aboutsummaryrefslogtreecommitdiff
path: root/.venv/lib/python3.12/site-packages/numpy/core/tests/test_multiarray.py
diff options
context:
space:
mode:
Diffstat (limited to '.venv/lib/python3.12/site-packages/numpy/core/tests/test_multiarray.py')
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/core/tests/test_multiarray.py10054
1 files changed, 10054 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/numpy/core/tests/test_multiarray.py b/.venv/lib/python3.12/site-packages/numpy/core/tests/test_multiarray.py
new file mode 100644
index 00000000..ace40049
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/core/tests/test_multiarray.py
@@ -0,0 +1,10054 @@
+from __future__ import annotations
+
+import collections.abc
+import tempfile
+import sys
+import warnings
+import operator
+import io
+import itertools
+import functools
+import ctypes
+import os
+import gc
+import re
+import weakref
+import pytest
+from contextlib import contextmanager
+
+from numpy.compat import pickle
+
+import pathlib
+import builtins
+from decimal import Decimal
+import mmap
+
+import numpy as np
+import numpy.core._multiarray_tests as _multiarray_tests
+from numpy.core._rational_tests import rational
+from numpy.testing import (
+ assert_, assert_raises, assert_warns, assert_equal, assert_almost_equal,
+ assert_array_equal, assert_raises_regex, assert_array_almost_equal,
+ assert_allclose, IS_PYPY, IS_PYSTON, HAS_REFCOUNT, assert_array_less,
+ runstring, temppath, suppress_warnings, break_cycles, _SUPPORTS_SVE,
+ )
+from numpy.testing._private.utils import requires_memory, _no_tracing
+from numpy.core.tests._locales import CommaDecimalPointLocale
+from numpy.lib.recfunctions import repack_fields
+from numpy.core.multiarray import _get_ndarray_c_version
+
+# Need to test an object that does not fully implement math interface
+from datetime import timedelta, datetime
+
+
+def assert_arg_sorted(arr, arg):
+ # resulting array should be sorted and arg values should be unique
+ assert_equal(arr[arg], np.sort(arr))
+ assert_equal(np.sort(arg), np.arange(len(arg)))
+
+
+def _aligned_zeros(shape, dtype=float, order="C", align=None):
+ """
+ Allocate a new ndarray with aligned memory.
+
+ The ndarray is guaranteed *not* aligned to twice the requested alignment.
+ Eg, if align=4, guarantees it is not aligned to 8. If align=None uses
+ dtype.alignment."""
+ dtype = np.dtype(dtype)
+ if dtype == np.dtype(object):
+ # Can't do this, fall back to standard allocation (which
+ # should always be sufficiently aligned)
+ if align is not None:
+ raise ValueError("object array alignment not supported")
+ return np.zeros(shape, dtype=dtype, order=order)
+ if align is None:
+ align = dtype.alignment
+ if not hasattr(shape, '__len__'):
+ shape = (shape,)
+ size = functools.reduce(operator.mul, shape) * dtype.itemsize
+ buf = np.empty(size + 2*align + 1, np.uint8)
+
+ ptr = buf.__array_interface__['data'][0]
+ offset = ptr % align
+ if offset != 0:
+ offset = align - offset
+ if (ptr % (2*align)) == 0:
+ offset += align
+
+ # Note: slices producing 0-size arrays do not necessarily change
+ # data pointer --- so we use and allocate size+1
+ buf = buf[offset:offset+size+1][:-1]
+ buf.fill(0)
+ data = np.ndarray(shape, dtype, buf, order=order)
+ return data
+
+
+class TestFlags:
+ def setup_method(self):
+ self.a = np.arange(10)
+
+ def test_writeable(self):
+ mydict = locals()
+ self.a.flags.writeable = False
+ assert_raises(ValueError, runstring, 'self.a[0] = 3', mydict)
+ assert_raises(ValueError, runstring, 'self.a[0:1].itemset(3)', mydict)
+ self.a.flags.writeable = True
+ self.a[0] = 5
+ self.a[0] = 0
+
+ def test_writeable_any_base(self):
+ # Ensure that any base being writeable is sufficient to change flag;
+ # this is especially interesting for arrays from an array interface.
+ arr = np.arange(10)
+
+ class subclass(np.ndarray):
+ pass
+
+ # Create subclass so base will not be collapsed, this is OK to change
+ view1 = arr.view(subclass)
+ view2 = view1[...]
+ arr.flags.writeable = False
+ view2.flags.writeable = False
+ view2.flags.writeable = True # Can be set to True again.
+
+ arr = np.arange(10)
+
+ class frominterface:
+ def __init__(self, arr):
+ self.arr = arr
+ self.__array_interface__ = arr.__array_interface__
+
+ view1 = np.asarray(frominterface)
+ view2 = view1[...]
+ view2.flags.writeable = False
+ view2.flags.writeable = True
+
+ view1.flags.writeable = False
+ view2.flags.writeable = False
+ with assert_raises(ValueError):
+ # Must assume not writeable, since only base is not:
+ view2.flags.writeable = True
+
+ def test_writeable_from_readonly(self):
+ # gh-9440 - make sure fromstring, from buffer on readonly buffers
+ # set writeable False
+ data = b'\x00' * 100
+ vals = np.frombuffer(data, 'B')
+ assert_raises(ValueError, vals.setflags, write=True)
+ types = np.dtype( [('vals', 'u1'), ('res3', 'S4')] )
+ values = np.core.records.fromstring(data, types)
+ vals = values['vals']
+ assert_raises(ValueError, vals.setflags, write=True)
+
+ def test_writeable_from_buffer(self):
+ data = bytearray(b'\x00' * 100)
+ vals = np.frombuffer(data, 'B')
+ assert_(vals.flags.writeable)
+ vals.setflags(write=False)
+ assert_(vals.flags.writeable is False)
+ vals.setflags(write=True)
+ assert_(vals.flags.writeable)
+ types = np.dtype( [('vals', 'u1'), ('res3', 'S4')] )
+ values = np.core.records.fromstring(data, types)
+ vals = values['vals']
+ assert_(vals.flags.writeable)
+ vals.setflags(write=False)
+ assert_(vals.flags.writeable is False)
+ vals.setflags(write=True)
+ assert_(vals.flags.writeable)
+
+ @pytest.mark.skipif(IS_PYPY, reason="PyPy always copies")
+ def test_writeable_pickle(self):
+ import pickle
+ # Small arrays will be copied without setting base.
+ # See condition for using PyArray_SetBaseObject in
+ # array_setstate.
+ a = np.arange(1000)
+ for v in range(pickle.HIGHEST_PROTOCOL):
+ vals = pickle.loads(pickle.dumps(a, v))
+ assert_(vals.flags.writeable)
+ assert_(isinstance(vals.base, bytes))
+
+ def test_writeable_from_c_data(self):
+ # Test that the writeable flag can be changed for an array wrapping
+ # low level C-data, but not owning its data.
+ # Also see that this is deprecated to change from python.
+ from numpy.core._multiarray_tests import get_c_wrapping_array
+
+ arr_writeable = get_c_wrapping_array(True)
+ assert not arr_writeable.flags.owndata
+ assert arr_writeable.flags.writeable
+ view = arr_writeable[...]
+
+ # Toggling the writeable flag works on the view:
+ view.flags.writeable = False
+ assert not view.flags.writeable
+ view.flags.writeable = True
+ assert view.flags.writeable
+ # Flag can be unset on the arr_writeable:
+ arr_writeable.flags.writeable = False
+
+ arr_readonly = get_c_wrapping_array(False)
+ assert not arr_readonly.flags.owndata
+ assert not arr_readonly.flags.writeable
+
+ for arr in [arr_writeable, arr_readonly]:
+ view = arr[...]
+ view.flags.writeable = False # make sure it is readonly
+ arr.flags.writeable = False
+ assert not arr.flags.writeable
+
+ with assert_raises(ValueError):
+ view.flags.writeable = True
+
+ with warnings.catch_warnings():
+ warnings.simplefilter("error", DeprecationWarning)
+ with assert_raises(DeprecationWarning):
+ arr.flags.writeable = True
+
+ with assert_warns(DeprecationWarning):
+ arr.flags.writeable = True
+
+ def test_warnonwrite(self):
+ a = np.arange(10)
+ a.flags._warn_on_write = True
+ with warnings.catch_warnings(record=True) as w:
+ warnings.filterwarnings('always')
+ a[1] = 10
+ a[2] = 10
+ # only warn once
+ assert_(len(w) == 1)
+
+ @pytest.mark.parametrize(["flag", "flag_value", "writeable"],
+ [("writeable", True, True),
+ # Delete _warn_on_write after deprecation and simplify
+ # the parameterization:
+ ("_warn_on_write", True, False),
+ ("writeable", False, False)])
+ def test_readonly_flag_protocols(self, flag, flag_value, writeable):
+ a = np.arange(10)
+ setattr(a.flags, flag, flag_value)
+
+ class MyArr():
+ __array_struct__ = a.__array_struct__
+
+ assert memoryview(a).readonly is not writeable
+ assert a.__array_interface__['data'][1] is not writeable
+ assert np.asarray(MyArr()).flags.writeable is writeable
+
+ def test_otherflags(self):
+ assert_equal(self.a.flags.carray, True)
+ assert_equal(self.a.flags['C'], True)
+ assert_equal(self.a.flags.farray, False)
+ assert_equal(self.a.flags.behaved, True)
+ assert_equal(self.a.flags.fnc, False)
+ assert_equal(self.a.flags.forc, True)
+ assert_equal(self.a.flags.owndata, True)
+ assert_equal(self.a.flags.writeable, True)
+ assert_equal(self.a.flags.aligned, True)
+ assert_equal(self.a.flags.writebackifcopy, False)
+ assert_equal(self.a.flags['X'], False)
+ assert_equal(self.a.flags['WRITEBACKIFCOPY'], False)
+
+ def test_string_align(self):
+ a = np.zeros(4, dtype=np.dtype('|S4'))
+ assert_(a.flags.aligned)
+ # not power of two are accessed byte-wise and thus considered aligned
+ a = np.zeros(5, dtype=np.dtype('|S4'))
+ assert_(a.flags.aligned)
+
+ def test_void_align(self):
+ a = np.zeros(4, dtype=np.dtype([("a", "i4"), ("b", "i4")]))
+ assert_(a.flags.aligned)
+
+
+class TestHash:
+ # see #3793
+ def test_int(self):
+ for st, ut, s in [(np.int8, np.uint8, 8),
+ (np.int16, np.uint16, 16),
+ (np.int32, np.uint32, 32),
+ (np.int64, np.uint64, 64)]:
+ for i in range(1, s):
+ assert_equal(hash(st(-2**i)), hash(-2**i),
+ err_msg="%r: -2**%d" % (st, i))
+ assert_equal(hash(st(2**(i - 1))), hash(2**(i - 1)),
+ err_msg="%r: 2**%d" % (st, i - 1))
+ assert_equal(hash(st(2**i - 1)), hash(2**i - 1),
+ err_msg="%r: 2**%d - 1" % (st, i))
+
+ i = max(i - 1, 1)
+ assert_equal(hash(ut(2**(i - 1))), hash(2**(i - 1)),
+ err_msg="%r: 2**%d" % (ut, i - 1))
+ assert_equal(hash(ut(2**i - 1)), hash(2**i - 1),
+ err_msg="%r: 2**%d - 1" % (ut, i))
+
+
+class TestAttributes:
+ def setup_method(self):
+ self.one = np.arange(10)
+ self.two = np.arange(20).reshape(4, 5)
+ self.three = np.arange(60, dtype=np.float64).reshape(2, 5, 6)
+
+ def test_attributes(self):
+ assert_equal(self.one.shape, (10,))
+ assert_equal(self.two.shape, (4, 5))
+ assert_equal(self.three.shape, (2, 5, 6))
+ self.three.shape = (10, 3, 2)
+ assert_equal(self.three.shape, (10, 3, 2))
+ self.three.shape = (2, 5, 6)
+ assert_equal(self.one.strides, (self.one.itemsize,))
+ num = self.two.itemsize
+ assert_equal(self.two.strides, (5*num, num))
+ num = self.three.itemsize
+ assert_equal(self.three.strides, (30*num, 6*num, num))
+ assert_equal(self.one.ndim, 1)
+ assert_equal(self.two.ndim, 2)
+ assert_equal(self.three.ndim, 3)
+ num = self.two.itemsize
+ assert_equal(self.two.size, 20)
+ assert_equal(self.two.nbytes, 20*num)
+ assert_equal(self.two.itemsize, self.two.dtype.itemsize)
+ assert_equal(self.two.base, np.arange(20))
+
+ def test_dtypeattr(self):
+ assert_equal(self.one.dtype, np.dtype(np.int_))
+ assert_equal(self.three.dtype, np.dtype(np.float_))
+ assert_equal(self.one.dtype.char, 'l')
+ assert_equal(self.three.dtype.char, 'd')
+ assert_(self.three.dtype.str[0] in '<>')
+ assert_equal(self.one.dtype.str[1], 'i')
+ assert_equal(self.three.dtype.str[1], 'f')
+
+ def test_int_subclassing(self):
+ # Regression test for https://github.com/numpy/numpy/pull/3526
+
+ numpy_int = np.int_(0)
+
+ # int_ doesn't inherit from Python int, because it's not fixed-width
+ assert_(not isinstance(numpy_int, int))
+
+ def test_stridesattr(self):
+ x = self.one
+
+ def make_array(size, offset, strides):
+ return np.ndarray(size, buffer=x, dtype=int,
+ offset=offset*x.itemsize,
+ strides=strides*x.itemsize)
+
+ assert_equal(make_array(4, 4, -1), np.array([4, 3, 2, 1]))
+ assert_raises(ValueError, make_array, 4, 4, -2)
+ assert_raises(ValueError, make_array, 4, 2, -1)
+ assert_raises(ValueError, make_array, 8, 3, 1)
+ assert_equal(make_array(8, 3, 0), np.array([3]*8))
+ # Check behavior reported in gh-2503:
+ assert_raises(ValueError, make_array, (2, 3), 5, np.array([-2, -3]))
+ make_array(0, 0, 10)
+
+ def test_set_stridesattr(self):
+ x = self.one
+
+ def make_array(size, offset, strides):
+ try:
+ r = np.ndarray([size], dtype=int, buffer=x,
+ offset=offset*x.itemsize)
+ except Exception as e:
+ raise RuntimeError(e)
+ r.strides = strides = strides*x.itemsize
+ return r
+
+ assert_equal(make_array(4, 4, -1), np.array([4, 3, 2, 1]))
+ assert_equal(make_array(7, 3, 1), np.array([3, 4, 5, 6, 7, 8, 9]))
+ assert_raises(ValueError, make_array, 4, 4, -2)
+ assert_raises(ValueError, make_array, 4, 2, -1)
+ assert_raises(RuntimeError, make_array, 8, 3, 1)
+ # Check that the true extent of the array is used.
+ # Test relies on as_strided base not exposing a buffer.
+ x = np.lib.stride_tricks.as_strided(np.arange(1), (10, 10), (0, 0))
+
+ def set_strides(arr, strides):
+ arr.strides = strides
+
+ assert_raises(ValueError, set_strides, x, (10*x.itemsize, x.itemsize))
+
+ # Test for offset calculations:
+ x = np.lib.stride_tricks.as_strided(np.arange(10, dtype=np.int8)[-1],
+ shape=(10,), strides=(-1,))
+ assert_raises(ValueError, set_strides, x[::-1], -1)
+ a = x[::-1]
+ a.strides = 1
+ a[::2].strides = 2
+
+ # test 0d
+ arr_0d = np.array(0)
+ arr_0d.strides = ()
+ assert_raises(TypeError, set_strides, arr_0d, None)
+
+ def test_fill(self):
+ for t in "?bhilqpBHILQPfdgFDGO":
+ x = np.empty((3, 2, 1), t)
+ y = np.empty((3, 2, 1), t)
+ x.fill(1)
+ y[...] = 1
+ assert_equal(x, y)
+
+ def test_fill_max_uint64(self):
+ x = np.empty((3, 2, 1), dtype=np.uint64)
+ y = np.empty((3, 2, 1), dtype=np.uint64)
+ value = 2**64 - 1
+ y[...] = value
+ x.fill(value)
+ assert_array_equal(x, y)
+
+ def test_fill_struct_array(self):
+ # Filling from a scalar
+ x = np.array([(0, 0.0), (1, 1.0)], dtype='i4,f8')
+ x.fill(x[0])
+ assert_equal(x['f1'][1], x['f1'][0])
+ # Filling from a tuple that can be converted
+ # to a scalar
+ x = np.zeros(2, dtype=[('a', 'f8'), ('b', 'i4')])
+ x.fill((3.5, -2))
+ assert_array_equal(x['a'], [3.5, 3.5])
+ assert_array_equal(x['b'], [-2, -2])
+
+ def test_fill_readonly(self):
+ # gh-22922
+ a = np.zeros(11)
+ a.setflags(write=False)
+ with pytest.raises(ValueError, match=".*read-only"):
+ a.fill(0)
+
+
+class TestArrayConstruction:
+ def test_array(self):
+ d = np.ones(6)
+ r = np.array([d, d])
+ assert_equal(r, np.ones((2, 6)))
+
+ d = np.ones(6)
+ tgt = np.ones((2, 6))
+ r = np.array([d, d])
+ assert_equal(r, tgt)
+ tgt[1] = 2
+ r = np.array([d, d + 1])
+ assert_equal(r, tgt)
+
+ d = np.ones(6)
+ r = np.array([[d, d]])
+ assert_equal(r, np.ones((1, 2, 6)))
+
+ d = np.ones(6)
+ r = np.array([[d, d], [d, d]])
+ assert_equal(r, np.ones((2, 2, 6)))
+
+ d = np.ones((6, 6))
+ r = np.array([d, d])
+ assert_equal(r, np.ones((2, 6, 6)))
+
+ d = np.ones((6, ))
+ r = np.array([[d, d + 1], d + 2], dtype=object)
+ assert_equal(len(r), 2)
+ assert_equal(r[0], [d, d + 1])
+ assert_equal(r[1], d + 2)
+
+ tgt = np.ones((2, 3), dtype=bool)
+ tgt[0, 2] = False
+ tgt[1, 0:2] = False
+ r = np.array([[True, True, False], [False, False, True]])
+ assert_equal(r, tgt)
+ r = np.array([[True, False], [True, False], [False, True]])
+ assert_equal(r, tgt.T)
+
+ def test_array_empty(self):
+ assert_raises(TypeError, np.array)
+
+ def test_0d_array_shape(self):
+ assert np.ones(np.array(3)).shape == (3,)
+
+ def test_array_copy_false(self):
+ d = np.array([1, 2, 3])
+ e = np.array(d, copy=False)
+ d[1] = 3
+ assert_array_equal(e, [1, 3, 3])
+ e = np.array(d, copy=False, order='F')
+ d[1] = 4
+ assert_array_equal(e, [1, 4, 3])
+ e[2] = 7
+ assert_array_equal(d, [1, 4, 7])
+
+ def test_array_copy_true(self):
+ d = np.array([[1,2,3], [1, 2, 3]])
+ e = np.array(d, copy=True)
+ d[0, 1] = 3
+ e[0, 2] = -7
+ assert_array_equal(e, [[1, 2, -7], [1, 2, 3]])
+ assert_array_equal(d, [[1, 3, 3], [1, 2, 3]])
+ e = np.array(d, copy=True, order='F')
+ d[0, 1] = 5
+ e[0, 2] = 7
+ assert_array_equal(e, [[1, 3, 7], [1, 2, 3]])
+ assert_array_equal(d, [[1, 5, 3], [1,2,3]])
+
+ def test_array_cont(self):
+ d = np.ones(10)[::2]
+ assert_(np.ascontiguousarray(d).flags.c_contiguous)
+ assert_(np.ascontiguousarray(d).flags.f_contiguous)
+ assert_(np.asfortranarray(d).flags.c_contiguous)
+ assert_(np.asfortranarray(d).flags.f_contiguous)
+ d = np.ones((10, 10))[::2,::2]
+ assert_(np.ascontiguousarray(d).flags.c_contiguous)
+ assert_(np.asfortranarray(d).flags.f_contiguous)
+
+ @pytest.mark.parametrize("func",
+ [np.array,
+ np.asarray,
+ np.asanyarray,
+ np.ascontiguousarray,
+ np.asfortranarray])
+ def test_bad_arguments_error(self, func):
+ with pytest.raises(TypeError):
+ func(3, dtype="bad dtype")
+ with pytest.raises(TypeError):
+ func() # missing arguments
+ with pytest.raises(TypeError):
+ func(1, 2, 3, 4, 5, 6, 7, 8) # too many arguments
+
+ @pytest.mark.parametrize("func",
+ [np.array,
+ np.asarray,
+ np.asanyarray,
+ np.ascontiguousarray,
+ np.asfortranarray])
+ def test_array_as_keyword(self, func):
+ # This should likely be made positional only, but do not change
+ # the name accidentally.
+ if func is np.array:
+ func(object=3)
+ else:
+ func(a=3)
+
+
+class TestAssignment:
+ def test_assignment_broadcasting(self):
+ a = np.arange(6).reshape(2, 3)
+
+ # Broadcasting the input to the output
+ a[...] = np.arange(3)
+ assert_equal(a, [[0, 1, 2], [0, 1, 2]])
+ a[...] = np.arange(2).reshape(2, 1)
+ assert_equal(a, [[0, 0, 0], [1, 1, 1]])
+
+ # For compatibility with <= 1.5, a limited version of broadcasting
+ # the output to the input.
+ #
+ # This behavior is inconsistent with NumPy broadcasting
+ # in general, because it only uses one of the two broadcasting
+ # rules (adding a new "1" dimension to the left of the shape),
+ # applied to the output instead of an input. In NumPy 2.0, this kind
+ # of broadcasting assignment will likely be disallowed.
+ a[...] = np.arange(6)[::-1].reshape(1, 2, 3)
+ assert_equal(a, [[5, 4, 3], [2, 1, 0]])
+ # The other type of broadcasting would require a reduction operation.
+
+ def assign(a, b):
+ a[...] = b
+
+ assert_raises(ValueError, assign, a, np.arange(12).reshape(2, 2, 3))
+
+ def test_assignment_errors(self):
+ # Address issue #2276
+ class C:
+ pass
+ a = np.zeros(1)
+
+ def assign(v):
+ a[0] = v
+
+ assert_raises((AttributeError, TypeError), assign, C())
+ assert_raises(ValueError, assign, [1])
+
+ def test_unicode_assignment(self):
+ # gh-5049
+ from numpy.core.numeric import set_string_function
+
+ @contextmanager
+ def inject_str(s):
+ """ replace ndarray.__str__ temporarily """
+ set_string_function(lambda x: s, repr=False)
+ try:
+ yield
+ finally:
+ set_string_function(None, repr=False)
+
+ a1d = np.array(['test'])
+ a0d = np.array('done')
+ with inject_str('bad'):
+ a1d[0] = a0d # previously this would invoke __str__
+ assert_equal(a1d[0], 'done')
+
+ # this would crash for the same reason
+ np.array([np.array('\xe5\xe4\xf6')])
+
+ def test_stringlike_empty_list(self):
+ # gh-8902
+ u = np.array(['done'])
+ b = np.array([b'done'])
+
+ class bad_sequence:
+ def __getitem__(self): pass
+ def __len__(self): raise RuntimeError
+
+ assert_raises(ValueError, operator.setitem, u, 0, [])
+ assert_raises(ValueError, operator.setitem, b, 0, [])
+
+ assert_raises(ValueError, operator.setitem, u, 0, bad_sequence())
+ assert_raises(ValueError, operator.setitem, b, 0, bad_sequence())
+
+ def test_longdouble_assignment(self):
+ # only relevant if longdouble is larger than float
+ # we're looking for loss of precision
+
+ for dtype in (np.longdouble, np.longcomplex):
+ # gh-8902
+ tinyb = np.nextafter(np.longdouble(0), 1).astype(dtype)
+ tinya = np.nextafter(np.longdouble(0), -1).astype(dtype)
+
+ # construction
+ tiny1d = np.array([tinya])
+ assert_equal(tiny1d[0], tinya)
+
+ # scalar = scalar
+ tiny1d[0] = tinyb
+ assert_equal(tiny1d[0], tinyb)
+
+ # 0d = scalar
+ tiny1d[0, ...] = tinya
+ assert_equal(tiny1d[0], tinya)
+
+ # 0d = 0d
+ tiny1d[0, ...] = tinyb[...]
+ assert_equal(tiny1d[0], tinyb)
+
+ # scalar = 0d
+ tiny1d[0] = tinyb[...]
+ assert_equal(tiny1d[0], tinyb)
+
+ arr = np.array([np.array(tinya)])
+ assert_equal(arr[0], tinya)
+
+ def test_cast_to_string(self):
+ # cast to str should do "str(scalar)", not "str(scalar.item())"
+ # Example: In python2, str(float) is truncated, so we want to avoid
+ # str(np.float64(...).item()) as this would incorrectly truncate.
+ a = np.zeros(1, dtype='S20')
+ a[:] = np.array(['1.12345678901234567890'], dtype='f8')
+ assert_equal(a[0], b"1.1234567890123457")
+
+
+class TestDtypedescr:
+ def test_construction(self):
+ d1 = np.dtype('i4')
+ assert_equal(d1, np.dtype(np.int32))
+ d2 = np.dtype('f8')
+ assert_equal(d2, np.dtype(np.float64))
+
+ def test_byteorders(self):
+ assert_(np.dtype('<i4') != np.dtype('>i4'))
+ assert_(np.dtype([('a', '<i4')]) != np.dtype([('a', '>i4')]))
+
+ def test_structured_non_void(self):
+ fields = [('a', '<i2'), ('b', '<i2')]
+ dt_int = np.dtype(('i4', fields))
+ assert_equal(str(dt_int), "(numpy.int32, [('a', '<i2'), ('b', '<i2')])")
+
+ # gh-9821
+ arr_int = np.zeros(4, dt_int)
+ assert_equal(repr(arr_int),
+ "array([0, 0, 0, 0], dtype=(numpy.int32, [('a', '<i2'), ('b', '<i2')]))")
+
+
+class TestZeroRank:
+ def setup_method(self):
+ self.d = np.array(0), np.array('x', object)
+
+ def test_ellipsis_subscript(self):
+ a, b = self.d
+ assert_equal(a[...], 0)
+ assert_equal(b[...], 'x')
+ assert_(a[...].base is a) # `a[...] is a` in numpy <1.9.
+ assert_(b[...].base is b) # `b[...] is b` in numpy <1.9.
+
+ def test_empty_subscript(self):
+ a, b = self.d
+ assert_equal(a[()], 0)
+ assert_equal(b[()], 'x')
+ assert_(type(a[()]) is a.dtype.type)
+ assert_(type(b[()]) is str)
+
+ def test_invalid_subscript(self):
+ a, b = self.d
+ assert_raises(IndexError, lambda x: x[0], a)
+ assert_raises(IndexError, lambda x: x[0], b)
+ assert_raises(IndexError, lambda x: x[np.array([], int)], a)
+ assert_raises(IndexError, lambda x: x[np.array([], int)], b)
+
+ def test_ellipsis_subscript_assignment(self):
+ a, b = self.d
+ a[...] = 42
+ assert_equal(a, 42)
+ b[...] = ''
+ assert_equal(b.item(), '')
+
+ def test_empty_subscript_assignment(self):
+ a, b = self.d
+ a[()] = 42
+ assert_equal(a, 42)
+ b[()] = ''
+ assert_equal(b.item(), '')
+
+ def test_invalid_subscript_assignment(self):
+ a, b = self.d
+
+ def assign(x, i, v):
+ x[i] = v
+
+ assert_raises(IndexError, assign, a, 0, 42)
+ assert_raises(IndexError, assign, b, 0, '')
+ assert_raises(ValueError, assign, a, (), '')
+
+ def test_newaxis(self):
+ a, b = self.d
+ assert_equal(a[np.newaxis].shape, (1,))
+ assert_equal(a[..., np.newaxis].shape, (1,))
+ assert_equal(a[np.newaxis, ...].shape, (1,))
+ assert_equal(a[..., np.newaxis].shape, (1,))
+ assert_equal(a[np.newaxis, ..., np.newaxis].shape, (1, 1))
+ assert_equal(a[..., np.newaxis, np.newaxis].shape, (1, 1))
+ assert_equal(a[np.newaxis, np.newaxis, ...].shape, (1, 1))
+ assert_equal(a[(np.newaxis,)*10].shape, (1,)*10)
+
+ def test_invalid_newaxis(self):
+ a, b = self.d
+
+ def subscript(x, i):
+ x[i]
+
+ assert_raises(IndexError, subscript, a, (np.newaxis, 0))
+ assert_raises(IndexError, subscript, a, (np.newaxis,)*50)
+
+ def test_constructor(self):
+ x = np.ndarray(())
+ x[()] = 5
+ assert_equal(x[()], 5)
+ y = np.ndarray((), buffer=x)
+ y[()] = 6
+ assert_equal(x[()], 6)
+
+ # strides and shape must be the same length
+ with pytest.raises(ValueError):
+ np.ndarray((2,), strides=())
+ with pytest.raises(ValueError):
+ np.ndarray((), strides=(2,))
+
+ def test_output(self):
+ x = np.array(2)
+ assert_raises(ValueError, np.add, x, [1], x)
+
+ def test_real_imag(self):
+ # contiguity checks are for gh-11245
+ x = np.array(1j)
+ xr = x.real
+ xi = x.imag
+
+ assert_equal(xr, np.array(0))
+ assert_(type(xr) is np.ndarray)
+ assert_equal(xr.flags.contiguous, True)
+ assert_equal(xr.flags.f_contiguous, True)
+
+ assert_equal(xi, np.array(1))
+ assert_(type(xi) is np.ndarray)
+ assert_equal(xi.flags.contiguous, True)
+ assert_equal(xi.flags.f_contiguous, True)
+
+
+class TestScalarIndexing:
+ def setup_method(self):
+ self.d = np.array([0, 1])[0]
+
+ def test_ellipsis_subscript(self):
+ a = self.d
+ assert_equal(a[...], 0)
+ assert_equal(a[...].shape, ())
+
+ def test_empty_subscript(self):
+ a = self.d
+ assert_equal(a[()], 0)
+ assert_equal(a[()].shape, ())
+
+ def test_invalid_subscript(self):
+ a = self.d
+ assert_raises(IndexError, lambda x: x[0], a)
+ assert_raises(IndexError, lambda x: x[np.array([], int)], a)
+
+ def test_invalid_subscript_assignment(self):
+ a = self.d
+
+ def assign(x, i, v):
+ x[i] = v
+
+ assert_raises(TypeError, assign, a, 0, 42)
+
+ def test_newaxis(self):
+ a = self.d
+ assert_equal(a[np.newaxis].shape, (1,))
+ assert_equal(a[..., np.newaxis].shape, (1,))
+ assert_equal(a[np.newaxis, ...].shape, (1,))
+ assert_equal(a[..., np.newaxis].shape, (1,))
+ assert_equal(a[np.newaxis, ..., np.newaxis].shape, (1, 1))
+ assert_equal(a[..., np.newaxis, np.newaxis].shape, (1, 1))
+ assert_equal(a[np.newaxis, np.newaxis, ...].shape, (1, 1))
+ assert_equal(a[(np.newaxis,)*10].shape, (1,)*10)
+
+ def test_invalid_newaxis(self):
+ a = self.d
+
+ def subscript(x, i):
+ x[i]
+
+ assert_raises(IndexError, subscript, a, (np.newaxis, 0))
+ assert_raises(IndexError, subscript, a, (np.newaxis,)*50)
+
+ def test_overlapping_assignment(self):
+ # With positive strides
+ a = np.arange(4)
+ a[:-1] = a[1:]
+ assert_equal(a, [1, 2, 3, 3])
+
+ a = np.arange(4)
+ a[1:] = a[:-1]
+ assert_equal(a, [0, 0, 1, 2])
+
+ # With positive and negative strides
+ a = np.arange(4)
+ a[:] = a[::-1]
+ assert_equal(a, [3, 2, 1, 0])
+
+ a = np.arange(6).reshape(2, 3)
+ a[::-1,:] = a[:, ::-1]
+ assert_equal(a, [[5, 4, 3], [2, 1, 0]])
+
+ a = np.arange(6).reshape(2, 3)
+ a[::-1, ::-1] = a[:, ::-1]
+ assert_equal(a, [[3, 4, 5], [0, 1, 2]])
+
+ # With just one element overlapping
+ a = np.arange(5)
+ a[:3] = a[2:]
+ assert_equal(a, [2, 3, 4, 3, 4])
+
+ a = np.arange(5)
+ a[2:] = a[:3]
+ assert_equal(a, [0, 1, 0, 1, 2])
+
+ a = np.arange(5)
+ a[2::-1] = a[2:]
+ assert_equal(a, [4, 3, 2, 3, 4])
+
+ a = np.arange(5)
+ a[2:] = a[2::-1]
+ assert_equal(a, [0, 1, 2, 1, 0])
+
+ a = np.arange(5)
+ a[2::-1] = a[:1:-1]
+ assert_equal(a, [2, 3, 4, 3, 4])
+
+ a = np.arange(5)
+ a[:1:-1] = a[2::-1]
+ assert_equal(a, [0, 1, 0, 1, 2])
+
+
+class TestCreation:
+ """
+ Test the np.array constructor
+ """
+ def test_from_attribute(self):
+ class x:
+ def __array__(self, dtype=None):
+ pass
+
+ assert_raises(ValueError, np.array, x())
+
+ def test_from_string(self):
+ types = np.typecodes['AllInteger'] + np.typecodes['Float']
+ nstr = ['123', '123']
+ result = np.array([123, 123], dtype=int)
+ for type in types:
+ msg = 'String conversion for %s' % type
+ assert_equal(np.array(nstr, dtype=type), result, err_msg=msg)
+
+ def test_void(self):
+ arr = np.array([], dtype='V')
+ assert arr.dtype == 'V8' # current default
+ # Same length scalars (those that go to the same void) work:
+ arr = np.array([b"1234", b"1234"], dtype="V")
+ assert arr.dtype == "V4"
+
+ # Promoting different lengths will fail (pre 1.20 this worked)
+ # by going via S5 and casting to V5.
+ with pytest.raises(TypeError):
+ np.array([b"1234", b"12345"], dtype="V")
+ with pytest.raises(TypeError):
+ np.array([b"12345", b"1234"], dtype="V")
+
+ # Check the same for the casting path:
+ arr = np.array([b"1234", b"1234"], dtype="O").astype("V")
+ assert arr.dtype == "V4"
+ with pytest.raises(TypeError):
+ np.array([b"1234", b"12345"], dtype="O").astype("V")
+
+ @pytest.mark.parametrize("idx",
+ [pytest.param(Ellipsis, id="arr"), pytest.param((), id="scalar")])
+ def test_structured_void_promotion(self, idx):
+ arr = np.array(
+ [np.array(1, dtype="i,i")[idx], np.array(2, dtype='i,i')[idx]],
+ dtype="V")
+ assert_array_equal(arr, np.array([(1, 1), (2, 2)], dtype="i,i"))
+ # The following fails to promote the two dtypes, resulting in an error
+ with pytest.raises(TypeError):
+ np.array(
+ [np.array(1, dtype="i,i")[idx], np.array(2, dtype='i,i,i')[idx]],
+ dtype="V")
+
+
+ def test_too_big_error(self):
+ # 45341 is the smallest integer greater than sqrt(2**31 - 1).
+ # 3037000500 is the smallest integer greater than sqrt(2**63 - 1).
+ # We want to make sure that the square byte array with those dimensions
+ # is too big on 32 or 64 bit systems respectively.
+ if np.iinfo('intp').max == 2**31 - 1:
+ shape = (46341, 46341)
+ elif np.iinfo('intp').max == 2**63 - 1:
+ shape = (3037000500, 3037000500)
+ else:
+ return
+ assert_raises(ValueError, np.empty, shape, dtype=np.int8)
+ assert_raises(ValueError, np.zeros, shape, dtype=np.int8)
+ assert_raises(ValueError, np.ones, shape, dtype=np.int8)
+
+ @pytest.mark.skipif(np.dtype(np.intp).itemsize != 8,
+ reason="malloc may not fail on 32 bit systems")
+ def test_malloc_fails(self):
+ # This test is guaranteed to fail due to a too large allocation
+ with assert_raises(np.core._exceptions._ArrayMemoryError):
+ np.empty(np.iinfo(np.intp).max, dtype=np.uint8)
+
+ def test_zeros(self):
+ types = np.typecodes['AllInteger'] + np.typecodes['AllFloat']
+ for dt in types:
+ d = np.zeros((13,), dtype=dt)
+ assert_equal(np.count_nonzero(d), 0)
+ # true for ieee floats
+ assert_equal(d.sum(), 0)
+ assert_(not d.any())
+
+ d = np.zeros(2, dtype='(2,4)i4')
+ assert_equal(np.count_nonzero(d), 0)
+ assert_equal(d.sum(), 0)
+ assert_(not d.any())
+
+ d = np.zeros(2, dtype='4i4')
+ assert_equal(np.count_nonzero(d), 0)
+ assert_equal(d.sum(), 0)
+ assert_(not d.any())
+
+ d = np.zeros(2, dtype='(2,4)i4, (2,4)i4')
+ assert_equal(np.count_nonzero(d), 0)
+
+ @pytest.mark.slow
+ def test_zeros_big(self):
+ # test big array as they might be allocated different by the system
+ types = np.typecodes['AllInteger'] + np.typecodes['AllFloat']
+ for dt in types:
+ d = np.zeros((30 * 1024**2,), dtype=dt)
+ assert_(not d.any())
+ # This test can fail on 32-bit systems due to insufficient
+ # contiguous memory. Deallocating the previous array increases the
+ # chance of success.
+ del(d)
+
+ def test_zeros_obj(self):
+ # test initialization from PyLong(0)
+ d = np.zeros((13,), dtype=object)
+ assert_array_equal(d, [0] * 13)
+ assert_equal(np.count_nonzero(d), 0)
+
+ def test_zeros_obj_obj(self):
+ d = np.zeros(10, dtype=[('k', object, 2)])
+ assert_array_equal(d['k'], 0)
+
+ def test_zeros_like_like_zeros(self):
+ # test zeros_like returns the same as zeros
+ for c in np.typecodes['All']:
+ if c == 'V':
+ continue
+ d = np.zeros((3,3), dtype=c)
+ assert_array_equal(np.zeros_like(d), d)
+ assert_equal(np.zeros_like(d).dtype, d.dtype)
+ # explicitly check some special cases
+ d = np.zeros((3,3), dtype='S5')
+ assert_array_equal(np.zeros_like(d), d)
+ assert_equal(np.zeros_like(d).dtype, d.dtype)
+ d = np.zeros((3,3), dtype='U5')
+ assert_array_equal(np.zeros_like(d), d)
+ assert_equal(np.zeros_like(d).dtype, d.dtype)
+
+ d = np.zeros((3,3), dtype='<i4')
+ assert_array_equal(np.zeros_like(d), d)
+ assert_equal(np.zeros_like(d).dtype, d.dtype)
+ d = np.zeros((3,3), dtype='>i4')
+ assert_array_equal(np.zeros_like(d), d)
+ assert_equal(np.zeros_like(d).dtype, d.dtype)
+
+ d = np.zeros((3,3), dtype='<M8[s]')
+ assert_array_equal(np.zeros_like(d), d)
+ assert_equal(np.zeros_like(d).dtype, d.dtype)
+ d = np.zeros((3,3), dtype='>M8[s]')
+ assert_array_equal(np.zeros_like(d), d)
+ assert_equal(np.zeros_like(d).dtype, d.dtype)
+
+ d = np.zeros((3,3), dtype='f4,f4')
+ assert_array_equal(np.zeros_like(d), d)
+ assert_equal(np.zeros_like(d).dtype, d.dtype)
+
+ def test_empty_unicode(self):
+ # don't throw decode errors on garbage memory
+ for i in range(5, 100, 5):
+ d = np.empty(i, dtype='U')
+ str(d)
+
+ def test_sequence_non_homogeneous(self):
+ assert_equal(np.array([4, 2**80]).dtype, object)
+ assert_equal(np.array([4, 2**80, 4]).dtype, object)
+ assert_equal(np.array([2**80, 4]).dtype, object)
+ assert_equal(np.array([2**80] * 3).dtype, object)
+ assert_equal(np.array([[1, 1],[1j, 1j]]).dtype, complex)
+ assert_equal(np.array([[1j, 1j],[1, 1]]).dtype, complex)
+ assert_equal(np.array([[1, 1, 1],[1, 1j, 1.], [1, 1, 1]]).dtype, complex)
+
+ def test_non_sequence_sequence(self):
+ """Should not segfault.
+
+ Class Fail breaks the sequence protocol for new style classes, i.e.,
+ those derived from object. Class Map is a mapping type indicated by
+ raising a ValueError. At some point we may raise a warning instead
+ of an error in the Fail case.
+
+ """
+ class Fail:
+ def __len__(self):
+ return 1
+
+ def __getitem__(self, index):
+ raise ValueError()
+
+ class Map:
+ def __len__(self):
+ return 1
+
+ def __getitem__(self, index):
+ raise KeyError()
+
+ a = np.array([Map()])
+ assert_(a.shape == (1,))
+ assert_(a.dtype == np.dtype(object))
+ assert_raises(ValueError, np.array, [Fail()])
+
+ def test_no_len_object_type(self):
+ # gh-5100, want object array from iterable object without len()
+ class Point2:
+ def __init__(self):
+ pass
+
+ def __getitem__(self, ind):
+ if ind in [0, 1]:
+ return ind
+ else:
+ raise IndexError()
+ d = np.array([Point2(), Point2(), Point2()])
+ assert_equal(d.dtype, np.dtype(object))
+
+ def test_false_len_sequence(self):
+ # gh-7264, segfault for this example
+ class C:
+ def __getitem__(self, i):
+ raise IndexError
+ def __len__(self):
+ return 42
+
+ a = np.array(C()) # segfault?
+ assert_equal(len(a), 0)
+
+ def test_false_len_iterable(self):
+ # Special case where a bad __getitem__ makes us fall back on __iter__:
+ class C:
+ def __getitem__(self, x):
+ raise Exception
+ def __iter__(self):
+ return iter(())
+ def __len__(self):
+ return 2
+
+ a = np.empty(2)
+ with assert_raises(ValueError):
+ a[:] = C() # Segfault!
+
+ np.array(C()) == list(C())
+
+ def test_failed_len_sequence(self):
+ # gh-7393
+ class A:
+ def __init__(self, data):
+ self._data = data
+ def __getitem__(self, item):
+ return type(self)(self._data[item])
+ def __len__(self):
+ return len(self._data)
+
+ # len(d) should give 3, but len(d[0]) will fail
+ d = A([1,2,3])
+ assert_equal(len(np.array(d)), 3)
+
+ def test_array_too_big(self):
+ # Test that array creation succeeds for arrays addressable by intp
+ # on the byte level and fails for too large arrays.
