.writebackifcopy)
+ x[:] = 123 # x.data still valid
+ assert_equal(au, 6) # but not connected to au
+
+ it = nditer(au, [],
+ [['readwrite', 'updateifcopy']],
+ casting='equiv', op_dtypes=[np.dtype('f4')])
+ # reentering works
+ with it:
+ with it:
+ for x in it:
+ x[...] = 123
+
+ it = nditer(au, [],
+ [['readwrite', 'updateifcopy']],
+ casting='equiv', op_dtypes=[np.dtype('f4')])
+ # make sure exiting the inner context manager closes the iterator
+ with it:
+ with it:
+ for x in it:
+ x[...] = 123
+ assert_raises(ValueError, getattr, it, 'operands')
+ # do not crash if original data array is decrefed
+ it = nditer(au, [],
+ [['readwrite', 'updateifcopy']],
+ casting='equiv', op_dtypes=[np.dtype('f4')])
+ del au
+ with it:
+ for x in it:
+ x[...] = 123
+ # make sure we cannot reenter the closed iterator
+ enter = it.__enter__
+ assert_raises(RuntimeError, enter)
+
+def test_close_equivalent():
+ ''' using a context amanger and using nditer.close are equivalent
+ '''
+ def add_close(x, y, out=None):
+ addop = np.add
+ it = np.nditer([x, y, out], [],
+ [['readonly'], ['readonly'], ['writeonly','allocate']])
+ for (a, b, c) in it:
+ addop(a, b, out=c)
+ ret = it.operands[2]
+ it.close()
+ return ret
+
+ def add_context(x, y, out=None):
+ addop = np.add
+ it = np.nditer([x, y, out], [],
+ [['readonly'], ['readonly'], ['writeonly','allocate']])
+ with it:
+ for (a, b, c) in it:
+ addop(a, b, out=c)
+ return it.operands[2]
+ z = add_close(range(5), range(5))
+ assert_equal(z, range(0, 10, 2))
+ z = add_context(range(5), range(5))
+ assert_equal(z, range(0, 10, 2))
+
+def test_close_raises():
+ it = np.nditer(np.arange(3))
+ assert_equal (next(it), 0)
+ it.close()
+ assert_raises(StopIteration, next, it)
+ assert_raises(ValueError, getattr, it, 'operands')
+
+def test_close_parameters():
+ it = np.nditer(np.arange(3))
+ assert_raises(TypeError, it.close, 1)
+
+@pytest.mark.skipif(not HAS_REFCOUNT, reason="Python lacks refcounts")
+def test_warn_noclose():
+ a = np.arange(6, dtype='f4')
+ au = a.byteswap().newbyteorder()
+ with suppress_warnings() as sup:
+ sup.record(RuntimeWarning)
+ it = np.nditer(au, [], [['readwrite', 'updateifcopy']],
+ casting='equiv', op_dtypes=[np.dtype('f4')])
+ del it
+ assert len(sup.log) == 1
+
+
+@pytest.mark.skipif(sys.version_info[:2] == (3, 9) and sys.platform == "win32",
+ reason="Errors with Python 3.9 on Windows")
+@pytest.mark.parametrize(["in_dtype", "buf_dtype"],
+ [("i", "O"), ("O", "i"), # most simple cases
+ ("i,O", "O,O"), # structured partially only copying O
+ ("O,i", "i,O"), # structured casting to and from O
+ ])
+@pytest.mark.parametrize("steps", [1, 2, 3])
+def test_partial_iteration_cleanup(in_dtype, buf_dtype, steps):
+ """
+ Checks for reference counting leaks during cleanup. Using explicit
+ reference counts lead to occasional false positives (at least in parallel
+ test setups). This test now should still test leaks correctly when
+ run e.g. with pytest-valgrind or pytest-leaks
+ """
+ value = 2**30 + 1 # just a random value that Python won't intern
+ arr = np.full(int(np.BUFSIZE * 2.5), value).astype(in_dtype)
+
+ it = np.nditer(arr, op_dtypes=[np.dtype(buf_dtype)],
+ flags=["buffered", "external_loop", "refs_ok"], casting="unsafe")
+ for step in range(steps):
+ # The iteration finishes in 3 steps, the first two are partial
+ next(it)
+
+ del it # not necessary, but we test the cleanup
+
+ # Repeat the test with `iternext`