+ buf = np.zeros(100)
+
+ max_bytes = np.iinfo(np.intp).max
+ for dtype in ["intp", "S20", "b"]:
+ dtype = np.dtype(dtype)
+ itemsize = dtype.itemsize
+
+ np.ndarray(buffer=buf, strides=(0,),
+ shape=(max_bytes//itemsize,), dtype=dtype)
+ assert_raises(ValueError, np.ndarray, buffer=buf, strides=(0,),
+ shape=(max_bytes//itemsize + 1,), dtype=dtype)
+
+ def _ragged_creation(self, seq):
+ # without dtype=object, the ragged object raises
+ with pytest.raises(ValueError, match=".*detected shape was"):
+ a = np.array(seq)
+
+ return np.array(seq, dtype=object)
+
+ def test_ragged_ndim_object(self):
+ # Lists of mismatching depths are treated as object arrays
+ a = self._ragged_creation([[1], 2, 3])
+ assert_equal(a.shape, (3,))
+ assert_equal(a.dtype, object)
+
+ a = self._ragged_creation([1, [2], 3])
+ assert_equal(a.shape, (3,))
+ assert_equal(a.dtype, object)
+
+ a = self._ragged_creation([1, 2, [3]])
+ assert_equal(a.shape, (3,))
+ assert_equal(a.dtype, object)
+
+ def test_ragged_shape_object(self):
+ # The ragged dimension of a list is turned into an object array
+ a = self._ragged_creation([[1, 1], [2], [3]])
+ assert_equal(a.shape, (3,))
+ assert_equal(a.dtype, object)
+
+ a = self._ragged_creation([[1], [2, 2], [3]])
+ assert_equal(a.shape, (3,))
+ assert_equal(a.dtype, object)
+
+ a = self._ragged_creation([[1], [2], [3, 3]])
+ assert a.shape == (3,)
+ assert a.dtype == object
+
+ def test_array_of_ragged_array(self):
+ outer = np.array([None, None])
+ outer[0] = outer[1] = np.array([1, 2, 3])
+ assert np.array(outer).shape == (2,)
+ assert np.array([outer]).shape == (1, 2)
+
+ outer_ragged = np.array([None, None])
+ outer_ragged[0] = np.array([1, 2, 3])
+ outer_ragged[1] = np.array([1, 2, 3, 4])
+ # should both of these emit deprecation warnings?
+ assert np.array(outer_ragged).shape == (2,)
+ assert np.array([outer_ragged]).shape == (1, 2,)
+
+ def test_deep_nonragged_object(self):
+ # None of these should raise, even though they are missing dtype=object
+ a = np.array([[[Decimal(1)]]])
+ a = np.array([1, Decimal(1)])
+ a = np.array([[1], [Decimal(1)]])
+
+ @pytest.mark.parametrize("dtype", [object, "O,O", "O,(3)O", "(2,3)O"])
+ @pytest.mark.parametrize("function", [
+ np.ndarray, np.empty,
+ lambda shape, dtype: np.empty_like(np.empty(shape, dtype=dtype))])
+ def test_object_initialized_to_None(self, function, dtype):
+ # NumPy has support for object fields to be NULL (meaning None)
+ # but generally, we should always fill with the proper None, and
+ # downstream may rely on that. (For fully initialized arrays!)
+ arr = function(3, dtype=dtype)
+ # We expect a fill value of None, which is not NULL:
+ expected = np.array(None).tobytes()
+ expected = expected * (arr.nbytes // len(expected))
+ assert arr.tobytes() == expected
+
+ @pytest.mark.parametrize("func", [
+ np.array, np.asarray, np.asanyarray, np.ascontiguousarray,
+ np.asfortranarray])
+ def test_creation_from_dtypemeta(self, func):
+ dtype = np.dtype('i')
+ arr1 = func([1, 2, 3], dtype=dtype)
+ arr2 = func([1, 2, 3], dtype=type(dtype))
+ assert_array_equal(arr1, arr2)
+ assert arr2.dtype == dtype
+
+
+class TestStructured:
+ def test_subarray_field_access(self):
+ a = np.zeros((3, 5), dtype=[('a', ('i4', (2, 2)))])
+ a['a'] = np.arange(60).reshape(3, 5, 2, 2)
+
+ # Since the subarray is always in C-order, a transpose
+ # does not swap the subarray:
+ assert_array_equal(a.T['a'], a['a'].transpose(1, 0, 2, 3))
+
+ # In Fortran order, the subarray gets appended
+ # like in all other cases, not prepended as a special case
+ b = a.copy(order='F')
+ assert_equal(a['a'].shape, b['a'].shape)
+ assert_equal(a.T['a'].shape, a.T.copy()['a'].shape)
+
+ def test_subarray_comparison(self):
+ # Check that comparisons between record arrays with
+ # multi-dimensional field types work properly
+ a = np.rec.fromrecords(
+ [([1, 2, 3], 'a', [[1, 2], [3, 4]]), ([3, 3, 3], 'b', [[0, 0], [0, 0]])],
+ dtype=[('a', ('f4', 3)), ('b', object), ('c', ('i4', (2, 2)))])
+ b = a.copy()
+ assert_equal(a == b, [True, True])
+ assert_equal(a != b, [False, False])
+ b[1].b = 'c'
+ assert_equal(a == b, [True, False])
+ assert_equal(a != b, [False, True])
+ for i in range(3):
+ b[0].a = a[0].a
+ b[0].a[i] = 5
+ assert_equal(a == b, [False, False])
+ assert_equal(a != b, [True, True])
+ for i in range(2):
+ for j in range(2):
+ b = a.copy()
+ b[0].c[i, j] = 10
+ assert_equal(a == b, [False, True])
+ assert_equal(a != b, [True, False])
+
+ # Check that broadcasting with a subarray works, including cases that
+ # require promotion to work:
+ a = np.array([[(0,)], [(1,)]], dtype=[('a', 'f8')])
+ b = np.array([(0,), (0,), (1,)], dtype=[('a', 'f8')])
+ assert_equal(a == b, [[True, True, False], [False, False, True]])
+ assert_equal(b == a, [[True, True, False], [False, False, True]])
+ a = np.array([[(0,)], [(1,)]], dtype=[('a', 'f8', (1,))])
+ b = np.array([(0,), (0,), (1,)], dtype=[('a', 'f8', (1,))])
+ assert_equal(a == b, [[True, True, False], [False, False, True]])
+ assert_equal(b == a, [[True, True, False], [False, False, True]])
+ a = np.array([[([0, 0],)], [([1, 1],)]], dtype=[('a', 'f8', (2,))])
+ b = np.array([([0, 0],), ([0, 1],), ([1, 1],)], dtype=[('a', 'f8', (2,))])
+ assert_equal(a == b, [[True, False, False], [False, False, True]])
+ assert_equal(b == a, [[True, False, False], [False, False, True]])
+
+ # Check that broadcasting Fortran-style arrays with a subarray work
+ a = np.array([[([0, 0],)], [([1, 1],)]], dtype=[('a', 'f8', (2,))], order='F')
+ b = np.array([([0, 0],), ([0, 1],), ([1, 1],)], dtype=[('a', 'f8', (2,))])
+ assert_equal(a == b, [[True, False, False], [False, False, True]])
+ assert_equal(b == a, [[True, False, False], [False, False, True]])
+
+ # Check that incompatible sub-array shapes don't result to broadcasting
+ x = np.zeros((1,), dtype=[('a', ('f4', (1, 2))), ('b', 'i1')])
+ y = np.zeros((1,), dtype=[('a', ('f4', (2,))), ('b', 'i1')])
+ # The main importance is that it does not return True:
+ with pytest.raises(TypeError):
+ x == y
+
+ x = np.zeros((1,), dtype=[('a', ('f4', (2, 1))), ('b', 'i1')])
+ y = np.zeros((1,), dtype=[('a', ('f4', (2,))), ('b', 'i1')])
+ # The main importance is that it does not return True:
+ with pytest.raises(TypeError):
+ x == y
+
+ def test_empty_structured_array_comparison(self):
+ # Check that comparison works on empty arrays with nontrivially
+ # shaped fields
+ a = np.zeros(0, [('a', '<f8', (1, 1))])
+ assert_equal(a, a)
+ a = np.zeros(0, [('a', '<f8', (1,))])
+ assert_equal(a, a)
+ a = np.zeros((0, 0), [('a', '<f8', (1, 1))])
+ assert_equal(a, a)
+ a = np.zeros((1, 0, 1), [('a', '<f8', (1, 1))])
+ assert_equal(a, a)
+
+ @pytest.mark.parametrize("op", [operator.eq, operator.ne])
+ def test_structured_array_comparison_bad_broadcasts(self, op):
+ a = np.zeros(3, dtype='i,i')
+ b = np.array([], dtype="i,i")
+ with pytest.raises(ValueError):
+ op(a, b)
+
+ def test_structured_comparisons_with_promotion(self):
+ # Check that structured arrays can be compared so long as their
+ # dtypes promote fine:
+ a = np.array([(5, 42), (10, 1)], dtype=[('a', '>i8'), ('b', '<f8')])
+ b = np.array([(5, 43), (10, 1)], dtype=[('a', '<i8'), ('b', '>f8')])
+ assert_equal(a == b, [False, True])
+ assert_equal(a != b, [True, False])
+
+ a = np.array([(5, 42), (10, 1)], dtype=[('a', '>f8'), ('b', '<f8')])
+ b = np.array([(5, 43), (10, 1)], dtype=[('a', '<i8'), ('b', '>i8')])
+ assert_equal(a == b, [False, True])
+ assert_equal(a != b, [True, False])
+
+ # Including with embedded subarray dtype (although subarray comparison
+ # itself may still be a bit weird and compare the raw data)
+ a = np.array([(5, 42), (10, 1)], dtype=[('a', '10>f8'), ('b', '5<f8')])
+ b = np.array([(5, 43), (10, 1)], dtype=[('a', '10<i8'), ('b', '5>i8')])
+ assert_equal(a == b, [False, True])
+ assert_equal(a != b, [True, False])
+
+ @pytest.mark.parametrize("op", [
+ operator.eq, lambda x, y: operator.eq(y, x),
+ operator.ne, lambda x, y: operator.ne(y, x)])
+ def test_void_comparison_failures(self, op):
+ # In principle, one could decide to return an array of False for some
+ # if comparisons are impossible. But right now we return TypeError
+ # when "void" dtype are involved.
+ x = np.zeros(3, dtype=[('a', 'i1')])
+ y = np.zeros(3)
+ # Cannot compare non-structured to structured:
+ with pytest.raises(TypeError):
+ op(x, y)
+
+ # Added title prevents promotion, but casts are OK:
+ y = np.zeros(3, dtype=[(('title', 'a'), 'i1')])
+ assert np.can_cast(y.dtype, x.dtype)
+ with pytest.raises(TypeError):
+ op(x, y)
+
+ x = np.zeros(3, dtype="V7")
+ y = np.zeros(3, dtype="V8")
+ with pytest.raises(TypeError):
+ op(x, y)
+
+ def test_casting(self):
+ # Check that casting a structured array to change its byte order
+ # works
+ a = np.array([(1,)], dtype=[('a', '<i4')])
+ assert_(np.can_cast(a.dtype, [('a', '>i4')], casting='unsafe'))
+ b = a.astype([('a', '>i4')])
+ assert_equal(b, a.byteswap().newbyteorder())
+ assert_equal(a['a'][0], b['a'][0])
+
+ # Check that equality comparison works on structured arrays if
+ # they are 'equiv'-castable
+ a = np.array([(5, 42), (10, 1)], dtype=[('a', '>i4'), ('b', '<f8')])
+ b = np.array([(5, 42), (10, 1)], dtype=[('a', '<i4'), ('b', '>f8')])
+ assert_(np.can_cast(a.dtype, b.dtype, casting='equiv'))
+ assert_equal(a == b, [True, True])
+
+ # Check that 'equiv' casting can change byte order
+ assert_(np.can_cast(a.dtype, b.dtype, casting='equiv'))
+ c = a.astype(b.dtype, casting='equiv')
+ assert_equal(a == c, [True, True])
+
+ # Check that 'safe' casting can change byte order and up-cast
+ # fields
+ t = [('a', '<i8'), ('b', '>f8')]
+ assert_(np.can_cast(a.dtype, t, casting='safe'))
+ c = a.astype(t, casting='safe')
+ assert_equal((c == np.array([(5, 42), (10, 1)], dtype=t)),
+ [True, True])
+
+ # Check that 'same_kind' casting can change byte order and
+ # change field widths within a "kind"
+ t = [('a', '<i4'), ('b', '>f4')]
+ assert_(np.can_cast(a.dtype, t, casting='same_kind'))
+ c = a.astype(t, casting='same_kind')
+ assert_equal((c == np.array([(5, 42), (10, 1)], dtype=t)),
+ [True, True])
+
+ # Check that casting fails if the casting rule should fail on
+ # any of the fields
+ t = [('a', '>i8'), ('b', '<f4')]
+ assert_(not np.can_cast(a.dtype, t, casting='safe'))
+ assert_raises(TypeError, a.astype, t, casting='safe')
+ t = [('a', '>i2'), ('b', '<f8')]
+ assert_(not np.can_cast(a.dtype, t, casting='equiv'))
+ assert_raises(TypeError, a.astype, t, casting='equiv')
+ t = [('a', '>i8'), ('b', '<i2')]
+ assert_(not np.can_cast(a.dtype, t, casting='same_kind'))
+ assert_raises(TypeError, a.astype, t, casting='same_kind')
+ assert_(not np.can_cast(a.dtype, b.dtype, casting='no'))
+ assert_raises(TypeError, a.astype, b.dtype, casting='no')
+
+ # Check that non-'unsafe' casting can't change the set of field names
+ for casting in ['no', 'safe', 'equiv', 'same_kind']:
+ t = [('a', '>i4')]
+ assert_(not np.can_cast(a.dtype, t, casting=casting))
+ t = [('a', '>i4'), ('b', '<f8'), ('c', 'i4')]
+ assert_(not np.can_cast(a.dtype, t, casting=casting))
+
+ def test_objview(self):
+ # https://github.com/numpy/numpy/issues/3286
+ a = np.array([], dtype=[('a', 'f'), ('b', 'f'), ('c', 'O')])
+ a[['a', 'b']] # TypeError?
+
+ # https://github.com/numpy/numpy/issues/3253
+ dat2 = np.zeros(3, [('A', 'i'), ('B', '|O')])
+ dat2[['B', 'A']] # TypeError?
+
+ def test_setfield(self):
+ # https://github.com/numpy/numpy/issues/3126
+ struct_dt = np.dtype([('elem', 'i4', 5),])
+ dt = np.dtype([('field', 'i4', 10),('struct', struct_dt)])
+ x = np.zeros(1, dt)
+ x[0]['field'] = np.ones(10, dtype='i4')
+ x[0]['struct'] = np.ones(1, dtype=struct_dt)
+ assert_equal(x[0]['field'], np.ones(10, dtype='i4'))
+
+ def test_setfield_object(self):
+ # make sure object field assignment with ndarray value
+ # on void scalar mimics setitem behavior
+ b = np.zeros(1, dtype=[('x', 'O')])
+ # next line should work identically to b['x'][0] = np.arange(3)
+ b[0]['x'] = np.arange(3)
+ assert_equal(b[0]['x'], np.arange(3))
+
+ # check that broadcasting check still works
+ c = np.zeros(1, dtype=[('x', 'O', 5)])
+
+ def testassign():
+ c[0]['x'] = np.arange(3)
+
+ assert_raises(ValueError, testassign)
+
+ def test_zero_width_string(self):
+ # Test for PR #6430 / issues #473, #4955, #2585
+
+ dt = np.dtype([('I', int), ('S', 'S0')])
+
+ x = np.zeros(4, dtype=dt)
+
+ assert_equal(x['S'], [b'', b'', b'', b''])
+ assert_equal(x['S'].itemsize, 0)
+
+ x['S'] = ['a', 'b', 'c', 'd']
+ assert_equal(x['S'], [b'', b'', b'', b''])
+ assert_equal(x['I'], [0, 0, 0, 0])
+
+ # Variation on test case from #4955
+ x['S'][x['I'] == 0] = 'hello'
+ assert_equal(x['S'], [b'', b'', b'', b''])
+ assert_equal(x['I'], [0, 0, 0, 0])
+
+ # Variation on test case from #2585
+ x['S'] = 'A'
+ assert_equal(x['S'], [b'', b'', b'', b''])
+ assert_equal(x['I'], [0, 0, 0, 0])
+
+ # Allow zero-width dtypes in ndarray constructor
+ y = np.ndarray(4, dtype=x['S'].dtype)
+ assert_equal(y.itemsize, 0)
+ assert_equal(x['S'], y)
+
+ # More tests for indexing an array with zero-width fields
+ assert_equal(np.zeros(4, dtype=[('a', 'S0,S0'),
+ ('b', 'u1')])['a'].itemsize, 0)
+ assert_equal(np.empty(3, dtype='S0,S0').itemsize, 0)
+ assert_equal(np.zeros(4, dtype='S0,u1')['f0'].itemsize, 0)
+
+ xx = x['S'].reshape((2, 2))
+ assert_equal(xx.itemsize, 0)
+ assert_equal(xx, [[b'', b''], [b'', b'']])
+ # check for no uninitialized memory due to viewing S0 array
+ assert_equal(xx[:].dtype, xx.dtype)
+ assert_array_equal(eval(repr(xx), dict(array=np.array)), xx)
+
+ b = io.BytesIO()
+ np.save(b, xx)
+
+ b.seek(0)
+ yy = np.load(b)
+ assert_equal(yy.itemsize, 0)
+ assert_equal(xx, yy)
+
+ with temppath(suffix='.npy') as tmp:
+ np.save(tmp, xx)
+ yy = np.load(tmp)
+ assert_equal(yy.itemsize, 0)
+ assert_equal(xx, yy)
+
+ def test_base_attr(self):
+ a = np.zeros(3, dtype='i4,f4')
+ b = a[0]
+ assert_(b.base is a)
+
+ def test_assignment(self):
+ def testassign(arr, v):
+ c = arr.copy()
+ c[0] = v # assign using setitem
+ c[1:] = v # assign using "dtype_transfer" code paths
+ return c
+
+ dt = np.dtype([('foo', 'i8'), ('bar', 'i8')])
+ arr = np.ones(2, dt)
+ v1 = np.array([(2,3)], dtype=[('foo', 'i8'), ('bar', 'i8')])
+ v2 = np.array([(2,3)], dtype=[('bar', 'i8'), ('foo', 'i8')])
+ v3 = np.array([(2,3)], dtype=[('bar', 'i8'), ('baz', 'i8')])
+ v4 = np.array([(2,)], dtype=[('bar', 'i8')])
+ v5 = np.array([(2,3)], dtype=[('foo', 'f8'), ('bar', 'f8')])
+ w = arr.view({'names': ['bar'], 'formats': ['i8'], 'offsets': [8]})
+
+ ans = np.array([(2,3),(2,3)], dtype=dt)
+ assert_equal(testassign(arr, v1), ans)
+ assert_equal(testassign(arr, v2), ans)
+ assert_equal(testassign(arr, v3), ans)
+ assert_raises(TypeError, lambda: testassign(arr, v4))
+ assert_equal(testassign(arr, v5), ans)
+ w[:] = 4
+ assert_equal(arr, np.array([(1,4),(1,4)], dtype=dt))
+
+ # test field-reordering, assignment by position, and self-assignment
+ a = np.array([(1,2,3)],
+ dtype=[('foo', 'i8'), ('bar', 'i8'), ('baz', 'f4')])
+ a[['foo', 'bar']] = a[['bar', 'foo']]
+ assert_equal(a[0].item(), (2,1,3))
+
+ # test that this works even for 'simple_unaligned' structs
+ # (ie, that PyArray_EquivTypes cares about field order too)
+ a = np.array([(1,2)], dtype=[('a', 'i4'), ('b', 'i4')])
+ a[['a', 'b']] = a[['b', 'a']]
+ assert_equal(a[0].item(), (2,1))
+
+ def test_scalar_assignment(self):
+ with assert_raises(ValueError):
+ arr = np.arange(25).reshape(5, 5)
+ arr.itemset(3)
+
+ def test_structuredscalar_indexing(self):
+ # test gh-7262
+ x = np.empty(shape=1, dtype="(2)3S,(2)3U")
+ assert_equal(x[["f0","f1"]][0], x[0][["f0","f1"]])
+ assert_equal(x[0], x[0][()])
+
+ def test_multiindex_titles(self):
+ a = np.zeros(4, dtype=[(('a', 'b'), 'i'), ('c', 'i'), ('d', 'i')])
+ assert_raises(KeyError, lambda : a[['a','c']])
+ assert_raises(KeyError, lambda : a[['a','a']])
+ assert_raises(ValueError, lambda : a[['b','b']]) # field exists, but repeated
+ a[['b','c']] # no exception
+
+ def test_structured_cast_promotion_fieldorder(self):
+ # gh-15494
+ # dtypes with different field names are not promotable
+ A = ("a", "<i8")
+ B = ("b", ">i8")
+ ab = np.array([(1, 2)], dtype=[A, B])
+ ba = np.array([(1, 2)], dtype=[B, A])
+ assert_raises(TypeError, np.concatenate, ab, ba)
+ assert_raises(TypeError, np.result_type, ab.dtype, ba.dtype)
+ assert_raises(TypeError, np.promote_types, ab.dtype, ba.dtype)
+
+ # dtypes with same field names/order but different memory offsets
+ # and byte-order are promotable to packed nbo.
+ assert_equal(np.promote_types(ab.dtype, ba[['a', 'b']].dtype),
+ repack_fields(ab.dtype.newbyteorder('N')))
+
+ # gh-13667
+ # dtypes with different fieldnames but castable field types are castable
+ assert_equal(np.can_cast(ab.dtype, ba.dtype), True)
+ assert_equal(ab.astype(ba.dtype).dtype, ba.dtype)
+ assert_equal(np.can_cast('f8,i8', [('f0', 'f8'), ('f1', 'i8')]), True)
+ assert_equal(np.can_cast('f8,i8', [('f1', 'f8'), ('f0', 'i8')]), True)
+ assert_equal(np.can_cast('f8,i8', [('f1', 'i8'), ('f0', 'f8')]), False)
+ assert_equal(np.can_cast('f8,i8', [('f1', 'i8'), ('f0', 'f8')],
+ casting='unsafe'), True)
+
+ ab[:] = ba # make sure assignment still works
+
+ # tests of type-promotion of corresponding fields
+ dt1 = np.dtype([("", "i4")])
+ dt2 = np.dtype([("", "i8")])
+ assert_equal(np.promote_types(dt1, dt2), np.dtype([('f0', 'i8')]))
+ assert_equal(np.promote_types(dt2, dt1), np.dtype([('f0', 'i8')]))
+ assert_raises(TypeError, np.promote_types, dt1, np.dtype([("", "V3")]))
+ assert_equal(np.promote_types('i4,f8', 'i8,f4'),
+ np.dtype([('f0', 'i8'), ('f1', 'f8')]))
+ # test nested case
+ dt1nest = np.dtype([("", dt1)])
+ dt2nest = np.dtype([("", dt2)])
+ assert_equal(np.promote_types(dt1nest, dt2nest),
+ np.dtype([('f0', np.dtype([('f0', 'i8')]))]))
+
+ # note that offsets are lost when promoting:
+ dt = np.dtype({'names': ['x'], 'formats': ['i4'], 'offsets': [8]})
+ a = np.ones(3, dtype=dt)
+ assert_equal(np.concatenate([a, a]).dtype, np.dtype([('x', 'i4')]))
+
+ @pytest.mark.parametrize("dtype_dict", [
+ dict(names=["a", "b"], formats=["i4", "f"], itemsize=100),
+ dict(names=["a", "b"], formats=["i4", "f"],
+ offsets=[0, 12])])
+ @pytest.mark.parametrize("align", [True, False])
+ def test_structured_promotion_packs(self, dtype_dict, align):
+ # Structured dtypes are packed when promoted (we consider the packed
+ # form to be "canonical"), so tere is no extra padding.
+ dtype = np.dtype(dtype_dict, align=align)
+ # Remove non "canonical" dtype options:
+ dtype_dict.pop("itemsize", None)
+ dtype_dict.pop("offsets", None)
+ expected = np.dtype(dtype_dict, align=align)
+
+ res = np.promote_types(dtype, dtype)
+ assert res.itemsize == expected.itemsize
+ assert res.fields == expected.fields
+
+ # But the "expected" one, should just be returned unchanged:
+ res = np.promote_types(expected, expected)
+ assert res is expected
+
+ def test_structured_asarray_is_view(self):
+ # A scalar viewing an array preserves its view even when creating a
+ # new array. This test documents behaviour, it may not be the best
+ # desired behaviour.
+ arr = np.array([1], dtype="i,i")
+ scalar = arr[0]
+ assert not scalar.flags.owndata # view into the array
+ assert np.asarray(scalar).base is scalar
+ # But never when a dtype is passed in:
+ assert np.asarray(scalar, dtype=scalar.dtype).base is None
+ # A scalar which owns its data does not have this property.
+ # It is not easy to create one, one method is to use pickle:
+ scalar = pickle.loads(pickle.dumps(scalar))
+ assert scalar.flags.owndata
+ assert np.asarray(scalar).base is None
+
+class TestBool:
+ def test_test_interning(self):
+ a0 = np.bool_(0)
+ b0 = np.bool_(False)
+ assert_(a0 is b0)
+ a1 = np.bool_(1)
+ b1 = np.bool_(True)
+ assert_(a1 is b1)
+ assert_(np.array([True])[0] is a1)
+ assert_(np.array(True)[()] is a1)
+
+ def test_sum(self):
+ d = np.ones(101, dtype=bool)
+ assert_equal(d.sum(), d.size)
+ assert_equal(d[::2].sum(), d[::2].size)
+ assert_equal(d[::-2].sum(), d[::-2].size)
+
+ d = np.frombuffer(b'\xff\xff' * 100, dtype=bool)
+ assert_equal(d.sum(), d.size)
+ assert_equal(d[::2].sum(), d[::2].size)
+ assert_equal(d[::-2].sum(), d[::-2].size)
+
+ def check_count_nonzero(self, power, length):
+ powers = [2 ** i for i in range(length)]
+ for i in range(2**power):
+ l = [(i & x) != 0 for x in powers]
+ a = np.array(l, dtype=bool)
+ c = builtins.sum(l)
+ assert_equal(np.count_nonzero(a), c)
+ av = a.view(np.uint8)
+ av *= 3
+ assert_equal(np.count_nonzero(a), c)
+ av *= 4
+ assert_equal(np.count_nonzero(a), c)
+ av[av != 0] = 0xFF
+ assert_equal(np.count_nonzero(a), c)
+
+ def test_count_nonzero(self):
+ # check all 12 bit combinations in a length 17 array
+ # covers most cases of the 16 byte unrolled code
+ self.check_count_nonzero(12, 17)
+
+ @pytest.mark.slow
+ def test_count_nonzero_all(self):
+ # check all combinations in a length 17 array
+ # covers all cases of the 16 byte unrolled code
+ self.check_count_nonzero(17, 17)
+
+ def test_count_nonzero_unaligned(self):
+ # prevent mistakes as e.g. gh-4060
+ for o in range(7):
+ a = np.zeros((18,), dtype=bool)[o+1:]
+ a[:o] = True
+ assert_equal(np.count_nonzero(a), builtins.sum(a.tolist()))
+ a = np.ones((18,), dtype=bool)[o+1:]
+ a[:o] = False
+ assert_equal(np.count_nonzero(a), builtins.sum(a.tolist()))
+
+ def _test_cast_from_flexible(self, dtype):
+ # empty string -> false
+ for n in range(3):
+ v = np.array(b'', (dtype, n))
+ assert_equal(bool(v), False)
+ assert_equal(bool(v[()]), False)
+ assert_equal(v.astype(bool), False)
+ assert_(isinstance(v.astype(bool), np.ndarray))
+ assert_(v[()].astype(bool) is np.False_)
+
+ # anything else -> true
+ for n in range(1, 4):
+ for val in [b'a', b'0', b' ']:
+ v = np.array(val, (dtype, n))
+ assert_equal(bool(v), True)
+ assert_equal(bool(v[()]), True)
+ assert_equal(v.astype(bool), True)
+ assert_(isinstance(v.astype(bool), np.ndarray))
+ assert_(v[()].astype(bool) is np.True_)
+
+ def test_cast_from_void(self):
+ self._test_cast_from_flexible(np.void)
+
+ @pytest.mark.xfail(reason="See gh-9847")
+ def test_cast_from_unicode(self):
+ self._test_cast_from_flexible(np.str_)
+
+ @pytest.mark.xfail(reason="See gh-9847")
+ def test_cast_from_bytes(self):
+ self._test_cast_from_flexible(np.bytes_)
+
+
+class TestZeroSizeFlexible:
+ @staticmethod
+ def _zeros(shape, dtype=str):
+ dtype = np.dtype(dtype)
+ if dtype == np.void:
+ return np.zeros(shape, dtype=(dtype, 0))
+
+ # not constructable directly
+ dtype = np.dtype([('x', dtype, 0)])
+ return np.zeros(shape, dtype=dtype)['x']
+
+ def test_create(self):
+ zs = self._zeros(10, bytes)
+ assert_equal(zs.itemsize, 0)
+ zs = self._zeros(10, np.void)
+ assert_equal(zs.itemsize, 0)
+ zs = self._zeros(10, str)
+ assert_equal(zs.itemsize, 0)
+
+ def _test_sort_partition(self, name, kinds, **kwargs):
+ # Previously, these would all hang
+ for dt in [bytes, np.void, str]:
+ zs = self._zeros(10, dt)
+ sort_method = getattr(zs, name)
+ sort_func = getattr(np, name)
+ for kind in kinds:
+ sort_method(kind=kind, **kwargs)
+ sort_func(zs, kind=kind, **kwargs)
+
+ def test_sort(self):
+ self._test_sort_partition('sort', kinds='qhs')
+
+ def test_argsort(self):
+ self._test_sort_partition('argsort', kinds='qhs')
+
+ def test_partition(self):
+ self._test_sort_partition('partition', kinds=['introselect'], kth=2)
+
+ def test_argpartition(self):
+ self._test_sort_partition('argpartition', kinds=['introselect'], kth=2)
+
+ def test_resize(self):
+ # previously an error
+ for dt in [bytes, np.void, str]:
+ zs = self._zeros(10, dt)
+ zs.resize(25)
+ zs.resize((10, 10))
+
+ def test_view(self):
+ for dt in [bytes, np.void, str]:
+ zs = self._zeros(10, dt)
+
+ # viewing as itself should be allowed
+ assert_equal(zs.view(dt).dtype, np.dtype(dt))
+
+ # viewing as any non-empty type gives an empty result
+ assert_equal(zs.view((dt, 1)).shape, (0,))
+
+ def test_dumps(self):
+ zs = self._zeros(10, int)
+ assert_equal(zs, pickle.loads(zs.dumps()))
+
+ def test_pickle(self):
+ for proto in range(2, pickle.HIGHEST_PROTOCOL + 1):
+ for dt in [bytes, np.void, str]:
+ zs = self._zeros(10, dt)
+ p = pickle.dumps(zs, protocol=proto)
+ zs2 = pickle.loads(p)
+
+ assert_equal(zs.dtype, zs2.dtype)
+
+ def test_pickle_empty(self):
+ """Checking if an empty array pickled and un-pickled will not cause a
+ segmentation fault"""
+ arr = np.array([]).reshape(999999, 0)
+ pk_dmp = pickle.dumps(arr)
+ pk_load = pickle.loads(pk_dmp)
+
+ assert pk_load.size == 0
+
+ @pytest.mark.skipif(pickle.HIGHEST_PROTOCOL < 5,
+ reason="requires pickle protocol 5")
+ def test_pickle_with_buffercallback(self):
+ array = np.arange(10)
+ buffers = []
+ bytes_string = pickle.dumps(array, buffer_callback=buffers.append,
+ protocol=5)
+ array_from_buffer = pickle.loads(bytes_string, buffers=buffers)
+ # when using pickle protocol 5 with buffer callbacks,
+ # array_from_buffer is reconstructed from a buffer holding a view
+ # to the initial array's data, so modifying an element in array
+ # should modify it in array_from_buffer too.
+ array[0] = -1
+ assert array_from_buffer[0] == -1, array_from_buffer[0]
+
+
+class TestMethods:
+
+ sort_kinds = ['quicksort', 'heapsort', 'stable']
+
+ def test_all_where(self):
+ a = np.array([[True, False, True],
+ [False, False, False],
+ [True, True, True]])
+ wh_full = np.array([[True, False, True],
+ [False, False, False],
+ [True, False, True]])
+ wh_lower = np.array([[False],
+ [False],
+ [True]])
+ for _ax in [0, None]:
+ assert_equal(a.all(axis=_ax, where=wh_lower),
+ np.all(a[wh_lower[:,0],:], axis=_ax))
+ assert_equal(np.all(a, axis=_ax, where=wh_lower),
+ a[wh_lower[:,0],:].all(axis=_ax))
+
+ assert_equal(a.all(where=wh_full), True)
+ assert_equal(np.all(a, where=wh_full), True)
+ assert_equal(a.all(where=False), True)
+ assert_equal(np.all(a, where=False), True)
+
+ def test_any_where(self):
+ a = np.array([[True, False, True],
+ [False, False, False],
+ [True, True, True]])
+ wh_full = np.array([[False, True, False],
+ [True, True, True],
+ [False, False, False]])
+ wh_middle = np.array([[False],
+ [True],
+ [False]])
+ for _ax in [0, None]:
+ assert_equal(a.any(axis=_ax, where=wh_middle),
+ np.any(a[wh_middle[:,0],:], axis=_ax))
+ assert_equal(np.any(a, axis=_ax, where=wh_middle),
+ a[wh_middle[:,0],:].any(axis=_ax))
+ assert_equal(a.any(where=wh_full), False)
+ assert_equal(np.any(a, where=wh_full), False)
+ assert_equal(a.any(where=False), False)
+ assert_equal(np.any(a, where=False), False)
+
+ def test_compress(self):
+ tgt = [[5, 6, 7, 8, 9]]
+ arr = np.arange(10).reshape(2, 5)
+ out = arr.compress([0, 1], axis=0)
+ assert_equal(out, tgt)
+
+ tgt = [[1, 3], [6, 8]]
+ out = arr.compress([0, 1, 0, 1, 0], axis=1)
+ assert_equal(out, tgt)
+
+ tgt = [[1], [6]]
+ arr = np.arange(10).reshape(2, 5)
+ out = arr.compress([0, 1], axis=1)
+ assert_equal(out, tgt)
+
+ arr = np.arange(10).reshape(2, 5)
+ out = arr.compress([0, 1])
+ assert_equal(out, 1)
+
+ def test_choose(self):
+ x = 2*np.ones((3,), dtype=int)
+ y = 3*np.ones((3,), dtype=int)
+ x2 = 2*np.ones((2, 3), dtype=int)
+ y2 = 3*np.ones((2, 3), dtype=int)
+ ind = np.array([0, 0, 1])
+
+ A = ind.choose((x, y))
+ assert_equal(A, [2, 2, 3])
+
+ A = ind.choose((x2, y2))
+ assert_equal(A, [[2, 2, 3], [2, 2, 3]])
+
+ A = ind.choose((x, y2))
+ assert_equal(A, [[2, 2, 3], [2, 2, 3]])
+
+ oned = np.ones(1)
+ # gh-12031, caused SEGFAULT
+ assert_raises(TypeError, oned.choose,np.void(0), [oned])
+
+ out = np.array(0)
+ ret = np.choose(np.array(1), [10, 20, 30], out=out)
+ assert out is ret
+ assert_equal(out[()], 20)
+
+ # gh-6272 check overlap on out
+ x = np.arange(5)
+ y = np.choose([0,0,0], [x[:3], x[:3], x[:3]], out=x[1:4], mode='wrap')
+ assert_equal(y, np.array([0, 1, 2]))
+
+ def test_prod(self):
+ ba = [1, 2, 10, 11, 6, 5, 4]
+ ba2 = [[1, 2, 3, 4], [5, 6, 7, 9], [10, 3, 4, 5]]
+
+ for ctype in [np.int16, np.uint16, np.int32, np.uint32,
+ np.float32, np.float64, np.complex64, np.complex128]:
+ a = np.array(ba, ctype)
+ a2 = np.array(ba2, ctype)
+ if ctype in ['1', 'b']:
+ assert_raises(ArithmeticError, a.prod)
+ assert_raises(ArithmeticError, a2.prod, axis=1)
+ else:
+ assert_equal(a.prod(axis=0), 26400)
+ assert_array_equal(a2.prod(axis=0),
+ np.array([50, 36, 84, 180], ctype))
+ assert_array_equal(a2.prod(axis=-1),
+ np.array([24, 1890, 600], ctype))
+
+ @pytest.mark.parametrize('dtype', [None, object])
+ def test_repeat(self, dtype):
+ m = np.array([1, 2, 3, 4, 5, 6], dtype=dtype)
+ m_rect = m.reshape((2, 3))
+
+ A = m.repeat([1, 3, 2, 1, 1, 2])
+ assert_equal(A, [1, 2, 2, 2, 3,
+ 3, 4, 5, 6, 6])
+
+ A = m.repeat(2)
+ assert_equal(A, [1, 1, 2, 2, 3, 3,
+ 4, 4, 5, 5, 6, 6])
+
+ A = m_rect.repeat([2, 1], axis=0)
+ assert_equal(A, [[1, 2, 3],
+ [1, 2, 3],
+ [4, 5, 6]])
+
+ A = m_rect.repeat([1, 3, 2], axis=1)
+ assert_equal(A, [[1, 2, 2, 2, 3, 3],
+ [4, 5, 5, 5, 6, 6]])
+
+ A = m_rect.repeat(2, axis=0)
+ assert_equal(A, [[1, 2, 3],
+ [1, 2, 3],
+ [4, 5, 6],
+ [4, 5, 6]])
+
+ A = m_rect.repeat(2, axis=1)
+ assert_equal(A, [[1, 1, 2, 2, 3, 3],
+ [4, 4, 5, 5, 6, 6]])
+
+ def test_reshape(self):
+ arr = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]])
+
+ tgt = [[1, 2, 3, 4, 5, 6], [7, 8, 9, 10, 11, 12]]
+ assert_equal(arr.reshape(2, 6), tgt)
+
+ tgt = [[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]]
+ assert_equal(arr.reshape(3, 4), tgt)
+
+ tgt = [[1, 10, 8, 6], [4, 2, 11, 9], [7, 5, 3, 12]]
+ assert_equal(arr.reshape((3, 4), order='F'), tgt)
+
+ tgt = [[1, 4, 7, 10], [2, 5, 8, 11], [3, 6, 9, 12]]
+ assert_equal(arr.T.reshape((3, 4), order='C'), tgt)
+
+ def test_round(self):
+ def check_round(arr, expected, *round_args):
+ assert_equal(arr.round(*round_args), expected)
+ # With output array
+ out = np.zeros_like(arr)
+ res = arr.round(*round_args, out=out)
+ assert_equal(out, expected)
+ assert out is res
+
+ check_round(np.array([1.2, 1.5]), [1, 2])
+ check_round(np.array(1.5), 2)
+ check_round(np.array([12.2, 15.5]), [10, 20], -1)
+ check_round(np.array([12.15, 15.51]), [12.2, 15.5], 1)
+ # Complex rounding
+ check_round(np.array([4.5 + 1.5j]), [4 + 2j])
+ check_round(np.array([12.5 + 15.5j]), [10 + 20j], -1)
+
+ def test_squeeze(self):
+ a = np.array([[[1], [2], [3]]])
+ assert_equal(a.squeeze(), [1, 2, 3])
+ assert_equal(a.squeeze(axis=(0,)), [[1], [2], [3]])
+ assert_raises(ValueError, a.squeeze, axis=(1,))
+ assert_equal(a.squeeze(axis=(2,)), [[1, 2, 3]])
+
+ def test_transpose(self):
+ a = np.array([[1, 2], [3, 4]])
+ assert_equal(a.transpose(), [[1, 3], [2, 4]])
+ assert_raises(ValueError, lambda: a.transpose(0))
+ assert_raises(ValueError, lambda: a.transpose(0, 0))
+ assert_raises(ValueError, lambda: a.transpose(0, 1, 2))
+
+ def test_sort(self):
+ # test ordering for floats and complex containing nans. It is only
+ # necessary to check the less-than comparison, so sorts that
+ # only follow the insertion sort path are sufficient. We only
+ # test doubles and complex doubles as the logic is the same.
+
+ # check doubles
+ msg = "Test real sort order with nans"
+ a = np.array([np.nan, 1, 0])
+ b = np.sort(a)
+ assert_equal(b, a[::-1], msg)
+ # check complex
+ msg = "Test complex sort order with nans"
+ a = np.zeros(9, dtype=np.complex128)
+ a.real += [np.nan, np.nan, np.nan, 1, 0, 1, 1, 0, 0]
+ a.imag += [np.nan, 1, 0, np.nan, np.nan, 1, 0, 1, 0]
+ b = np.sort(a)
+ assert_equal(b, a[::-1], msg)
+
+ # all c scalar sorts use the same code with different types
+ # so it suffices to run a quick check with one type. The number
+ # of sorted items must be greater than ~50 to check the actual
+ # algorithm because quick and merge sort fall over to insertion
+ # sort for small arrays.
+
+ @pytest.mark.parametrize('dtype', [np.uint8, np.uint16, np.uint32, np.uint64,
+ np.float16, np.float32, np.float64,
+ np.longdouble])
+ def test_sort_unsigned(self, dtype):
+ a = np.arange(101, dtype=dtype)
+ b = a[::-1].copy()
+ for kind in self.sort_kinds:
+ msg = "scalar sort, kind=%s" % kind
+ c = a.copy()
+ c.sort(kind=kind)
+ assert_equal(c, a, msg)
+ c = b.copy()
+ c.sort(kind=kind)
+ assert_equal(c, a, msg)
+
+ @pytest.mark.parametrize('dtype',
+ [np.int8, np.int16, np.int32, np.int64, np.float16,
+ np.float32, np.float64, np.longdouble])
+ def test_sort_signed(self, dtype):
+ a = np.arange(-50, 51, dtype=dtype)
+ b = a[::-1].copy()
+ for kind in self.sort_kinds:
+ msg = "scalar sort, kind=%s" % (kind)
+ c = a.copy()
+ c.sort(kind=kind)
+ assert_equal(c, a, msg)
+ c = b.copy()
+ c.sort(kind=kind)
+ assert_equal(c, a, msg)
+
+ @pytest.mark.parametrize('dtype', [np.float32, np.float64, np.longdouble])
+ @pytest.mark.parametrize('part', ['real', 'imag'])
+ def test_sort_complex(self, part, dtype):
+ # test complex sorts. These use the same code as the scalars
+ # but the compare function differs.
+ cdtype = {
+ np.single: np.csingle,
+ np.double: np.cdouble,
+ np.longdouble: np.clongdouble,
+ }[dtype]
+ a = np.arange(-50, 51, dtype=dtype)
+ b = a[::-1].copy()
+ ai = (a * (1+1j)).astype(cdtype)
+ bi = (b * (1+1j)).astype(cdtype)
+ setattr(ai, part, 1)
+ setattr(bi, part, 1)
+ for kind in self.sort_kinds:
+ msg = "complex sort, %s part == 1, kind=%s" % (part, kind)
+ c = ai.copy()
+ c.sort(kind=kind)
+ assert_equal(c, ai, msg)
+ c = bi.copy()
+ c.sort(kind=kind)
+ assert_equal(c, ai, msg)
+
+ def test_sort_complex_byte_swapping(self):
+ # test sorting of complex arrays requiring byte-swapping, gh-5441
+ for endianness in '<>':
+ for dt in np.typecodes['Complex']:
+ arr = np.array([1+3.j, 2+2.j, 3+1.j], dtype=endianness + dt)
+ c = arr.copy()
+ c.sort()
+ msg = 'byte-swapped complex sort, dtype={0}'.format(dt)
+ assert_equal(c, arr, msg)
+
+ @pytest.mark.parametrize('dtype', [np.bytes_, np.str_])
+ def test_sort_string(self, dtype):
+ # np.array will perform the encoding to bytes for us in the bytes test
+ a = np.array(['aaaaaaaa' + chr(i) for i in range(101)], dtype=dtype)
+ b = a[::-1].copy()
+ for kind in self.sort_kinds:
+ msg = "kind=%s" % kind
+ c = a.copy()
+ c.sort(kind=kind)
+ assert_equal(c, a, msg)
+ c = b.copy()
+ c.sort(kind=kind)
+ assert_equal(c, a, msg)
+
+ def test_sort_object(self):
+ # test object array sorts.
+ a = np.empty((101,), dtype=object)
+ a[:] = list(range(101))
+ b = a[::-1]
+ for kind in ['q', 'h', 'm']:
+ msg = "kind=%s" % kind
+ c = a.copy()
+ c.sort(kind=kind)
+ assert_equal(c, a, msg)
+ c = b.copy()
+ c.sort(kind=kind)
+ assert_equal(c, a, msg)
+
+ @pytest.mark.parametrize("dt", [
+ np.dtype([('f', float), ('i', int)]),
+ np.dtype([('f', float), ('i', object)])])
+ @pytest.mark.parametrize("step", [1, 2])
+ def test_sort_structured(self, dt, step):
+ # test record array sorts.
+ a = np.array([(i, i) for i in range(101*step)], dtype=dt)
+ b = a[::-1]
+ for kind in ['q', 'h', 'm']:
+ msg = "kind=%s" % kind
+ c = a.copy()[::step]
+ indx = c.argsort(kind=kind)
+ c.sort(kind=kind)
+ assert_equal(c, a[::step], msg)
+ assert_equal(a[::step][indx], a[::step], msg)
+ c = b.copy()[::step]
+ indx = c.argsort(kind=kind)
+ c.sort(kind=kind)
+ assert_equal(c, a[step-1::step], msg)
+ assert_equal(b[::step][indx], a[step-1::step], msg)
+
+ @pytest.mark.parametrize('dtype', ['datetime64[D]', 'timedelta64[D]'])
+ def test_sort_time(self, dtype):
+ # test datetime64 and timedelta64 sorts.
+ a = np.arange(0, 101, dtype=dtype)
+ b = a[::-1]
+ for kind in ['q', 'h', 'm']:
+ msg = "kind=%s" % kind
+ c = a.copy()
+ c.sort(kind=kind)
+ assert_equal(c, a, msg)
+ c = b.copy()
+ c.sort(kind=kind)
+ assert_equal(c, a, msg)
+
+ def test_sort_axis(self):
+ # check axis handling. This should be the same for all type
+ # specific sorts, so we only check it for one type and one kind
+ a = np.array([[3, 2], [1, 0]])
+ b = np.array([[1, 0], [3, 2]])
+ c = np.array([[2, 3], [0, 1]])
+ d = a.copy()
+ d.sort(axis=0)
+ assert_equal(d, b, "test sort with axis=0")
+ d = a.copy()
+ d.sort(axis=1)
+ assert_equal(d, c, "test sort with axis=1")
+ d = a.copy()
+ d.sort()
+ assert_equal(d, c, "test sort with default axis")
+
+ def test_sort_size_0(self):
+ # check axis handling for multidimensional empty arrays
+ a = np.array([])
+ a.shape = (3, 2, 1, 0)
+ for axis in range(-a.ndim, a.ndim):
+ msg = 'test empty array sort with axis={0}'.format(axis)
+ assert_equal(np.sort(a, axis=axis), a, msg)
+ msg = 'test empty array sort with axis=None'
+ assert_equal(np.sort(a, axis=None), a.ravel(), msg)
+
+ def test_sort_bad_ordering(self):
+ # test generic class with bogus ordering,
+ # should not segfault.
+ class Boom:
+ def __lt__(self, other):
+ return True
+
+ a = np.array([Boom()] * 100, dtype=object)
+ for kind in self.sort_kinds:
+ msg = "kind=%s" % kind
+ c = a.copy()
+ c.sort(kind=kind)
+ assert_equal(c, a, msg)
+
+ def test_void_sort(self):
+ # gh-8210 - previously segfaulted
+ for i in range(4):
+ rand = np.random.randint(256, size=4000, dtype=np.uint8)
+ arr = rand.view('V4')
+ arr[::-1].sort()
+
+ dt = np.dtype([('val', 'i4', (1,))])
+ for i in range(4):
+ rand = np.random.randint(256, size=4000, dtype=np.uint8)
+ arr = rand.view(dt)
+ arr[::-1].sort()
+
+ def test_sort_raises(self):
+ #gh-9404
+ arr = np.array([0, datetime.now(), 1], dtype=object)
+ for kind in self.sort_kinds:
+ assert_raises(TypeError, arr.sort, kind=kind)
+ #gh-3879
+ class Raiser:
+ def raises_anything(*args, **kwargs):
+ raise TypeError("SOMETHING ERRORED")
+ __eq__ = __ne__ = __lt__ = __gt__ = __ge__ = __le__ = raises_anything
+ arr = np.array([[Raiser(), n] for n in range(10)]).reshape(-1)
+ np.random.shuffle(arr)
+ for kind in self.sort_kinds:
+ assert_raises(TypeError, arr.sort, kind=kind)
+
+ def test_sort_degraded(self):
+ # test degraded dataset would take minutes to run with normal qsort
+ d = np.arange(1000000)
+ do = d.copy()
+ x = d
+ # create a median of 3 killer where each median is the sorted second
+ # last element of the quicksort partition
+ while x.size > 3:
+ mid = x.size // 2
+ x[mid], x[-2] = x[-2], x[mid]
+ x = x[:-2]
+
+ assert_equal(np.sort(d), do)
+ assert_equal(d[np.argsort(d)], do)
+
+ def test_copy(self):
+ def assert_fortran(arr):
+ assert_(arr.flags.fortran)
+ assert_(arr.flags.f_contiguous)
+ assert_(not arr.flags.c_contiguous)
+
+ def assert_c(arr):
+ assert_(not arr.flags.fortran)
+ assert_(not arr.flags.f_contiguous)
+ assert_(arr.flags.c_contiguous)
+
+ a = np.empty((2, 2), order='F')
+ # Test copying a Fortran array
+ assert_c(a.copy())
+ assert_c(a.copy('C'))
+ assert_fortran(a.copy('F'))
+ assert_fortran(a.copy('A'))
+
+ # Now test starting with a C array.
+ a = np.empty((2, 2), order='C')
+ assert_c(a.copy())
+ assert_c(a.copy('C'))
+ assert_fortran(a.copy('F'))
+ assert_c(a.copy('A'))
+
+ @pytest.mark.parametrize("dtype", ['O', np.int32, 'i,O'])
+ def test__deepcopy__(self, dtype):
+ # Force the entry of NULLs into array
+ a = np.empty(4, dtype=dtype)
+ ctypes.memset(a.ctypes.data, 0, a.nbytes)
+
+ # Ensure no error is raised, see gh-21833
+ b = a.__deepcopy__({})
+
+ a[0] = 42
+ with pytest.raises(AssertionError):
+ assert_array_equal(a, b)
+
+ def test__deepcopy__catches_failure(self):
+ class MyObj:
+ def __deepcopy__(self, *args, **kwargs):
+ raise RuntimeError
+
+ arr = np.array([1, MyObj(), 3], dtype='O')
+ with pytest.raises(RuntimeError):
+ arr.__deepcopy__({})
+
+ def test_sort_order(self):
+ # Test sorting an array with fields
+ x1 = np.array([21, 32, 14])
+ x2 = np.array(['my', 'first', 'name'])
+ x3 = np.array([3.1, 4.5, 6.2])
+ r = np.rec.fromarrays([x1, x2, x3], names='id,word,number')
+
+ r.sort(order=['id'])
+ assert_equal(r.id, np.array([14, 21, 32]))
+ assert_equal(r.word, np.array(['name', 'my', 'first']))
+ assert_equal(r.number, np.array([6.2, 3.1, 4.5]))
+
+ r.sort(order=['word'])
+ assert_equal(r.id, np.array([32, 21, 14]))
+ assert_equal(r.word, np.array(['first', 'my', 'name']))
+ assert_equal(r.number, np.array([4.5, 3.1, 6.2]))
+
+ r.sort(order=['number'])
+ assert_equal(r.id, np.array([21, 32, 14]))
+ assert_equal(r.word, np.array(['my', 'first', 'name']))
+ assert_equal(r.number, np.array([3.1, 4.5, 6.2]))
+
+ assert_raises_regex(ValueError, 'duplicate',
+ lambda: r.sort(order=['id', 'id']))
+
+ if sys.byteorder == 'little':
+ strtype = '>i2'
+ else:
+ strtype = '<i2'
+ mydtype = [('name', 'U5'), ('col2', strtype)]
+ r = np.array([('a', 1), ('b', 255), ('c', 3), ('d', 258)],
+ dtype=mydtype)
+ r.sort(order='col2')
+ assert_equal(r['col2'], [1, 3, 255, 258])
+ assert_equal(r, np.array([('a', 1), ('c', 3), ('b', 255), ('d', 258)],
+ dtype=mydtype))
+
+ def test_argsort(self):
+ # all c scalar argsorts use the same code with different types
+ # so it suffices to run a quick check with one type. The number
+ # of sorted items must be greater than ~50 to check the actual
+ # algorithm because quick and merge sort fall over to insertion
+ # sort for small arrays.
+
+ for dtype in [np.int32, np.uint32, np.float32]:
+ a = np.arange(101, dtype=dtype)
+ b = a[::-1].copy()
+ for kind in self.sort_kinds:
+ msg = "scalar argsort, kind=%s, dtype=%s" % (kind, dtype)
+ assert_equal(a.copy().argsort(kind=kind), a, msg)
+ assert_equal(b.copy().argsort(kind=kind), b, msg)
+
+ # test complex argsorts. These use the same code as the scalars
+ # but the compare function differs.
+ ai = a*1j + 1
+ bi = b*1j + 1
+ for kind in self.sort_kinds:
+ msg = "complex argsort, kind=%s" % kind
+ assert_equal(ai.copy().argsort(kind=kind), a, msg)
+ assert_equal(bi.copy().argsort(kind=kind), b, msg)
+ ai = a + 1j
+ bi = b + 1j
+ for kind in self.sort_kinds:
+ msg = "complex argsort, kind=%s" % kind
+ assert_equal(ai.copy().argsort(kind=kind), a, msg)
+ assert_equal(bi.copy().argsort(kind=kind), b, msg)
+
+ # test argsort of complex arrays requiring byte-swapping, gh-5441
+ for endianness in '<>':
+ for dt in np.typecodes['Complex']:
+ arr = np.array([1+3.j, 2+2.j, 3+1.j], dtype=endianness + dt)
+ msg = 'byte-swapped complex argsort, dtype={0}'.format(dt)
+ assert_equal(arr.argsort(),
+ np.arange(len(arr), dtype=np.intp), msg)
+
+ # test string argsorts.
+ s = 'aaaaaaaa'
+ a = np.array([s + chr(i) for i in range(101)])
+ b = a[::-1].copy()
+ r = np.arange(101)
+ rr = r[::-1]
+ for kind in self.sort_kinds:
+ msg = "string argsort, kind=%s" % kind
+ assert_equal(a.copy().argsort(kind=kind), r, msg)
+ assert_equal(b.copy().argsort(kind=kind), rr, msg)
+
+ # test unicode argsorts.
+ s = 'aaaaaaaa'
+ a = np.array([s + chr(i) for i in range(101)], dtype=np.str_)
+ b = a[::-1]
+ r = np.arange(101)
+ rr = r[::-1]
+ for kind in self.sort_kinds:
+ msg = "unicode argsort, kind=%s" % kind
+ assert_equal(a.copy().argsort(kind=kind), r, msg)
+ assert_equal(b.copy().argsort(kind=kind), rr, msg)
+
+ # test object array argsorts.
+ a = np.empty((101,), dtype=object)
+ a[:] = list(range(101))
+ b = a[::-1]
+ r = np.arange(101)
+ rr = r[::-1]
+ for kind in self.sort_kinds:
+ msg = "object argsort, kind=%s" % kind
+ assert_equal(a.copy().argsort(kind=kind), r, msg)
+ assert_equal(b.copy().argsort(kind=kind), rr, msg)
+
+ # test structured array argsorts.
+ dt = np.dtype([('f', float), ('i', int)])
+ a = np.array([(i, i) for i in range(101)], dtype=dt)
+ b = a[::-1]
+ r = np.arange(101)
+ rr = r[::-1]
+ for kind in self.sort_kinds:
+ msg = "structured array argsort, kind=%s" % kind
+ assert_equal(a.copy().argsort(kind=kind), r, msg)
+ assert_equal(b.copy().argsort(kind=kind), rr, msg)
+
+ # test datetime64 argsorts.
+ a = np.arange(0, 101, dtype='datetime64[D]')
+ b = a[::-1]
+ r = np.arange(101)
+ rr = r[::-1]
+ for kind in ['q', 'h', 'm']:
+ msg = "datetime64 argsort, kind=%s" % kind
+ assert_equal(a.copy().argsort(kind=kind), r, msg)
+ assert_equal(b.copy().argsort(kind=kind), rr, msg)
+
+ # test timedelta64 argsorts.
+ a = np.arange(0, 101, dtype='timedelta64[D]')
+ b = a[::-1]
+ r = np.arange(101)
+ rr = r[::-1]
+ for kind in ['q', 'h', 'm']:
+ msg = "timedelta64 argsort, kind=%s" % kind
+ assert_equal(a.copy().argsort(kind=kind), r, msg)
+ assert_equal(b.copy().argsort(kind=kind), rr, msg)
+
+ # check axis handling. This should be the same for all type
+ # specific argsorts, so we only check it for one type and one kind
+ a = np.array([[3, 2], [1, 0]])
+ b = np.array([[1, 1], [0, 0]])
+ c = np.array([[1, 0], [1, 0]])
+ assert_equal(a.copy().argsort(axis=0), b)
+ assert_equal(a.copy().argsort(axis=1), c)
+ assert_equal(a.copy().argsort(), c)
+
+ # check axis handling for multidimensional empty arrays
+ a = np.array([])
+ a.shape = (3, 2, 1, 0)
+ for axis in range(-a.ndim, a.ndim):
+ msg = 'test empty array argsort with axis={0}'.format(axis)
+ assert_equal(np.argsort(a, axis=axis),
+ np.zeros_like(a, dtype=np.intp), msg)
+ msg = 'test empty array argsort with axis=None'
+ assert_equal(np.argsort(a, axis=None),
+ np.zeros_like(a.ravel(), dtype=np.intp), msg)
+
+ # check that stable argsorts are stable
+ r = np.arange(100)
+ # scalars
+ a = np.zeros(100)
+ assert_equal(a.argsort(kind='m'), r)
+ # complex
+ a = np.zeros(100, dtype=complex)
+ assert_equal(a.argsort(kind='m'), r)
+ # string
+ a = np.array(['aaaaaaaaa' for i in range(100)])
+ assert_equal(a.argsort(kind='m'), r)
+ # unicode
+ a = np.array(['aaaaaaaaa' for i in range(100)], dtype=np.str_)
+ assert_equal(a.argsort(kind='m'), r)
+
+ def test_sort_unicode_kind(self):
+ d = np.arange(10)
+ k = b'\xc3\xa4'.decode("UTF8")
+ assert_raises(ValueError, d.sort, kind=k)
+ assert_raises(ValueError, d.argsort, kind=k)
+
+ @pytest.mark.parametrize('a', [
+ np.array([0, 1, np.nan], dtype=np.float16),
+ np.array([0, 1, np.nan], dtype=np.float32),
+ np.array([0, 1, np.nan]),
+ ])
+ def test_searchsorted_floats(self, a):
+ # test for floats arrays containing nans. Explicitly test
+ # half, single, and double precision floats to verify that
+ # the NaN-handling is correct.
+ msg = "Test real (%s) searchsorted with nans, side='l'" % a.dtype
+ b = a.searchsorted(a, side='left')
+ assert_equal(b, np.arange(3), msg)
+ msg = "Test real (%s) searchsorted with nans, side='r'" % a.dtype
+ b = a.searchsorted(a, side='right')
+ assert_equal(b, np.arange(1, 4), msg)
+ # check keyword arguments
+ a.searchsorted(v=1)
+ x = np.array([0, 1, np.nan], dtype='float32')
+ y = np.searchsorted(x, x[-1])
+ assert_equal(y, 2)
+
+ def test_searchsorted_complex(self):
+ # test for complex arrays containing nans.
+ # The search sorted routines use the compare functions for the
+ # array type, so this checks if that is consistent with the sort
+ # order.
+ # check double complex
+ a = np.zeros(9, dtype=np.complex128)
+ a.real += [0, 0, 1, 1, 0, 1, np.nan, np.nan, np.nan]
+ a.imag += [0, 1, 0, 1, np.nan, np.nan, 0, 1, np.nan]
+ msg = "Test complex searchsorted with nans, side='l'"
+ b = a.searchsorted(a, side='left')
+ assert_equal(b, np.arange(9), msg)
+ msg = "Test complex searchsorted with nans, side='r'"
+ b = a.searchsorted(a, side='right')
+ assert_equal(b, np.arange(1, 10), msg)
+ msg = "Test searchsorted with little endian, side='l'"
+ a = np.array([0, 128], dtype='<i4')
+ b = a.searchsorted(np.array(128, dtype='<i4'))
+ assert_equal(b, 1, msg)
+ msg = "Test searchsorted with big endian, side='l'"
+ a = np.array([0, 128], dtype='>i4')
+ b = a.searchsorted(np.array(128, dtype='>i4'))
+ assert_equal(b, 1, msg)
+
+ def test_searchsorted_n_elements(self):
+ # Check 0 elements
+ a = np.ones(0)
+ b = a.searchsorted([0, 1, 2], 'left')
+ assert_equal(b, [0, 0, 0])
+ b = a.searchsorted([0, 1, 2], 'right')
+ assert_equal(b, [0, 0, 0])
+ a = np.ones(1)
+ # Check 1 element
+ b = a.searchsorted([0, 1, 2], 'left')
+ assert_equal(b, [0, 0, 1])
+ b = a.searchsorted([0, 1, 2], 'right')
+ assert_equal(b, [0, 1, 1])
+ # Check all elements equal
+ a = np.ones(2)
+ b = a.searchsorted([0, 1, 2], 'left')
+ assert_equal(b, [0, 0, 2])
+ b = a.searchsorted([0, 1, 2], 'right')
+ assert_equal(b, [0, 2, 2])
+
+ def test_searchsorted_unaligned_array(self):
+ # Test searching unaligned array
+ a = np.arange(10)
+ aligned = np.empty(a.itemsize * a.size + 1, 'uint8')
+ unaligned = aligned[1:].view(a.dtype)
+ unaligned[:] = a
+ # Test searching unaligned array
+ b = unaligned.searchsorted(a, 'left')
+ assert_equal(b, a)
+ b = unaligned.searchsorted(a, 'right')
+ assert_equal(b, a + 1)
+ # Test searching for unaligned keys
+ b = a.searchsorted(unaligned, 'left')
+ assert_equal(b, a)
+ b = a.searchsorted(unaligned, 'right')
+ assert_equal(b, a + 1)
+
+ def test_searchsorted_resetting(self):
+ # Test smart resetting of binsearch indices
+ a = np.arange(5)
+ b = a.searchsorted([6, 5, 4], 'left')
+ assert_equal(b, [5, 5, 4])
+ b = a.searchsorted([6, 5, 4], 'right')
+ assert_equal(b, [5, 5, 5])
+
+ def test_searchsorted_type_specific(self):
+ # Test all type specific binary search functions
+ types = ''.join((np.typecodes['AllInteger'], np.typecodes['AllFloat'],
+ np.typecodes['Datetime'], '?O'))
+ for dt in types:
+ if dt == 'M':
+ dt = 'M8[D]'
+ if dt == '?':
+ a = np.arange(2, dtype=dt)
+ out = np.arange(2)
+ else:
+ a = np.arange(0, 5, dtype=dt)
+ out = np.arange(5)
+ b = a.searchsorted(a, 'left')
+ assert_equal(b, out)
+ b = a.searchsorted(a, 'right')
+ assert_equal(b, out + 1)
+ # Test empty array, use a fresh array to get warnings in
+ # valgrind if access happens.
+ e = np.ndarray(shape=0, buffer=b'', dtype=dt)
+ b = e.searchsorted(a, 'left')
+ assert_array_equal(b, np.zeros(len(a), dtype=np.intp))
+ b = a.searchsorted(e, 'left')
+ assert_array_equal(b, np.zeros(0, dtype=np.intp))
+
+ def test_searchsorted_unicode(self):
+ # Test searchsorted on unicode strings.
+
+ # 1.6.1 contained a string length miscalculation in
+ # arraytypes.c.src:UNICODE_compare() which manifested as
+ # incorrect/inconsistent results from searchsorted.
+ a = np.array(['P:\\20x_dapi_cy3\\20x_dapi_cy3_20100185_1',
+ 'P:\\20x_dapi_cy3\\20x_dapi_cy3_20100186_1',
+ 'P:\\20x_dapi_cy3\\20x_dapi_cy3_20100187_1',
+ 'P:\\20x_dapi_cy3\\20x_dapi_cy3_20100189_1',
+ 'P:\\20x_dapi_cy3\\20x_dapi_cy3_20100190_1',
+ 'P:\\20x_dapi_cy3\\20x_dapi_cy3_20100191_1',
+ 'P:\\20x_dapi_cy3\\20x_dapi_cy3_20100192_1',
+ 'P:\\20x_dapi_cy3\\20x_dapi_cy3_20100193_1',
+ 'P:\\20x_dapi_cy3\\20x_dapi_cy3_20100194_1',
+ 'P:\\20x_dapi_cy3\\20x_dapi_cy3_20100195_1',
+ 'P:\\20x_dapi_cy3\\20x_dapi_cy3_20100196_1',
+ 'P:\\20x_dapi_cy3\\20x_dapi_cy3_20100197_1',
+ 'P:\\20x_dapi_cy3\\20x_dapi_cy3_20100198_1',
+ 'P:\\20x_dapi_cy3\\20x_dapi_cy3_20100199_1'],
+ dtype=np.str_)
+ ind = np.arange(len(a))
+ assert_equal([a.searchsorted(v, 'left') for v in a], ind)
+ assert_equal([a.searchsorted(v, 'right') for v in a], ind + 1)
+ assert_equal([a.searchsorted(a[i], 'left') for i in ind], ind)
+ assert_equal([a.searchsorted(a[i], 'right') for i in ind], ind + 1)
+
+ def test_searchsorted_with_invalid_sorter(self):
+ a = np.array([5, 2, 1, 3, 4])
+ s = np.argsort(a)
+ assert_raises(TypeError, np.searchsorted, a, 0,
+ sorter=np.array((1, (2, 3)), dtype=object))
+ assert_raises(TypeError, np.searchsorted, a, 0, sorter=[1.1])
+ assert_raises(ValueError, np.searchsorted, a, 0, sorter=[1, 2, 3, 4])
+ assert_raises(ValueError, np.searchsorted, a, 0, sorter=[1, 2, 3, 4, 5, 6])
+
+ # bounds check
+ assert_raises(ValueError, np.searchsorted, a, 4, sorter=[0, 1, 2, 3, 5])
+ assert_raises(ValueError, np.searchsorted, a, 0, sorter=[-1, 0, 1, 2, 3])
+ assert_raises(ValueError, np.searchsorted, a, 0, sorter=[4, 0, -1, 2, 3])
+
+ def test_searchsorted_with_sorter(self):
+ a = np.random.rand(300)
+ s = a.argsort()
+ b = np.sort(a)
+ k = np.linspace(0, 1, 20)
+ assert_equal(b.searchsorted(k), a.searchsorted(k, sorter=s))
+
+ a = np.array([0, 1, 2, 3, 5]*20)
+ s = a.argsort()
+ k = [0, 1, 2, 3, 5]
+ expected = [0, 20, 40, 60, 80]
+ assert_equal(a.searchsorted(k, side='left', sorter=s), expected)
+ expected = [20, 40, 60, 80, 100]
+ assert_equal(a.searchsorted(k, side='right', sorter=s), expected)
+
+ # Test searching unaligned array
+ keys = np.arange(10)
+ a = keys.copy()
+ np.random.shuffle(s)
+ s = a.argsort()
+ aligned = np.empty(a.itemsize * a.size + 1, 'uint8')
+ unaligned = aligned[1:].view(a.dtype)
+ # Test searching unaligned array
+ unaligned[:] = a
+ b = unaligned.searchsorted(keys, 'left', s)
+ assert_equal(b, keys)
+ b = unaligned.searchsorted(keys, 'right', s)
+ assert_equal(b, keys + 1)
+ # Test searching for unaligned keys
+ unaligned[:] = keys
+ b = a.searchsorted(unaligned, 'left', s)
+ assert_equal(b, keys)
+ b = a.searchsorted(unaligned, 'right', s)
+ assert_equal(b, keys + 1)
+
+ # Test all type specific indirect binary search functions
+ types = ''.join((np.typecodes['AllInteger'], np.typecodes['AllFloat'],
+ np.typecodes['Datetime'], '?O'))
+ for dt in types:
+ if dt == 'M':
+ dt = 'M8[D]'
+ if dt == '?':
+ a = np.array([1, 0], dtype=dt)
+ # We want the sorter array to be of a type that is different
+ # from np.intp in all platforms, to check for #4698
+ s = np.array([1, 0], dtype=np.int16)
+ out = np.array([1, 0])
+ else:
+ a = np.array([3, 4, 1, 2, 0], dtype=dt)
+ # We want the sorter array to be of a type that is different
+ # from np.intp in all platforms, to check for #4698
+ s = np.array([4, 2, 3, 0, 1], dtype=np.int16)
+ out = np.array([3, 4, 1, 2, 0], dtype=np.intp)
+ b = a.searchsorted(a, 'left', s)
+ assert_equal(b, out)
+ b = a.searchsorted(a, 'right', s)
+ assert_equal(b, out + 1)
+ # Test empty array, use a fresh array to get warnings in
+ # valgrind if access happens.
+ e = np.ndarray(shape=0, buffer=b'', dtype=dt)
+ b = e.searchsorted(a, 'left', s[:0])
+ assert_array_equal(b, np.zeros(len(a), dtype=np.intp))
+ b = a.searchsorted(e, 'left', s)
+ assert_array_equal(b, np.zeros(0, dtype=np.intp))
+
+ # Test non-contiguous sorter array
+ a = np.array([3, 4, 1, 2, 0])
+ srt = np.empty((10,), dtype=np.intp)
+ srt[1::2] = -1
+ srt[::2] = [4, 2, 3, 0, 1]
+ s = srt[::2]
+ out = np.array([3, 4, 1, 2, 0], dtype=np.intp)
+ b = a.searchsorted(a, 'left', s)
+ assert_equal(b, out)
+ b = a.searchsorted(a, 'right', s)
+ assert_equal(b, out + 1)
+
+ def test_searchsorted_return_type(self):
+ # Functions returning indices should always return base ndarrays
+ class A(np.ndarray):
+ pass
+ a = np.arange(5).view(A)
+ b = np.arange(1, 3).view(A)
+ s = np.arange(5).view(A)
+ assert_(not isinstance(a.searchsorted(b, 'left'), A))
+ assert_(not isinstance(a.searchsorted(b, 'right'), A))
+ assert_(not isinstance(a.searchsorted(b, 'left', s), A))
+ assert_(not isinstance(a.searchsorted(b, 'right', s), A))
+
+ @pytest.mark.parametrize("dtype", np.typecodes["All"])
+ def test_argpartition_out_of_range(self, dtype):
+ # Test out of range values in kth raise an error, gh-5469
+ d = np.arange(10).astype(dtype=dtype)
+ assert_raises(ValueError, d.argpartition, 10)
+ assert_raises(ValueError, d.argpartition, -11)
+
+ @pytest.mark.parametrize("dtype", np.typecodes["All"])
+ def test_partition_out_of_range(self, dtype):
+ # Test out of range values in kth raise an error, gh-5469
+ d = np.arange(10).astype(dtype=dtype)
+ assert_raises(ValueError, d.partition, 10)
+ assert_raises(ValueError, d.partition, -11)
+
+ def test_argpartition_integer(self):
+ # Test non-integer values in kth raise an error/
+ d = np.arange(10)
+ assert_raises(TypeError, d.argpartition, 9.)
+ # Test also for generic type argpartition, which uses sorting
+ # and used to not bound check kth
+ d_obj = np.arange(10, dtype=object)
+ assert_raises(TypeError, d_obj.argpartition, 9.)
+
+ def test_partition_integer(self):
+ # Test out of range values in kth raise an error, gh-5469
+ d = np.arange(10)
+ assert_raises(TypeError, d.partition, 9.)
+ # Test also for generic type partition, which uses sorting
+ # and used to not bound check kth
+ d_obj = np.arange(10, dtype=object)
+ assert_raises(TypeError, d_obj.partition, 9.)
+
+ @pytest.mark.parametrize("kth_dtype", np.typecodes["AllInteger"])
+ def test_partition_empty_array(self, kth_dtype):
+ # check axis handling for multidimensional empty arrays
+ kth = np.array(0, dtype=kth_dtype)[()]
+ a = np.array([])
+ a.shape = (3, 2, 1, 0)
+ for axis in range(-a.ndim, a.ndim):
+ msg = 'test empty array partition with axis={0}'.format(axis)
+ assert_equal(np.partition(a, kth, axis=axis), a, msg)
+ msg = 'test empty array partition with axis=None'
+ assert_equal(np.partition(a, kth, axis=None), a.ravel(), msg)
+
+ @pytest.mark.parametrize("kth_dtype", np.typecodes["AllInteger"])
+ def test_argpartition_empty_array(self, kth_dtype):
+ # check axis handling for multidimensional empty arrays
+ kth = np.array(0, dtype=kth_dtype)[()]
+ a = np.array([])
+ a.shape = (3, 2, 1, 0)
+ for axis in range(-a.ndim, a.ndim):
+ msg = 'test empty array argpartition with axis={0}'.format(axis)
+ assert_equal(np.partition(a, kth, axis=axis),
+ np.zeros_like(a, dtype=np.intp), msg)
+ msg = 'test empty array argpartition with axis=None'
+ assert_equal(np.partition(a, kth, axis=None),
+ np.zeros_like(a.ravel(), dtype=np.intp), msg)
+
+ def test_partition(self):
+ d = np.arange(10)
+ assert_raises(TypeError, np.partition, d, 2, kind=1)
+ assert_raises(ValueError, np.partition, d, 2, kind="nonsense")
+ assert_raises(ValueError, np.argpartition, d, 2, kind="nonsense")
+ assert_raises(ValueError, d.partition, 2, axis=0, kind="nonsense")
+ assert_raises(ValueError, d.argpartition, 2, axis=0, kind="nonsense")
+ for k in ("introselect",):
+ d = np.array([])
+ assert_array_equal(np.partition(d, 0, kind=k), d)
+ assert_array_equal(np.argpartition(d, 0, kind=k), d)
+ d = np.ones(1)
+ assert_array_equal(np.partition(d, 0, kind=k)[0], d)
+ assert_array_equal(d[np.argpartition(d, 0, kind=k)],
+ np.partition(d, 0, kind=k))
+
+ # kth not modified
+ kth = np.array([30, 15, 5])
+ okth = kth.copy()
+ np.partition(np.arange(40), kth)
+ assert_array_equal(kth, okth)
+
+ for r in ([2, 1], [1, 2], [1, 1]):
+ d = np.array(r)
+ tgt = np.sort(d)
+ assert_array_equal(np.partition(d, 0, kind=k)[0], tgt[0])
+ assert_array_equal(np.partition(d, 1, kind=k)[1], tgt[1])
+ assert_array_equal(d[np.argpartition(d, 0, kind=k)],
+ np.partition(d, 0, kind=k))
+ assert_array_equal(d[np.argpartition(d, 1, kind=k)],
+ np.partition(d, 1, kind=k))
+ for i in range(d.size):
+ d[i:].partition(0, kind=k)
+ assert_array_equal(d, tgt)
+
+ for r in ([3, 2, 1], [1, 2, 3], [2, 1, 3], [2, 3, 1],
+ [1, 1, 1], [1, 2, 2], [2, 2, 1], [1, 2, 1]):
+ d = np.array(r)
+ tgt = np.sort(d)
+ assert_array_equal(np.partition(d, 0, kind=k)[0], tgt[0])
+ assert_array_equal(np.partition(d, 1, kind=k)[1], tgt[1])
+ assert_array_equal(np.partition(d, 2, kind=k)[2], tgt[2])
+ assert_array_equal(d[np.argpartition(d, 0, kind=k)],
+ np.partition(d, 0, kind=k))
+ assert_array_equal(d[np.argpartition(d, 1, kind=k)],
+ np.partition(d, 1, kind=k))
+ assert_array_equal(d[np.argpartition(d, 2, kind=k)],
+ np.partition(d, 2, kind=k))
+ for i in range(d.size):
+ d[i:].partition(0, kind=k)
+ assert_array_equal(d, tgt)
+
+ d = np.ones(50)
+ assert_array_equal(np.partition(d, 0, kind=k), d)
+ assert_array_equal(d[np.argpartition(d, 0, kind=k)],
+ np.partition(d, 0, kind=k))
+
+ # sorted
+ d = np.arange(49)
+ assert_equal(np.partition(d, 5, kind=k)[5], 5)
+ assert_equal(np.partition(d, 15, kind=k)[15], 15)
+ assert_array_equal(d[np.argpartition(d, 5, kind=k)],
+ np.partition(d, 5, kind=k))
+ assert_array_equal(d[np.argpartition(d, 15, kind=k)],
+ np.partition(d, 15, kind=k))
+
+ # rsorted
+ d = np.arange(47)[::-1]
+ assert_equal(np.partition(d, 6, kind=k)[6], 6)
+ assert_equal(np.partition(d, 16, kind=k)[16], 16)
+ assert_array_equal(d[np.argpartition(d, 6, kind=k)],
+ np.partition(d, 6, kind=k))
+ assert_array_equal(d[np.argpartition(d, 16, kind=k)],
+ np.partition(d, 16, kind=k))
+
+ assert_array_equal(np.partition(d, -6, kind=k),
+ np.partition(d, 41, kind=k))
+ assert_array_equal(np.partition(d, -16, kind=k),
+ np.partition(d, 31, kind=k))
+ assert_array_equal(d[np.argpartition(d, -6, kind=k)],
+ np.partition(d, 41, kind=k))
+
+ # median of 3 killer, O(n^2) on pure median 3 pivot quickselect
+ # exercises the median of median of 5 code used to keep O(n)
+ d = np.arange(1000000)
+ x = np.roll(d, d.size // 2)
+ mid = x.size // 2 + 1
+ assert_equal(np.partition(x, mid)[mid], mid)
+ d = np.arange(1000001)
+ x = np.roll(d, d.size // 2 + 1)
+ mid = x.size // 2 + 1
+ assert_equal(np.partition(x, mid)[mid], mid)
+
+ # max
+ d = np.ones(10)
+ d[1] = 4
+ assert_equal(np.partition(d, (2, -1))[-1], 4)
+ assert_equal(np.partition(d, (2, -1))[2], 1)
+ assert_equal(d[np.argpartition(d, (2, -1))][-1], 4)
+ assert_equal(d[np.argpartition(d, (2, -1))][2], 1)
+ d[1] = np.nan
+ assert_(np.isnan(d[np.argpartition(d, (2, -1))][-1]))
+ assert_(np.isnan(np.partition(d, (2, -1))[-1]))
+
+ # equal elements
+ d = np.arange(47) % 7
+ tgt = np.sort(np.arange(47) % 7)
+ np.random.shuffle(d)
+ for i in range(d.size):
+ assert_equal(np.partition(d, i, kind=k)[i], tgt[i])
+ assert_array_equal(d[np.argpartition(d, 6, kind=k)],
+ np.partition(d, 6, kind=k))
+ assert_array_equal(d[np.argpartition(d, 16, kind=k)],
+ np.partition(d, 16, kind=k))
+ for i in range(d.size):
+ d[i:].partition(0, kind=k)
+ assert_array_equal(d, tgt)
+
+ d = np.array([0, 1, 2, 3, 4, 5, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
+ 7, 7, 7, 7, 7, 9])
+ kth = [0, 3, 19, 20]
+ assert_equal(np.partition(d, kth, kind=k)[kth], (0, 3, 7, 7))
+ assert_equal(d[np.argpartition(d, kth, kind=k)][kth], (0, 3, 7, 7))
+
+ d = np.array([2, 1])
+ d.partition(0, kind=k)
+ assert_raises(ValueError, d.partition, 2)
+ assert_raises(np.AxisError, d.partition, 3, axis=1)
+ assert_raises(ValueError, np.partition, d, 2)
+ assert_raises(np.AxisError, np.partition, d, 2, axis=1)
+ assert_raises(ValueError, d.argpartition, 2)
+ assert_raises(np.AxisError, d.argpartition, 3, axis=1)
+ assert_raises(ValueError, np.argpartition, d, 2)
+ assert_raises(np.AxisError, np.argpartition, d, 2, axis=1)
+ d = np.arange(10).reshape((2, 5))
+ d.partition(1, axis=0, kind=k)
+ d.partition(4, axis=1, kind=k)
+ np.partition(d, 1, axis=0, kind=k)
+ np.partition(d, 4, axis=1, kind=k)
+ np.partition(d, 1, axis=None, kind=k)
+ np.partition(d, 9, axis=None, kind=k)
+ d.argpartition(1, axis=0, kind=k)
+ d.argpartition(4, axis=1, kind=k)
+ np.argpartition(d, 1, axis=0, kind=k)
+ np.argpartition(d, 4, axis=1, kind=k)
+ np.argpartition(d, 1, axis=None, kind=k)
+ np.argpartition(d, 9, axis=None, kind=k)
+ assert_raises(ValueError, d.partition, 2, axis=0)
+ assert_raises(ValueError, d.partition, 11, axis=1)
+ assert_raises(TypeError, d.partition, 2, axis=None)
+ assert_raises(ValueError, np.partition, d, 9, axis=1)
+ assert_raises(ValueError, np.partition, d, 11, axis=None)
+ assert_raises(ValueError, d.argpartition, 2, axis=0)
+ assert_raises(ValueError, d.argpartition, 11, axis=1)
+ assert_raises(ValueError, np.argpartition, d, 9, axis=1)
+ assert_raises(ValueError, np.argpartition, d, 11, axis=None)
+
+ td = [(dt, s) for dt in [np.int32, np.float32, np.complex64]
+ for s in (9, 16)]
+ for dt, s in td:
+ aae = assert_array_equal
+ at = assert_
+
+ d = np.arange(s, dtype=dt)
+ np.random.shuffle(d)
+ d1 = np.tile(np.arange(s, dtype=dt), (4, 1))
+ map(np.random.shuffle, d1)
+ d0 = np.transpose(d1)
+ for i in range(d.size):
+ p = np.partition(d, i, kind=k)
+ assert_equal(p[i], i)
+ # all before are smaller
+ assert_array_less(p[:i], p[i])
+ # all after are larger
+ assert_array_less(p[i], p[i + 1:])
+ aae(p, d[np.argpartition(d, i, kind=k)])
+
+ p = np.partition(d1, i, axis=1, kind=k)
+ aae(p[:, i], np.array([i] * d1.shape[0], dtype=dt))
+ # array_less does not seem to work right
+ at((p[:, :i].T <= p[:, i]).all(),
+ msg="%d: %r <= %r" % (i, p[:, i], p[:, :i].T))
+ at((p[:, i + 1:].T > p[:, i]).all(),
+ msg="%d: %r < %r" % (i, p[:, i], p[:, i + 1:].T))
+ aae(p, d1[np.arange(d1.shape[0])[:, None],
+ np.argpartition(d1, i, axis=1, kind=k)])
+
+ p = np.partition(d0, i, axis=0, kind=k)
+ aae(p[i, :], np.array([i] * d1.shape[0], dtype=dt))
+ # array_less does not seem to work right
+ at((p[:i, :] <= p[i, :]).all(),
+ msg="%d: %r <= %r" % (i, p[i, :], p[:i, :]))
+ at((p[i + 1:, :] > p[i, :]).all(),
+ msg="%d: %r < %r" % (i, p[i, :], p[:, i + 1:]))
+ aae(p, d0[np.argpartition(d0, i, axis=0, kind=k),
+ np.arange(d0.shape[1])[None, :]])
+
+ # check inplace
+ dc = d.copy()
+ dc.partition(i, kind=k)
+ assert_equal(dc, np.partition(d, i, kind=k))
+ dc = d0.copy()
+ dc.partition(i, axis=0, kind=k)
+ assert_equal(dc, np.partition(d0, i, axis=0, kind=k))
+ dc = d1.copy()
+ dc.partition(i, axis=1, kind=k)
+ assert_equal(dc, np.partition(d1, i, axis=1, kind=k))
+
+ def assert_partitioned(self, d, kth):
+ prev = 0
+ for k in np.sort(kth):
+ assert_array_less(d[prev:k], d[k], err_msg='kth %d' % k)
+ assert_((d[k:] >= d[k]).all(),
+ msg="kth %d, %r not greater equal %d" % (k, d[k:], d[k]))
+ prev = k + 1
+
+ def test_partition_iterative(self):
+ d = np.arange(17)
+ kth = (0, 1, 2, 429, 231)
+ assert_raises(ValueError, d.partition, kth)
+ assert_raises(ValueError, d.argpartition, kth)
+ d = np.arange(10).reshape((2, 5))
+ assert_raises(ValueError, d.partition, kth, axis=0)
+ assert_raises(ValueError, d.partition, kth, axis=1)
+ assert_raises(ValueError, np.partition, d, kth, axis=1)
+ assert_raises(ValueError, np.partition, d, kth, axis=None)
+
+ d = np.array([3, 4, 2, 1])
+ p = np.partition(d, (0, 3))
+ self.assert_partitioned(p, (0, 3))
+ self.assert_partitioned(d[np.argpartition(d, (0, 3))], (0, 3))
+
+ assert_array_equal(p, np.partition(d, (-3, -1)))
+ assert_array_equal(p, d[np.argpartition(d, (-3, -1))])
+
+ d = np.arange(17)
+ np.random.shuffle(d)
+ d.partition(range(d.size))
+ assert_array_equal(np.arange(17), d)
+ np.random.shuffle(d)
+ assert_array_equal(np.arange(17), d[d.argpartition(range(d.size))])
+
+ # test unsorted kth
+ d = np.arange(17)
+ np.random.shuffle(d)
+ keys = np.array([1, 3, 8, -2])
+ np.random.shuffle(d)
+ p = np.partition(d, keys)
+ self.assert_partitioned(p, keys)
+ p = d[np.argpartition(d, keys)]
+ self.assert_partitioned(p, keys)
+ np.random.shuffle(keys)
+ assert_array_equal(np.partition(d, keys), p)
+ assert_array_equal(d[np.argpartition(d, keys)], p)
+
+ # equal kth
+ d = np.arange(20)[::-1]
+ self.assert_partitioned(np.partition(d, [5]*4), [5])
+ self.assert_partitioned(np.partition(d, [5]*4 + [6, 13]),
+ [5]*4 + [6, 13])
+ self.assert_partitioned(d[np.argpartition(d, [5]*4)], [5])
+ self.assert_partitioned(d[np.argpartition(d, [5]*4 + [6, 13])],
+ [5]*4 + [6, 13])
+
+ d = np.arange(12)
+ np.random.shuffle(d)
+ d1 = np.tile(np.arange(12), (4, 1))
+ map(np.random.shuffle, d1)
+ d0 = np.transpose(d1)
+
+ kth = (1, 6, 7, -1)
+ p = np.partition(d1, kth, axis=1)
+ pa = d1[np.arange(d1.shape[0])[:, None],
+ d1.argpartition(kth, axis=1)]
+ assert_array_equal(p, pa)
+ for i in range(d1.shape[0]):
+ self.assert_partitioned(p[i,:], kth)
+ p = np.partition(d0, kth, axis=0)
+ pa = d0[np.argpartition(d0, kth, axis=0),
+ np.arange(d0.shape[1])[None,:]]
+ assert_array_equal(p, pa)
+ for i in range(d0.shape[1]):
+ self.assert_partitioned(p[:, i], kth)
+
+ def test_partition_cdtype(self):
+ d = np.array([('Galahad', 1.7, 38), ('Arthur', 1.8, 41),
+ ('Lancelot', 1.9, 38)],
+ dtype=[('name', '|S10'), ('height', '<f8'), ('age', '<i4')])
+
+ tgt = np.sort(d, order=['age', 'height'])
+ assert_array_equal(np.partition(d, range(d.size),
+ order=['age', 'height']),
+ tgt)
+ assert_array_equal(d[np.argpartition(d, range(d.size),
+ order=['age', 'height'])],
+ tgt)
+ for k in range(d.size):
+ assert_equal(np.partition(d, k, order=['age', 'height'])[k],
+ tgt[k])
+ assert_equal(d[np.argpartition(d, k, order=['age', 'height'])][k],
+ tgt[k])
+
+ d = np.array(['Galahad', 'Arthur', 'zebra', 'Lancelot'])
+ tgt = np.sort(d)
+ assert_array_equal(np.partition(d, range(d.size)), tgt)
+ for k in range(d.size):
+ assert_equal(np.partition(d, k)[k], tgt[k])
+ assert_equal(d[np.argpartition(d, k)][k], tgt[k])
+
+ def test_partition_unicode_kind(self):
+ d = np.arange(10)
+ k = b'\xc3\xa4'.decode("UTF8")
+ assert_raises(ValueError, d.partition, 2, kind=k)
+ assert_raises(ValueError, d.argpartition, 2, kind=k)
+
+ def test_partition_fuzz(self):
+ # a few rounds of random data testing
+ for j in range(10, 30):
+ for i in range(1, j - 2):
+ d = np.arange(j)
+ np.random.shuffle(d)
+ d = d % np.random.randint(2, 30)
+ idx = np.random.randint(d.size)
+ kth = [0, idx, i, i + 1]
+ tgt = np.sort(d)[kth]
+ assert_array_equal(np.partition(d, kth)[kth], tgt,
+ err_msg="data: %r\n kth: %r" % (d, kth))
+
+ @pytest.mark.parametrize("kth_dtype", np.typecodes["AllInteger"])
+ def test_argpartition_gh5524(self, kth_dtype):
+ # A test for functionality of argpartition on lists.