+ it = np.nditer(arr, op_dtypes=[np.dtype(buf_dtype)],
+ flags=["buffered", "external_loop", "refs_ok"], casting="unsafe")
+ for step in range(steps):
+ it.iternext()
+
+ del it # not necessary, but we test the cleanup
+
+@pytest.mark.skipif(not HAS_REFCOUNT, reason="Python lacks refcounts")
+@pytest.mark.parametrize(["in_dtype", "buf_dtype"],
+ [("O", "i"), # most simple cases
+ ("O,i", "i,O"), # structured casting to and from O
+ ])
+def test_partial_iteration_error(in_dtype, buf_dtype):
+ value = 123 # relies on python cache (leak-check will still find it)
+ arr = np.full(int(np.BUFSIZE * 2.5), value).astype(in_dtype)
+ if in_dtype == "O":
+ arr[int(np.BUFSIZE * 1.5)] = None
+ else:
+ arr[int(np.BUFSIZE * 1.5)]["f0"] = None
+
+ count = sys.getrefcount(value)
+
+ it = np.nditer(arr, op_dtypes=[np.dtype(buf_dtype)],
+ flags=["buffered", "external_loop", "refs_ok"], casting="unsafe")
+ with pytest.raises(TypeError):
+ # pytest.raises seems to have issues with the error originating
+ # in the for loop, so manually unravel:
+ next(it)
+ next(it) # raises TypeError
+
+ # Repeat the test with `iternext` after resetting, the buffers should
+ # already be cleared from any references, so resetting is sufficient.
+ it.reset()
+ with pytest.raises(TypeError):
+ it.iternext()
+ it.iternext()
+
+ assert count == sys.getrefcount(value)
+
+
+def test_debug_print(capfd):
+ """
+ Matches the expected output of a debug print with the actual output.
+ Note that the iterator dump should not be considered stable API,
+ this test is mainly to ensure the print does not crash.
+
+ Currently uses a subprocess to avoid dealing with the C level `printf`s.
+ """
+ # the expected output with all addresses and sizes stripped (they vary
+ # and/or are platform dependent).
+ expected = """
+ ------ BEGIN ITERATOR DUMP ------
+ | Iterator Address:
+ | ItFlags: BUFFER REDUCE REUSE_REDUCE_LOOPS
+ | NDim: 2
+ | NOp: 2
+ | IterSize: 50
+ | IterStart: 0
+ | IterEnd: 50
+ | IterIndex: 0
+ | Iterator SizeOf:
+ | BufferData SizeOf:
+ | AxisData SizeOf:
+ |
+ | Perm: 0 1
+ | DTypes:
+ | DTypes: dtype('float64') dtype('int32')
+ | InitDataPtrs:
+ | BaseOffsets: 0 0
+ | Operands:
+ | Operand DTypes: dtype('int64') dtype('float64')
+ | OpItFlags:
+ | Flags[0]: READ CAST ALIGNED
+ | Flags[1]: READ WRITE CAST ALIGNED REDUCE
+ |
+ | BufferData:
+ | BufferSize: 50
+ | Size: 5
+ | BufIterEnd: 5
+ | REDUCE Pos: 0
+ | REDUCE OuterSize: 10
+ | REDUCE OuterDim: 1
+ | Strides: 8 4
+ | Ptrs:
+ | REDUCE Outer Strides: 40 0
+ | REDUCE Outer Ptrs:
+ | ReadTransferFn:
+ | ReadTransferData:
+ | WriteTransferFn:
+ | WriteTransferData:
+ | Buffers:
+ |
+ | AxisData[0]:
+ | Shape: 5
+ | Index: 0
+ | Strides: 16 8
+ | Ptrs:
+ | AxisData[1]:
+ | Shape: 10
+ | Index: 0
+ | Strides: 80 0
+ | Ptrs:
+ ------- END ITERATOR DUMP -------
+ """.strip().splitlines()
+
+ arr1 = np.arange(100, dtype=np.int64).reshape(10, 10)[:, ::2]
+ arr2 = np.arange(5.)
+ it = np.nditer((arr1, arr2), op_dtypes=["d", "i4"], casting="unsafe",
+ flags=["reduce_ok", "buffered"],
+ op_flags=[["readonly"], ["readwrite"]])
+ it.debug_print()
+ res = capfd.readouterr().out
+ res = res.strip().splitlines()
+
+ assert len(res) == len(expected)
+ for res_line, expected_line in zip(res, expected):
+ # The actual output may have additional pointers listed that are
+ # stripped from the example output:
+ assert res_line.startswith(expected_line.strip())