+ kth = np.array(1, dtype=kth_dtype)[()]
+ d = [6, 7, 3, 2, 9, 0]
+ p = np.argpartition(d, kth)
+ self.assert_partitioned(np.array(d)[p],[1])
+
+ def test_flatten(self):
+ x0 = np.array([[1, 2, 3], [4, 5, 6]], np.int32)
+ x1 = np.array([[[1, 2], [3, 4]], [[5, 6], [7, 8]]], np.int32)
+ y0 = np.array([1, 2, 3, 4, 5, 6], np.int32)
+ y0f = np.array([1, 4, 2, 5, 3, 6], np.int32)
+ y1 = np.array([1, 2, 3, 4, 5, 6, 7, 8], np.int32)
+ y1f = np.array([1, 5, 3, 7, 2, 6, 4, 8], np.int32)
+ assert_equal(x0.flatten(), y0)
+ assert_equal(x0.flatten('F'), y0f)
+ assert_equal(x0.flatten('F'), x0.T.flatten())
+ assert_equal(x1.flatten(), y1)
+ assert_equal(x1.flatten('F'), y1f)
+ assert_equal(x1.flatten('F'), x1.T.flatten())
+
+
+ @pytest.mark.parametrize('func', (np.dot, np.matmul))
+ def test_arr_mult(self, func):
+ a = np.array([[1, 0], [0, 1]])
+ b = np.array([[0, 1], [1, 0]])
+ c = np.array([[9, 1], [1, -9]])
+ d = np.arange(24).reshape(4, 6)
+ ddt = np.array(
+ [[ 55, 145, 235, 325],
+ [ 145, 451, 757, 1063],
+ [ 235, 757, 1279, 1801],
+ [ 325, 1063, 1801, 2539]]
+ )
+ dtd = np.array(
+ [[504, 540, 576, 612, 648, 684],
+ [540, 580, 620, 660, 700, 740],
+ [576, 620, 664, 708, 752, 796],
+ [612, 660, 708, 756, 804, 852],
+ [648, 700, 752, 804, 856, 908],
+ [684, 740, 796, 852, 908, 964]]
+ )
+
+
+ # gemm vs syrk optimizations
+ for et in [np.float32, np.float64, np.complex64, np.complex128]:
+ eaf = a.astype(et)
+ assert_equal(func(eaf, eaf), eaf)
+ assert_equal(func(eaf.T, eaf), eaf)
+ assert_equal(func(eaf, eaf.T), eaf)
+ assert_equal(func(eaf.T, eaf.T), eaf)
+ assert_equal(func(eaf.T.copy(), eaf), eaf)
+ assert_equal(func(eaf, eaf.T.copy()), eaf)
+ assert_equal(func(eaf.T.copy(), eaf.T.copy()), eaf)
+
+ # syrk validations
+ for et in [np.float32, np.float64, np.complex64, np.complex128]:
+ eaf = a.astype(et)
+ ebf = b.astype(et)
+ assert_equal(func(ebf, ebf), eaf)
+ assert_equal(func(ebf.T, ebf), eaf)
+ assert_equal(func(ebf, ebf.T), eaf)
+ assert_equal(func(ebf.T, ebf.T), eaf)
+
+ # syrk - different shape, stride, and view validations
+ for et in [np.float32, np.float64, np.complex64, np.complex128]:
+ edf = d.astype(et)
+ assert_equal(
+ func(edf[::-1, :], edf.T),
+ func(edf[::-1, :].copy(), edf.T.copy())
+ )
+ assert_equal(
+ func(edf[:, ::-1], edf.T),
+ func(edf[:, ::-1].copy(), edf.T.copy())
+ )
+ assert_equal(
+ func(edf, edf[::-1, :].T),
+ func(edf, edf[::-1, :].T.copy())
+ )
+ assert_equal(
+ func(edf, edf[:, ::-1].T),
+ func(edf, edf[:, ::-1].T.copy())
+ )
+ assert_equal(
+ func(edf[:edf.shape[0] // 2, :], edf[::2, :].T),
+ func(edf[:edf.shape[0] // 2, :].copy(), edf[::2, :].T.copy())
+ )
+ assert_equal(
+ func(edf[::2, :], edf[:edf.shape[0] // 2, :].T),
+ func(edf[::2, :].copy(), edf[:edf.shape[0] // 2, :].T.copy())
+ )
+
+ # syrk - different shape
+ for et in [np.float32, np.float64, np.complex64, np.complex128]:
+ edf = d.astype(et)
+ eddtf = ddt.astype(et)
+ edtdf = dtd.astype(et)
+ assert_equal(func(edf, edf.T), eddtf)
+ assert_equal(func(edf.T, edf), edtdf)
+
+ @pytest.mark.parametrize('func', (np.dot, np.matmul))
+ @pytest.mark.parametrize('dtype', 'ifdFD')
+ def test_no_dgemv(self, func, dtype):
+ # check vector arg for contiguous before gemv
+ # gh-12156
+ a = np.arange(8.0, dtype=dtype).reshape(2, 4)
+ b = np.broadcast_to(1., (4, 1))
+ ret1 = func(a, b)
+ ret2 = func(a, b.copy())
+ assert_equal(ret1, ret2)
+
+ ret1 = func(b.T, a.T)
+ ret2 = func(b.T.copy(), a.T)
+ assert_equal(ret1, ret2)
+
+ # check for unaligned data
+ dt = np.dtype(dtype)
+ a = np.zeros(8 * dt.itemsize // 2 + 1, dtype='int16')[1:].view(dtype)
+ a = a.reshape(2, 4)
+ b = a[0]
+ # make sure it is not aligned
+ assert_(a.__array_interface__['data'][0] % dt.itemsize != 0)
+ ret1 = func(a, b)
+ ret2 = func(a.copy(), b.copy())
+ assert_equal(ret1, ret2)
+
+ ret1 = func(b.T, a.T)
+ ret2 = func(b.T.copy(), a.T.copy())
+ assert_equal(ret1, ret2)
+
+ def test_dot(self):
+ a = np.array([[1, 0], [0, 1]])
+ b = np.array([[0, 1], [1, 0]])
+ c = np.array([[9, 1], [1, -9]])
+ # function versus methods
+ assert_equal(np.dot(a, b), a.dot(b))
+ assert_equal(np.dot(np.dot(a, b), c), a.dot(b).dot(c))
+
+ # test passing in an output array
+ c = np.zeros_like(a)
+ a.dot(b, c)
+ assert_equal(c, np.dot(a, b))
+
+ # test keyword args
+ c = np.zeros_like(a)
+ a.dot(b=b, out=c)
+ assert_equal(c, np.dot(a, b))
+
+ def test_dot_type_mismatch(self):
+ c = 1.
+ A = np.array((1,1), dtype='i,i')
+
+ assert_raises(TypeError, np.dot, c, A)
+ assert_raises(TypeError, np.dot, A, c)
+
+ def test_dot_out_mem_overlap(self):
+ np.random.seed(1)
+
+ # Test BLAS and non-BLAS code paths, including all dtypes
+ # that dot() supports
+ dtypes = [np.dtype(code) for code in np.typecodes['All']
+ if code not in 'USVM']
+ for dtype in dtypes:
+ a = np.random.rand(3, 3).astype(dtype)
+
+ # Valid dot() output arrays must be aligned
+ b = _aligned_zeros((3, 3), dtype=dtype)
+ b[...] = np.random.rand(3, 3)
+
+ y = np.dot(a, b)
+ x = np.dot(a, b, out=b)
+ assert_equal(x, y, err_msg=repr(dtype))
+
+ # Check invalid output array
+ assert_raises(ValueError, np.dot, a, b, out=b[::2])
+ assert_raises(ValueError, np.dot, a, b, out=b.T)
+
+ def test_dot_matmul_out(self):
+ # gh-9641
+ class Sub(np.ndarray):
+ pass
+ a = np.ones((2, 2)).view(Sub)
+ b = np.ones((2, 2)).view(Sub)
+ out = np.ones((2, 2))
+
+ # make sure out can be any ndarray (not only subclass of inputs)
+ np.dot(a, b, out=out)
+ np.matmul(a, b, out=out)
+
+ def test_dot_matmul_inner_array_casting_fails(self):
+
+ class A:
+ def __array__(self, *args, **kwargs):
+ raise NotImplementedError
+
+ # Don't override the error from calling __array__()
+ assert_raises(NotImplementedError, np.dot, A(), A())
+ assert_raises(NotImplementedError, np.matmul, A(), A())
+ assert_raises(NotImplementedError, np.inner, A(), A())
+
+ def test_matmul_out(self):
+ # overlapping memory
+ a = np.arange(18).reshape(2, 3, 3)
+ b = np.matmul(a, a)
+ c = np.matmul(a, a, out=a)
+ assert_(c is a)
+ assert_equal(c, b)
+ a = np.arange(18).reshape(2, 3, 3)
+ c = np.matmul(a, a, out=a[::-1, ...])
+ assert_(c.base is a.base)
+ assert_equal(c, b)
+
+ def test_diagonal(self):
+ a = np.arange(12).reshape((3, 4))
+ assert_equal(a.diagonal(), [0, 5, 10])
+ assert_equal(a.diagonal(0), [0, 5, 10])
+ assert_equal(a.diagonal(1), [1, 6, 11])
+ assert_equal(a.diagonal(-1), [4, 9])
+ assert_raises(np.AxisError, a.diagonal, axis1=0, axis2=5)
+ assert_raises(np.AxisError, a.diagonal, axis1=5, axis2=0)
+ assert_raises(np.AxisError, a.diagonal, axis1=5, axis2=5)
+ assert_raises(ValueError, a.diagonal, axis1=1, axis2=1)
+
+ b = np.arange(8).reshape((2, 2, 2))
+ assert_equal(b.diagonal(), [[0, 6], [1, 7]])
+ assert_equal(b.diagonal(0), [[0, 6], [1, 7]])
+ assert_equal(b.diagonal(1), [[2], [3]])
+ assert_equal(b.diagonal(-1), [[4], [5]])
+ assert_raises(ValueError, b.diagonal, axis1=0, axis2=0)
+ assert_equal(b.diagonal(0, 1, 2), [[0, 3], [4, 7]])
+ assert_equal(b.diagonal(0, 0, 1), [[0, 6], [1, 7]])
+ assert_equal(b.diagonal(offset=1, axis1=0, axis2=2), [[1], [3]])
+ # Order of axis argument doesn't matter:
+ assert_equal(b.diagonal(0, 2, 1), [[0, 3], [4, 7]])
+
+ def test_diagonal_view_notwriteable(self):
+ a = np.eye(3).diagonal()
+ assert_(not a.flags.writeable)
+ assert_(not a.flags.owndata)
+
+ a = np.diagonal(np.eye(3))
+ assert_(not a.flags.writeable)
+ assert_(not a.flags.owndata)
+
+ a = np.diag(np.eye(3))
+ assert_(not a.flags.writeable)
+ assert_(not a.flags.owndata)
+
+ def test_diagonal_memleak(self):
+ # Regression test for a bug that crept in at one point
+ a = np.zeros((100, 100))
+ if HAS_REFCOUNT:
+ assert_(sys.getrefcount(a) < 50)
+ for i in range(100):
+ a.diagonal()
+ if HAS_REFCOUNT:
+ assert_(sys.getrefcount(a) < 50)
+
+ def test_size_zero_memleak(self):
+ # Regression test for issue 9615
+ # Exercises a special-case code path for dot products of length
+ # zero in cblasfuncs (making it is specific to floating dtypes).
+ a = np.array([], dtype=np.float64)
+ x = np.array(2.0)
+ for _ in range(100):
+ np.dot(a, a, out=x)
+ if HAS_REFCOUNT:
+ assert_(sys.getrefcount(x) < 50)
+
+ def test_trace(self):
+ a = np.arange(12).reshape((3, 4))
+ assert_equal(a.trace(), 15)
+ assert_equal(a.trace(0), 15)
+ assert_equal(a.trace(1), 18)
+ assert_equal(a.trace(-1), 13)
+
+ b = np.arange(8).reshape((2, 2, 2))
+ assert_equal(b.trace(), [6, 8])
+ assert_equal(b.trace(0), [6, 8])
+ assert_equal(b.trace(1), [2, 3])
+ assert_equal(b.trace(-1), [4, 5])
+ assert_equal(b.trace(0, 0, 1), [6, 8])
+ assert_equal(b.trace(0, 0, 2), [5, 9])
+ assert_equal(b.trace(0, 1, 2), [3, 11])
+ assert_equal(b.trace(offset=1, axis1=0, axis2=2), [1, 3])
+
+ out = np.array(1)
+ ret = a.trace(out=out)
+ assert ret is out
+
+ def test_trace_subclass(self):
+ # The class would need to overwrite trace to ensure single-element
+ # output also has the right subclass.
+ class MyArray(np.ndarray):
+ pass
+
+ b = np.arange(8).reshape((2, 2, 2)).view(MyArray)
+ t = b.trace()
+ assert_(isinstance(t, MyArray))
+
+ def test_put(self):
+ icodes = np.typecodes['AllInteger']
+ fcodes = np.typecodes['AllFloat']
+ for dt in icodes + fcodes + 'O':
+ tgt = np.array([0, 1, 0, 3, 0, 5], dtype=dt)
+
+ # test 1-d
+ a = np.zeros(6, dtype=dt)
+ a.put([1, 3, 5], [1, 3, 5])
+ assert_equal(a, tgt)
+
+ # test 2-d
+ a = np.zeros((2, 3), dtype=dt)
+ a.put([1, 3, 5], [1, 3, 5])
+ assert_equal(a, tgt.reshape(2, 3))
+
+ for dt in '?':
+ tgt = np.array([False, True, False, True, False, True], dtype=dt)
+
+ # test 1-d
+ a = np.zeros(6, dtype=dt)
+ a.put([1, 3, 5], [True]*3)
+ assert_equal(a, tgt)
+
+ # test 2-d
+ a = np.zeros((2, 3), dtype=dt)
+ a.put([1, 3, 5], [True]*3)
+ assert_equal(a, tgt.reshape(2, 3))
+
+ # check must be writeable
+ a = np.zeros(6)
+ a.flags.writeable = False
+ assert_raises(ValueError, a.put, [1, 3, 5], [1, 3, 5])
+
+ # when calling np.put, make sure a
+ # TypeError is raised if the object
+ # isn't an ndarray
+ bad_array = [1, 2, 3]
+ assert_raises(TypeError, np.put, bad_array, [0, 2], 5)
+
+ def test_ravel(self):
+ a = np.array([[0, 1], [2, 3]])
+ assert_equal(a.ravel(), [0, 1, 2, 3])
+ assert_(not a.ravel().flags.owndata)
+ assert_equal(a.ravel('F'), [0, 2, 1, 3])
+ assert_equal(a.ravel(order='C'), [0, 1, 2, 3])
+ assert_equal(a.ravel(order='F'), [0, 2, 1, 3])
+ assert_equal(a.ravel(order='A'), [0, 1, 2, 3])
+ assert_(not a.ravel(order='A').flags.owndata)
+ assert_equal(a.ravel(order='K'), [0, 1, 2, 3])
+ assert_(not a.ravel(order='K').flags.owndata)
+ assert_equal(a.ravel(), a.reshape(-1))
+
+ a = np.array([[0, 1], [2, 3]], order='F')
+ assert_equal(a.ravel(), [0, 1, 2, 3])
+ assert_equal(a.ravel(order='A'), [0, 2, 1, 3])
+ assert_equal(a.ravel(order='K'), [0, 2, 1, 3])
+ assert_(not a.ravel(order='A').flags.owndata)
+ assert_(not a.ravel(order='K').flags.owndata)
+ assert_equal(a.ravel(), a.reshape(-1))
+ assert_equal(a.ravel(order='A'), a.reshape(-1, order='A'))
+
+ a = np.array([[0, 1], [2, 3]])[::-1, :]
+ assert_equal(a.ravel(), [2, 3, 0, 1])
+ assert_equal(a.ravel(order='C'), [2, 3, 0, 1])
+ assert_equal(a.ravel(order='F'), [2, 0, 3, 1])
+ assert_equal(a.ravel(order='A'), [2, 3, 0, 1])
+ # 'K' doesn't reverse the axes of negative strides
+ assert_equal(a.ravel(order='K'), [2, 3, 0, 1])
+ assert_(a.ravel(order='K').flags.owndata)
+
+ # Test simple 1-d copy behaviour:
+ a = np.arange(10)[::2]
+ assert_(a.ravel('K').flags.owndata)
+ assert_(a.ravel('C').flags.owndata)
+ assert_(a.ravel('F').flags.owndata)
+
+ # Not contiguous and 1-sized axis with non matching stride
+ a = np.arange(2**3 * 2)[::2]
+ a = a.reshape(2, 1, 2, 2).swapaxes(-1, -2)
+ strides = list(a.strides)
+ strides[1] = 123
+ a.strides = strides
+ assert_(a.ravel(order='K').flags.owndata)
+ assert_equal(a.ravel('K'), np.arange(0, 15, 2))
+
+ # contiguous and 1-sized axis with non matching stride works:
+ a = np.arange(2**3)
+ a = a.reshape(2, 1, 2, 2).swapaxes(-1, -2)
+ strides = list(a.strides)
+ strides[1] = 123
+ a.strides = strides
+ assert_(np.may_share_memory(a.ravel(order='K'), a))
+ assert_equal(a.ravel(order='K'), np.arange(2**3))
+
+ # Test negative strides (not very interesting since non-contiguous):
+ a = np.arange(4)[::-1].reshape(2, 2)
+ assert_(a.ravel(order='C').flags.owndata)
+ assert_(a.ravel(order='K').flags.owndata)
+ assert_equal(a.ravel('C'), [3, 2, 1, 0])
+ assert_equal(a.ravel('K'), [3, 2, 1, 0])
+
+ # 1-element tidy strides test:
+ a = np.array([[1]])
+ a.strides = (123, 432)
+ # If the following stride is not 8, NPY_RELAXED_STRIDES_DEBUG is
+ # messing them up on purpose:
+ if np.ones(1).strides == (8,):
+ assert_(np.may_share_memory(a.ravel('K'), a))
+ assert_equal(a.ravel('K').strides, (a.dtype.itemsize,))
+
+ for order in ('C', 'F', 'A', 'K'):
+ # 0-d corner case:
+ a = np.array(0)
+ assert_equal(a.ravel(order), [0])
+ assert_(np.may_share_memory(a.ravel(order), a))
+
+ # Test that certain non-inplace ravels work right (mostly) for 'K':
+ b = np.arange(2**4 * 2)[::2].reshape(2, 2, 2, 2)
+ a = b[..., ::2]
+ assert_equal(a.ravel('K'), [0, 4, 8, 12, 16, 20, 24, 28])
+ assert_equal(a.ravel('C'), [0, 4, 8, 12, 16, 20, 24, 28])
+ assert_equal(a.ravel('A'), [0, 4, 8, 12, 16, 20, 24, 28])
+ assert_equal(a.ravel('F'), [0, 16, 8, 24, 4, 20, 12, 28])
+
+ a = b[::2, ...]
+ assert_equal(a.ravel('K'), [0, 2, 4, 6, 8, 10, 12, 14])
+ assert_equal(a.ravel('C'), [0, 2, 4, 6, 8, 10, 12, 14])
+ assert_equal(a.ravel('A'), [0, 2, 4, 6, 8, 10, 12, 14])
+ assert_equal(a.ravel('F'), [0, 8, 4, 12, 2, 10, 6, 14])
+
+ def test_ravel_subclass(self):
+ class ArraySubclass(np.ndarray):
+ pass
+
+ a = np.arange(10).view(ArraySubclass)
+ assert_(isinstance(a.ravel('C'), ArraySubclass))
+ assert_(isinstance(a.ravel('F'), ArraySubclass))
+ assert_(isinstance(a.ravel('A'), ArraySubclass))
+ assert_(isinstance(a.ravel('K'), ArraySubclass))
+
+ a = np.arange(10)[::2].view(ArraySubclass)
+ assert_(isinstance(a.ravel('C'), ArraySubclass))
+ assert_(isinstance(a.ravel('F'), ArraySubclass))
+ assert_(isinstance(a.ravel('A'), ArraySubclass))
+ assert_(isinstance(a.ravel('K'), ArraySubclass))
+
+ def test_swapaxes(self):
+ a = np.arange(1*2*3*4).reshape(1, 2, 3, 4).copy()
+ idx = np.indices(a.shape)
+ assert_(a.flags['OWNDATA'])
+ b = a.copy()
+ # check exceptions
+ assert_raises(np.AxisError, a.swapaxes, -5, 0)
+ assert_raises(np.AxisError, a.swapaxes, 4, 0)
+ assert_raises(np.AxisError, a.swapaxes, 0, -5)
+ assert_raises(np.AxisError, a.swapaxes, 0, 4)
+
+ for i in range(-4, 4):
+ for j in range(-4, 4):
+ for k, src in enumerate((a, b)):
+ c = src.swapaxes(i, j)
+ # check shape
+ shape = list(src.shape)
+ shape[i] = src.shape[j]
+ shape[j] = src.shape[i]
+ assert_equal(c.shape, shape, str((i, j, k)))
+ # check array contents
+ i0, i1, i2, i3 = [dim-1 for dim in c.shape]
+ j0, j1, j2, j3 = [dim-1 for dim in src.shape]
+ assert_equal(src[idx[j0], idx[j1], idx[j2], idx[j3]],
+ c[idx[i0], idx[i1], idx[i2], idx[i3]],
+ str((i, j, k)))
+ # check a view is always returned, gh-5260
+ assert_(not c.flags['OWNDATA'], str((i, j, k)))
+ # check on non-contiguous input array
+ if k == 1:
+ b = c
+
+ def test_conjugate(self):
+ a = np.array([1-1j, 1+1j, 23+23.0j])
+ ac = a.conj()
+ assert_equal(a.real, ac.real)
+ assert_equal(a.imag, -ac.imag)
+ assert_equal(ac, a.conjugate())
+ assert_equal(ac, np.conjugate(a))
+
+ a = np.array([1-1j, 1+1j, 23+23.0j], 'F')
+ ac = a.conj()
+ assert_equal(a.real, ac.real)
+ assert_equal(a.imag, -ac.imag)
+ assert_equal(ac, a.conjugate())
+ assert_equal(ac, np.conjugate(a))
+
+ a = np.array([1, 2, 3])
+ ac = a.conj()
+ assert_equal(a, ac)
+ assert_equal(ac, a.conjugate())
+ assert_equal(ac, np.conjugate(a))
+
+ a = np.array([1.0, 2.0, 3.0])
+ ac = a.conj()
+ assert_equal(a, ac)
+ assert_equal(ac, a.conjugate())
+ assert_equal(ac, np.conjugate(a))
+
+ a = np.array([1-1j, 1+1j, 1, 2.0], object)
+ ac = a.conj()
+ assert_equal(ac, [k.conjugate() for k in a])
+ assert_equal(ac, a.conjugate())
+ assert_equal(ac, np.conjugate(a))
+
+ a = np.array([1-1j, 1, 2.0, 'f'], object)
+ assert_raises(TypeError, lambda: a.conj())
+ assert_raises(TypeError, lambda: a.conjugate())
+
+ def test_conjugate_out(self):
+ # Minimal test for the out argument being passed on correctly
+ # NOTE: The ability to pass `out` is currently undocumented!
+ a = np.array([1-1j, 1+1j, 23+23.0j])
+ out = np.empty_like(a)
+ res = a.conjugate(out)
+ assert res is out
+ assert_array_equal(out, a.conjugate())
+
+ def test__complex__(self):
+ dtypes = ['i1', 'i2', 'i4', 'i8',
+ 'u1', 'u2', 'u4', 'u8',
+ 'f', 'd', 'g', 'F', 'D', 'G',
+ '?', 'O']
+ for dt in dtypes:
+ a = np.array(7, dtype=dt)
+ b = np.array([7], dtype=dt)
+ c = np.array([[[[[7]]]]], dtype=dt)
+
+ msg = 'dtype: {0}'.format(dt)
+ ap = complex(a)
+ assert_equal(ap, a, msg)
+
+ with assert_warns(DeprecationWarning):
+ bp = complex(b)
+ assert_equal(bp, b, msg)
+
+ with assert_warns(DeprecationWarning):
+ cp = complex(c)
+ assert_equal(cp, c, msg)
+
+ def test__complex__should_not_work(self):
+ dtypes = ['i1', 'i2', 'i4', 'i8',
+ 'u1', 'u2', 'u4', 'u8',
+ 'f', 'd', 'g', 'F', 'D', 'G',
+ '?', 'O']
+ for dt in dtypes:
+ a = np.array([1, 2, 3], dtype=dt)
+ assert_raises(TypeError, complex, a)
+
+ dt = np.dtype([('a', 'f8'), ('b', 'i1')])
+ b = np.array((1.0, 3), dtype=dt)
+ assert_raises(TypeError, complex, b)
+
+ c = np.array([(1.0, 3), (2e-3, 7)], dtype=dt)
+ assert_raises(TypeError, complex, c)
+
+ d = np.array('1+1j')
+ assert_raises(TypeError, complex, d)
+
+ e = np.array(['1+1j'], 'U')
+ with assert_warns(DeprecationWarning):
+ assert_raises(TypeError, complex, e)
+
+class TestCequenceMethods:
+ def test_array_contains(self):
+ assert_(4.0 in np.arange(16.).reshape(4,4))
+ assert_(20.0 not in np.arange(16.).reshape(4,4))
+
+class TestBinop:
+ def test_inplace(self):
+ # test refcount 1 inplace conversion
+ assert_array_almost_equal(np.array([0.5]) * np.array([1.0, 2.0]),
+ [0.5, 1.0])
+
+ d = np.array([0.5, 0.5])[::2]
+ assert_array_almost_equal(d * (d * np.array([1.0, 2.0])),
+ [0.25, 0.5])
+
+ a = np.array([0.5])
+ b = np.array([0.5])
+ c = a + b
+ c = a - b
+ c = a * b
+ c = a / b
+ assert_equal(a, b)
+ assert_almost_equal(c, 1.)
+
+ c = a + b * 2. / b * a - a / b
+ assert_equal(a, b)
+ assert_equal(c, 0.5)
+
+ # true divide
+ a = np.array([5])
+ b = np.array([3])
+ c = (a * a) / b
+
+ assert_almost_equal(c, 25 / 3)
+ assert_equal(a, 5)
+ assert_equal(b, 3)
+
+ # ndarray.__rop__ always calls ufunc
+ # ndarray.__iop__ always calls ufunc
+ # ndarray.__op__, __rop__:
+ # - defer if other has __array_ufunc__ and it is None
+ # or other is not a subclass and has higher array priority
+ # - else, call ufunc
+ @pytest.mark.xfail(IS_PYPY, reason="Bug in pypy3.{9, 10}-v7.3.13, #24862")
+ def test_ufunc_binop_interaction(self):
+ # Python method name (without underscores)
+ # -> (numpy ufunc, has_in_place_version, preferred_dtype)
+ ops = {
+ 'add': (np.add, True, float),
+ 'sub': (np.subtract, True, float),
+ 'mul': (np.multiply, True, float),
+ 'truediv': (np.true_divide, True, float),
+ 'floordiv': (np.floor_divide, True, float),
+ 'mod': (np.remainder, True, float),
+ 'divmod': (np.divmod, False, float),
+ 'pow': (np.power, True, int),
+ 'lshift': (np.left_shift, True, int),
+ 'rshift': (np.right_shift, True, int),
+ 'and': (np.bitwise_and, True, int),
+ 'xor': (np.bitwise_xor, True, int),
+ 'or': (np.bitwise_or, True, int),
+ 'matmul': (np.matmul, True, float),
+ # 'ge': (np.less_equal, False),
+ # 'gt': (np.less, False),
+ # 'le': (np.greater_equal, False),
+ # 'lt': (np.greater, False),
+ # 'eq': (np.equal, False),
+ # 'ne': (np.not_equal, False),
+ }
+
+ class Coerced(Exception):
+ pass
+
+ def array_impl(self):
+ raise Coerced
+
+ def op_impl(self, other):
+ return "forward"
+
+ def rop_impl(self, other):
+ return "reverse"
+
+ def iop_impl(self, other):
+ return "in-place"
+
+ def array_ufunc_impl(self, ufunc, method, *args, **kwargs):
+ return ("__array_ufunc__", ufunc, method, args, kwargs)
+
+ # Create an object with the given base, in the given module, with a
+ # bunch of placeholder __op__ methods, and optionally a
+ # __array_ufunc__ and __array_priority__.
+ def make_obj(base, array_priority=False, array_ufunc=False,
+ alleged_module="__main__"):
+ class_namespace = {"__array__": array_impl}
+ if array_priority is not False:
+ class_namespace["__array_priority__"] = array_priority
+ for op in ops:
+ class_namespace["__{0}__".format(op)] = op_impl
+ class_namespace["__r{0}__".format(op)] = rop_impl
+ class_namespace["__i{0}__".format(op)] = iop_impl
+ if array_ufunc is not False:
+ class_namespace["__array_ufunc__"] = array_ufunc
+ eval_namespace = {"base": base,
+ "class_namespace": class_namespace,
+ "__name__": alleged_module,
+ }
+ MyType = eval("type('MyType', (base,), class_namespace)",
+ eval_namespace)
+ if issubclass(MyType, np.ndarray):
+ # Use this range to avoid special case weirdnesses around
+ # divide-by-0, pow(x, 2), overflow due to pow(big, big), etc.
+ return np.arange(3, 7).reshape(2, 2).view(MyType)
+ else:
+ return MyType()
+
+ def check(obj, binop_override_expected, ufunc_override_expected,
+ inplace_override_expected, check_scalar=True):
+ for op, (ufunc, has_inplace, dtype) in ops.items():
+ err_msg = ('op: %s, ufunc: %s, has_inplace: %s, dtype: %s'
+ % (op, ufunc, has_inplace, dtype))
+ check_objs = [np.arange(3, 7, dtype=dtype).reshape(2, 2)]
+ if check_scalar:
+ check_objs.append(check_objs[0][0])
+ for arr in check_objs:
+ arr_method = getattr(arr, "__{0}__".format(op))
+
+ def first_out_arg(result):
+ if op == "divmod":
+ assert_(isinstance(result, tuple))
+ return result[0]
+ else:
+ return result
+
+ # arr __op__ obj
+ if binop_override_expected:
+ assert_equal(arr_method(obj), NotImplemented, err_msg)
+ elif ufunc_override_expected:
+ assert_equal(arr_method(obj)[0], "__array_ufunc__",
+ err_msg)
+ else:
+ if (isinstance(obj, np.ndarray) and
+ (type(obj).__array_ufunc__ is
+ np.ndarray.__array_ufunc__)):
+ # __array__ gets ignored
+ res = first_out_arg(arr_method(obj))
+ assert_(res.__class__ is obj.__class__, err_msg)
+ else:
+ assert_raises((TypeError, Coerced),
+ arr_method, obj, err_msg=err_msg)
+ # obj __op__ arr
+ arr_rmethod = getattr(arr, "__r{0}__".format(op))
+ if ufunc_override_expected:
+ res = arr_rmethod(obj)
+ assert_equal(res[0], "__array_ufunc__",
+ err_msg=err_msg)
+ assert_equal(res[1], ufunc, err_msg=err_msg)
+ else:
+ if (isinstance(obj, np.ndarray) and
+ (type(obj).__array_ufunc__ is
+ np.ndarray.__array_ufunc__)):
+ # __array__ gets ignored
+ res = first_out_arg(arr_rmethod(obj))
+ assert_(res.__class__ is obj.__class__, err_msg)
+ else:
+ # __array_ufunc__ = "asdf" creates a TypeError
+ assert_raises((TypeError, Coerced),
+ arr_rmethod, obj, err_msg=err_msg)
+
+ # arr __iop__ obj
+ # array scalars don't have in-place operators
+ if has_inplace and isinstance(arr, np.ndarray):
+ arr_imethod = getattr(arr, "__i{0}__".format(op))
+ if inplace_override_expected:
+ assert_equal(arr_method(obj), NotImplemented,
+ err_msg=err_msg)
+ elif ufunc_override_expected:
+ res = arr_imethod(obj)
+ assert_equal(res[0], "__array_ufunc__", err_msg)
+ assert_equal(res[1], ufunc, err_msg)
+ assert_(type(res[-1]["out"]) is tuple, err_msg)
+ assert_(res[-1]["out"][0] is arr, err_msg)
+ else:
+ if (isinstance(obj, np.ndarray) and
+ (type(obj).__array_ufunc__ is
+ np.ndarray.__array_ufunc__)):
+ # __array__ gets ignored
+ assert_(arr_imethod(obj) is arr, err_msg)
+ else:
+ assert_raises((TypeError, Coerced),
+ arr_imethod, obj,
+ err_msg=err_msg)
+
+ op_fn = getattr(operator, op, None)
+ if op_fn is None:
+ op_fn = getattr(operator, op + "_", None)
+ if op_fn is None:
+ op_fn = getattr(builtins, op)
+ assert_equal(op_fn(obj, arr), "forward", err_msg)
+ if not isinstance(obj, np.ndarray):
+ if binop_override_expected:
+ assert_equal(op_fn(arr, obj), "reverse", err_msg)
+ elif ufunc_override_expected:
+ assert_equal(op_fn(arr, obj)[0], "__array_ufunc__",
+ err_msg)
+ if ufunc_override_expected:
+ assert_equal(ufunc(obj, arr)[0], "__array_ufunc__",
+ err_msg)
+
+ # No array priority, no array_ufunc -> nothing called
+ check(make_obj(object), False, False, False)
+ # Negative array priority, no array_ufunc -> nothing called
+ # (has to be very negative, because scalar priority is -1000000.0)
+ check(make_obj(object, array_priority=-2**30), False, False, False)
+ # Positive array priority, no array_ufunc -> binops and iops only
+ check(make_obj(object, array_priority=1), True, False, True)
+ # ndarray ignores array_priority for ndarray subclasses
+ check(make_obj(np.ndarray, array_priority=1), False, False, False,
+ check_scalar=False)
+ # Positive array_priority and array_ufunc -> array_ufunc only
+ check(make_obj(object, array_priority=1,
+ array_ufunc=array_ufunc_impl), False, True, False)
+ check(make_obj(np.ndarray, array_priority=1,
+ array_ufunc=array_ufunc_impl), False, True, False)
+ # array_ufunc set to None -> defer binops only
+ check(make_obj(object, array_ufunc=None), True, False, False)
+ check(make_obj(np.ndarray, array_ufunc=None), True, False, False,
+ check_scalar=False)
+
+ @pytest.mark.parametrize("priority", [None, "runtime error"])
+ def test_ufunc_binop_bad_array_priority(self, priority):
+ # Mainly checks that this does not crash. The second array has a lower
+ # priority than -1 ("error value"). If the __radd__ actually exists,
+ # bad things can happen (I think via the scalar paths).
+ # In principle both of these can probably just be errors in the future.
+ class BadPriority:
+ @property
+ def __array_priority__(self):
+ if priority == "runtime error":
+ raise RuntimeError("RuntimeError in __array_priority__!")
+ return priority
+
+ def __radd__(self, other):
+ return "result"
+
+ class LowPriority(np.ndarray):
+ __array_priority__ = -1000
+
+ # Priority failure uses the same as scalars (smaller -1000). So the
+ # LowPriority wins with 'result' for each element (inner operation).
+ res = np.arange(3).view(LowPriority) + BadPriority()
+ assert res.shape == (3,)
+ assert res[0] == 'result'
+
+
+ def test_ufunc_override_normalize_signature(self):
+ # gh-5674
+ class SomeClass:
+ def __array_ufunc__(self, ufunc, method, *inputs, **kw):
+ return kw
+
+ a = SomeClass()
+ kw = np.add(a, [1])
+ assert_('sig' not in kw and 'signature' not in kw)
+ kw = np.add(a, [1], sig='ii->i')
+ assert_('sig' not in kw and 'signature' in kw)
+ assert_equal(kw['signature'], 'ii->i')
+ kw = np.add(a, [1], signature='ii->i')
+ assert_('sig' not in kw and 'signature' in kw)
+ assert_equal(kw['signature'], 'ii->i')
+
+ def test_array_ufunc_index(self):
+ # Check that index is set appropriately, also if only an output
+ # is passed on (latter is another regression tests for github bug 4753)
+ # This also checks implicitly that 'out' is always a tuple.
+ class CheckIndex:
+ def __array_ufunc__(self, ufunc, method, *inputs, **kw):
+ for i, a in enumerate(inputs):
+ if a is self:
+ return i
+ # calls below mean we must be in an output.
+ for j, a in enumerate(kw['out']):
+ if a is self:
+ return (j,)
+
+ a = CheckIndex()
+ dummy = np.arange(2.)
+ # 1 input, 1 output
+ assert_equal(np.sin(a), 0)
+ assert_equal(np.sin(dummy, a), (0,))
+ assert_equal(np.sin(dummy, out=a), (0,))
+ assert_equal(np.sin(dummy, out=(a,)), (0,))
+ assert_equal(np.sin(a, a), 0)
+ assert_equal(np.sin(a, out=a), 0)
+ assert_equal(np.sin(a, out=(a,)), 0)
+ # 1 input, 2 outputs
+ assert_equal(np.modf(dummy, a), (0,))
+ assert_equal(np.modf(dummy, None, a), (1,))
+ assert_equal(np.modf(dummy, dummy, a), (1,))
+ assert_equal(np.modf(dummy, out=(a, None)), (0,))
+ assert_equal(np.modf(dummy, out=(a, dummy)), (0,))
+ assert_equal(np.modf(dummy, out=(None, a)), (1,))
+ assert_equal(np.modf(dummy, out=(dummy, a)), (1,))
+ assert_equal(np.modf(a, out=(dummy, a)), 0)
+ with assert_raises(TypeError):
+ # Out argument must be tuple, since there are multiple outputs
+ np.modf(dummy, out=a)
+
+ assert_raises(ValueError, np.modf, dummy, out=(a,))
+
+ # 2 inputs, 1 output
+ assert_equal(np.add(a, dummy), 0)
+ assert_equal(np.add(dummy, a), 1)
+ assert_equal(np.add(dummy, dummy, a), (0,))
+ assert_equal(np.add(dummy, a, a), 1)
+ assert_equal(np.add(dummy, dummy, out=a), (0,))
+ assert_equal(np.add(dummy, dummy, out=(a,)), (0,))
+ assert_equal(np.add(a, dummy, out=a), 0)
+
+ def test_out_override(self):
+ # regression test for github bug 4753
+ class OutClass(np.ndarray):
+ def __array_ufunc__(self, ufunc, method, *inputs, **kw):
+ if 'out' in kw:
+ tmp_kw = kw.copy()
+ tmp_kw.pop('out')
+ func = getattr(ufunc, method)
+ kw['out'][0][...] = func(*inputs, **tmp_kw)
+
+ A = np.array([0]).view(OutClass)
+ B = np.array([5])
+ C = np.array([6])
+ np.multiply(C, B, A)
+ assert_equal(A[0], 30)
+ assert_(isinstance(A, OutClass))
+ A[0] = 0
+ np.multiply(C, B, out=A)
+ assert_equal(A[0], 30)
+ assert_(isinstance(A, OutClass))
+
+ def test_pow_override_with_errors(self):
+ # regression test for gh-9112
+ class PowerOnly(np.ndarray):
+ def __array_ufunc__(self, ufunc, method, *inputs, **kw):
+ if ufunc is not np.power:
+ raise NotImplementedError
+ return "POWER!"
+ # explicit cast to float, to ensure the fast power path is taken.
+ a = np.array(5., dtype=np.float64).view(PowerOnly)
+ assert_equal(a ** 2.5, "POWER!")
+ with assert_raises(NotImplementedError):
+ a ** 0.5
+ with assert_raises(NotImplementedError):
+ a ** 0
+ with assert_raises(NotImplementedError):
+ a ** 1
+ with assert_raises(NotImplementedError):
+ a ** -1
+ with assert_raises(NotImplementedError):
+ a ** 2
+
+ def test_pow_array_object_dtype(self):
+ # test pow on arrays of object dtype
+ class SomeClass:
+ def __init__(self, num=None):
+ self.num = num
+
+ # want to ensure a fast pow path is not taken
+ def __mul__(self, other):
+ raise AssertionError('__mul__ should not be called')
+
+ def __div__(self, other):
+ raise AssertionError('__div__ should not be called')
+
+ def __pow__(self, exp):
+ return SomeClass(num=self.num ** exp)
+
+ def __eq__(self, other):
+ if isinstance(other, SomeClass):
+ return self.num == other.num
+
+ __rpow__ = __pow__
+
+ def pow_for(exp, arr):
+ return np.array([x ** exp for x in arr])
+
+ obj_arr = np.array([SomeClass(1), SomeClass(2), SomeClass(3)])
+
+ assert_equal(obj_arr ** 0.5, pow_for(0.5, obj_arr))
+ assert_equal(obj_arr ** 0, pow_for(0, obj_arr))
+ assert_equal(obj_arr ** 1, pow_for(1, obj_arr))
+ assert_equal(obj_arr ** -1, pow_for(-1, obj_arr))
+ assert_equal(obj_arr ** 2, pow_for(2, obj_arr))
+
+ def test_pos_array_ufunc_override(self):
+ class A(np.ndarray):
+ def __array_ufunc__(self, ufunc, method, *inputs, **kwargs):
+ return getattr(ufunc, method)(*[i.view(np.ndarray) for
+ i in inputs], **kwargs)
+ tst = np.array('foo').view(A)
+ with assert_raises(TypeError):
+ +tst
+
+
+class TestTemporaryElide:
+ # elision is only triggered on relatively large arrays
+
+ def test_extension_incref_elide(self):
+ # test extension (e.g. cython) calling PyNumber_* slots without
+ # increasing the reference counts
+ #
+ # def incref_elide(a):
+ # d = input.copy() # refcount 1
+ # return d, d + d # PyNumber_Add without increasing refcount
+ from numpy.core._multiarray_tests import incref_elide
+ d = np.ones(100000)
+ orig, res = incref_elide(d)
+ d + d
+ # the return original should not be changed to an inplace operation
+ assert_array_equal(orig, d)
+ assert_array_equal(res, d + d)
+
+ def test_extension_incref_elide_stack(self):
+ # scanning if the refcount == 1 object is on the python stack to check
+ # that we are called directly from python is flawed as object may still
+ # be above the stack pointer and we have no access to the top of it
+ #
+ # def incref_elide_l(d):
+ # return l[4] + l[4] # PyNumber_Add without increasing refcount
+ from numpy.core._multiarray_tests import incref_elide_l
+ # padding with 1 makes sure the object on the stack is not overwritten
+ l = [1, 1, 1, 1, np.ones(100000)]
+ res = incref_elide_l(l)
+ # the return original should not be changed to an inplace operation
+ assert_array_equal(l[4], np.ones(100000))
+ assert_array_equal(res, l[4] + l[4])
+
+ def test_temporary_with_cast(self):
+ # check that we don't elide into a temporary which would need casting
+ d = np.ones(200000, dtype=np.int64)
+ assert_equal(((d + d) + 2**222).dtype, np.dtype('O'))
+
+ r = ((d + d) / 2)
+ assert_equal(r.dtype, np.dtype('f8'))
+
+ r = np.true_divide((d + d), 2)
+ assert_equal(r.dtype, np.dtype('f8'))
+
+ r = ((d + d) / 2.)
+ assert_equal(r.dtype, np.dtype('f8'))
+
+ r = ((d + d) // 2)
+ assert_equal(r.dtype, np.dtype(np.int64))
+
+ # commutative elision into the astype result
+ f = np.ones(100000, dtype=np.float32)
+ assert_equal(((f + f) + f.astype(np.float64)).dtype, np.dtype('f8'))
+
+ # no elision into lower type
+ d = f.astype(np.float64)
+ assert_equal(((f + f) + d).dtype, d.dtype)
+ l = np.ones(100000, dtype=np.longdouble)
+ assert_equal(((d + d) + l).dtype, l.dtype)
+
+ # test unary abs with different output dtype
+ for dt in (np.complex64, np.complex128, np.clongdouble):
+ c = np.ones(100000, dtype=dt)
+ r = abs(c * 2.0)
+ assert_equal(r.dtype, np.dtype('f%d' % (c.itemsize // 2)))
+
+ def test_elide_broadcast(self):
+ # test no elision on broadcast to higher dimension
+ # only triggers elision code path in debug mode as triggering it in
+ # normal mode needs 256kb large matching dimension, so a lot of memory
+ d = np.ones((2000, 1), dtype=int)
+ b = np.ones((2000), dtype=bool)
+ r = (1 - d) + b
+ assert_equal(r, 1)
+ assert_equal(r.shape, (2000, 2000))
+
+ def test_elide_scalar(self):
+ # check inplace op does not create ndarray from scalars
+ a = np.bool_()
+ assert_(type(~(a & a)) is np.bool_)
+
+ def test_elide_scalar_readonly(self):
+ # The imaginary part of a real array is readonly. This needs to go
+ # through fast_scalar_power which is only called for powers of
+ # +1, -1, 0, 0.5, and 2, so use 2. Also need valid refcount for
+ # elision which can be gotten for the imaginary part of a real
+ # array. Should not error.
+ a = np.empty(100000, dtype=np.float64)
+ a.imag ** 2
+
+ def test_elide_readonly(self):
+ # don't try to elide readonly temporaries
+ r = np.asarray(np.broadcast_to(np.zeros(1), 100000).flat) * 0.0
+ assert_equal(r, 0)
+
+ def test_elide_updateifcopy(self):
+ a = np.ones(2**20)[::2]
+ b = a.flat.__array__() + 1
+ del b
+ assert_equal(a, 1)
+
+
+class TestCAPI:
+ def test_IsPythonScalar(self):
+ from numpy.core._multiarray_tests import IsPythonScalar
+ assert_(IsPythonScalar(b'foobar'))
+ assert_(IsPythonScalar(1))
+ assert_(IsPythonScalar(2**80))
+ assert_(IsPythonScalar(2.))
+ assert_(IsPythonScalar("a"))
+
+ @pytest.mark.parametrize("converter",
+ [_multiarray_tests.run_scalar_intp_converter,
+ _multiarray_tests.run_scalar_intp_from_sequence])
+ def test_intp_sequence_converters(self, converter):
+ # Test simple values (-1 is special for error return paths)
+ assert converter(10) == (10,)
+ assert converter(-1) == (-1,)
+ # A 0-D array looks a bit like a sequence but must take the integer
+ # path:
+ assert converter(np.array(123)) == (123,)
+ # Test simple sequences (intp_from_sequence only supports length 1):
+ assert converter((10,)) == (10,)
+ assert converter(np.array([11])) == (11,)
+
+ @pytest.mark.parametrize("converter",
+ [_multiarray_tests.run_scalar_intp_converter,
+ _multiarray_tests.run_scalar_intp_from_sequence])
+ @pytest.mark.skipif(IS_PYPY and sys.implementation.version <= (7, 3, 8),
+ reason="PyPy bug in error formatting")
+ def test_intp_sequence_converters_errors(self, converter):
+ with pytest.raises(TypeError,
+ match="expected a sequence of integers or a single integer, "):
+ converter(object())
+ with pytest.raises(TypeError,
+ match="expected a sequence of integers or a single integer, "
+ "got '32.0'"):
+ converter(32.)
+ with pytest.raises(TypeError,
+ match="'float' object cannot be interpreted as an integer"):
+ converter([32.])
+ with pytest.raises(ValueError,
+ match="Maximum allowed dimension"):
+ # These converters currently convert overflows to a ValueError
+ converter(2**64)
+
+
+class TestSubscripting:
+ def test_test_zero_rank(self):
+ x = np.array([1, 2, 3])
+ assert_(isinstance(x[0], np.int_))
+ assert_(type(x[0, ...]) is np.ndarray)
+
+
+class TestPickling:
+ @pytest.mark.skipif(pickle.HIGHEST_PROTOCOL >= 5,
+ reason=('this tests the error messages when trying to'
+ 'protocol 5 although it is not available'))
+ def test_correct_protocol5_error_message(self):
+ array = np.arange(10)
+
+ def test_record_array_with_object_dtype(self):
+ my_object = object()
+
+ arr_with_object = np.array(
+ [(my_object, 1, 2.0)],
+ dtype=[('a', object), ('b', int), ('c', float)])
+ arr_without_object = np.array(
+ [('xxx', 1, 2.0)],
+ dtype=[('a', str), ('b', int), ('c', float)])
+
+ for proto in range(2, pickle.HIGHEST_PROTOCOL + 1):
+ depickled_arr_with_object = pickle.loads(
+ pickle.dumps(arr_with_object, protocol=proto))
+ depickled_arr_without_object = pickle.loads(
+ pickle.dumps(arr_without_object, protocol=proto))
+
+ assert_equal(arr_with_object.dtype,
+ depickled_arr_with_object.dtype)
+ assert_equal(arr_without_object.dtype,
+ depickled_arr_without_object.dtype)
+
+ @pytest.mark.skipif(pickle.HIGHEST_PROTOCOL < 5,
+ reason="requires pickle protocol 5")
+ def test_f_contiguous_array(self):
+ f_contiguous_array = np.array([[1, 2, 3], [4, 5, 6]], order='F')
+ buffers = []
+
+ # When using pickle protocol 5, Fortran-contiguous arrays can be
+ # serialized using out-of-band buffers
+ bytes_string = pickle.dumps(f_contiguous_array, protocol=5,
+ buffer_callback=buffers.append)
+
+ assert len(buffers) > 0
+
+ depickled_f_contiguous_array = pickle.loads(bytes_string,
+ buffers=buffers)
+
+ assert_equal(f_contiguous_array, depickled_f_contiguous_array)
+
+ def test_non_contiguous_array(self):
+ non_contiguous_array = np.arange(12).reshape(3, 4)[:, :2]
+ assert not non_contiguous_array.flags.c_contiguous
+ assert not non_contiguous_array.flags.f_contiguous
+
+ # make sure non-contiguous arrays can be pickled-depickled
+ # using any protocol
+ for proto in range(2, pickle.HIGHEST_PROTOCOL + 1):
+ depickled_non_contiguous_array = pickle.loads(
+ pickle.dumps(non_contiguous_array, protocol=proto))
+
+ assert_equal(non_contiguous_array, depickled_non_contiguous_array)
+
+ def test_roundtrip(self):
+ for proto in range(2, pickle.HIGHEST_PROTOCOL + 1):
+ carray = np.array([[2, 9], [7, 0], [3, 8]])
+ DATA = [
+ carray,
+ np.transpose(carray),
+ np.array([('xxx', 1, 2.0)], dtype=[('a', (str, 3)), ('b', int),
+ ('c', float)])
+ ]
+
+ refs = [weakref.ref(a) for a in DATA]
+ for a in DATA:
+ assert_equal(
+ a, pickle.loads(pickle.dumps(a, protocol=proto)),
+ err_msg="%r" % a)
+ del a, DATA, carray
+ break_cycles()
+ # check for reference leaks (gh-12793)
+ for ref in refs:
+ assert ref() is None
+
+ def _loads(self, obj):
+ return pickle.loads(obj, encoding='latin1')
+
+ # version 0 pickles, using protocol=2 to pickle
+ # version 0 doesn't have a version field
+ def test_version0_int8(self):
+ s = b'\x80\x02cnumpy.core._internal\n_reconstruct\nq\x01cnumpy\nndarray\nq\x02K\x00\x85U\x01b\x87Rq\x03(K\x04\x85cnumpy\ndtype\nq\x04U\x02i1K\x00K\x01\x87Rq\x05(U\x01|NNJ\xff\xff\xff\xffJ\xff\xff\xff\xfftb\x89U\x04\x01\x02\x03\x04tb.'
+ a = np.array([1, 2, 3, 4], dtype=np.int8)
+ p = self._loads(s)
+ assert_equal(a, p)
+
+ def test_version0_float32(self):
+ s = b'\x80\x02cnumpy.core._internal\n_reconstruct\nq\x01cnumpy\nndarray\nq\x02K\x00\x85U\x01b\x87Rq\x03(K\x04\x85cnumpy\ndtype\nq\x04U\x02f4K\x00K\x01\x87Rq\x05(U\x01<NNJ\xff\xff\xff\xffJ\xff\xff\xff\xfftb\x89U\x10\x00\x00\x80?\x00\x00\x00@\x00\x00@@\x00\x00\x80@tb.'
+ a = np.array([1.0, 2.0, 3.0, 4.0], dtype=np.float32)
+ p = self._loads(s)
+ assert_equal(a, p)
+
+ def test_version0_object(self):
+ s = b'\x80\x02cnumpy.core._internal\n_reconstruct\nq\x01cnumpy\nndarray\nq\x02K\x00\x85U\x01b\x87Rq\x03(K\x02\x85cnumpy\ndtype\nq\x04U\x02O8K\x00K\x01\x87Rq\x05(U\x01|NNJ\xff\xff\xff\xffJ\xff\xff\xff\xfftb\x89]q\x06(}q\x07U\x01aK\x01s}q\x08U\x01bK\x02setb.'
+ a = np.array([{'a': 1}, {'b': 2}])
+ p = self._loads(s)
+ assert_equal(a, p)
+
+ # version 1 pickles, using protocol=2 to pickle
+ def test_version1_int8(self):
+ s = b'\x80\x02cnumpy.core._internal\n_reconstruct\nq\x01cnumpy\nndarray\nq\x02K\x00\x85U\x01b\x87Rq\x03(K\x01K\x04\x85cnumpy\ndtype\nq\x04U\x02i1K\x00K\x01\x87Rq\x05(K\x01U\x01|NNJ\xff\xff\xff\xffJ\xff\xff\xff\xfftb\x89U\x04\x01\x02\x03\x04tb.'
+ a = np.array([1, 2, 3, 4], dtype=np.int8)
+ p = self._loads(s)
+ assert_equal(a, p)
+
+ def test_version1_float32(self):
+ s = b'\x80\x02cnumpy.core._internal\n_reconstruct\nq\x01cnumpy\nndarray\nq\x02K\x00\x85U\x01b\x87Rq\x03(K\x01K\x04\x85cnumpy\ndtype\nq\x04U\x02f4K\x00K\x01\x87Rq\x05(K\x01U\x01<NNJ\xff\xff\xff\xffJ\xff\xff\xff\xfftb\x89U\x10\x00\x00\x80?\x00\x00\x00@\x00\x00@@\x00\x00\x80@tb.'
+ a = np.array([1.0, 2.0, 3.0, 4.0], dtype=np.float32)
+ p = self._loads(s)
+ assert_equal(a, p)
+
+ def test_version1_object(self):
+ s = b'\x80\x02cnumpy.core._internal\n_reconstruct\nq\x01cnumpy\nndarray\nq\x02K\x00\x85U\x01b\x87Rq\x03(K\x01K\x02\x85cnumpy\ndtype\nq\x04U\x02O8K\x00K\x01\x87Rq\x05(K\x01U\x01|NNJ\xff\xff\xff\xffJ\xff\xff\xff\xfftb\x89]q\x06(}q\x07U\x01aK\x01s}q\x08U\x01bK\x02setb.'
+ a = np.array([{'a': 1}, {'b': 2}])
+ p = self._loads(s)
+ assert_equal(a, p)
+
+ def test_subarray_int_shape(self):
+ s = b"cnumpy.core.multiarray\n_reconstruct\np0\n(cnumpy\nndarray\np1\n(I0\ntp2\nS'b'\np3\ntp4\nRp5\n(I1\n(I1\ntp6\ncnumpy\ndtype\np7\n(S'V6'\np8\nI0\nI1\ntp9\nRp10\n(I3\nS'|'\np11\nN(S'a'\np12\ng3\ntp13\n(dp14\ng12\n(g7\n(S'V4'\np15\nI0\nI1\ntp16\nRp17\n(I3\nS'|'\np18\n(g7\n(S'i1'\np19\nI0\nI1\ntp20\nRp21\n(I3\nS'|'\np22\nNNNI-1\nI-1\nI0\ntp23\nb(I2\nI2\ntp24\ntp25\nNNI4\nI1\nI0\ntp26\nbI0\ntp27\nsg3\n(g7\n(S'V2'\np28\nI0\nI1\ntp29\nRp30\n(I3\nS'|'\np31\n(g21\nI2\ntp32\nNNI2\nI1\nI0\ntp33\nbI4\ntp34\nsI6\nI1\nI0\ntp35\nbI00\nS'\\x01\\x01\\x01\\x01\\x01\\x02'\np36\ntp37\nb."
+ a = np.array([(1, (1, 2))], dtype=[('a', 'i1', (2, 2)), ('b', 'i1', 2)])
+ p = self._loads(s)
+ assert_equal(a, p)
+
+ def test_datetime64_byteorder(self):
+ original = np.array([['2015-02-24T00:00:00.000000000']], dtype='datetime64[ns]')
+
+ original_byte_reversed = original.copy(order='K')
+ original_byte_reversed.dtype = original_byte_reversed.dtype.newbyteorder('S')
+ original_byte_reversed.byteswap(inplace=True)
+
+ new = pickle.loads(pickle.dumps(original_byte_reversed))
+
+ assert_equal(original.dtype, new.dtype)
+
+
+class TestFancyIndexing:
+ def test_list(self):
+ x = np.ones((1, 1))
+ x[:, [0]] = 2.0
+ assert_array_equal(x, np.array([[2.0]]))
+
+ x = np.ones((1, 1, 1))
+ x[:, :, [0]] = 2.0
+ assert_array_equal(x, np.array([[[2.0]]]))
+
+ def test_tuple(self):
+ x = np.ones((1, 1))
+ x[:, (0,)] = 2.0
+ assert_array_equal(x, np.array([[2.0]]))
+ x = np.ones((1, 1, 1))
+ x[:, :, (0,)] = 2.0
+ assert_array_equal(x, np.array([[[2.0]]]))
+
+ def test_mask(self):
+ x = np.array([1, 2, 3, 4])
+ m = np.array([0, 1, 0, 0], bool)
+ assert_array_equal(x[m], np.array([2]))
+
+ def test_mask2(self):
+ x = np.array([[1, 2, 3, 4], [5, 6, 7, 8]])
+ m = np.array([0, 1], bool)
+ m2 = np.array([[0, 1, 0, 0], [1, 0, 0, 0]], bool)
+ m3 = np.array([[0, 1, 0, 0], [0, 0, 0, 0]], bool)
+ assert_array_equal(x[m], np.array([[5, 6, 7, 8]]))
+ assert_array_equal(x[m2], np.array([2, 5]))
+ assert_array_equal(x[m3], np.array([2]))
+
+ def test_assign_mask(self):
+ x = np.array([1, 2, 3, 4])
+ m = np.array([0, 1, 0, 0], bool)
+ x[m] = 5
+ assert_array_equal(x, np.array([1, 5, 3, 4]))
+
+ def test_assign_mask2(self):
+ xorig = np.array([[1, 2, 3, 4], [5, 6, 7, 8]])
+ m = np.array([0, 1], bool)
+ m2 = np.array([[0, 1, 0, 0], [1, 0, 0, 0]], bool)
+ m3 = np.array([[0, 1, 0, 0], [0, 0, 0, 0]], bool)
+ x = xorig.copy()
+ x[m] = 10
+ assert_array_equal(x, np.array([[1, 2, 3, 4], [10, 10, 10, 10]]))
+ x = xorig.copy()
+ x[m2] = 10
+ assert_array_equal(x, np.array([[1, 10, 3, 4], [10, 6, 7, 8]]))
+ x = xorig.copy()
+ x[m3] = 10
+ assert_array_equal(x, np.array([[1, 10, 3, 4], [5, 6, 7, 8]]))
+
+
+class TestStringCompare:
+ def test_string(self):
+ g1 = np.array(["This", "is", "example"])
+ g2 = np.array(["This", "was", "example"])
+ assert_array_equal(g1 == g2, [g1[i] == g2[i] for i in [0, 1, 2]])
+ assert_array_equal(g1 != g2, [g1[i] != g2[i] for i in [0, 1, 2]])
+ assert_array_equal(g1 <= g2, [g1[i] <= g2[i] for i in [0, 1, 2]])
+ assert_array_equal(g1 >= g2, [g1[i] >= g2[i] for i in [0, 1, 2]])
+ assert_array_equal(g1 < g2, [g1[i] < g2[i] for i in [0, 1, 2]])
+ assert_array_equal(g1 > g2, [g1[i] > g2[i] for i in [0, 1, 2]])
+
+ def test_mixed(self):
+ g1 = np.array(["spam", "spa", "spammer", "and eggs"])
+ g2 = "spam"
+ assert_array_equal(g1 == g2, [x == g2 for x in g1])
+ assert_array_equal(g1 != g2, [x != g2 for x in g1])
+ assert_array_equal(g1 < g2, [x < g2 for x in g1])
+ assert_array_equal(g1 > g2, [x > g2 for x in g1])
+ assert_array_equal(g1 <= g2, [x <= g2 for x in g1])
+ assert_array_equal(g1 >= g2, [x >= g2 for x in g1])
+
+ def test_unicode(self):
+ g1 = np.array(["This", "is", "example"])
+ g2 = np.array(["This", "was", "example"])
+ assert_array_equal(g1 == g2, [g1[i] == g2[i] for i in [0, 1, 2]])
+ assert_array_equal(g1 != g2, [g1[i] != g2[i] for i in [0, 1, 2]])
+ assert_array_equal(g1 <= g2, [g1[i] <= g2[i] for i in [0, 1, 2]])
+ assert_array_equal(g1 >= g2, [g1[i] >= g2[i] for i in [0, 1, 2]])
+ assert_array_equal(g1 < g2, [g1[i] < g2[i] for i in [0, 1, 2]])
+ assert_array_equal(g1 > g2, [g1[i] > g2[i] for i in [0, 1, 2]])
+
+class TestArgmaxArgminCommon:
+
+ sizes = [(), (3,), (3, 2), (2, 3),
+ (3, 3), (2, 3, 4), (4, 3, 2),
+ (1, 2, 3, 4), (2, 3, 4, 1),
+ (3, 4, 1, 2), (4, 1, 2, 3),
+ (64,), (128,), (256,)]
+
+ @pytest.mark.parametrize("size, axis", itertools.chain(*[[(size, axis)
+ for axis in list(range(-len(size), len(size))) + [None]]
+ for size in sizes]))
+ @pytest.mark.parametrize('method', [np.argmax, np.argmin])
+ def test_np_argmin_argmax_keepdims(self, size, axis, method):
+
+ arr = np.random.normal(size=size)
+
+ # contiguous arrays
+ if axis is None:
+ new_shape = [1 for _ in range(len(size))]
+ else:
+ new_shape = list(size)
+ new_shape[axis] = 1
+ new_shape = tuple(new_shape)
+
+ _res_orig = method(arr, axis=axis)
+ res_orig = _res_orig.reshape(new_shape)
+ res = method(arr, axis=axis, keepdims=True)
+ assert_equal(res, res_orig)
+ assert_(res.shape == new_shape)
+ outarray = np.empty(res.shape, dtype=res.dtype)
+ res1 = method(arr, axis=axis, out=outarray,
+ keepdims=True)
+ assert_(res1 is outarray)
+ assert_equal(res, outarray)
+
+ if len(size) > 0:
+ wrong_shape = list(new_shape)
+ if axis is not None:
+ wrong_shape[axis] = 2
+ else:
+ wrong_shape[0] = 2
+ wrong_outarray = np.empty(wrong_shape, dtype=res.dtype)
+ with pytest.raises(ValueError):
+ method(arr.T, axis=axis,
+ out=wrong_outarray, keepdims=True)
+
+ # non-contiguous arrays
+ if axis is None:
+ new_shape = [1 for _ in range(len(size))]
+ else:
+ new_shape = list(size)[::-1]
+ new_shape[axis] = 1
+ new_shape = tuple(new_shape)
+
+ _res_orig = method(arr.T, axis=axis)
+ res_orig = _res_orig.reshape(new_shape)
+ res = method(arr.T, axis=axis, keepdims=True)
+ assert_equal(res, res_orig)
+ assert_(res.shape == new_shape)
+ outarray = np.empty(new_shape[::-1], dtype=res.dtype)
+ outarray = outarray.T
+ res1 = method(arr.T, axis=axis, out=outarray,
+ keepdims=True)
+ assert_(res1 is outarray)
+ assert_equal(res, outarray)
+
+ if len(size) > 0:
+ # one dimension lesser for non-zero sized
+ # array should raise an error
+ with pytest.raises(ValueError):
+ method(arr[0], axis=axis,
+ out=outarray, keepdims=True)
+
+ if len(size) > 0:
+ wrong_shape = list(new_shape)
+ if axis is not None:
+ wrong_shape[axis] = 2
+ else:
+ wrong_shape[0] = 2
+ wrong_outarray = np.empty(wrong_shape, dtype=res.dtype)
+ with pytest.raises(ValueError):
+ method(arr.T, axis=axis,
+ out=wrong_outarray, keepdims=True)
+
+ @pytest.mark.parametrize('method', ['max', 'min'])
+ def test_all(self, method):
+ a = np.random.normal(0, 1, (4, 5, 6, 7, 8))
+ arg_method = getattr(a, 'arg' + method)
+ val_method = getattr(a, method)
+ for i in range(a.ndim):
+ a_maxmin = val_method(i)
+ aarg_maxmin = arg_method(i)
+ axes = list(range(a.ndim))
+ axes.remove(i)
+ assert_(np.all(a_maxmin == aarg_maxmin.choose(
+ *a.transpose(i, *axes))))
+
+ @pytest.mark.parametrize('method', ['argmax', 'argmin'])
+ def test_output_shape(self, method):
+ # see also gh-616
+ a = np.ones((10, 5))
+ arg_method = getattr(a, method)
+ # Check some simple shape mismatches
+ out = np.ones(11, dtype=np.int_)
+ assert_raises(ValueError, arg_method, -1, out)
+
+ out = np.ones((2, 5), dtype=np.int_)
+ assert_raises(ValueError, arg_method, -1, out)
+
+ # these could be relaxed possibly (used to allow even the previous)
+ out = np.ones((1, 10), dtype=np.int_)
+ assert_raises(ValueError, arg_method, -1, out)
+
+ out = np.ones(10, dtype=np.int_)
+ arg_method(-1, out=out)
+ assert_equal(out, arg_method(-1))
+
+ @pytest.mark.parametrize('ndim', [0, 1])
+ @pytest.mark.parametrize('method', ['argmax', 'argmin'])
+ def test_ret_is_out(self, ndim, method):
+ a = np.ones((4,) + (256,)*ndim)
+ arg_method = getattr(a, method)
+ out = np.empty((256,)*ndim, dtype=np.intp)
+ ret = arg_method(axis=0, out=out)
+ assert ret is out
+
+ @pytest.mark.parametrize('np_array, method, idx, val',
+ [(np.zeros, 'argmax', 5942, "as"),
+ (np.ones, 'argmin', 6001, "0")])
+ def test_unicode(self, np_array, method, idx, val):
+ d = np_array(6031, dtype='<U9')
+ arg_method = getattr(d, method)
+ d[idx] = val
+ assert_equal(arg_method(), idx)
+
+ @pytest.mark.parametrize('arr_method, np_method',
+ [('argmax', np.argmax),
+ ('argmin', np.argmin)])
+ def test_np_vs_ndarray(self, arr_method, np_method):
+ # make sure both ndarray.argmax/argmin and
+ # numpy.argmax/argmin support out/axis args
+ a = np.random.normal(size=(2, 3))
+ arg_method = getattr(a, arr_method)
+
+ # check positional args
+ out1 = np.zeros(2, dtype=int)
+ out2 = np.zeros(2, dtype=int)
+ assert_equal(arg_method(1, out1), np_method(a, 1, out2))
+ assert_equal(out1, out2)
+
+ # check keyword args
+ out1 = np.zeros(3, dtype=int)
+ out2 = np.zeros(3, dtype=int)
+ assert_equal(arg_method(out=out1, axis=0),
+ np_method(a, out=out2, axis=0))
+ assert_equal(out1, out2)
+
+ @pytest.mark.leaks_references(reason="replaces None with NULL.")
+ @pytest.mark.parametrize('method, vals',
+ [('argmax', (10, 30)),
+ ('argmin', (30, 10))])
+ def test_object_with_NULLs(self, method, vals):
+ # See gh-6032
+ a = np.empty(4, dtype='O')
+ arg_method = getattr(a, method)
+ ctypes.memset(a.ctypes.data, 0, a.nbytes)
+ assert_equal(arg_method(), 0)
+ a[3] = vals[0]
+ assert_equal(arg_method(), 3)
+ a[1] = vals[1]
+ assert_equal(arg_method(), 1)
+
+class TestArgmax:
+ usg_data = [
+ ([1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0], 0),
+ ([3, 3, 3, 3, 2, 2, 2, 2], 0),
+ ([0, 1, 2, 3, 4, 5, 6, 7], 7),
+ ([7, 6, 5, 4, 3, 2, 1, 0], 0)
+ ]
+ sg_data = usg_data + [
+ ([1, 2, 3, 4, -4, -3, -2, -1], 3),
+ ([1, 2, 3, 4, -1, -2, -3, -4], 3)
+ ]
+ darr = [(np.array(d[0], dtype=t), d[1]) for d, t in (
+ itertools.product(usg_data, (
+ np.uint8, np.uint16, np.uint32, np.uint64
+ ))
+ )]
+ darr = darr + [(np.array(d[0], dtype=t), d[1]) for d, t in (
+ itertools.product(sg_data, (
+ np.int8, np.int16, np.int32, np.int64, np.float32, np.float64
+ ))
+ )]
+ darr = darr + [(np.array(d[0], dtype=t), d[1]) for d, t in (
+ itertools.product((
+ ([0, 1, 2, 3, np.nan], 4),
+ ([0, 1, 2, np.nan, 3], 3),
+ ([np.nan, 0, 1, 2, 3], 0),
+ ([np.nan, 0, np.nan, 2, 3], 0),
+ # To hit the tail of SIMD multi-level(x4, x1) inner loops
+ # on variant SIMD widthes
+ ([1] * (2*5-1) + [np.nan], 2*5-1),
+ ([1] * (4*5-1) + [np.nan], 4*5-1),
+ ([1] * (8*5-1) + [np.nan], 8*5-1),
+ ([1] * (16*5-1) + [np.nan], 16*5-1),
+ ([1] * (32*5-1) + [np.nan], 32*5-1)
+ ), (
+ np.float32, np.float64
+ ))
+ )]
+ nan_arr = darr + [
+ ([0, 1, 2, 3, complex(0, np.nan)], 4),
+ ([0, 1, 2, 3, complex(np.nan, 0)], 4),
+ ([0, 1, 2, complex(np.nan, 0), 3], 3),
+ ([0, 1, 2, complex(0, np.nan), 3], 3),
+ ([complex(0, np.nan), 0, 1, 2, 3], 0),
+ ([complex(np.nan, np.nan), 0, 1, 2, 3], 0),
+ ([complex(np.nan, 0), complex(np.nan, 2), complex(np.nan, 1)], 0),
+ ([complex(np.nan, np.nan), complex(np.nan, 2), complex(np.nan, 1)], 0),
+ ([complex(np.nan, 0), complex(np.nan, 2), complex(np.nan, np.nan)], 0),
+
+ ([complex(0, 0), complex(0, 2), complex(0, 1)], 1),
+ ([complex(1, 0), complex(0, 2), complex(0, 1)], 0),
+ ([complex(1, 0), complex(0, 2), complex(1, 1)], 2),
+
+ ([np.datetime64('1923-04-14T12:43:12'),
+ np.datetime64('1994-06-21T14:43:15'),
+ np.datetime64('2001-10-15T04:10:32'),
+ np.datetime64('1995-11-25T16:02:16'),
+ np.datetime64('2005-01-04T03:14:12'),
+ np.datetime64('2041-12-03T14:05:03')], 5),
+ ([np.datetime64('1935-09-14T04:40:11'),
+ np.datetime64('1949-10-12T12:32:11'),
+ np.datetime64('2010-01-03T05:14:12'),
+ np.datetime64('2015-11-20T12:20:59'),
+ np.datetime64('1932-09-23T10:10:13'),
+ np.datetime64('2014-10-10T03:50:30')], 3),
+ # Assorted tests with NaTs
+ ([np.datetime64('NaT'),
+ np.datetime64('NaT'),
+ np.datetime64('2010-01-03T05:14:12'),
+ np.datetime64('NaT'),
+ np.datetime64('2015-09-23T10:10:13'),
+ np.datetime64('1932-10-10T03:50:30')], 0),
+ ([np.datetime64('2059-03-14T12:43:12'),
+ np.datetime64('1996-09-21T14:43:15'),
+ np.datetime64('NaT'),
+ np.datetime64('2022-12-25T16:02:16'),
+ np.datetime64('1963-10-04T03:14:12'),
+ np.datetime64('2013-05-08T18:15:23')], 2),
+ ([np.timedelta64(2, 's'),
+ np.timedelta64(1, 's'),
+ np.timedelta64('NaT', 's'),
+ np.timedelta64(3, 's')], 2),
+ ([np.timedelta64('NaT', 's')] * 3, 0),
+
+ ([timedelta(days=5, seconds=14), timedelta(days=2, seconds=35),
+ timedelta(days=-1, seconds=23)], 0),
+ ([timedelta(days=1, seconds=43), timedelta(days=10, seconds=5),
+ timedelta(days=5, seconds=14)], 1),
+ ([timedelta(days=10, seconds=24), timedelta(days=10, seconds=5),
+ timedelta(days=10, seconds=43)], 2),
+
+ ([False, False, False, False, True], 4),
+ ([False, False, False, True, False], 3),
+ ([True, False, False, False, False], 0),
+ ([True, False, True, False, False], 0),
+ ]
+
+ @pytest.mark.parametrize('data', nan_arr)
+ def test_combinations(self, data):
+ arr, pos = data
+ with suppress_warnings() as sup:
+ sup.filter(RuntimeWarning,
+ "invalid value encountered in reduce")
+ val = np.max(arr)
+
+ assert_equal(np.argmax(arr), pos, err_msg="%r" % arr)
+ assert_equal(arr[np.argmax(arr)], val, err_msg="%r" % arr)
+
+ # add padding to test SIMD loops
+ rarr = np.repeat(arr, 129)
+ rpos = pos * 129
+ assert_equal(np.argmax(rarr), rpos, err_msg="%r" % rarr)
+ assert_equal(rarr[np.argmax(rarr)], val, err_msg="%r" % rarr)
+
+ padd = np.repeat(np.min(arr), 513)
+ rarr = np.concatenate((arr, padd))
+ rpos = pos
+ assert_equal(np.argmax(rarr), rpos, err_msg="%r" % rarr)
+ assert_equal(rarr[np.argmax(rarr)], val, err_msg="%r" % rarr)
+
+
+ def test_maximum_signed_integers(self):
+
+ a = np.array([1, 2**7 - 1, -2**7], dtype=np.int8)
+ assert_equal(np.argmax(a), 1)
+ a = a.repeat(129)
+ assert_equal(np.argmax(a), 129)
+
+ a = np.array([1, 2**15 - 1, -2**15], dtype=np.int16)
+ assert_equal(np.argmax(a), 1)
+ a = a.repeat(129)
+ assert_equal(np.argmax(a), 129)
+
+ a = np.array([1, 2**31 - 1, -2**31], dtype=np.int32)
+ assert_equal(np.argmax(a), 1)
+ a = a.repeat(129)
+ assert_equal(np.argmax(a), 129)
+
+ a = np.array([1, 2**63 - 1, -2**63], dtype=np.int64)
+ assert_equal(np.argmax(a), 1)
+ a = a.repeat(129)
+ assert_equal(np.argmax(a), 129)
+
+class TestArgmin:
+ usg_data = [
+ ([1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0], 8),
+ ([3, 3, 3, 3, 2, 2, 2, 2], 4),
+ ([0, 1, 2, 3, 4, 5, 6, 7], 0),
+ ([7, 6, 5, 4, 3, 2, 1, 0], 7)
+ ]
+ sg_data = usg_data + [
+ ([1, 2, 3, 4, -4, -3, -2, -1], 4),
+ ([1, 2, 3, 4, -1, -2, -3, -4], 7)
+ ]
+ darr = [(np.array(d[0], dtype=t), d[1]) for d, t in (
+ itertools.product(usg_data, (
+ np.uint8, np.uint16, np.uint32, np.uint64
+ ))
+ )]
+ darr = darr + [(np.array(d[0], dtype=t), d[1]) for d, t in (
+ itertools.product(sg_data, (
+ np.int8, np.int16, np.int32, np.int64, np.float32, np.float64
+ ))
+ )]
+ darr = darr + [(np.array(d[0], dtype=t), d[1]) for d, t in (
+ itertools.product((
+ ([0, 1, 2, 3, np.nan], 4),
+ ([0, 1, 2, np.nan, 3], 3),
+ ([np.nan, 0, 1, 2, 3], 0),
+ ([np.nan, 0, np.nan, 2, 3], 0),
+ # To hit the tail of SIMD multi-level(x4, x1) inner loops
+ # on variant SIMD widthes
+ ([1] * (2*5-1) + [np.nan], 2*5-1),
+ ([1] * (4*5-1) + [np.nan], 4*5-1),
+ ([1] * (8*5-1) + [np.nan], 8*5-1),
+ ([1] * (16*5-1) + [np.nan], 16*5-1),
+ ([1] * (32*5-1) + [np.nan], 32*5-1)
+ ), (
+ np.float32, np.float64
+ ))
+ )]
+ nan_arr = darr + [
+ ([0, 1, 2, 3, complex(0, np.nan)], 4),
+ ([0, 1, 2, 3, complex(np.nan, 0)], 4),
+ ([0, 1, 2, complex(np.nan, 0), 3], 3),
+ ([0, 1, 2, complex(0, np.nan), 3], 3),
+ ([complex(0, np.nan), 0, 1, 2, 3], 0),
+ ([complex(np.nan, np.nan), 0, 1, 2, 3], 0),
+ ([complex(np.nan, 0), complex(np.nan, 2), complex(np.nan, 1)], 0),
+ ([complex(np.nan, np.nan), complex(np.nan, 2), complex(np.nan, 1)], 0),
+ ([complex(np.nan, 0), complex(np.nan, 2), complex(np.nan, np.nan)], 0),
+
+ ([complex(0, 0), complex(0, 2), complex(0, 1)], 0),
+ ([complex(1, 0), complex(0, 2), complex(0, 1)], 2),
+ ([complex(1, 0), complex(0, 2), complex(1, 1)], 1),
+
+ ([np.datetime64('1923-04-14T12:43:12'),
+ np.datetime64('1994-06-21T14:43:15'),
+ np.datetime64('2001-10-15T04:10:32'),
+ np.datetime64('1995-11-25T16:02:16'),
+ np.datetime64('2005-01-04T03:14:12'),
+ np.datetime64('2041-12-03T14:05:03')], 0),
+ ([np.datetime64('1935-09-14T04:40:11'),
+ np.datetime64('1949-10-12T12:32:11'),
+ np.datetime64('2010-01-03T05:14:12'),
+ np.datetime64('2014-11-20T12:20:59'),
+ np.datetime64('2015-09-23T10:10:13'),
+ np.datetime64('1932-10-10T03:50:30')], 5),
+ # Assorted tests with NaTs
+ ([np.datetime64('NaT'),
+ np.datetime64('NaT'),
+ np.datetime64('2010-01-03T05:14:12'),
+ np.datetime64('NaT'),
+ np.datetime64('2015-09-23T10:10:13'),
+ np.datetime64('1932-10-10T03:50:30')], 0),
+ ([np.datetime64('2059-03-14T12:43:12'),
+ np.datetime64('1996-09-21T14:43:15'),
+ np.datetime64('NaT'),
+ np.datetime64('2022-12-25T16:02:16'),
+ np.datetime64('1963-10-04T03:14:12'),
+ np.datetime64('2013-05-08T18:15:23')], 2),
+ ([np.timedelta64(2, 's'),
+ np.timedelta64(1, 's'),
+ np.timedelta64('NaT', 's'),
+ np.timedelta64(3, 's')], 2),
+ ([np.timedelta64('NaT', 's')] * 3, 0),
+
+ ([timedelta(days=5, seconds=14), timedelta(days=2, seconds=35),
+ timedelta(days=-1, seconds=23)], 2),
+ ([timedelta(days=1, seconds=43), timedelta(days=10, seconds=5),
+ timedelta(days=5, seconds=14)], 0),
+ ([timedelta(days=10, seconds=24), timedelta(days=10, seconds=5),
+ timedelta(days=10, seconds=43)], 1),
+
+ ([True, True, True, True, False], 4),
+ ([True, True, True, False, True], 3),
+ ([False, True, True, True, True], 0),
+ ([False, True, False, True, True], 0),
+ ]
+
+ @pytest.mark.parametrize('data', nan_arr)
+ def test_combinations(self, data):
+ arr, pos = data
+ with suppress_warnings() as sup:
+ sup.filter(RuntimeWarning,
+ "invalid value encountered in reduce")
+ min_val = np.min(arr)
+
+ assert_equal(np.argmin(arr), pos, err_msg="%r" % arr)
+ assert_equal(arr[np.argmin(arr)], min_val, err_msg="%r" % arr)
+
+ # add padding to test SIMD loops
+ rarr = np.repeat(arr, 129)
+ rpos = pos * 129
+ assert_equal(np.argmin(rarr), rpos, err_msg="%r" % rarr)
+ assert_equal(rarr[np.argmin(rarr)], min_val, err_msg="%r" % rarr)
+
+ padd = np.repeat(np.max(arr), 513)
+ rarr = np.concatenate((arr, padd))
+ rpos = pos
+ assert_equal(np.argmin(rarr), rpos, err_msg="%r" % rarr)
+ assert_equal(rarr[np.argmin(rarr)], min_val, err_msg="%r" % rarr)
+
+ def test_minimum_signed_integers(self):
+
+ a = np.array([1, -2**7, -2**7 + 1, 2**7 - 1], dtype=np.int8)
+ assert_equal(np.argmin(a), 1)
+ a = a.repeat(129)
+ assert_equal(np.argmin(a), 129)
+
+ a = np.array([1, -2**15, -2**15 + 1, 2**15 - 1], dtype=np.int16)
+ assert_equal(np.argmin(a), 1)
+ a = a.repeat(129)
+ assert_equal(np.argmin(a), 129)
+
+ a = np.array([1, -2**31, -2**31 + 1, 2**31 - 1], dtype=np.int32)
+ assert_equal(np.argmin(a), 1)
+ a = a.repeat(129)
+ assert_equal(np.argmin(a), 129)
+
+ a = np.array([1, -2**63, -2**63 + 1, 2**63 - 1], dtype=np.int64)
+ assert_equal(np.argmin(a), 1)
+ a = a.repeat(129)
+ assert_equal(np.argmin(a), 129)
+
+class TestMinMax:
+
+ def test_scalar(self):
+ assert_raises(np.AxisError, np.amax, 1, 1)
+ assert_raises(np.AxisError, np.amin, 1, 1)
+
+ assert_equal(np.amax(1, axis=0), 1)
+ assert_equal(np.amin(1, axis=0), 1)
+ assert_equal(np.amax(1, axis=None), 1)
+ assert_equal(np.amin(1, axis=None), 1)
+
+ def test_axis(self):
+ assert_raises(np.AxisError, np.amax, [1, 2, 3], 1000)
+ assert_equal(np.amax([[1, 2, 3]], axis=1), 3)
+
+ def test_datetime(self):
+ # Do not ignore NaT
+ for dtype in ('m8[s]', 'm8[Y]'):
+ a = np.arange(10).astype(dtype)
+ assert_equal(np.amin(a), a[0])
+ assert_equal(np.amax(a), a[9])
+ a[3] = 'NaT'
+ assert_equal(np.amin(a), a[3])
+ assert_equal(np.amax(a), a[3])
+
+
+class TestNewaxis:
+ def test_basic(self):
+ sk = np.array([0, -0.1, 0.1])
+ res = 250*sk[:, np.newaxis]
+ assert_almost_equal(res.ravel(), 250*sk)
+
+
+class TestClip:
+ def _check_range(self, x, cmin, cmax):
+ assert_(np.all(x >= cmin))
+ assert_(np.all(x <= cmax))
+
+ def _clip_type(self, type_group, array_max,
+ clip_min, clip_max, inplace=False,
+ expected_min=None, expected_max=None):
+ if expected_min is None:
+ expected_min = clip_min
+ if expected_max is None:
+ expected_max = clip_max
+
+ for T in np.sctypes[type_group]:
+ if sys.byteorder == 'little':
+ byte_orders = ['=', '>']
+ else:
+ byte_orders = ['<', '=']
+
+ for byteorder in byte_orders:
+ dtype = np.dtype(T).newbyteorder(byteorder)
+
+ x = (np.random.random(1000) * array_max).astype(dtype)
+ if inplace:
+ # The tests that call us pass clip_min and clip_max that
+ # might not fit in the destination dtype. They were written
+ # assuming the previous unsafe casting, which now must be
+ # passed explicitly to avoid a warning.
+ x.clip(clip_min, clip_max, x, casting='unsafe')
+ else:
+ x = x.clip(clip_min, clip_max)
+ byteorder = '='
+
+ if x.dtype.byteorder == '|':
+ byteorder = '|'
+ assert_equal(x.dtype.byteorder, byteorder)
+ self._check_range(x, expected_min, expected_max)
+ return x
+
+ def test_basic(self):
+ for inplace in [False, True]:
+ self._clip_type(
+ 'float', 1024, -12.8, 100.2, inplace=inplace)
+ self._clip_type(
+ 'float', 1024, 0, 0, inplace=inplace)
+
+ self._clip_type(
+ 'int', 1024, -120, 100, inplace=inplace)
+ self._clip_type(
+ 'int', 1024, 0, 0, inplace=inplace)
+
+ self._clip_type(
+ 'uint', 1024, 0, 0, inplace=inplace)
+ self._clip_type(
+ 'uint', 1024, -120, 100, inplace=inplace, expected_min=0)
+
+ def test_record_array(self):
+ rec = np.array([(-5, 2.0, 3.0), (5.0, 4.0, 3.0)],
+ dtype=[('x', '<f8'), ('y', '<f8'), ('z', '<f8')])
+ y = rec['x'].clip(-0.3, 0.5)
+ self._check_range(y, -0.3, 0.5)
+
+ def test_max_or_min(self):
+ val = np.array([0, 1, 2, 3, 4, 5, 6, 7])
+ x = val.clip(3)
+ assert_(np.all(x >= 3))
+ x = val.clip(min=3)
+ assert_(np.all(x >= 3))
+ x = val.clip(max=4)
+ assert_(np.all(x <= 4))
+
+ def test_nan(self):
+ input_arr = np.array([-2., np.nan, 0.5, 3., 0.25, np.nan])
+ result = input_arr.clip(-1, 1)
+ expected = np.array([-1., np.nan, 0.5, 1., 0.25, np.nan])
+ assert_array_equal(result, expected)
+
+
+class TestCompress:
+ def test_axis(self):
+ tgt = [[5, 6, 7, 8, 9]]
+ arr = np.arange(10).reshape(2, 5)
+ out = np.compress([0, 1], arr, axis=0)
+ assert_equal(out, tgt)
+
+ tgt = [[1, 3], [6, 8]]
+ out = np.compress([0, 1, 0, 1, 0], arr, axis=1)
+ assert_equal(out, tgt)
+
+ def test_truncate(self):
+ tgt = [[1], [6]]
+ arr = np.arange(10).reshape(2, 5)
+ out = np.compress([0, 1], arr, axis=1)
+ assert_equal(out, tgt)
+
+ def test_flatten(self):
+ arr = np.arange(10).reshape(2, 5)
+ out = np.compress([0, 1], arr)
+ assert_equal(out, 1)
+
+
+class TestPutmask:
+ def tst_basic(self, x, T, mask, val):
+ np.putmask(x, mask, val)
+ assert_equal(x[mask], np.array(val, T))
+
+ def test_ip_types(self):
+ unchecked_types = [bytes, str, np.void]
+
+ x = np.random.random(1000)*100
+ mask = x < 40
+
+ for val in [-100, 0, 15]:
+ for types in np.sctypes.values():
+ for T in types:
+ if T not in unchecked_types:
+ if val < 0 and np.dtype(T).kind == "u":
+ val = np.iinfo(T).max - 99
+ self.tst_basic(x.copy().astype(T), T, mask, val)
+
+ # Also test string of a length which uses an untypical length
+ dt = np.dtype("S3")
+ self.tst_basic(x.astype(dt), dt.type, mask, dt.type(val)[:3])
+
+ def test_mask_size(self):
+ assert_raises(ValueError, np.putmask, np.array([1, 2, 3]), [True], 5)
+
+ @pytest.mark.parametrize('dtype', ('>i4', '<i4'))
+ def test_byteorder(self, dtype):
+ x = np.array([1, 2, 3], dtype)
+ np.putmask(x, [True, False, True], -1)
+ assert_array_equal(x, [-1, 2, -1])
+
+ def test_record_array(self):
+ # Note mixed byteorder.
+ rec = np.array([(-5, 2.0, 3.0), (5.0, 4.0, 3.0)],
+ dtype=[('x', '<f8'), ('y', '>f8'), ('z', '<f8')])
+ np.putmask(rec['x'], [True, False], 10)
+ assert_array_equal(rec['x'], [10, 5])
+ assert_array_equal(rec['y'], [2, 4])
+ assert_array_equal(rec['z'], [3, 3])
+ np.putmask(rec['y'], [True, False], 11)
+ assert_array_equal(rec['x'], [10, 5])
+ assert_array_equal(rec['y'], [11, 4])
+ assert_array_equal(rec['z'], [3, 3])
+
+ def test_overlaps(self):
+ # gh-6272 check overlap
+ x = np.array([True, False, True, False])
+ np.putmask(x[1:4], [True, True, True], x[:3])
+ assert_equal(x, np.array([True, True, False, True]))
+
+ x = np.array([True, False, True, False])
+ np.putmask(x[1:4], x[:3], [True, False, True])
+ assert_equal(x, np.array([True, True, True, True]))
+
+ def test_writeable(self):
+ a = np.arange(5)
+ a.flags.writeable = False
+
+ with pytest.raises(ValueError):
+ np.putmask(a, a >= 2, 3)
+
+ def test_kwargs(self):
+ x = np.array([0, 0])
+ np.putmask(x, [0, 1], [-1, -2])
+ assert_array_equal(x, [0, -2])
+
+ x = np.array([0, 0])
+ np.putmask(x, mask=[0, 1], values=[-1, -2])
+ assert_array_equal(x, [0, -2])
+
+ x = np.array([0, 0])
+ np.putmask(x, values=[-1, -2], mask=[0, 1])
+ assert_array_equal(x, [0, -2])
+
+ with pytest.raises(TypeError):
+ np.putmask(a=x, values=[-1, -2], mask=[0, 1])
+
+
+class TestTake:
+ def tst_basic(self, x):
+ ind = list(range(x.shape[0]))
+ assert_array_equal(x.take(ind, axis=0), x)
+
+ def test_ip_types(self):
+ unchecked_types = [bytes, str, np.void]
+
+ x = np.random.random(24)*100
+ x.shape = 2, 3, 4
+ for types in np.sctypes.values():
+ for T in types:
+ if T not in unchecked_types:
+ self.tst_basic(x.copy().astype(T))
+
+ # Also test string of a length which uses an untypical length
+ self.tst_basic(x.astype("S3"))
+
+ def test_raise(self):
+ x = np.random.random(24)*100
+ x.shape = 2, 3, 4
+ assert_raises(IndexError, x.take, [0, 1, 2], axis=0)
+ assert_raises(IndexError, x.take, [-3], axis=0)
+ assert_array_equal(x.take([-1], axis=0)[0], x[1])
+
+ def test_clip(self):
+ x = np.random.random(24)*100
+ x.shape = 2, 3, 4
+ assert_array_equal(x.take([-1], axis=0, mode='clip')[0], x[0])
+ assert_array_equal(x.take([2], axis=0, mode='clip')[0], x[1])
+
+ def test_wrap(self):
+ x = np.random.random(24)*100
+ x.shape = 2, 3, 4
+ assert_array_equal(x.take([-1], axis=0, mode='wrap')[0], x[1])
+ assert_array_equal(x.take([2], axis=0, mode='wrap')[0], x[0])
+ assert_array_equal(x.take([3], axis=0, mode='wrap')[0], x[1])
+
+ @pytest.mark.parametrize('dtype', ('>i4', '<i4'))
+ def test_byteorder(self, dtype):
+ x = np.array([1, 2, 3], dtype)
+ assert_array_equal(x.take([0, 2, 1]), [1, 3, 2])
+
+ def test_record_array(self):
+ # Note mixed byteorder.
+ rec = np.array([(-5, 2.0, 3.0), (5.0, 4.0, 3.0)],
+ dtype=[('x', '<f8'), ('y', '>f8'), ('z', '<f8')])
+ rec1 = rec.take([1])
+ assert_(rec1['x'] == 5.0 and rec1['y'] == 4.0)
+
+ def test_out_overlap(self):
+ # gh-6272 check overlap on out
+ x = np.arange(5)
+ y = np.take(x, [1, 2, 3], out=x[2:5], mode='wrap')
+ assert_equal(y, np.array([1, 2, 3]))
+
+ @pytest.mark.parametrize('shape', [(1, 2), (1,), ()])
+ def test_ret_is_out(self, shape):
+ # 0d arrays should not be an exception to this rule
+ x = np.arange(5)
+ inds = np.zeros(shape, dtype=np.intp)
+ out = np.zeros(shape, dtype=x.dtype)
+ ret = np.take(x, inds, out=out)
+ assert ret is out
+
+
+class TestLexsort:
+ @pytest.mark.parametrize('dtype',[
+ np.uint8, np.uint16, np.uint32, np.uint64,
+ np.int8, np.int16, np.int32, np.int64,
+ np.float16, np.float32, np.float64
+ ])
+ def test_basic(self, dtype):
+ a = np.array([1, 2, 1, 3, 1, 5], dtype=dtype)
+ b = np.array([0, 4, 5, 6, 2, 3], dtype=dtype)
+ idx = np.lexsort((b, a))
+ expected_idx = np.array([0, 4, 2, 1, 3, 5])
+ assert_array_equal(idx, expected_idx)
+ assert_array_equal(a[idx], np.sort(a))
+
+ def test_mixed(self):
+ a = np.array([1, 2, 1, 3, 1, 5])
+ b = np.array([0, 4, 5, 6, 2, 3], dtype='datetime64[D]')
+
+ idx = np.lexsort((b, a))
+ expected_idx = np.array([0, 4, 2, 1, 3, 5])
+ assert_array_equal(idx, expected_idx)
+
+ def test_datetime(self):
+ a = np.array([0,0,0], dtype='datetime64[D]')
+ b = np.array([2,1,0], dtype='datetime64[D]')
+ idx = np.lexsort((b, a))
+ expected_idx = np.array([2, 1, 0])
+ assert_array_equal(idx, expected_idx)
+
+ a = np.array([0,0,0], dtype='timedelta64[D]')
+ b = np.array([2,1,0], dtype='timedelta64[D]')
+ idx = np.lexsort((b, a))
+ expected_idx = np.array([2, 1, 0])
+ assert_array_equal(idx, expected_idx)
+
+ def test_object(self): # gh-6312
+ a = np.random.choice(10, 1000)
+ b = np.random.choice(['abc', 'xy', 'wz', 'efghi', 'qwst', 'x'], 1000)
+
+ for u in a, b:
+ left = np.lexsort((u.astype('O'),))
+ right = np.argsort(u, kind='mergesort')
+ assert_array_equal(left, right)
+
+ for u, v in (a, b), (b, a):
+ idx = np.lexsort((u, v))
+ assert_array_equal(idx, np.lexsort((u.astype('O'), v)))
+ assert_array_equal(idx, np.lexsort((u, v.astype('O'))))
+ u, v = np.array(u, dtype='object'), np.array(v, dtype='object')
+ assert_array_equal(idx, np.lexsort((u, v)))
+
+ def test_invalid_axis(self): # gh-7528
+ x = np.linspace(0., 1., 42*3).reshape(42, 3)
+ assert_raises(np.AxisError, np.lexsort, x, axis=2)
+
+class TestIO:
+ """Test tofile, fromfile, tobytes, and fromstring"""
+
+ @pytest.fixture()
+ def x(self):
+ shape = (2, 4, 3)
+ rand = np.random.random
+ x = rand(shape) + rand(shape).astype(complex) * 1j
+ x[0, :, 1] = [np.nan, np.inf, -np.inf, np.nan]
+ return x
+
+ @pytest.fixture(params=["string", "path_obj"])
+ def tmp_filename(self, tmp_path, request):
+ # This fixture covers two cases:
+ # one where the filename is a string and
+ # another where it is a pathlib object
+ filename = tmp_path / "file"
+ if request.param == "string":
+ filename = str(filename)
+ yield filename
+
+ def test_nofile(self):
+ # this should probably be supported as a file
+ # but for now test for proper errors
+ b = io.BytesIO()
+ assert_raises(OSError, np.fromfile, b, np.uint8, 80)
+ d = np.ones(7)
+ assert_raises(OSError, lambda x: x.tofile(b), d)
+
+ def test_bool_fromstring(self):
+ v = np.array([True, False, True, False], dtype=np.bool_)
+ y = np.fromstring('1 0 -2.3 0.0', sep=' ', dtype=np.bool_)
+ assert_array_equal(v, y)
+
+ def test_uint64_fromstring(self):
+ d = np.fromstring("9923372036854775807 104783749223640",
+ dtype=np.uint64, sep=' ')
+ e = np.array([9923372036854775807, 104783749223640], dtype=np.uint64)
+ assert_array_equal(d, e)
+
+ def test_int64_fromstring(self):
+ d = np.fromstring("-25041670086757 104783749223640",
+ dtype=np.int64, sep=' ')
+ e = np.array([-25041670086757, 104783749223640], dtype=np.int64)
+ assert_array_equal(d, e)
+
+ def test_fromstring_count0(self):
+ d = np.fromstring("1,2", sep=",", dtype=np.int64, count=0)
+ assert d.shape == (0,)
+
+ def test_empty_files_text(self, tmp_filename):
+ with open(tmp_filename, 'w') as f:
+ pass
+ y = np.fromfile(tmp_filename)
+ assert_(y.size == 0, "Array not empty")
+
+ def test_empty_files_binary(self, tmp_filename):
+ with open(tmp_filename, 'wb') as f:
+ pass
+ y = np.fromfile(tmp_filename, sep=" ")
+ assert_(y.size == 0, "Array not empty")
+
+ def test_roundtrip_file(self, x, tmp_filename):
+ with open(tmp_filename, 'wb') as f:
+ x.tofile(f)
+ # NB. doesn't work with flush+seek, due to use of C stdio
+ with open(tmp_filename, 'rb') as f:
+ y = np.fromfile(f, dtype=x.dtype)
+ assert_array_equal(y, x.flat)
+
+ def test_roundtrip(self, x, tmp_filename):
+ x.tofile(tmp_filename)
+ y = np.fromfile(tmp_filename, dtype=x.dtype)
+ assert_array_equal(y, x.flat)
+
+ def test_roundtrip_dump_pathlib(self, x, tmp_filename):
+ p = pathlib.Path(tmp_filename)
+ x.dump(p)
+ y = np.load(p, allow_pickle=True)
+ assert_array_equal(y, x)
+
+ def test_roundtrip_binary_str(self, x):
+ s = x.tobytes()
+ y = np.frombuffer(s, dtype=x.dtype)
+ assert_array_equal(y, x.flat)
+
+ s = x.tobytes('F')
+ y = np.frombuffer(s, dtype=x.dtype)
+ assert_array_equal(y, x.flatten('F'))
+
+ def test_roundtrip_str(self, x):
+ x = x.real.ravel()
+ s = "@".join(map(str, x))
+ y = np.fromstring(s, sep="@")
+ # NB. str imbues less precision
+ nan_mask = ~np.isfinite(x)
+ assert_array_equal(x[nan_mask], y[nan_mask])
+ assert_array_almost_equal(x[~nan_mask], y[~nan_mask], decimal=5)
+
+ def test_roundtrip_repr(self, x):
+ x = x.real.ravel()
+ s = "@".join(map(repr, x))
+ y = np.fromstring(s, sep="@")
+ assert_array_equal(x, y)
+
+ def test_unseekable_fromfile(self, x, tmp_filename):
+ # gh-6246
+ x.tofile(tmp_filename)
+
+ def fail(*args, **kwargs):
+ raise OSError('Can not tell or seek')
+
+ with io.open(tmp_filename, 'rb', buffering=0) as f:
+ f.seek = fail
+ f.tell = fail
+ assert_raises(OSError, np.fromfile, f, dtype=x.dtype)
+
+ def test_io_open_unbuffered_fromfile(self, x, tmp_filename):
+ # gh-6632
+ x.tofile(tmp_filename)
+ with io.open(tmp_filename, 'rb', buffering=0) as f:
+ y = np.fromfile(f, dtype=x.dtype)
+ assert_array_equal(y, x.flat)
+
+ def test_largish_file(self, tmp_filename):
+ # check the fallocate path on files > 16MB
+ d = np.zeros(4 * 1024 ** 2)
+ d.tofile(tmp_filename)
+ assert_equal(os.path.getsize(tmp_filename), d.nbytes)
+ assert_array_equal(d, np.fromfile(tmp_filename))
+ # check offset
+ with open(tmp_filename, "r+b") as f:
+ f.seek(d.nbytes)
+ d.tofile(f)
+ assert_equal(os.path.getsize(tmp_filename), d.nbytes * 2)
+ # check append mode (gh-8329)
+ open(tmp_filename, "w").close() # delete file contents
+ with open(tmp_filename, "ab") as f:
+ d.tofile(f)
+ assert_array_equal(d, np.fromfile(tmp_filename))
+ with open(tmp_filename, "ab") as f:
+ d.tofile(f)
+ assert_equal(os.path.getsize(tmp_filename), d.nbytes * 2)
+
+ def test_io_open_buffered_fromfile(self, x, tmp_filename):
+ # gh-6632
+ x.tofile(tmp_filename)
+ with io.open(tmp_filename, 'rb', buffering=-1) as f:
+ y = np.fromfile(f, dtype=x.dtype)
+ assert_array_equal(y, x.flat)
+
+ def test_file_position_after_fromfile(self, tmp_filename):
+ # gh-4118
+ sizes = [io.DEFAULT_BUFFER_SIZE//8,
+ io.DEFAULT_BUFFER_SIZE,
+ io.DEFAULT_BUFFER_SIZE*8]
+
+ for size in sizes:
+ with open(tmp_filename, 'wb') as f:
+ f.seek(size-1)
+ f.write(b'\0')
+
+ for mode in ['rb', 'r+b']:
+ err_msg = "%d %s" % (size, mode)
+
+ with open(tmp_filename, mode) as f:
+ f.read(2)
+ np.fromfile(f, dtype=np.float64, count=1)
+ pos = f.tell()
+ assert_equal(pos, 10, err_msg=err_msg)
+
+ def test_file_position_after_tofile(self, tmp_filename):
+ # gh-4118
+ sizes = [io.DEFAULT_BUFFER_SIZE//8,
+ io.DEFAULT_BUFFER_SIZE,
+ io.DEFAULT_BUFFER_SIZE*8]
+
+ for size in sizes:
+ err_msg = "%d" % (size,)
+
+ with open(tmp_filename, 'wb') as f:
+ f.seek(size-1)
+ f.write(b'\0')
+ f.seek(10)
+ f.write(b'12')
+ np.array([0], dtype=np.float64).tofile(f)
+ pos = f.tell()
+ assert_equal(pos, 10 + 2 + 8, err_msg=err_msg)
+
+ with open(tmp_filename, 'r+b') as f:
+ f.read(2)
+ f.seek(0, 1) # seek between read&write required by ANSI C
+ np.array([0], dtype=np.float64).tofile(f)
+ pos = f.tell()
+ assert_equal(pos, 10, err_msg=err_msg)
+
+ def test_load_object_array_fromfile(self, tmp_filename):
+ # gh-12300
+ with open(tmp_filename, 'w') as f:
+ # Ensure we have a file with consistent contents
+ pass
+
+ with open(tmp_filename, 'rb') as f:
+ assert_raises_regex(ValueError, "Cannot read into object array",
+ np.fromfile, f, dtype=object)
+
+ assert_raises_regex(ValueError, "Cannot read into object array",
+ np.fromfile, tmp_filename, dtype=object)
+
+ def test_fromfile_offset(self, x, tmp_filename):
+ with open(tmp_filename, 'wb') as f:
+ x.tofile(f)
+
+ with open(tmp_filename, 'rb') as f:
+ y = np.fromfile(f, dtype=x.dtype, offset=0)
+ assert_array_equal(y, x.flat)
+
+ with open(tmp_filename, 'rb') as f:
+ count_items = len(x.flat) // 8
+ offset_items = len(x.flat) // 4
+ offset_bytes = x.dtype.itemsize * offset_items
+ y = np.fromfile(
+ f, dtype=x.dtype, count=count_items, offset=offset_bytes
+ )
+ assert_array_equal(
+ y, x.flat[offset_items:offset_items+count_items]
+ )
+
+ # subsequent seeks should stack
+ offset_bytes = x.dtype.itemsize
+ z = np.fromfile(f, dtype=x.dtype, offset=offset_bytes)
+ assert_array_equal(z, x.flat[offset_items+count_items+1:])
+
+ with open(tmp_filename, 'wb') as f:
+ x.tofile(f, sep=",")
+
+ with open(tmp_filename, 'rb') as f:
+ assert_raises_regex(
+ TypeError,
+ "'offset' argument only permitted for binary files",
+ np.fromfile, tmp_filename, dtype=x.dtype,
+ sep=",", offset=1)
+
+ @pytest.mark.skipif(IS_PYPY, reason="bug in PyPy's PyNumber_AsSsize_t")
+ def test_fromfile_bad_dup(self, x, tmp_filename):
+ def dup_str(fd):
+ return 'abc'
+
+ def dup_bigint(fd):
+ return 2**68
+
+ old_dup = os.dup
+ try:
+ with open(tmp_filename, 'wb') as f:
+ x.tofile(f)
+ for dup, exc in ((dup_str, TypeError), (dup_bigint, OSError)):
+ os.dup = dup
+ assert_raises(exc, np.fromfile, f)
+ finally:
+ os.dup = old_dup
+
+ def _check_from(self, s, value, filename, **kw):
+ if 'sep' not in kw:
+ y = np.frombuffer(s, **kw)
+ else:
+ y = np.fromstring(s, **kw)
+ assert_array_equal(y, value)
+
+ with open(filename, 'wb') as f:
+ f.write(s)
+ y = np.fromfile(filename, **kw)
+ assert_array_equal(y, value)
+
+ @pytest.fixture(params=["period", "comma"])
+ def decimal_sep_localization(self, request):
+ """
+ Including this fixture in a test will automatically
+ execute it with both types of decimal separator.
+
+ So::
+
+ def test_decimal(decimal_sep_localization):
+ pass
+
+ is equivalent to the following two tests::
+
+ def test_decimal_period_separator():
+ pass
+
+ def test_decimal_comma_separator():
+ with CommaDecimalPointLocale():
+ pass
+ """
+ if request.param == "period":
+ yield
+ elif request.param == "comma":
+ with CommaDecimalPointLocale():
+ yield
+ else:
+ assert False, request.param
+
+ def test_nan(self, tmp_filename, decimal_sep_localization):
+ self._check_from(
+ b"nan +nan -nan NaN nan(foo) +NaN(BAR) -NAN(q_u_u_x_)",
+ [np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan],
+ tmp_filename,
+ sep=' ')
+
+ def test_inf(self, tmp_filename, decimal_sep_localization):
+ self._check_from(
+ b"inf +inf -inf infinity -Infinity iNfInItY -inF",
+ [np.inf, np.inf, -np.inf, np.inf, -np.inf, np.inf, -np.inf],
+ tmp_filename,
+ sep=' ')
+
+ def test_numbers(self, tmp_filename, decimal_sep_localization):
+ self._check_from(
+ b"1.234 -1.234 .3 .3e55 -123133.1231e+133",
+ [1.234, -1.234, .3, .3e55, -123133.1231e+133],
+ tmp_filename,
+ sep=' ')
+
+ def test_binary(self, tmp_filename):
+ self._check_from(
+ b'\x00\x00\x80?\x00\x00\x00@\x00\x00@@\x00\x00\x80@',
+ np.array([1, 2, 3, 4]),
+ tmp_filename,
+ dtype='<f4')
+
+ def test_string(self, tmp_filename):
+ self._check_from(b'1,2,3,4', [1., 2., 3., 4.], tmp_filename, sep=',')
+
+ def test_counted_string(self, tmp_filename, decimal_sep_localization):
+ self._check_from(
+ b'1,2,3,4', [1., 2., 3., 4.], tmp_filename, count=4, sep=',')
+ self._check_from(
+ b'1,2,3,4', [1., 2., 3.], tmp_filename, count=3, sep=',')
+ self._check_from(
+ b'1,2,3,4', [1., 2., 3., 4.], tmp_filename, count=-1, sep=',')
+
+ def test_string_with_ws(self, tmp_filename):
+ self._check_from(
+ b'1 2 3 4 ', [1, 2, 3, 4], tmp_filename, dtype=int, sep=' ')
+
+ def test_counted_string_with_ws(self, tmp_filename):
+ self._check_from(
+ b'1 2 3 4 ', [1, 2, 3], tmp_filename, count=3, dtype=int,
+ sep=' ')
+
+ def test_ascii(self, tmp_filename, decimal_sep_localization):
+ self._check_from(
+ b'1 , 2 , 3 , 4', [1., 2., 3., 4.], tmp_filename, sep=',')
+ self._check_from(
+ b'1,2,3,4', [1., 2., 3., 4.], tmp_filename, dtype=float, sep=',')
+
+ def test_malformed(self, tmp_filename, decimal_sep_localization):
+ with assert_warns(DeprecationWarning):
+ self._check_from(
+ b'1.234 1,234', [1.234, 1.], tmp_filename, sep=' ')
+
+ def test_long_sep(self, tmp_filename):
+ self._check_from(
+ b'1_x_3_x_4_x_5', [1, 3, 4, 5], tmp_filename, sep='_x_')
+
+ def test_dtype(self, tmp_filename):
+ v = np.array([1, 2, 3, 4], dtype=np.int_)
+ self._check_from(b'1,2,3,4', v, tmp_filename, sep=',', dtype=np.int_)
+
+ def test_dtype_bool(self, tmp_filename):
+ # can't use _check_from because fromstring can't handle True/False
+ v = np.array([True, False, True, False], dtype=np.bool_)
+ s = b'1,0,-2.3,0'
+ with open(tmp_filename, 'wb') as f:
+ f.write(s)
+ y = np.fromfile(tmp_filename, sep=',', dtype=np.bool_)
+ assert_(y.dtype == '?')
+ assert_array_equal(y, v)
+
+ def test_tofile_sep(self, tmp_filename, decimal_sep_localization):
+ x = np.array([1.51, 2, 3.51, 4], dtype=float)
+ with open(tmp_filename, 'w') as f:
+ x.tofile(f, sep=',')
+ with open(tmp_filename, 'r') as f:
+ s = f.read()
+ #assert_equal(s, '1.51,2.0,3.51,4.0')
+ y = np.array([float(p) for p in s.split(',')])
+ assert_array_equal(x,y)
+
+ def test_tofile_format(self, tmp_filename, decimal_sep_localization):
+ x = np.array([1.51, 2, 3.51, 4], dtype=float)
+ with open(tmp_filename, 'w') as f:
+ x.tofile(f, sep=',', format='%.2f')
+ with open(tmp_filename, 'r') as f:
+ s = f.read()
+ assert_equal(s, '1.51,2.00,3.51,4.00')
+
+ def test_tofile_cleanup(self, tmp_filename):
+ x = np.zeros((10), dtype=object)
+ with open(tmp_filename, 'wb') as f:
+ assert_raises(OSError, lambda: x.tofile(f, sep=''))
+ # Dup-ed file handle should be closed or remove will fail on Windows OS
+ os.remove(tmp_filename)
+
+ # Also make sure that we close the Python handle
+ assert_raises(OSError, lambda: x.tofile(tmp_filename))
+ os.remove(tmp_filename)
+
+ def test_fromfile_subarray_binary(self, tmp_filename):
+ # Test subarray dtypes which are absorbed into the shape
+ x = np.arange(24, dtype="i4").reshape(2, 3, 4)
+ x.tofile(tmp_filename)
+ res = np.fromfile(tmp_filename, dtype="(3,4)i4")
+ assert_array_equal(x, res)
+
+ x_str = x.tobytes()
+ with assert_warns(DeprecationWarning):
+ # binary fromstring is deprecated
+ res = np.fromstring(x_str, dtype="(3,4)i4")
+ assert_array_equal(x, res)
+
+ def test_parsing_subarray_unsupported(self, tmp_filename):
+ # We currently do not support parsing subarray dtypes
+ data = "12,42,13," * 50
+ with pytest.raises(ValueError):
+ expected = np.fromstring(data, dtype="(3,)i", sep=",")
+
+ with open(tmp_filename, "w") as f:
+ f.write(data)
+
+ with pytest.raises(ValueError):
+ np.fromfile(tmp_filename, dtype="(3,)i", sep=",")
+
+ def test_read_shorter_than_count_subarray(self, tmp_filename):
+ # Test that requesting more values does not cause any problems
+ # in conjunction with subarray dimensions being absorbed into the
+ # array dimension.
+ expected = np.arange(511 * 10, dtype="i").reshape(-1, 10)
+
+ binary = expected.tobytes()
+ with pytest.raises(ValueError):
+ with pytest.warns(DeprecationWarning):
+ np.fromstring(binary, dtype="(10,)i", count=10000)
+
+ expected.tofile(tmp_filename)
+ res = np.fromfile(tmp_filename, dtype="(10,)i", count=10000)
+ assert_array_equal(res, expected)
+
+
+class TestFromBuffer:
+ @pytest.mark.parametrize('byteorder', ['<', '>'])
+ @pytest.mark.parametrize('dtype', [float, int, complex])
+ def test_basic(self, byteorder, dtype):
+ dt = np.dtype(dtype).newbyteorder(byteorder)
+ x = (np.random.random((4, 7)) * 5).astype(dt)
+ buf = x.tobytes()
+ assert_array_equal(np.frombuffer(buf, dtype=dt), x.flat)
+
+ @pytest.mark.parametrize("obj", [np.arange(10), b"12345678"])
+ def test_array_base(self, obj):
+ # Objects (including NumPy arrays), which do not use the
+ # `release_buffer` slot should be directly used as a base object.
+ # See also gh-21612
+ new = np.frombuffer(obj)
+ assert new.base is obj
+
+ def test_empty(self):
+ assert_array_equal(np.frombuffer(b''), np.array([]))
+
+ @pytest.mark.skipif(IS_PYPY,
+ reason="PyPy's memoryview currently does not track exports. See: "
+ "https://foss.heptapod.net/pypy/pypy/-/issues/3724")
+ def test_mmap_close(self):
+ # The old buffer protocol was not safe for some things that the new
+ # one is. But `frombuffer` always used the old one for a long time.
+ # Checks that it is safe with the new one (using memoryviews)
+ with tempfile.TemporaryFile(mode='wb') as tmp:
+ tmp.write(b"asdf")
+ tmp.flush()
+ mm = mmap.mmap(tmp.fileno(), 0)
+ arr = np.frombuffer(mm, dtype=np.uint8)
+ with pytest.raises(BufferError):
+ mm.close() # cannot close while array uses the buffer
+ del arr
+ mm.close()
+
+class TestFlat:
+ def setup_method(self):
+ a0 = np.arange(20.0)
+ a = a0.reshape(4, 5)
+ a0.shape = (4, 5)
+ a.flags.writeable = False
+ self.a = a
+ self.b = a[::2, ::2]
+ self.a0 = a0
+ self.b0 = a0[::2, ::2]
+
+ def test_contiguous(self):
+ testpassed = False
+ try:
+ self.a.flat[12] = 100.0
+ except ValueError:
+ testpassed = True
+ assert_(testpassed)
+ assert_(self.a.flat[12] == 12.0)
+
+ def test_discontiguous(self):
+ testpassed = False
+ try:
+ self.b.flat[4] = 100.0
+ except ValueError:
+ testpassed = True
+ assert_(testpassed)
+ assert_(self.b.flat[4] == 12.0)
+
+ def test___array__(self):
+ c = self.a.flat.__array__()
+ d = self.b.flat.__array__()
+ e = self.a0.flat.__array__()
+ f = self.b0.flat.__array__()
+
+ assert_(c.flags.writeable is False)
+ assert_(d.flags.writeable is False)
+ assert_(e.flags.writeable is True)
+ assert_(f.flags.writeable is False)
+ assert_(c.flags.writebackifcopy is False)
+ assert_(d.flags.writebackifcopy is False)
+ assert_(e.flags.writebackifcopy is False)
+ assert_(f.flags.writebackifcopy is False)
+
+ @pytest.mark.skipif(not HAS_REFCOUNT, reason="Python lacks refcounts")
+ def test_refcount(self):
+ # includes regression test for reference count error gh-13165
+ inds = [np.intp(0), np.array([True]*self.a.size), np.array([0]), None]
+ indtype = np.dtype(np.intp)
+ rc_indtype = sys.getrefcount(indtype)
+ for ind in inds:
+ rc_ind = sys.getrefcount(ind)
+ for _ in range(100):
+ try:
+ self.a.flat[ind]
+ except IndexError:
+ pass
+ assert_(abs(sys.getrefcount(ind) - rc_ind) < 50)
+ assert_(abs(sys.getrefcount(indtype) - rc_indtype) < 50)
+
+ def test_index_getset(self):
+ it = np.arange(10).reshape(2, 1, 5).flat
+ with pytest.raises(AttributeError):
+ it.index = 10
+
+ for _ in it:
+ pass
+ # Check the value of `.index` is updated correctly (see also gh-19153)
+ # If the type was incorrect, this would show up on big-endian machines
+ assert it.index == it.base.size
+
+
+class TestResize:
+
+ @_no_tracing
+ def test_basic(self):
+ x = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]])
+ if IS_PYPY:
+ x.resize((5, 5), refcheck=False)
+ else:
+ x.resize((5, 5))
+ assert_array_equal(x.flat[:9],
+ np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]]).flat)
+ assert_array_equal(x[9:].flat, 0)
+
+ def test_check_reference(self):
+ x = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]])
+ y = x
+ assert_raises(ValueError, x.resize, (5, 1))
+ del y # avoid pyflakes unused variable warning.
+
+ @_no_tracing
+ def test_int_shape(self):
+ x = np.eye(3)
+ if IS_PYPY:
+ x.resize(3, refcheck=False)
+ else:
+ x.resize(3)
+ assert_array_equal(x, np.eye(3)[0,:])
+
+ def test_none_shape(self):
+ x = np.eye(3)
+ x.resize(None)
+ assert_array_equal(x, np.eye(3))
+ x.resize()
+ assert_array_equal(x, np.eye(3))
+
+ def test_0d_shape(self):
+ # to it multiple times to test it does not break alloc cache gh-9216
+ for i in range(10):
+ x = np.empty((1,))
+ x.resize(())
+ assert_equal(x.shape, ())
+ assert_equal(x.size, 1)
+ x = np.empty(())
+ x.resize((1,))
+ assert_equal(x.shape, (1,))
+ assert_equal(x.size, 1)
+
+ def test_invalid_arguments(self):
+ assert_raises(TypeError, np.eye(3).resize, 'hi')
+ assert_raises(ValueError, np.eye(3).resize, -1)
+ assert_raises(TypeError, np.eye(3).resize, order=1)
+ assert_raises(TypeError, np.eye(3).resize, refcheck='hi')
+
+ @_no_tracing
+ def test_freeform_shape(self):
+ x = np.eye(3)
+ if IS_PYPY:
+ x.resize(3, 2, 1, refcheck=False)
+ else:
+ x.resize(3, 2, 1)
+ assert_(x.shape == (3, 2, 1))
+
+ @_no_tracing
+ def test_zeros_appended(self):
+ x = np.eye(3)
+ if IS_PYPY:
+ x.resize(2, 3, 3, refcheck=False)
+ else:
+ x.resize(2, 3, 3)
+ assert_array_equal(x[0], np.eye(3))
+ assert_array_equal(x[1], np.zeros((3, 3)))
+
+ @_no_tracing
+ def test_obj_obj(self):
+ # check memory is initialized on resize, gh-4857
+ a = np.ones(10, dtype=[('k', object, 2)])
+ if IS_PYPY:
+ a.resize(15, refcheck=False)
+ else:
+ a.resize(15,)
+ assert_equal(a.shape, (15,))
+ assert_array_equal(a['k'][-5:], 0)
+ assert_array_equal(a['k'][:-5], 1)
+
+ def test_empty_view(self):
+ # check that sizes containing a zero don't trigger a reallocate for
+ # already empty arrays
+ x = np.zeros((10, 0), int)
+ x_view = x[...]
+ x_view.resize((0, 10))
+ x_view.resize((0, 100))
+
+ def test_check_weakref(self):
+ x = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]])
+ xref = weakref.ref(x)
+ assert_raises(ValueError, x.resize, (5, 1))
+ del xref # avoid pyflakes unused variable warning.
+
+
+class TestRecord:
+ def test_field_rename(self):
+ dt = np.dtype([('f', float), ('i', int)])
+ dt.names = ['p', 'q']
+ assert_equal(dt.names, ['p', 'q'])
+
+ def test_multiple_field_name_occurrence(self):
+ def test_dtype_init():
+ np.dtype([("A", "f8"), ("B", "f8"), ("A", "f8")])
+
+ # Error raised when multiple fields have the same name
+ assert_raises(ValueError, test_dtype_init)
+
+ def test_bytes_fields(self):
+ # Bytes are not allowed in field names and not recognized in titles
+ # on Py3
+ assert_raises(TypeError, np.dtype, [(b'a', int)])
+ assert_raises(TypeError, np.dtype, [(('b', b'a'), int)])
+
+ dt = np.dtype([((b'a', 'b'), int)])
+ assert_raises(TypeError, dt.__getitem__, b'a')
+
+ x = np.array([(1,), (2,), (3,)], dtype=dt)
+ assert_raises(IndexError, x.__getitem__, b'a')
+
+ y = x[0]
+ assert_raises(IndexError, y.__getitem__, b'a')
+
+ def test_multiple_field_name_unicode(self):
+ def test_dtype_unicode():
+ np.dtype([("\u20B9", "f8"), ("B", "f8"), ("\u20B9", "f8")])
+
+ # Error raised when multiple fields have the same name(unicode included)
+ assert_raises(ValueError, test_dtype_unicode)
+
+ def test_fromarrays_unicode(self):
+ # A single name string provided to fromarrays() is allowed to be unicode
+ # on both Python 2 and 3:
+ x = np.core.records.fromarrays(
+ [[0], [1]], names='a,b', formats='i4,i4')
+ assert_equal(x['a'][0], 0)
+ assert_equal(x['b'][0], 1)
+
+ def test_unicode_order(self):
+ # Test that we can sort with order as a unicode field name in both Python 2 and
+ # 3:
+ name = 'b'
+ x = np.array([1, 3, 2], dtype=[(name, int)])
+ x.sort(order=name)
+ assert_equal(x['b'], np.array([1, 2, 3]))
+
+ def test_field_names(self):
+ # Test unicode and 8-bit / byte strings can be used
+ a = np.zeros((1,), dtype=[('f1', 'i4'),
+ ('f2', 'i4'),
+ ('f3', [('sf1', 'i4')])])
+ # byte string indexing fails gracefully
+ assert_raises(IndexError, a.__setitem__, b'f1', 1)
+ assert_raises(IndexError, a.__getitem__, b'f1')
+ assert_raises(IndexError, a['f1'].__setitem__, b'sf1', 1)
+ assert_raises(IndexError, a['f1'].__getitem__, b'sf1')
+ b = a.copy()
+ fn1 = str('f1')
+ b[fn1] = 1
+ assert_equal(b[fn1], 1)
+ fnn = str('not at all')
+ assert_raises(ValueError, b.__setitem__, fnn, 1)
+ assert_raises(ValueError, b.__getitem__, fnn)
+ b[0][fn1] = 2
+ assert_equal(b[fn1], 2)
+ # Subfield
+ assert_raises(ValueError, b[0].__setitem__, fnn, 1)
+ assert_raises(ValueError, b[0].__getitem__, fnn)
+ # Subfield
+ fn3 = str('f3')
+ sfn1 = str('sf1')
+ b[fn3][sfn1] = 1
+ assert_equal(b[fn3][sfn1], 1)
+ assert_raises(ValueError, b[fn3].__setitem__, fnn, 1)
+ assert_raises(ValueError, b[fn3].__getitem__, fnn)
+ # multiple subfields
+ fn2 = str('f2')
+ b[fn2] = 3
+
+ assert_equal(b[['f1', 'f2']][0].tolist(), (2, 3))
+ assert_equal(b[['f2', 'f1']][0].tolist(), (3, 2))
+ assert_equal(b[['f1', 'f3']][0].tolist(), (2, (1,)))
+
+ # non-ascii unicode field indexing is well behaved
+ assert_raises(ValueError, a.__setitem__, '\u03e0', 1)
+ assert_raises(ValueError, a.__getitem__, '\u03e0')
+
+ def test_record_hash(self):
+ a = np.array([(1, 2), (1, 2)], dtype='i1,i2')
+ a.flags.writeable = False
+ b = np.array([(1, 2), (3, 4)], dtype=[('num1', 'i1'), ('num2', 'i2')])
+ b.flags.writeable = False
+ c = np.array([(1, 2), (3, 4)], dtype='i1,i2')
+ c.flags.writeable = False
+ assert_(hash(a[0]) == hash(a[1]))
+ assert_(hash(a[0]) == hash(b[0]))
+ assert_(hash(a[0]) != hash(b[1]))
+ assert_(hash(c[0]) == hash(a[0]) and c[0] == a[0])
+
+ def test_record_no_hash(self):
+ a = np.array([(1, 2), (1, 2)], dtype='i1,i2')
+ assert_raises(TypeError, hash, a[0])
+
+ def test_empty_structure_creation(self):
+ # make sure these do not raise errors (gh-5631)
+ np.array([()], dtype={'names': [], 'formats': [],
+ 'offsets': [], 'itemsize': 12})
+ np.array([(), (), (), (), ()], dtype={'names': [], 'formats': [],
+ 'offsets': [], 'itemsize': 12})
+
+ def test_multifield_indexing_view(self):
+ a = np.ones(3, dtype=[('a', 'i4'), ('b', 'f4'), ('c', 'u4')])
+ v = a[['a', 'c']]
+ assert_(v.base is a)
+ assert_(v.dtype == np.dtype({'names': ['a', 'c'],
+ 'formats': ['i4', 'u4'],
+ 'offsets': [0, 8]}))
+ v[:] = (4,5)
+ assert_equal(a[0].item(), (4, 1, 5))
+
+class TestView:
+ def test_basic(self):
+ x = np.array([(1, 2, 3, 4), (5, 6, 7, 8)],
+ dtype=[('r', np.int8), ('g', np.int8),
+ ('b', np.int8), ('a', np.int8)])
+ # We must be specific about the endianness here:
+ y = x.view(dtype='<i4')
+ # ... and again without the keyword.
+ z = x.view('<i4')
+ assert_array_equal(y, z)
+ assert_array_equal(y, [67305985, 134678021])
+
+
+def _mean(a, **args):
+ return a.mean(**args)
+
+
+def _var(a, **args):
+ return a.var(**args)
+
+
+def _std(a, **args):
+ return a.std(**args)
+
+
+class TestStats:
+
+ funcs = [_mean, _var, _std]
+
+ def setup_method(self):
+ np.random.seed(range(3))
+ self.rmat = np.random.random((4, 5))
+ self.cmat = self.rmat + 1j * self.rmat
+ self.omat = np.array([Decimal(repr(r)) for r in self.rmat.flat])
+ self.omat = self.omat.reshape(4, 5)
+
+ def test_python_type(self):
+ for x in (np.float16(1.), 1, 1., 1+0j):
+ assert_equal(np.mean([x]), 1.)
+ assert_equal(np.std([x]), 0.)
+ assert_equal(np.var([x]), 0.)
+
+ def test_keepdims(self):
+ mat = np.eye(3)
+ for f in self.funcs:
+ for axis in [0, 1]:
+ res = f(mat, axis=axis, keepdims=True)
+ assert_(res.ndim == mat.ndim)
+ assert_(res.shape[axis] == 1)
+ for axis in [None]:
+ res = f(mat, axis=axis, keepdims=True)
+ assert_(res.shape == (1, 1))
+
+ def test_out(self):
+ mat = np.eye(3)
+ for f in self.funcs:
+ out = np.zeros(3)
+ tgt = f(mat, axis=1)
+ res = f(mat, axis=1, out=out)
+ assert_almost_equal(res, out)
+ assert_almost_equal(res, tgt)
+ out = np.empty(2)
+ assert_raises(ValueError, f, mat, axis=1, out=out)
+ out = np.empty((2, 2))
+ assert_raises(ValueError, f, mat, axis=1, out=out)
+
+ def test_dtype_from_input(self):
+
+ icodes = np.typecodes['AllInteger']
+ fcodes = np.typecodes['AllFloat']
+
+ # object type
+ for f in self.funcs:
+ mat = np.array([[Decimal(1)]*3]*3)
+ tgt = mat.dtype.type
+ res = f(mat, axis=1).dtype.type
+ assert_(res is tgt)
+ # scalar case
+ res = type(f(mat, axis=None))
+ assert_(res is Decimal)
+
+ # integer types
+ for f in self.funcs:
+ for c in icodes:
+ mat = np.eye(3, dtype=c)
+ tgt = np.float64
+ res = f(mat, axis=1).dtype.type
+ assert_(res is tgt)
+ # scalar case
+ res = f(mat, axis=None).dtype.type
+ assert_(res is tgt)
+
+ # mean for float types
+ for f in [_mean]:
+ for c in fcodes:
+ mat = np.eye(3, dtype=c)
+ tgt = mat.dtype.type
+ res = f(mat, axis=1).dtype.type
+ assert_(res is tgt)
+ # scalar case
+ res = f(mat, axis=None).dtype.type
+ assert_(res is tgt)
+
+ # var, std for float types
+ for f in [_var, _std]:
+ for c in fcodes:
+ mat = np.eye(3, dtype=c)
+ # deal with complex types
+ tgt = mat.real.dtype.type
+ res = f(mat, axis=1).dtype.type
+ assert_(res is tgt)
+ # scalar case
+ res = f(mat, axis=None).dtype.type
+ assert_(res is tgt)
+
+ def test_dtype_from_dtype(self):
+ mat = np.eye(3)
+
+ # stats for integer types
+ # FIXME:
+ # this needs definition as there are lots places along the line
+ # where type casting may take place.
+
+ # for f in self.funcs:
+ # for c in np.typecodes['AllInteger']:
+ # tgt = np.dtype(c).type
+ # res = f(mat, axis=1, dtype=c).dtype.type
+ # assert_(res is tgt)
+ # # scalar case
+ # res = f(mat, axis=None, dtype=c).dtype.type
+ # assert_(res is tgt)
+
+ # stats for float types
+ for f in self.funcs:
+ for c in np.typecodes['AllFloat']:
+ tgt = np.dtype(c).type
+ res = f(mat, axis=1, dtype=c).dtype.type
+ assert_(res is tgt)
+ # scalar case
+ res = f(mat, axis=None, dtype=c).dtype.type
+ assert_(res is tgt)
+
+ def test_ddof(self):
+ for f in [_var]:
+ for ddof in range(3):
+ dim = self.rmat.shape[1]
+ tgt = f(self.rmat, axis=1) * dim
+ res = f(self.rmat, axis=1, ddof=ddof) * (dim - ddof)
+ for f in [_std]:
+ for ddof in range(3):
+ dim = self.rmat.shape[1]
+ tgt = f(self.rmat, axis=1) * np.sqrt(dim)
+ res = f(self.rmat, axis=1, ddof=ddof) * np.sqrt(dim - ddof)
+ assert_almost_equal(res, tgt)
+ assert_almost_equal(res, tgt)
+
+ def test_ddof_too_big(self):
+ dim = self.rmat.shape[1]
+ for f in [_var, _std]:
+ for ddof in range(dim, dim + 2):
+ with warnings.catch_warnings(record=True) as w:
+ warnings.simplefilter('always')
+ res = f(self.rmat, axis=1, ddof=ddof)
+ assert_(not (res < 0).any())
+ assert_(len(w) > 0)
+ assert_(issubclass(w[0].category, RuntimeWarning))
+
+ def test_empty(self):
+ A = np.zeros((0, 3))
+ for f in self.funcs:
+ for axis in [0, None]:
+ with warnings.catch_warnings(record=True) as w:
+ warnings.simplefilter('always')
+ assert_(np.isnan(f(A, axis=axis)).all())
+ assert_(len(w) > 0)
+ assert_(issubclass(w[0].category, RuntimeWarning))
+ for axis in [1]:
+ with warnings.catch_warnings(record=True) as w:
+ warnings.simplefilter('always')
+ assert_equal(f(A, axis=axis), np.zeros([]))
+
+ def test_mean_values(self):
+ for mat in [self.rmat, self.cmat, self.omat]:
+ for axis in [0, 1]:
+ tgt = mat.sum(axis=axis)
+ res = _mean(mat, axis=axis) * mat.shape[axis]
+ assert_almost_equal(res, tgt)
+ for axis in [None]:
+ tgt = mat.sum(axis=axis)
+ res = _mean(mat, axis=axis) * np.prod(mat.shape)
+ assert_almost_equal(res, tgt)
+
+ def test_mean_float16(self):
+ # This fail if the sum inside mean is done in float16 instead
+ # of float32.
+ assert_(_mean(np.ones(100000, dtype='float16')) == 1)
+
+ def test_mean_axis_error(self):
+ # Ensure that AxisError is raised instead of IndexError when axis is
+ # out of bounds, see gh-15817.
+ with assert_raises(np.exceptions.AxisError):
+ np.arange(10).mean(axis=2)
+
+ def test_mean_where(self):
+ a = np.arange(16).reshape((4, 4))
+ wh_full = np.array([[False, True, False, True],
+ [True, False, True, False],
+ [True, True, False, False],
+ [False, False, True, True]])
+ wh_partial = np.array([[False],
+ [True],
+ [True],
+ [False]])
+ _cases = [(1, True, [1.5, 5.5, 9.5, 13.5]),
+ (0, wh_full, [6., 5., 10., 9.]),
+ (1, wh_full, [2., 5., 8.5, 14.5]),
+ (0, wh_partial, [6., 7., 8., 9.])]
+ for _ax, _wh, _res in _cases:
+ assert_allclose(a.mean(axis=_ax, where=_wh),
+ np.array(_res))
+ assert_allclose(np.mean(a, axis=_ax, where=_wh),
+ np.array(_res))
+
+ a3d = np.arange(16).reshape((2, 2, 4))
+ _wh_partial = np.array([False, True, True, False])
+ _res = [[1.5, 5.5], [9.5, 13.5]]
+ assert_allclose(a3d.mean(axis=2, where=_wh_partial),
+ np.array(_res))
+ assert_allclose(np.mean(a3d, axis=2, where=_wh_partial),
+ np.array(_res))
+
+ with pytest.warns(RuntimeWarning) as w:
+ assert_allclose(a.mean(axis=1, where=wh_partial),
+ np.array([np.nan, 5.5, 9.5, np.nan]))
+ with pytest.warns(RuntimeWarning) as w:
+ assert_equal(a.mean(where=False), np.nan)
+ with pytest.warns(RuntimeWarning) as w:
+ assert_equal(np.mean(a, where=False), np.nan)
+
+ def test_var_values(self):
+ for mat in [self.rmat, self.cmat, self.omat]:
+ for axis in [0, 1, None]:
+ msqr = _mean(mat * mat.conj(), axis=axis)
+ mean = _mean(mat, axis=axis)
+ tgt = msqr - mean * mean.conjugate()
+ res = _var(mat, axis=axis)
+ assert_almost_equal(res, tgt)
+
+ @pytest.mark.parametrize(('complex_dtype', 'ndec'), (
+ ('complex64', 6),
+ ('complex128', 7),
+ ('clongdouble', 7),
+ ))
+ def test_var_complex_values(self, complex_dtype, ndec):
+ # Test fast-paths for every builtin complex type
+ for axis in [0, 1, None]:
+ mat = self.cmat.copy().astype(complex_dtype)
+ msqr = _mean(mat * mat.conj(), axis=axis)
+ mean = _mean(mat, axis=axis)
+ tgt = msqr - mean * mean.conjugate()
+ res = _var(mat, axis=axis)
+ assert_almost_equal(res, tgt, decimal=ndec)
+
+ def test_var_dimensions(self):
+ # _var paths for complex number introduce additions on views that
+ # increase dimensions. Ensure this generalizes to higher dims
+ mat = np.stack([self.cmat]*3)
+ for axis in [0, 1, 2, -1, None]:
+ msqr = _mean(mat * mat.conj(), axis=axis)
+ mean = _mean(mat, axis=axis)
+ tgt = msqr - mean * mean.conjugate()
+ res = _var(mat, axis=axis)
+ assert_almost_equal(res, tgt)
+
+ def test_var_complex_byteorder(self):
+ # Test that var fast-path does not cause failures for complex arrays
+ # with non-native byteorder
+ cmat = self.cmat.copy().astype('complex128')
+ cmat_swapped = cmat.astype(cmat.dtype.newbyteorder())
+ assert_almost_equal(cmat.var(), cmat_swapped.var())
+
+ def test_var_axis_error(self):
+ # Ensure that AxisError is raised instead of IndexError when axis is
+ # out of bounds, see gh-15817.
+ with assert_raises(np.exceptions.AxisError):
+ np.arange(10).var(axis=2)
+
+ def test_var_where(self):
+ a = np.arange(25).reshape((5, 5))
+ wh_full = np.array([[False, True, False, True, True],
+ [True, False, True, True, False],
+ [True, True, False, False, True],
+ [False, True, True, False, True],
+ [True, False, True, True, False]])
+ wh_partial = np.array([[False],
+ [True],
+ [True],
+ [False],
+ [True]])
+ _cases = [(0, True, [50., 50., 50., 50., 50.]),
+ (1, True, [2., 2., 2., 2., 2.])]
+ for _ax, _wh, _res in _cases:
+ assert_allclose(a.var(axis=_ax, where=_wh),
+ np.array(_res))
+ assert_allclose(np.var(a, axis=_ax, where=_wh),
+ np.array(_res))
+
+ a3d = np.arange(16).reshape((2, 2, 4))
+ _wh_partial = np.array([False, True, True, False])
+ _res = [[0.25, 0.25], [0.25, 0.25]]
+ assert_allclose(a3d.var(axis=2, where=_wh_partial),
+ np.array(_res))
+ assert_allclose(np.var(a3d, axis=2, where=_wh_partial),
+ np.array(_res))
+
+ assert_allclose(np.var(a, axis=1, where=wh_full),
+ np.var(a[wh_full].reshape((5, 3)), axis=1))
+ assert_allclose(np.var(a, axis=0, where=wh_partial),
+ np.var(a[wh_partial[:,0]], axis=0))
+ with pytest.warns(RuntimeWarning) as w:
+ assert_equal(a.var(where=False), np.nan)
+ with pytest.warns(RuntimeWarning) as w:
+ assert_equal(np.var(a, where=False), np.nan)
+
+ def test_std_values(self):
+ for mat in [self.rmat, self.cmat, self.omat]:
+ for axis in [0, 1, None]:
+ tgt = np.sqrt(_var(mat, axis=axis))
+ res = _std(mat, axis=axis)
+ assert_almost_equal(res, tgt)
+
+ def test_std_where(self):
+ a = np.arange(25).reshape((5,5))[::-1]
+ whf = np.array([[False, True, False, True, True],
+ [True, False, True, False, True],
+ [True, True, False, True, False],
+ [True, False, True, True, False],
+ [False, True, False, True, True]])
+ whp = np.array([[False],
+ [False],
+ [True],
+ [True],
+ [False]])
+ _cases = [
+ (0, True, 7.07106781*np.ones((5))),
+ (1, True, 1.41421356*np.ones((5))),
+ (0, whf,
+ np.array([4.0824829 , 8.16496581, 5., 7.39509973, 8.49836586])),
+ (0, whp, 2.5*np.ones((5)))
+ ]
+ for _ax, _wh, _res in _cases:
+ assert_allclose(a.std(axis=_ax, where=_wh), _res)
+ assert_allclose(np.std(a, axis=_ax, where=_wh), _res)
+
+ a3d = np.arange(16).reshape((2, 2, 4))
+ _wh_partial = np.array([False, True, True, False])
+ _res = [[0.5, 0.5], [0.5, 0.5]]
+ assert_allclose(a3d.std(axis=2, where=_wh_partial),
+ np.array(_res))
+ assert_allclose(np.std(a3d, axis=2, where=_wh_partial),
+ np.array(_res))
+
+ assert_allclose(a.std(axis=1, where=whf),
+ np.std(a[whf].reshape((5,3)), axis=1))
+ assert_allclose(np.std(a, axis=1, where=whf),
+ (a[whf].reshape((5,3))).std(axis=1))
+ assert_allclose(a.std(axis=0, where=whp),
+ np.std(a[whp[:,0]], axis=0))
+ assert_allclose(np.std(a, axis=0, where=whp),
+ (a[whp[:,0]]).std(axis=0))
+ with pytest.warns(RuntimeWarning) as w:
+ assert_equal(a.std(where=False), np.nan)
+ with pytest.warns(RuntimeWarning) as w:
+ assert_equal(np.std(a, where=False), np.nan)
+
+ def test_subclass(self):
+ class TestArray(np.ndarray):
+ def __new__(cls, data, info):
+ result = np.array(data)
+ result = result.view(cls)
+ result.info = info
+ return result
+
+ def __array_finalize__(self, obj):
+ self.info = getattr(obj, "info", '')
+
+ dat = TestArray([[1, 2, 3, 4], [5, 6, 7, 8]], 'jubba')
+ res = dat.mean(1)
+ assert_(res.info == dat.info)
+ res = dat.std(1)
+ assert_(res.info == dat.info)
+ res = dat.var(1)
+ assert_(res.info == dat.info)
+
+
+class TestVdot:
+ def test_basic(self):
+ dt_numeric = np.typecodes['AllFloat'] + np.typecodes['AllInteger']
+ dt_complex = np.typecodes['Complex']
+
+ # test real
+ a = np.eye(3)
+ for dt in dt_numeric + 'O':
+ b = a.astype(dt)
+ res = np.vdot(b, b)
+ assert_(np.isscalar(res))
+ assert_equal(np.vdot(b, b), 3)
+
+ # test complex
+ a = np.eye(3) * 1j
+ for dt in dt_complex + 'O':
+ b = a.astype(dt)
+ res = np.vdot(b, b)
+ assert_(np.isscalar(res))
+ assert_equal(np.vdot(b, b), 3)
+
+ # test boolean
+ b = np.eye(3, dtype=bool)
+ res = np.vdot(b, b)
+ assert_(np.isscalar(res))
+ assert_equal(np.vdot(b, b), True)
+
+ def test_vdot_array_order(self):
+ a = np.array([[1, 2], [3, 4]], order='C')
+ b = np.array([[1, 2], [3, 4]], order='F')
+ res = np.vdot(a, a)
+
+ # integer arrays are exact
+ assert_equal(np.vdot(a, b), res)
+ assert_equal(np.vdot(b, a), res)
+ assert_equal(np.vdot(b, b), res)
+
+ def test_vdot_uncontiguous(self):
+ for size in [2, 1000]:
+ # Different sizes match different branches in vdot.
+ a = np.zeros((size, 2, 2))
+ b = np.zeros((size, 2, 2))
+ a[:, 0, 0] = np.arange(size)
+ b[:, 0, 0] = np.arange(size) + 1
+ # Make a and b uncontiguous:
+ a = a[..., 0]
+ b = b[..., 0]
+
+ assert_equal(np.vdot(a, b),
+ np.vdot(a.flatten(), b.flatten()))
+ assert_equal(np.vdot(a, b.copy()),
+ np.vdot(a.flatten(), b.flatten()))
+ assert_equal(np.vdot(a.copy(), b),
+ np.vdot(a.flatten(), b.flatten()))
+ assert_equal(np.vdot(a.copy('F'), b),
+ np.vdot(a.flatten(), b.flatten()))
+ assert_equal(np.vdot(a, b.copy('F')),
+ np.vdot(a.flatten(), b.flatten()))
+
+
+class TestDot:
+ def setup_method(self):
+ np.random.seed(128)
+ self.A = np.random.rand(4, 2)
+ self.b1 = np.random.rand(2, 1)
+ self.b2 = np.random.rand(2)
+ self.b3 = np.random.rand(1, 2)
+ self.b4 = np.random.rand(4)
+ self.N = 7
+
+ def test_dotmatmat(self):
+ A = self.A
+ res = np.dot(A.transpose(), A)
+ tgt = np.array([[1.45046013, 0.86323640],
+ [0.86323640, 0.84934569]])
+ assert_almost_equal(res, tgt, decimal=self.N)
+
+ def test_dotmatvec(self):
+ A, b1 = self.A, self.b1
+ res = np.dot(A, b1)
+ tgt = np.array([[0.32114320], [0.04889721],
+ [0.15696029], [0.33612621]])
+ assert_almost_equal(res, tgt, decimal=self.N)
+
+ def test_dotmatvec2(self):
+ A, b2 = self.A, self.b2
+ res = np.dot(A, b2)
+ tgt = np.array([0.29677940, 0.04518649, 0.14468333, 0.31039293])
+ assert_almost_equal(res, tgt, decimal=self.N)
+
+ def test_dotvecmat(self):
+ A, b4 = self.A, self.b4
+ res = np.dot(b4, A)
+ tgt = np.array([1.23495091, 1.12222648])
+ assert_almost_equal(res, tgt, decimal=self.N)
+
+ def test_dotvecmat2(self):
+ b3, A = self.b3, self.A
+ res = np.dot(b3, A.transpose())
+ tgt = np.array([[0.58793804, 0.08957460, 0.30605758, 0.62716383]])
+ assert_almost_equal(res, tgt, decimal=self.N)
+
+ def test_dotvecmat3(self):
+ A, b4 = self.A, self.b4
+ res = np.dot(A.transpose(), b4)
+ tgt = np.array([1.23495091, 1.12222648])
+ assert_almost_equal(res, tgt, decimal=self.N)
+
+ def test_dotvecvecouter(self):
+ b1, b3 = self.b1, self.b3
+ res = np.dot(b1, b3)
+ tgt = np.array([[0.20128610, 0.08400440], [0.07190947, 0.03001058]])
+ assert_almost_equal(res, tgt, decimal=self.N)
+
+ def test_dotvecvecinner(self):
+ b1, b3 = self.b1, self.b3
+ res = np.dot(b3, b1)
+ tgt = np.array([[ 0.23129668]])
+ assert_almost_equal(res, tgt, decimal=self.N)
+
+ def test_dotcolumnvect1(self):
+ b1 = np.ones((3, 1))
+ b2 = [5.3]
+ res = np.dot(b1, b2)
+ tgt = np.array([5.3, 5.3, 5.3])
+ assert_almost_equal(res, tgt, decimal=self.N)
+
+ def test_dotcolumnvect2(self):
+ b1 = np.ones((3, 1)).transpose()
+ b2 = [6.2]
+ res = np.dot(b2, b1)
+ tgt = np.array([6.2, 6.2, 6.2])
+ assert_almost_equal(res, tgt, decimal=self.N)
+
+ def test_dotvecscalar(self):
+ np.random.seed(100)
+ b1 = np.random.rand(1, 1)
+ b2 = np.random.rand(1, 4)
+ res = np.dot(b1, b2)
+ tgt = np.array([[0.15126730, 0.23068496, 0.45905553, 0.00256425]])
+ assert_almost_equal(res, tgt, decimal=self.N)
+
+ def test_dotvecscalar2(self):
+ np.random.seed(100)
+ b1 = np.random.rand(4, 1)
+ b2 = np.random.rand(1, 1)
+ res = np.dot(b1, b2)
+ tgt = np.array([[0.00256425],[0.00131359],[0.00200324],[ 0.00398638]])
+ assert_almost_equal(res, tgt, decimal=self.N)
+
+ def test_all(self):
+ dims = [(), (1,), (1, 1)]
+ dout = [(), (1,), (1, 1), (1,), (), (1,), (1, 1), (1,), (1, 1)]
+ for dim, (dim1, dim2) in zip(dout, itertools.product(dims, dims)):
+ b1 = np.zeros(dim1)
+ b2 = np.zeros(dim2)
+ res = np.dot(b1, b2)
+ tgt = np.zeros(dim)
+ assert_(res.shape == tgt.shape)
+ assert_almost_equal(res, tgt, decimal=self.N)
+
+ def test_vecobject(self):
+ class Vec:
+ def __init__(self, sequence=None):
+ if sequence is None:
+ sequence = []
+ self.array = np.array(sequence)
+
+ def __add__(self, other):
+ out = Vec()
+ out.array = self.array + other.array
+ return out
+
+ def __sub__(self, other):
+ out = Vec()
+ out.array = self.array - other.array
+ return out
+
+ def __mul__(self, other): # with scalar
+ out = Vec(self.array.copy())
+ out.array *= other
+ return out
+
+ def __rmul__(self, other):
+ return self*other
+
+ U_non_cont = np.transpose([[1., 1.], [1., 2.]])
+ U_cont = np.ascontiguousarray(U_non_cont)
+ x = np.array([Vec([1., 0.]), Vec([0., 1.])])
+ zeros = np.array([Vec([0., 0.]), Vec([0., 0.])])
+ zeros_test = np.dot(U_cont, x) - np.dot(U_non_cont, x)
+ assert_equal(zeros[0].array, zeros_test[0].array)
+ assert_equal(zeros[1].array, zeros_test[1].array)
+
+ def test_dot_2args(self):
+ from numpy.core.multiarray import dot
+
+ a = np.array([[1, 2], [3, 4]], dtype=float)
+ b = np.array([[1, 0], [1, 1]], dtype=float)
+ c = np.array([[3, 2], [7, 4]], dtype=float)
+
+ d = dot(a, b)
+ assert_allclose(c, d)
+
+ def test_dot_3args(self):
+ from numpy.core.multiarray import dot
+
+ np.random.seed(22)
+ f = np.random.random_sample((1024, 16))
+ v = np.random.random_sample((16, 32))
+
+ r = np.empty((1024, 32))
+ for i in range(12):
+ dot(f, v, r)
+ if HAS_REFCOUNT:
+ assert_equal(sys.getrefcount(r), 2)
+ r2 = dot(f, v, out=None)
+ assert_array_equal(r2, r)
+ assert_(r is dot(f, v, out=r))
+
+ v = v[:, 0].copy() # v.shape == (16,)
+ r = r[:, 0].copy() # r.shape == (1024,)
+ r2 = dot(f, v)
+ assert_(r is dot(f, v, r))
+ assert_array_equal(r2, r)
+
+ def test_dot_3args_errors(self):
+ from numpy.core.multiarray import dot
+
+ np.random.seed(22)
+ f = np.random.random_sample((1024, 16))
+ v = np.random.random_sample((16, 32))
+
+ r = np.empty((1024, 31))
+ assert_raises(ValueError, dot, f, v, r)
+
+ r = np.empty((1024,))
+ assert_raises(ValueError, dot, f, v, r)
+
+ r = np.empty((32,))
+ assert_raises(ValueError, dot, f, v, r)
+
+ r = np.empty((32, 1024))
+ assert_raises(ValueError, dot, f, v, r)
+ assert_raises(ValueError, dot, f, v, r.T)
+
+ r = np.empty((1024, 64))
+ assert_raises(ValueError, dot, f, v, r[:, ::2])
+ assert_raises(ValueError, dot, f, v, r[:, :32])
+
+ r = np.empty((1024, 32), dtype=np.float32)
+ assert_raises(ValueError, dot, f, v, r)
+
+ r = np.empty((1024, 32), dtype=int)
+ assert_raises(ValueError, dot, f, v, r)
+
+ def test_dot_out_result(self):
+ x = np.ones((), dtype=np.float16)
+ y = np.ones((5,), dtype=np.float16)
+ z = np.zeros((5,), dtype=np.float16)
+ res = x.dot(y, out=z)
+ assert np.array_equal(res, y)
+ assert np.array_equal(z, y)
+
+ def test_dot_out_aliasing(self):
+ x = np.ones((), dtype=np.float16)
+ y = np.ones((5,), dtype=np.float16)
+ z = np.zeros((5,), dtype=np.float16)
+ res = x.dot(y, out=z)
+ z[0] = 2
+ assert np.array_equal(res, z)
+
+ def test_dot_array_order(self):
+ a = np.array([[1, 2], [3, 4]], order='C')
+ b = np.array([[1, 2], [3, 4]], order='F')
+ res = np.dot(a, a)
+
+ # integer arrays are exact
+ assert_equal(np.dot(a, b), res)
+ assert_equal(np.dot(b, a), res)
+ assert_equal(np.dot(b, b), res)
+
+ def test_accelerate_framework_sgemv_fix(self):
+
+ def aligned_array(shape, align, dtype, order='C'):
+ d = dtype(0)
+ N = np.prod(shape)
+ tmp = np.zeros(N * d.nbytes + align, dtype=np.uint8)
+ address = tmp.__array_interface__["data"][0]
+ for offset in range(align):
+ if (address + offset) % align == 0:
+ break
+ tmp = tmp[offset:offset+N*d.nbytes].view(dtype=dtype)
+ return tmp.reshape(shape, order=order)
+
+ def as_aligned(arr, align, dtype, order='C'):
+ aligned = aligned_array(arr.shape, align, dtype, order)
+ aligned[:] = arr[:]
+ return aligned
+
+ def assert_dot_close(A, X, desired):
+ assert_allclose(np.dot(A, X), desired, rtol=1e-5, atol=1e-7)
+
+ m = aligned_array(100, 15, np.float32)
+ s = aligned_array((100, 100), 15, np.float32)
+ np.dot(s, m) # this will always segfault if the bug is present
+
+ testdata = itertools.product((15, 32), (10000,), (200, 89), ('C', 'F'))
+ for align, m, n, a_order in testdata:
+ # Calculation in double precision
+ A_d = np.random.rand(m, n)
+ X_d = np.random.rand(n)
+ desired = np.dot(A_d, X_d)
+ # Calculation with aligned single precision
+ A_f = as_aligned(A_d, align, np.float32, order=a_order)
+ X_f = as_aligned(X_d, align, np.float32)
+ assert_dot_close(A_f, X_f, desired)
+ # Strided A rows
+ A_d_2 = A_d[::2]
+ desired = np.dot(A_d_2, X_d)
+ A_f_2 = A_f[::2]
+ assert_dot_close(A_f_2, X_f, desired)
+ # Strided A columns, strided X vector
+ A_d_22 = A_d_2[:, ::2]
+ X_d_2 = X_d[::2]
+ desired = np.dot(A_d_22, X_d_2)
+ A_f_22 = A_f_2[:, ::2]
+ X_f_2 = X_f[::2]
+ assert_dot_close(A_f_22, X_f_2, desired)
+ # Check the strides are as expected
+ if a_order == 'F':
+ assert_equal(A_f_22.strides, (8, 8 * m))
+ else:
+ assert_equal(A_f_22.strides, (8 * n, 8))
+ assert_equal(X_f_2.strides, (8,))
+ # Strides in A rows + cols only
+ X_f_2c = as_aligned(X_f_2, align, np.float32)
+ assert_dot_close(A_f_22, X_f_2c, desired)
+ # Strides just in A cols
+ A_d_12 = A_d[:, ::2]
+ desired = np.dot(A_d_12, X_d_2)
+ A_f_12 = A_f[:, ::2]
+ assert_dot_close(A_f_12, X_f_2c, desired)
+ # Strides in A cols and X
+ assert_dot_close(A_f_12, X_f_2, desired)
+
+ @pytest.mark.slow
+ @pytest.mark.parametrize("dtype", [np.float64, np.complex128])
+ @requires_memory(free_bytes=18e9) # complex case needs 18GiB+
+ def test_huge_vectordot(self, dtype):
+ # Large vector multiplications are chunked with 32bit BLAS
+ # Test that the chunking does the right thing, see also gh-22262
+ data = np.ones(2**30+100, dtype=dtype)
+ res = np.dot(data, data)
+ assert res == 2**30+100
+
+ def test_dtype_discovery_fails(self):
+ # See gh-14247, error checking was missing for failed dtype discovery
+ class BadObject(object):
+ def __array__(self):
+ raise TypeError("just this tiny mint leaf")
+
+ with pytest.raises(TypeError):
+ np.dot(BadObject(), BadObject())
+
+ with pytest.raises(TypeError):
+ np.dot(3.0, BadObject())
+
+
+class MatmulCommon:
+ """Common tests for '@' operator and numpy.matmul.
+
+ """
+ # Should work with these types. Will want to add
+ # "O" at some point
+ types = "?bhilqBHILQefdgFDGO"
+
+ def test_exceptions(self):
+ dims = [
+ ((1,), (2,)), # mismatched vector vector
+ ((2, 1,), (2,)), # mismatched matrix vector
+ ((2,), (1, 2)), # mismatched vector matrix
+ ((1, 2), (3, 1)), # mismatched matrix matrix
+ ((1,), ()), # vector scalar
+ ((), (1)), # scalar vector
+ ((1, 1), ()), # matrix scalar
+ ((), (1, 1)), # scalar matrix
+ ((2, 2, 1), (3, 1, 2)), # cannot broadcast
+ ]
+
+ for dt, (dm1, dm2) in itertools.product(self.types, dims):
+ a = np.ones(dm1, dtype=dt)
+ b = np.ones(dm2, dtype=dt)
+ assert_raises(ValueError, self.matmul, a, b)
+
+ def test_shapes(self):
+ dims = [
+ ((1, 1), (2, 1, 1)), # broadcast first argument
+ ((2, 1, 1), (1, 1)), # broadcast second argument
+ ((2, 1, 1), (2, 1, 1)), # matrix stack sizes match
+ ]
+
+ for dt, (dm1, dm2) in itertools.product(self.types, dims):
+ a = np.ones(dm1, dtype=dt)
+ b = np.ones(dm2, dtype=dt)
+ res = self.matmul(a, b)
+ assert_(res.shape == (2, 1, 1))
+
+ # vector vector returns scalars.
+ for dt in self.types:
+ a = np.ones((2,), dtype=dt)
+ b = np.ones((2,), dtype=dt)
+ c = self.matmul(a, b)
+ assert_(np.array(c).shape == ())
+
+ def test_result_types(self):
+ mat = np.ones((1,1))
+ vec = np.ones((1,))
+ for dt in self.types:
+ m = mat.astype(dt)
+ v = vec.astype(dt)
+ for arg in [(m, v), (v, m), (m, m)]:
+ res = self.matmul(*arg)
+ assert_(res.dtype == dt)
+
+ # vector vector returns scalars
+ if dt != "O":
+ res = self.matmul(v, v)
+ assert_(type(res) is np.dtype(dt).type)
+
+ def test_scalar_output(self):
+ vec1 = np.array([2])
+ vec2 = np.array([3, 4]).reshape(1, -1)
+ tgt = np.array([6, 8])
+ for dt in self.types[1:]:
+ v1 = vec1.astype(dt)
+ v2 = vec2.astype(dt)
+ res = self.matmul(v1, v2)
+ assert_equal(res, tgt)
+ res = self.matmul(v2.T, v1)
+ assert_equal(res, tgt)
+
+ # boolean type
+ vec = np.array([True, True], dtype='?').reshape(1, -1)
+ res = self.matmul(vec[:, 0], vec)
+ assert_equal(res, True)
+
+ def test_vector_vector_values(self):
+ vec1 = np.array([1, 2])
+ vec2 = np.array([3, 4]).reshape(-1, 1)
+ tgt1 = np.array([11])
+ tgt2 = np.array([[3, 6], [4, 8]])
+ for dt in self.types[1:]:
+ v1 = vec1.astype(dt)
+ v2 = vec2.astype(dt)
+ res = self.matmul(v1, v2)
+ assert_equal(res, tgt1)
+ # no broadcast, we must make v1 into a 2d ndarray
+ res = self.matmul(v2, v1.reshape(1, -1))
+ assert_equal(res, tgt2)
+
+ # boolean type
+ vec = np.array([True, True], dtype='?')
+ res = self.matmul(vec, vec)
+ assert_equal(res, True)
+
+ def test_vector_matrix_values(self):
+ vec = np.array([1, 2])
+ mat1 = np.array([[1, 2], [3, 4]])
+ mat2 = np.stack([mat1]*2, axis=0)
+ tgt1 = np.array([7, 10])
+ tgt2 = np.stack([tgt1]*2, axis=0)
+ for dt in self.types[1:]:
+ v = vec.astype(dt)
+ m1 = mat1.astype(dt)
+ m2 = mat2.astype(dt)
+ res = self.matmul(v, m1)
+ assert_equal(res, tgt1)
+ res = self.matmul(v, m2)
+ assert_equal(res, tgt2)
+
+ # boolean type
+ vec = np.array([True, False])
+ mat1 = np.array([[True, False], [False, True]])
+ mat2 = np.stack([mat1]*2, axis=0)
+ tgt1 = np.array([True, False])
+ tgt2 = np.stack([tgt1]*2, axis=0)
+
+ res = self.matmul(vec, mat1)
+ assert_equal(res, tgt1)
+ res = self.matmul(vec, mat2)
+ assert_equal(res, tgt2)
+
+ def test_matrix_vector_values(self):
+ vec = np.array([1, 2])
+ mat1 = np.array([[1, 2], [3, 4]])
+ mat2 = np.stack([mat1]*2, axis=0)
+ tgt1 = np.array([5, 11])
+ tgt2 = np.stack([tgt1]*2, axis=0)
+ for dt in self.types[1:]:
+ v = vec.astype(dt)
+ m1 = mat1.astype(dt)
+ m2 = mat2.astype(dt)
+ res = self.matmul(m1, v)
+ assert_equal(res, tgt1)
+ res = self.matmul(m2, v)
+ assert_equal(res, tgt2)
+
+ # boolean type
+ vec = np.array([True, False])
+ mat1 = np.array([[True, False], [False, True]])
+ mat2 = np.stack([mat1]*2, axis=0)
+ tgt1 = np.array([True, False])
+ tgt2 = np.stack([tgt1]*2, axis=0)
+
+ res = self.matmul(vec, mat1)
+ assert_equal(res, tgt1)
+ res = self.matmul(vec, mat2)
+ assert_equal(res, tgt2)
+
+ def test_matrix_matrix_values(self):
+ mat1 = np.array([[1, 2], [3, 4]])
+ mat2 = np.array([[1, 0], [1, 1]])
+ mat12 = np.stack([mat1, mat2], axis=0)
+ mat21 = np.stack([mat2, mat1], axis=0)
+ tgt11 = np.array([[7, 10], [15, 22]])
+ tgt12 = np.array([[3, 2], [7, 4]])
+ tgt21 = np.array([[1, 2], [4, 6]])
+ tgt12_21 = np.stack([tgt12, tgt21], axis=0)
+ tgt11_12 = np.stack((tgt11, tgt12), axis=0)
+ tgt11_21 = np.stack((tgt11, tgt21), axis=0)
+ for dt in self.types[1:]:
+ m1 = mat1.astype(dt)
+ m2 = mat2.astype(dt)
+ m12 = mat12.astype(dt)
+ m21 = mat21.astype(dt)
+
+ # matrix @ matrix
+ res = self.matmul(m1, m2)
+ assert_equal(res, tgt12)
+ res = self.matmul(m2, m1)
+ assert_equal(res, tgt21)
+
+ # stacked @ matrix
+ res = self.matmul(m12, m1)
+ assert_equal(res, tgt11_21)
+
+ # matrix @ stacked
+ res = self.matmul(m1, m12)
+ assert_equal(res, tgt11_12)
+
+ # stacked @ stacked
+ res = self.matmul(m12, m21)
+ assert_equal(res, tgt12_21)
+
+ # boolean type
+ m1 = np.array([[1, 1], [0, 0]], dtype=np.bool_)
+ m2 = np.array([[1, 0], [1, 1]], dtype=np.bool_)
+ m12 = np.stack([m1, m2], axis=0)
+ m21 = np.stack([m2, m1], axis=0)
+ tgt11 = m1
+ tgt12 = m1
+ tgt21 = np.array([[1, 1], [1, 1]], dtype=np.bool_)
+ tgt12_21 = np.stack([tgt12, tgt21], axis=0)
+ tgt11_12 = np.stack((tgt11, tgt12), axis=0)
+ tgt11_21 = np.stack((tgt11, tgt21), axis=0)
+
+ # matrix @ matrix
+ res = self.matmul(m1, m2)
+ assert_equal(res, tgt12)
+ res = self.matmul(m2, m1)
+ assert_equal(res, tgt21)
+
+ # stacked @ matrix
+ res = self.matmul(m12, m1)
+ assert_equal(res, tgt11_21)
+
+ # matrix @ stacked
+ res = self.matmul(m1, m12)
+ assert_equal(res, tgt11_12)
+
+ # stacked @ stacked
+ res = self.matmul(m12, m21)
+ assert_equal(res, tgt12_21)
+
+
+class TestMatmul(MatmulCommon):
+ matmul = np.matmul
+
+ def test_out_arg(self):
+ a = np.ones((5, 2), dtype=float)
+ b = np.array([[1, 3], [5, 7]], dtype=float)
+ tgt = np.dot(a, b)
+
+ # test as positional argument
+ msg = "out positional argument"
+ out = np.zeros((5, 2), dtype=float)
+ self.matmul(a, b, out)
+ assert_array_equal(out, tgt, err_msg=msg)
+
+ # test as keyword argument
+ msg = "out keyword argument"
+ out = np.zeros((5, 2), dtype=float)
+ self.matmul(a, b, out=out)
+ assert_array_equal(out, tgt, err_msg=msg)
+
+ # test out with not allowed type cast (safe casting)
+ msg = "Cannot cast ufunc .* output"
+ out = np.zeros((5, 2), dtype=np.int32)
+ assert_raises_regex(TypeError, msg, self.matmul, a, b, out=out)
+
+ # test out with type upcast to complex
+ out = np.zeros((5, 2), dtype=np.complex128)
+ c = self.matmul(a, b, out=out)
+ assert_(c is out)
+ with suppress_warnings() as sup:
+ sup.filter(np.ComplexWarning, '')
+ c = c.astype(tgt.dtype)
+ assert_array_equal(c, tgt)
+
+ def test_empty_out(self):
+ # Check that the output cannot be broadcast, so that it cannot be
+ # size zero when the outer dimensions (iterator size) has size zero.
+ arr = np.ones((0, 1, 1))
+ out = np.ones((1, 1, 1))
+ assert self.matmul(arr, arr).shape == (0, 1, 1)
+
+ with pytest.raises(ValueError, match=r"non-broadcastable"):
+ self.matmul(arr, arr, out=out)
+
+ def test_out_contiguous(self):
+ a = np.ones((5, 2), dtype=float)
+ b = np.array([[1, 3], [5, 7]], dtype=float)
+ v = np.array([1, 3], dtype=float)
+ tgt = np.dot(a, b)
+ tgt_mv = np.dot(a, v)
+
+ # test out non-contiguous
+ out = np.ones((5, 2, 2), dtype=float)
+ c = self.matmul(a, b, out=out[..., 0])
+ assert c.base is out
+ assert_array_equal(c, tgt)
+ c = self.matmul(a, v, out=out[:, 0, 0])
+ assert_array_equal(c, tgt_mv)
+ c = self.matmul(v, a.T, out=out[:, 0, 0])
+ assert_array_equal(c, tgt_mv)
+
+ # test out contiguous in only last dim
+ out = np.ones((10, 2), dtype=float)
+ c = self.matmul(a, b, out=out[::2, :])
+ assert_array_equal(c, tgt)
+
+ # test transposes of out, args
+ out = np.ones((5, 2), dtype=float)
+ c = self.matmul(b.T, a.T, out=out.T)
+ assert_array_equal(out, tgt)
+
+ m1 = np.arange(15.).reshape(5, 3)
+ m2 = np.arange(21.).reshape(3, 7)
+ m3 = np.arange(30.).reshape(5, 6)[:, ::2] # non-contiguous
+ vc = np.arange(10.)
+ vr = np.arange(6.)
+ m0 = np.zeros((3, 0))
+ @pytest.mark.parametrize('args', (
+ # matrix-matrix
+ (m1, m2), (m2.T, m1.T), (m2.T.copy(), m1.T), (m2.T, m1.T.copy()),
+ # matrix-matrix-transpose, contiguous and non
+ (m1, m1.T), (m1.T, m1), (m1, m3.T), (m3, m1.T),
+ (m3, m3.T), (m3.T, m3),
+ # matrix-matrix non-contiguous
+ (m3, m2), (m2.T, m3.T), (m2.T.copy(), m3.T),
+ # vector-matrix, matrix-vector, contiguous
+ (m1, vr[:3]), (vc[:5], m1), (m1.T, vc[:5]), (vr[:3], m1.T),
+ # vector-matrix, matrix-vector, vector non-contiguous
+ (m1, vr[::2]), (vc[::2], m1), (m1.T, vc[::2]), (vr[::2], m1.T),
+ # vector-matrix, matrix-vector, matrix non-contiguous
+ (m3, vr[:3]), (vc[:5], m3), (m3.T, vc[:5]), (vr[:3], m3.T),
+ # vector-matrix, matrix-vector, both non-contiguous
+ (m3, vr[::2]), (vc[::2], m3), (m3.T, vc[::2]), (vr[::2], m3.T),
+ # size == 0
+ (m0, m0.T), (m0.T, m0), (m1, m0), (m0.T, m1.T),
+ ))
+ def test_dot_equivalent(self, args):
+ r1 = np.matmul(*args)
+ r2 = np.dot(*args)
+ assert_equal(r1, r2)
+
+ r3 = np.matmul(args[0].copy(), args[1].copy())
+ assert_equal(r1, r3)
+
+ def test_matmul_object(self):
+ import fractions
+
+ f = np.vectorize(fractions.Fraction)
+ def random_ints():
+ return np.random.randint(1, 1000, size=(10, 3, 3))
+ M1 = f(random_ints(), random_ints())
+ M2 = f(random_ints(), random_ints())
+
+ M3 = self.matmul(M1, M2)
+
+ [N1, N2, N3] = [a.astype(float) for a in [M1, M2, M3]]
+
+ assert_allclose(N3, self.matmul(N1, N2))
+
+ def test_matmul_object_type_scalar(self):
+ from fractions import Fraction as F
+ v = np.array([F(2,3), F(5,7)])
+ res = self.matmul(v, v)
+ assert_(type(res) is F)
+
+ def test_matmul_empty(self):
+ a = np.empty((3, 0), dtype=object)
+ b = np.empty((0, 3), dtype=object)
+ c = np.zeros((3, 3))
+ assert_array_equal(np.matmul(a, b), c)
+
+ def test_matmul_exception_multiply(self):
+ # test that matmul fails if `__mul__` is missing
+ class add_not_multiply():
+ def __add__(self, other):
+ return self
+ a = np.full((3,3), add_not_multiply())
+ with assert_raises(TypeError):
+ b = np.matmul(a, a)
+
+ def test_matmul_exception_add(self):
+ # test that matmul fails if `__add__` is missing
+ class multiply_not_add():
+ def __mul__(self, other):
+ return self
+ a = np.full((3,3), multiply_not_add())
+ with assert_raises(TypeError):
+ b = np.matmul(a, a)
+
+ def test_matmul_bool(self):
+ # gh-14439
+ a = np.array([[1, 0],[1, 1]], dtype=bool)
+ assert np.max(a.view(np.uint8)) == 1
+ b = np.matmul(a, a)
+ # matmul with boolean output should always be 0, 1
+ assert np.max(b.view(np.uint8)) == 1
+
+ rg = np.random.default_rng(np.random.PCG64(43))
+ d = rg.integers(2, size=4*5, dtype=np.int8)
+ d = d.reshape(4, 5) > 0
+ out1 = np.matmul(d, d.reshape(5, 4))
+ out2 = np.dot(d, d.reshape(5, 4))
+ assert_equal(out1, out2)
+
+ c = np.matmul(np.zeros((2, 0), dtype=bool), np.zeros(0, dtype=bool))
+ assert not np.any(c)
+
+
+class TestMatmulOperator(MatmulCommon):
+ import operator
+ matmul = operator.matmul
+
+ def test_array_priority_override(self):
+
+ class A:
+ __array_priority__ = 1000
+
+ def __matmul__(self, other):
+ return "A"
+
+ def __rmatmul__(self, other):
+ return "A"
+
+ a = A()
+ b = np.ones(2)
+ assert_equal(self.matmul(a, b), "A")
+ assert_equal(self.matmul(b, a), "A")
+
+ def test_matmul_raises(self):
+ assert_raises(TypeError, self.matmul, np.int8(5), np.int8(5))
+ assert_raises(TypeError, self.matmul, np.void(b'abc'), np.void(b'abc'))
+ assert_raises(TypeError, self.matmul, np.arange(10), np.void(b'abc'))
+
+
+class TestMatmulInplace:
+ DTYPES = {}
+ for i in MatmulCommon.types:
+ for j in MatmulCommon.types:
+ if np.can_cast(j, i):
+ DTYPES[f"{i}-{j}"] = (np.dtype(i), np.dtype(j))
+
+ @pytest.mark.parametrize("dtype1,dtype2", DTYPES.values(), ids=DTYPES)
+ def test_basic(self, dtype1: np.dtype, dtype2: np.dtype) -> None:
+ a = np.arange(10).reshape(5, 2).astype(dtype1)
+ a_id = id(a)
+ b = np.ones((2, 2), dtype=dtype2)
+
+ ref = a @ b
+ a @= b
+
+ assert id(a) == a_id
+ assert a.dtype == dtype1
+ assert a.shape == (5, 2)
+ if dtype1.kind in "fc":
+ np.testing.assert_allclose(a, ref)
+ else:
+ np.testing.assert_array_equal(a, ref)
+
+ SHAPES = {
+ "2d_large": ((10**5, 10), (10, 10)),
+ "3d_large": ((10**4, 10, 10), (1, 10, 10)),
+ "1d": ((3,), (3,)),
+ "2d_1d": ((3, 3), (3,)),
+ "1d_2d": ((3,), (3, 3)),
+ "2d_broadcast": ((3, 3), (3, 1)),
+ "2d_broadcast_reverse": ((1, 3), (3, 3)),
+ "3d_broadcast1": ((3, 3, 3), (1, 3, 1)),
+ "3d_broadcast2": ((3, 3, 3), (1, 3, 3)),
+ "3d_broadcast3": ((3, 3, 3), (3, 3, 1)),
+ "3d_broadcast_reverse1": ((1, 3, 3), (3, 3, 3)),
+ "3d_broadcast_reverse2": ((3, 1, 3), (3, 3, 3)),
+ "3d_broadcast_reverse3": ((1, 1, 3), (3, 3, 3)),
+ }
+
+ @pytest.mark.parametrize("a_shape,b_shape", SHAPES.values(), ids=SHAPES)
+ def test_shapes(self, a_shape: tuple[int, ...], b_shape: tuple[int, ...]):
+ a_size = np.prod(a_shape)
+ a = np.arange(a_size).reshape(a_shape).astype(np.float64)
+ a_id = id(a)
+
+ b_size = np.prod(b_shape)
+ b = np.arange(b_size).reshape(b_shape)
+
+ ref = a @ b
+ if ref.shape != a_shape:
+ with pytest.raises(ValueError):
+ a @= b
+ return
+ else:
+ a @= b
+
+ assert id(a) == a_id
+ assert a.dtype.type == np.float64
+ assert a.shape == a_shape
+ np.testing.assert_allclose(a, ref)
+
+
+def test_matmul_axes():
+ a = np.arange(3*4*5).reshape(3, 4, 5)
+ c = np.matmul(a, a, axes=[(-2, -1), (-1, -2), (1, 2)])
+ assert c.shape == (3, 4, 4)
+ d = np.matmul(a, a, axes=[(-2, -1), (-1, -2), (0, 1)])
+ assert d.shape == (4, 4, 3)
+ e = np.swapaxes(d, 0, 2)
+ assert_array_equal(e, c)
+ f = np.matmul(a, np.arange(3), axes=[(1, 0), (0), (0)])
+ assert f.shape == (4, 5)
+
+
+class TestInner:
+
+ def test_inner_type_mismatch(self):
+ c = 1.
+ A = np.array((1,1), dtype='i,i')
+
+ assert_raises(TypeError, np.inner, c, A)
+ assert_raises(TypeError, np.inner, A, c)
+
+ def test_inner_scalar_and_vector(self):
+ for dt in np.typecodes['AllInteger'] + np.typecodes['AllFloat'] + '?':
+ sca = np.array(3, dtype=dt)[()]
+ vec = np.array([1, 2], dtype=dt)
+ desired = np.array([3, 6], dtype=dt)
+ assert_equal(np.inner(vec, sca), desired)
+ assert_equal(np.inner(sca, vec), desired)
+
+ def test_vecself(self):
+ # Ticket 844.
+ # Inner product of a vector with itself segfaults or give
+ # meaningless result
+ a = np.zeros(shape=(1, 80), dtype=np.float64)
+ p = np.inner(a, a)
+ assert_almost_equal(p, 0, decimal=14)
+
+ def test_inner_product_with_various_contiguities(self):
+ # github issue 6532
+ for dt in np.typecodes['AllInteger'] + np.typecodes['AllFloat'] + '?':
+ # check an inner product involving a matrix transpose
+ A = np.array([[1, 2], [3, 4]], dtype=dt)
+ B = np.array([[1, 3], [2, 4]], dtype=dt)
+ C = np.array([1, 1], dtype=dt)
+ desired = np.array([4, 6], dtype=dt)
+ assert_equal(np.inner(A.T, C), desired)
+ assert_equal(np.inner(C, A.T), desired)
+ assert_equal(np.inner(B, C), desired)
+ assert_equal(np.inner(C, B), desired)
+ # check a matrix product
+ desired = np.array([[7, 10], [15, 22]], dtype=dt)
+ assert_equal(np.inner(A, B), desired)
+ # check the syrk vs. gemm paths
+ desired = np.array([[5, 11], [11, 25]], dtype=dt)
+ assert_equal(np.inner(A, A), desired)
+ assert_equal(np.inner(A, A.copy()), desired)
+ # check an inner product involving an aliased and reversed view
+ a = np.arange(5).astype(dt)
+ b = a[::-1]
+ desired = np.array(10, dtype=dt).item()
+ assert_equal(np.inner(b, a), desired)
+
+ def test_3d_tensor(self):
+ for dt in np.typecodes['AllInteger'] + np.typecodes['AllFloat'] + '?':
+ a = np.arange(24).reshape(2,3,4).astype(dt)
+ b = np.arange(24, 48).reshape(2,3,4).astype(dt)
+ desired = np.array(
+ [[[[ 158, 182, 206],
+ [ 230, 254, 278]],
+
+ [[ 566, 654, 742],
+ [ 830, 918, 1006]],
+
+ [[ 974, 1126, 1278],
+ [1430, 1582, 1734]]],
+
+ [[[1382, 1598, 1814],
+ [2030, 2246, 2462]],
+
+ [[1790, 2070, 2350],
+ [2630, 2910, 3190]],
+
+ [[2198, 2542, 2886],
+ [3230, 3574, 3918]]]]
+ ).astype(dt)
+ assert_equal(np.inner(a, b), desired)
+ assert_equal(np.inner(b, a).transpose(2,3,0,1), desired)
+
+
+class TestChoose:
+ def setup_method(self):
+ self.x = 2*np.ones((3,), dtype=int)
+ self.y = 3*np.ones((3,), dtype=int)
+ self.x2 = 2*np.ones((2, 3), dtype=int)
+ self.y2 = 3*np.ones((2, 3), dtype=int)
+ self.ind = [0, 0, 1]
+
+ def test_basic(self):
+ A = np.choose(self.ind, (self.x, self.y))
+ assert_equal(A, [2, 2, 3])
+
+ def test_broadcast1(self):
+ A = np.choose(self.ind, (self.x2, self.y2))
+ assert_equal(A, [[2, 2, 3], [2, 2, 3]])
+
+ def test_broadcast2(self):
+ A = np.choose(self.ind, (self.x, self.y2))
+ assert_equal(A, [[2, 2, 3], [2, 2, 3]])
+
+ @pytest.mark.parametrize("ops",
+ [(1000, np.array([1], dtype=np.uint8)),
+ (-1, np.array([1], dtype=np.uint8)),
+ (1., np.float32(3)),
+ (1., np.array([3], dtype=np.float32))],)
+ def test_output_dtype(self, ops):
+ expected_dt = np.result_type(*ops)
+ assert(np.choose([0], ops).dtype == expected_dt)
+
+
+class TestRepeat:
+ def setup_method(self):
+ self.m = np.array([1, 2, 3, 4, 5, 6])
+ self.m_rect = self.m.reshape((2, 3))
+
+ def test_basic(self):
+ A = np.repeat(self.m, [1, 3, 2, 1, 1, 2])
+ assert_equal(A, [1, 2, 2, 2, 3,
+ 3, 4, 5, 6, 6])
+
+ def test_broadcast1(self):
+ A = np.repeat(self.m, 2)
+ assert_equal(A, [1, 1, 2, 2, 3, 3,
+ 4, 4, 5, 5, 6, 6])
+
+ def test_axis_spec(self):
+ A = np.repeat(self.m_rect, [2, 1], axis=0)
+ assert_equal(A, [[1, 2, 3],
+ [1, 2, 3],
+ [4, 5, 6]])
+
+ A = np.repeat(self.m_rect, [1, 3, 2], axis=1)
+ assert_equal(A, [[1, 2, 2, 2, 3, 3],
+ [4, 5, 5, 5, 6, 6]])
+
+ def test_broadcast2(self):
+ A = np.repeat(self.m_rect, 2, axis=0)
+ assert_equal(A, [[1, 2, 3],
+ [1, 2, 3],
+ [4, 5, 6],
+ [4, 5, 6]])
+
+ A = np.repeat(self.m_rect, 2, axis=1)
+ assert_equal(A, [[1, 1, 2, 2, 3, 3],
+ [4, 4, 5, 5, 6, 6]])
+
+
+# TODO: test for multidimensional
+NEIGH_MODE = {'zero': 0, 'one': 1, 'constant': 2, 'circular': 3, 'mirror': 4}
+
+
+@pytest.mark.parametrize('dt', [float, Decimal], ids=['float', 'object'])
+class TestNeighborhoodIter:
+ # Simple, 2d tests
+ def test_simple2d(self, dt):
+ # Test zero and one padding for simple data type
+ x = np.array([[0, 1], [2, 3]], dtype=dt)
+ r = [np.array([[0, 0, 0], [0, 0, 1]], dtype=dt),
+ np.array([[0, 0, 0], [0, 1, 0]], dtype=dt),
+ np.array([[0, 0, 1], [0, 2, 3]], dtype=dt),
+ np.array([[0, 1, 0], [2, 3, 0]], dtype=dt)]
+ l = _multiarray_tests.test_neighborhood_iterator(
+ x, [-1, 0, -1, 1], x[0], NEIGH_MODE['zero'])
+ assert_array_equal(l, r)
+
+ r = [np.array([[1, 1, 1], [1, 0, 1]], dtype=dt),
+ np.array([[1, 1, 1], [0, 1, 1]], dtype=dt),
+ np.array([[1, 0, 1], [1, 2, 3]], dtype=dt),
+ np.array([[0, 1, 1], [2, 3, 1]], dtype=dt)]
+ l = _multiarray_tests.test_neighborhood_iterator(
+ x, [-1, 0, -1, 1], x[0], NEIGH_MODE['one'])
+ assert_array_equal(l, r)
+
+ r = [np.array([[4, 4, 4], [4, 0, 1]], dtype=dt),
+ np.array([[4, 4, 4], [0, 1, 4]], dtype=dt),
+ np.array([[4, 0, 1], [4, 2, 3]], dtype=dt),
+ np.array([[0, 1, 4], [2, 3, 4]], dtype=dt)]
+ l = _multiarray_tests.test_neighborhood_iterator(
+ x, [-1, 0, -1, 1], 4, NEIGH_MODE['constant'])
+ assert_array_equal(l, r)
+
+ # Test with start in the middle
+ r = [np.array([[4, 0, 1], [4, 2, 3]], dtype=dt),
+ np.array([[0, 1, 4], [2, 3, 4]], dtype=dt)]
+ l = _multiarray_tests.test_neighborhood_iterator(
+ x, [-1, 0, -1, 1], 4, NEIGH_MODE['constant'], 2)
+ assert_array_equal(l, r)
+
+ def test_mirror2d(self, dt):
+ x = np.array([[0, 1], [2, 3]], dtype=dt)
+ r = [np.array([[0, 0, 1], [0, 0, 1]], dtype=dt),
+ np.array([[0, 1, 1], [0, 1, 1]], dtype=dt),
+ np.array([[0, 0, 1], [2, 2, 3]], dtype=dt),
+ np.array([[0, 1, 1], [2, 3, 3]], dtype=dt)]
+ l = _multiarray_tests.test_neighborhood_iterator(
+ x, [-1, 0, -1, 1], x[0], NEIGH_MODE['mirror'])
+ assert_array_equal(l, r)
+
+ # Simple, 1d tests
+ def test_simple(self, dt):
+ # Test padding with constant values
+ x = np.linspace(1, 5, 5).astype(dt)
+ r = [[0, 1, 2], [1, 2, 3], [2, 3, 4], [3, 4, 5], [4, 5, 0]]
+ l = _multiarray_tests.test_neighborhood_iterator(
+ x, [-1, 1], x[0], NEIGH_MODE['zero'])
+ assert_array_equal(l, r)
+
+ r = [[1, 1, 2], [1, 2, 3], [2, 3, 4], [3, 4, 5], [4, 5, 1]]
+ l = _multiarray_tests.test_neighborhood_iterator(
+ x, [-1, 1], x[0], NEIGH_MODE['one'])
+ assert_array_equal(l, r)
+
+ r = [[x[4], 1, 2], [1, 2, 3], [2, 3, 4], [3, 4, 5], [4, 5, x[4]]]
+ l = _multiarray_tests.test_neighborhood_iterator(
+ x, [-1, 1], x[4], NEIGH_MODE['constant'])
+ assert_array_equal(l, r)
+
+ # Test mirror modes
+ def test_mirror(self, dt):
+ x = np.linspace(1, 5, 5).astype(dt)
+ r = np.array([[2, 1, 1, 2, 3], [1, 1, 2, 3, 4], [1, 2, 3, 4, 5],
+ [2, 3, 4, 5, 5], [3, 4, 5, 5, 4]], dtype=dt)
+ l = _multiarray_tests.test_neighborhood_iterator(
+ x, [-2, 2], x[1], NEIGH_MODE['mirror'])
+ assert_([i.dtype == dt for i in l])
+ assert_array_equal(l, r)
+
+ # Circular mode
+ def test_circular(self, dt):
+ x = np.linspace(1, 5, 5).astype(dt)
+ r = np.array([[4, 5, 1, 2, 3], [5, 1, 2, 3, 4], [1, 2, 3, 4, 5],
+ [2, 3, 4, 5, 1], [3, 4, 5, 1, 2]], dtype=dt)
+ l = _multiarray_tests.test_neighborhood_iterator(
+ x, [-2, 2], x[0], NEIGH_MODE['circular'])
+ assert_array_equal(l, r)
+
+
+# Test stacking neighborhood iterators
+class TestStackedNeighborhoodIter:
+ # Simple, 1d test: stacking 2 constant-padded neigh iterators
+ def test_simple_const(self):
+ dt = np.float64
+ # Test zero and one padding for simple data type
+ x = np.array([1, 2, 3], dtype=dt)
+ r = [np.array([0], dtype=dt),
+ np.array([0], dtype=dt),
+ np.array([1], dtype=dt),
+ np.array([2], dtype=dt),
+ np.array([3], dtype=dt),
+ np.array([0], dtype=dt),
+ np.array([0], dtype=dt)]
+ l = _multiarray_tests.test_neighborhood_iterator_oob(
+ x, [-2, 4], NEIGH_MODE['zero'], [0, 0], NEIGH_MODE['zero'])
+ assert_array_equal(l, r)
+
+ r = [np.array([1, 0, 1], dtype=dt),
+ np.array([0, 1, 2], dtype=dt),
+ np.array([1, 2, 3], dtype=dt),
+ np.array([2, 3, 0], dtype=dt),
+ np.array([3, 0, 1], dtype=dt)]
+ l = _multiarray_tests.test_neighborhood_iterator_oob(
+ x, [-1, 3], NEIGH_MODE['zero'], [-1, 1], NEIGH_MODE['one'])
+ assert_array_equal(l, r)
+
+ # 2nd simple, 1d test: stacking 2 neigh iterators, mixing const padding and
+ # mirror padding
+ def test_simple_mirror(self):
+ dt = np.float64
+ # Stacking zero on top of mirror
+ x = np.array([1, 2, 3], dtype=dt)
+ r = [np.array([0, 1, 1], dtype=dt),
+ np.array([1, 1, 2], dtype=dt),
+ np.array([1, 2, 3], dtype=dt),
+ np.array([2, 3, 3], dtype=dt),
+ np.array([3, 3, 0], dtype=dt)]
+ l = _multiarray_tests.test_neighborhood_iterator_oob(
+ x, [-1, 3], NEIGH_MODE['mirror'], [-1, 1], NEIGH_MODE['zero'])
+ assert_array_equal(l, r)
+
+ # Stacking mirror on top of zero
+ x = np.array([1, 2, 3], dtype=dt)
+ r = [np.array([1, 0, 0], dtype=dt),
+ np.array([0, 0, 1], dtype=dt),
+ np.array([0, 1, 2], dtype=dt),
+ np.array([1, 2, 3], dtype=dt),
+ np.array([2, 3, 0], dtype=dt)]
+ l = _multiarray_tests.test_neighborhood_iterator_oob(
+ x, [-1, 3], NEIGH_MODE['zero'], [-2, 0], NEIGH_MODE['mirror'])
+ assert_array_equal(l, r)
+
+ # Stacking mirror on top of zero: 2nd
+ x = np.array([1, 2, 3], dtype=dt)
+ r = [np.array([0, 1, 2], dtype=dt),
+ np.array([1, 2, 3], dtype=dt),
+ np.array([2, 3, 0], dtype=dt),
+ np.array([3, 0, 0], dtype=dt),
+ np.array([0, 0, 3], dtype=dt)]
+ l = _multiarray_tests.test_neighborhood_iterator_oob(
+ x, [-1, 3], NEIGH_MODE['zero'], [0, 2], NEIGH_MODE['mirror'])
+ assert_array_equal(l, r)
+
+ # Stacking mirror on top of zero: 3rd
+ x = np.array([1, 2, 3], dtype=dt)
+ r = [np.array([1, 0, 0, 1, 2], dtype=dt),
+ np.array([0, 0, 1, 2, 3], dtype=dt),
+ np.array([0, 1, 2, 3, 0], dtype=dt),
+ np.array([1, 2, 3, 0, 0], dtype=dt),
+ np.array([2, 3, 0, 0, 3], dtype=dt)]
+ l = _multiarray_tests.test_neighborhood_iterator_oob(
+ x, [-1, 3], NEIGH_MODE['zero'], [-2, 2], NEIGH_MODE['mirror'])
+ assert_array_equal(l, r)
+
+ # 3rd simple, 1d test: stacking 2 neigh iterators, mixing const padding and
+ # circular padding
+ def test_simple_circular(self):
+ dt = np.float64
+ # Stacking zero on top of mirror
+ x = np.array([1, 2, 3], dtype=dt)
+ r = [np.array([0, 3, 1], dtype=dt),
+ np.array([3, 1, 2], dtype=dt),
+ np.array([1, 2, 3], dtype=dt),
+ np.array([2, 3, 1], dtype=dt),
+ np.array([3, 1, 0], dtype=dt)]
+ l = _multiarray_tests.test_neighborhood_iterator_oob(
+ x, [-1, 3], NEIGH_MODE['circular'], [-1, 1], NEIGH_MODE['zero'])
+ assert_array_equal(l, r)
+
+ # Stacking mirror on top of zero
+ x = np.array([1, 2, 3], dtype=dt)
+ r = [np.array([3, 0, 0], dtype=dt),
+ np.array([0, 0, 1], dtype=dt),
+ np.array([0, 1, 2], dtype=dt),
+ np.array([1, 2, 3], dtype=dt),
+ np.array([2, 3, 0], dtype=dt)]
+ l = _multiarray_tests.test_neighborhood_iterator_oob(
+ x, [-1, 3], NEIGH_MODE['zero'], [-2, 0], NEIGH_MODE['circular'])
+ assert_array_equal(l, r)
+
+ # Stacking mirror on top of zero: 2nd
+ x = np.array([1, 2, 3], dtype=dt)
+ r = [np.array([0, 1, 2], dtype=dt),
+ np.array([1, 2, 3], dtype=dt),
+ np.array([2, 3, 0], dtype=dt),
+ np.array([3, 0, 0], dtype=dt),
+ np.array([0, 0, 1], dtype=dt)]
+ l = _multiarray_tests.test_neighborhood_iterator_oob(
+ x, [-1, 3], NEIGH_MODE['zero'], [0, 2], NEIGH_MODE['circular'])
+ assert_array_equal(l, r)
+
+ # Stacking mirror on top of zero: 3rd
+ x = np.array([1, 2, 3], dtype=dt)
+ r = [np.array([3, 0, 0, 1, 2], dtype=dt),
+ np.array([0, 0, 1, 2, 3], dtype=dt),
+ np.array([0, 1, 2, 3, 0], dtype=dt),
+ np.array([1, 2, 3, 0, 0], dtype=dt),
+ np.array([2, 3, 0, 0, 1], dtype=dt)]
+ l = _multiarray_tests.test_neighborhood_iterator_oob(
+ x, [-1, 3], NEIGH_MODE['zero'], [-2, 2], NEIGH_MODE['circular'])
+ assert_array_equal(l, r)
+
+ # 4th simple, 1d test: stacking 2 neigh iterators, but with lower iterator
+ # being strictly within the array
+ def test_simple_strict_within(self):
+ dt = np.float64
+ # Stacking zero on top of zero, first neighborhood strictly inside the
+ # array
+ x = np.array([1, 2, 3], dtype=dt)
+ r = [np.array([1, 2, 3, 0], dtype=dt)]
+ l = _multiarray_tests.test_neighborhood_iterator_oob(
+ x, [1, 1], NEIGH_MODE['zero'], [-1, 2], NEIGH_MODE['zero'])
+ assert_array_equal(l, r)
+
+ # Stacking mirror on top of zero, first neighborhood strictly inside the
+ # array
+ x = np.array([1, 2, 3], dtype=dt)
+ r = [np.array([1, 2, 3, 3], dtype=dt)]
+ l = _multiarray_tests.test_neighborhood_iterator_oob(
+ x, [1, 1], NEIGH_MODE['zero'], [-1, 2], NEIGH_MODE['mirror'])
+ assert_array_equal(l, r)
+
+ # Stacking mirror on top of zero, first neighborhood strictly inside the
+ # array
+ x = np.array([1, 2, 3], dtype=dt)
+ r = [np.array([1, 2, 3, 1], dtype=dt)]
+ l = _multiarray_tests.test_neighborhood_iterator_oob(
+ x, [1, 1], NEIGH_MODE['zero'], [-1, 2], NEIGH_MODE['circular'])
+ assert_array_equal(l, r)
+
+class TestWarnings:
+
+ def test_complex_warning(self):
+ x = np.array([1, 2])
+ y = np.array([1-2j, 1+2j])
+
+ with warnings.catch_warnings():
+ warnings.simplefilter("error", np.ComplexWarning)
+ assert_raises(np.ComplexWarning, x.__setitem__, slice(None), y)
+ assert_equal(x, [1, 2])
+
+
+class TestMinScalarType:
+
+ def test_usigned_shortshort(self):
+ dt = np.min_scalar_type(2**8-1)
+ wanted = np.dtype('uint8')
+ assert_equal(wanted, dt)
+
+ def test_usigned_short(self):
+ dt = np.min_scalar_type(2**16-1)
+ wanted = np.dtype('uint16')
+ assert_equal(wanted, dt)
+
+ def test_usigned_int(self):
+ dt = np.min_scalar_type(2**32-1)
+ wanted = np.dtype('uint32')
+ assert_equal(wanted, dt)
+
+ def test_usigned_longlong(self):
+ dt = np.min_scalar_type(2**63-1)
+ wanted = np.dtype('uint64')
+ assert_equal(wanted, dt)
+
+ def test_object(self):
+ dt = np.min_scalar_type(2**64)
+ wanted = np.dtype('O')
+ assert_equal(wanted, dt)
+
+
+from numpy.core._internal import _dtype_from_pep3118
+
+
+class TestPEP3118Dtype:
+ def _check(self, spec, wanted):
+ dt = np.dtype(wanted)
+ actual = _dtype_from_pep3118(spec)
+ assert_equal(actual, dt,
+ err_msg="spec %r != dtype %r" % (spec, wanted))
+
+ def test_native_padding(self):
+ align = np.dtype('i').alignment
+ for j in range(8):
+ if j == 0:
+ s = 'bi'
+ else:
+ s = 'b%dxi' % j
+ self._check('@'+s, {'f0': ('i1', 0),
+ 'f1': ('i', align*(1 + j//align))})
+ self._check('='+s, {'f0': ('i1', 0),
+ 'f1': ('i', 1+j)})
+
+ def test_native_padding_2(self):
+ # Native padding should work also for structs and sub-arrays
+ self._check('x3T{xi}', {'f0': (({'f0': ('i', 4)}, (3,)), 4)})
+ self._check('^x3T{xi}', {'f0': (({'f0': ('i', 1)}, (3,)), 1)})
+
+ def test_trailing_padding(self):
+ # Trailing padding should be included, *and*, the item size
+ # should match the alignment if in aligned mode
+ align = np.dtype('i').alignment
+ size = np.dtype('i').itemsize
+
+ def aligned(n):
+ return align*(1 + (n-1)//align)
+
+ base = dict(formats=['i'], names=['f0'])
+
+ self._check('ix', dict(itemsize=aligned(size + 1), **base))
+ self._check('ixx', dict(itemsize=aligned(size + 2), **base))
+ self._check('ixxx', dict(itemsize=aligned(size + 3), **base))
+ self._check('ixxxx', dict(itemsize=aligned(size + 4), **base))
+ self._check('i7x', dict(itemsize=aligned(size + 7), **base))
+
+ self._check('^ix', dict(itemsize=size + 1, **base))
+ self._check('^ixx', dict(itemsize=size + 2, **base))
+ self._check('^ixxx', dict(itemsize=size + 3, **base))
+ self._check('^ixxxx', dict(itemsize=size + 4, **base))
+ self._check('^i7x', dict(itemsize=size + 7, **base))
+
+ def test_native_padding_3(self):
+ dt = np.dtype(
+ [('a', 'b'), ('b', 'i'),
+ ('sub', np.dtype('b,i')), ('c', 'i')],
+ align=True)
+ self._check("T{b:a:xxxi:b:T{b:f0:=i:f1:}:sub:xxxi:c:}", dt)
+
+ dt = np.dtype(
+ [('a', 'b'), ('b', 'i'), ('c', 'b'), ('d', 'b'),
+ ('e', 'b'), ('sub', np.dtype('b,i', align=True))])
+ self._check("T{b:a:=i:b:b:c:b:d:b:e:T{b:f0:xxxi:f1:}:sub:}", dt)
+
+ def test_padding_with_array_inside_struct(self):
+ dt = np.dtype(
+ [('a', 'b'), ('b', 'i'), ('c', 'b', (3,)),
+ ('d', 'i')],
+ align=True)
+ self._check("T{b:a:xxxi:b:3b:c:xi:d:}", dt)
+
+ def test_byteorder_inside_struct(self):
+ # The byte order after @T{=i} should be '=', not '@'.
+ # Check this by noting the absence of native alignment.
+ self._check('@T{^i}xi', {'f0': ({'f0': ('i', 0)}, 0),
+ 'f1': ('i', 5)})
+
+ def test_intra_padding(self):
+ # Natively aligned sub-arrays may require some internal padding
+ align = np.dtype('i').alignment
+ size = np.dtype('i').itemsize
+
+ def aligned(n):
+ return (align*(1 + (n-1)//align))
+
+ self._check('(3)T{ix}', (dict(
+ names=['f0'],
+ formats=['i'],
+ offsets=[0],
+ itemsize=aligned(size + 1)
+ ), (3,)))
+
+ def test_char_vs_string(self):
+ dt = np.dtype('c')
+ self._check('c', dt)
+
+ dt = np.dtype([('f0', 'S1', (4,)), ('f1', 'S4')])
+ self._check('4c4s', dt)
+
+ def test_field_order(self):
+ # gh-9053 - previously, we relied on dictionary key order
+ self._check("(0)I:a:f:b:", [('a', 'I', (0,)), ('b', 'f')])
+ self._check("(0)I:b:f:a:", [('b', 'I', (0,)), ('a', 'f')])
+
+ def test_unnamed_fields(self):
+ self._check('ii', [('f0', 'i'), ('f1', 'i')])
+ self._check('ii:f0:', [('f1', 'i'), ('f0', 'i')])
+
+ self._check('i', 'i')
+ self._check('i:f0:', [('f0', 'i')])
+
+
+class TestNewBufferProtocol:
+ """ Test PEP3118 buffers """
+
+ def _check_roundtrip(self, obj):
+ obj = np.asarray(obj)
+ x = memoryview(obj)
+ y = np.asarray(x)
+ y2 = np.array(x)
+ assert_(not y.flags.owndata)
+ assert_(y2.flags.owndata)
+
+ assert_equal(y.dtype, obj.dtype)
+ assert_equal(y.shape, obj.shape)
+ assert_array_equal(obj, y)
+
+ assert_equal(y2.dtype, obj.dtype)
+ assert_equal(y2.shape, obj.shape)
+ assert_array_equal(obj, y2)
+
+ def test_roundtrip(self):
+ x = np.array([1, 2, 3, 4, 5], dtype='i4')
+ self._check_roundtrip(x)
+
+ x = np.array([[1, 2], [3, 4]], dtype=np.float64)
+ self._check_roundtrip(x)
+
+ x = np.zeros((3, 3, 3), dtype=np.float32)[:, 0,:]
+ self._check_roundtrip(x)
+
+ dt = [('a', 'b'),
+ ('b', 'h'),
+ ('c', 'i'),
+ ('d', 'l'),
+ ('dx', 'q'),
+ ('e', 'B'),
+ ('f', 'H'),
+ ('g', 'I'),
+ ('h', 'L'),
+ ('hx', 'Q'),
+ ('i', np.single),
+ ('j', np.double),
+ ('k', np.longdouble),
+ ('ix', np.csingle),
+ ('jx', np.cdouble),
+ ('kx', np.clongdouble),
+ ('l', 'S4'),
+ ('m', 'U4'),
+ ('n', 'V3'),
+ ('o', '?'),
+ ('p', np.half),
+ ]
+ x = np.array(
+ [(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
+ b'aaaa', 'bbbb', b'xxx', True, 1.0)],
+ dtype=dt)
+ self._check_roundtrip(x)
+
+ x = np.array(([[1, 2], [3, 4]],), dtype=[('a', (int, (2, 2)))])
+ self._check_roundtrip(x)
+
+ x = np.array([1, 2, 3], dtype='>i2')
+ self._check_roundtrip(x)
+
+ x = np.array([1, 2, 3], dtype='<i2')
+ self._check_roundtrip(x)
+
+ x = np.array([1, 2, 3], dtype='>i4')
+ self._check_roundtrip(x)
+
+ x = np.array([1, 2, 3], dtype='<i4')
+ self._check_roundtrip(x)
+
+ # check long long can be represented as non-native
+ x = np.array([1, 2, 3], dtype='>q')
+ self._check_roundtrip(x)
+
+ # Native-only data types can be passed through the buffer interface
+ # only in native byte order
+ if sys.byteorder == 'little':
+ x = np.array([1, 2, 3], dtype='>g')
+ assert_raises(ValueError, self._check_roundtrip, x)
+ x = np.array([1, 2, 3], dtype='<g')
+ self._check_roundtrip(x)
+ else:
+ x = np.array([1, 2, 3], dtype='>g')
+ self._check_roundtrip(x)
+ x = np.array([1, 2, 3], dtype='<g')
+ assert_raises(ValueError, self._check_roundtrip, x)
+
+ def test_roundtrip_half(self):
+ half_list = [
+ 1.0,
+ -2.0,
+ 6.5504 * 10**4, # (max half precision)
+ 2**-14, # ~= 6.10352 * 10**-5 (minimum positive normal)
+ 2**-24, # ~= 5.96046 * 10**-8 (minimum strictly positive subnormal)
+ 0.0,
+ -0.0,
+ float('+inf'),
+ float('-inf'),
+ 0.333251953125, # ~= 1/3
+ ]
+
+ x = np.array(half_list, dtype='>e')
+ self._check_roundtrip(x)
+ x = np.array(half_list, dtype='<e')
+ self._check_roundtrip(x)
+
+ def test_roundtrip_single_types(self):
+ for typ in np.sctypeDict.values():
+ dtype = np.dtype(typ)
+
+ if dtype.char in 'Mm':
+ # datetimes cannot be used in buffers
+ continue
+ if dtype.char == 'V':
+ # skip void
+ continue
+
+ x = np.zeros(4, dtype=dtype)
+ self._check_roundtrip(x)
+
+ if dtype.char not in 'qQgG':
+ dt = dtype.newbyteorder('<')
+ x = np.zeros(4, dtype=dt)
+ self._check_roundtrip(x)
+
+ dt = dtype.newbyteorder('>')
+ x = np.zeros(4, dtype=dt)
+ self._check_roundtrip(x)
+
+ def test_roundtrip_scalar(self):
+ # Issue #4015.
+ self._check_roundtrip(0)
+
+ def test_invalid_buffer_format(self):
+ # datetime64 cannot be used fully in a buffer yet
+ # Should be fixed in the next Numpy major release
+ dt = np.dtype([('a', 'uint16'), ('b', 'M8[s]')])
+ a = np.empty(3, dt)
+ assert_raises((ValueError, BufferError), memoryview, a)
+ assert_raises((ValueError, BufferError), memoryview, np.array((3), 'M8[D]'))
+
+ def test_export_simple_1d(self):
+ x = np.array([1, 2, 3, 4, 5], dtype='i')
+ y = memoryview(x)
+ assert_equal(y.format, 'i')
+ assert_equal(y.shape, (5,))
+ assert_equal(y.ndim, 1)
+ assert_equal(y.strides, (4,))
+ assert_equal(y.suboffsets, ())
+ assert_equal(y.itemsize, 4)
+
+ def test_export_simple_nd(self):
+ x = np.array([[1, 2], [3, 4]], dtype=np.float64)
+ y = memoryview(x)
+ assert_equal(y.format, 'd')
+ assert_equal(y.shape, (2, 2))
+ assert_equal(y.ndim, 2)
+ assert_equal(y.strides, (16, 8))
+ assert_equal(y.suboffsets, ())
+ assert_equal(y.itemsize, 8)
+
+ def test_export_discontiguous(self):
+ x = np.zeros((3, 3, 3), dtype=np.float32)[:, 0,:]
+ y = memoryview(x)
+ assert_equal(y.format, 'f')
+ assert_equal(y.shape, (3, 3))
+ assert_equal(y.ndim, 2)
+ assert_equal(y.strides, (36, 4))
+ assert_equal(y.suboffsets, ())
+ assert_equal(y.itemsize, 4)
+
+ def test_export_record(self):
+ dt = [('a', 'b'),
+ ('b', 'h'),
+ ('c', 'i'),
+ ('d', 'l'),
+ ('dx', 'q'),
+ ('e', 'B'),
+ ('f', 'H'),
+ ('g', 'I'),
+ ('h', 'L'),
+ ('hx', 'Q'),
+ ('i', np.single),
+ ('j', np.double),
+ ('k', np.longdouble),
+ ('ix', np.csingle),
+ ('jx', np.cdouble),
+ ('kx', np.clongdouble),
+ ('l', 'S4'),
+ ('m', 'U4'),
+ ('n', 'V3'),
+ ('o', '?'),
+ ('p', np.half),
+ ]
+ x = np.array(
+ [(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
+ b'aaaa', 'bbbb', b' ', True, 1.0)],
+ dtype=dt)
+ y = memoryview(x)
+ assert_equal(y.shape, (1,))
+ assert_equal(y.ndim, 1)
+ assert_equal(y.suboffsets, ())
+
+ sz = sum([np.dtype(b).itemsize for a, b in dt])
+ if np.dtype('l').itemsize == 4:
+ assert_equal(y.format, 'T{b:a:=h:b:i:c:l:d:q:dx:B:e:@H:f:=I:g:L:h:Q:hx:f:i:d:j:^g:k:=Zf:ix:Zd:jx:^Zg:kx:4s:l:=4w:m:3x:n:?:o:@e:p:}')
+ else:
+ assert_equal(y.format, 'T{b:a:=h:b:i:c:q:d:q:dx:B:e:@H:f:=I:g:Q:h:Q:hx:f:i:d:j:^g:k:=Zf:ix:Zd:jx:^Zg:kx:4s:l:=4w:m:3x:n:?:o:@e:p:}')
+ # Cannot test if NPY_RELAXED_STRIDES_DEBUG changes the strides
+ if not (np.ones(1).strides[0] == np.iinfo(np.intp).max):
+ assert_equal(y.strides, (sz,))
+ assert_equal(y.itemsize, sz)
+
+ def test_export_subarray(self):
+ x = np.array(([[1, 2], [3, 4]],), dtype=[('a', ('i', (2, 2)))])
+ y = memoryview(x)
+ assert_equal(y.format, 'T{(2,2)i:a:}')
+ assert_equal(y.shape, ())
+ assert_equal(y.ndim, 0)
+ assert_equal(y.strides, ())
+ assert_equal(y.suboffsets, ())
+ assert_equal(y.itemsize, 16)
+
+ def test_export_endian(self):
+ x = np.array([1, 2, 3], dtype='>i')
+ y = memoryview(x)
+ if sys.byteorder == 'little':
+ assert_equal(y.format, '>i')
+ else:
+ assert_equal(y.format, 'i')
+
+ x = np.array([1, 2, 3], dtype='<i')
+ y = memoryview(x)
+ if sys.byteorder == 'little':
+ assert_equal(y.format, 'i')
+ else:
+ assert_equal(y.format, '<i')
+
+ def test_export_flags(self):
+ # Check SIMPLE flag, see also gh-3613 (exception should be BufferError)
+ assert_raises(ValueError,
+ _multiarray_tests.get_buffer_info,
+ np.arange(5)[::2], ('SIMPLE',))
+
+ @pytest.mark.parametrize(["obj", "error"], [
+ pytest.param(np.array([1, 2], dtype=rational), ValueError, id="array"),
+ pytest.param(rational(1, 2), TypeError, id="scalar")])
+ def test_export_and_pickle_user_dtype(self, obj, error):
+ # User dtypes should export successfully when FORMAT was not requested.
+ with pytest.raises(error):
+ _multiarray_tests.get_buffer_info(obj, ("STRIDED_RO", "FORMAT"))
+
+ _multiarray_tests.get_buffer_info(obj, ("STRIDED_RO",))
+
+ # This is currently also necessary to implement pickling:
+ pickle_obj = pickle.dumps(obj)
+ res = pickle.loads(pickle_obj)
+ assert_array_equal(res, obj)
+
+ def test_padding(self):
+ for j in range(8):
+ x = np.array([(1,), (2,)], dtype={'f0': (int, j)})
+ self._check_roundtrip(x)
+
+ def test_reference_leak(self):
+ if HAS_REFCOUNT:
+ count_1 = sys.getrefcount(np.core._internal)
+ a = np.zeros(4)
+ b = memoryview(a)
+ c = np.asarray(b)
+ if HAS_REFCOUNT:
+ count_2 = sys.getrefcount(np.core._internal)
+ assert_equal(count_1, count_2)
+ del c # avoid pyflakes unused variable warning.
+
+ def test_padded_struct_array(self):
+ dt1 = np.dtype(
+ [('a', 'b'), ('b', 'i'), ('sub', np.dtype('b,i')), ('c', 'i')],
+ align=True)
+ x1 = np.arange(dt1.itemsize, dtype=np.int8).view(dt1)
+ self._check_roundtrip(x1)
+
+ dt2 = np.dtype(
+ [('a', 'b'), ('b', 'i'), ('c', 'b', (3,)), ('d', 'i')],
+ align=True)
+ x2 = np.arange(dt2.itemsize, dtype=np.int8).view(dt2)
+ self._check_roundtrip(x2)
+
+ dt3 = np.dtype(
+ [('a', 'b'), ('b', 'i'), ('c', 'b'), ('d', 'b'),
+ ('e', 'b'), ('sub', np.dtype('b,i', align=True))])
+ x3 = np.arange(dt3.itemsize, dtype=np.int8).view(dt3)
+ self._check_roundtrip(x3)
+
+ @pytest.mark.valgrind_error(reason="leaks buffer info cache temporarily.")
+ def test_relaxed_strides(self, c=np.ones((1, 10, 10), dtype='i8')):
+ # Note: c defined as parameter so that it is persistent and leak
+ # checks will notice gh-16934 (buffer info cache leak).
+ c.strides = (-1, 80, 8) # strides need to be fixed at export
+
+ assert_(memoryview(c).strides == (800, 80, 8))
+
+ # Writing C-contiguous data to a BytesIO buffer should work
+ fd = io.BytesIO()
+ fd.write(c.data)
+
+ fortran = c.T
+ assert_(memoryview(fortran).strides == (8, 80, 800))
+
+ arr = np.ones((1, 10))
+ if arr.flags.f_contiguous:
+ shape, strides = _multiarray_tests.get_buffer_info(
+ arr, ['F_CONTIGUOUS'])
+ assert_(strides[0] == 8)
+ arr = np.ones((10, 1), order='F')
+ shape, strides = _multiarray_tests.get_buffer_info(
+ arr, ['C_CONTIGUOUS'])
+ assert_(strides[-1] == 8)
+
+ @pytest.mark.valgrind_error(reason="leaks buffer info cache temporarily.")
+ @pytest.mark.skipif(not np.ones((10, 1), order="C").flags.f_contiguous,
+ reason="Test is unnecessary (but fails) without relaxed strides.")
+ def test_relaxed_strides_buffer_info_leak(self, arr=np.ones((1, 10))):
+ """Test that alternating export of C- and F-order buffers from
+ an array which is both C- and F-order when relaxed strides is
+ active works.
+ This test defines array in the signature to ensure leaking more
+ references every time the test is run (catching the leak with
+ pytest-leaks).
+ """
+ for i in range(10):
+ _, s = _multiarray_tests.get_buffer_info(arr, ['F_CONTIGUOUS'])
+ assert s == (8, 8)
+ _, s = _multiarray_tests.get_buffer_info(arr, ['C_CONTIGUOUS'])
+ assert s == (80, 8)
+
+ def test_out_of_order_fields(self):
+ dt = np.dtype(dict(
+ formats=['<i4', '<i4'],
+ names=['one', 'two'],
+ offsets=[4, 0],
+ itemsize=8
+ ))
+
+ # overlapping fields cannot be represented by PEP3118
+ arr = np.empty(1, dt)
+ with assert_raises(ValueError):
+ memoryview(arr)
+
+ def test_max_dims(self):
+ a = np.ones((1,) * 32)
+ self._check_roundtrip(a)
+
+ @pytest.mark.slow
+ def test_error_too_many_dims(self):
+ def make_ctype(shape, scalar_type):
+ t = scalar_type
+ for dim in shape[::-1]:
+ t = dim * t
+ return t
+
+ # construct a memoryview with 33 dimensions
+ c_u8_33d = make_ctype((1,)*33, ctypes.c_uint8)
+ m = memoryview(c_u8_33d())
+ assert_equal(m.ndim, 33)
+
+ assert_raises_regex(
+ RuntimeError, "ndim",
+ np.array, m)
+
+ # The above seems to create some deep cycles, clean them up for
+ # easier reference count debugging:
+ del c_u8_33d, m
+ for i in range(33):
+ if gc.collect() == 0:
+ break
+
+ def test_error_pointer_type(self):
+ # gh-6741
+ m = memoryview(ctypes.pointer(ctypes.c_uint8()))
+ assert_('&' in m.format)
+
+ assert_raises_regex(
+ ValueError, "format string",
+ np.array, m)
+
+ def test_error_message_unsupported(self):
+ # wchar has no corresponding numpy type - if this changes in future, we
+ # need a better way to construct an invalid memoryview format.
+ t = ctypes.c_wchar * 4
+ with assert_raises(ValueError) as cm:
+ np.array(t())
+
+ exc = cm.exception
+ with assert_raises_regex(
+ NotImplementedError,
+ r"Unrepresentable .* 'u' \(UCS-2 strings\)"
+ ):
+ raise exc.__cause__
+
+ def test_ctypes_integer_via_memoryview(self):
+ # gh-11150, due to bpo-10746
+ for c_integer in {ctypes.c_int, ctypes.c_long, ctypes.c_longlong}:
+ value = c_integer(42)
+ with warnings.catch_warnings(record=True):
+ warnings.filterwarnings('always', r'.*\bctypes\b', RuntimeWarning)
+ np.asarray(value)
+
+ def test_ctypes_struct_via_memoryview(self):
+ # gh-10528
+ class foo(ctypes.Structure):
+ _fields_ = [('a', ctypes.c_uint8), ('b', ctypes.c_uint32)]
+ f = foo(a=1, b=2)
+
+ with warnings.catch_warnings(record=True):
+ warnings.filterwarnings('always', r'.*\bctypes\b', RuntimeWarning)
+ arr = np.asarray(f)
+
+ assert_equal(arr['a'], 1)
+ assert_equal(arr['b'], 2)
+ f.a = 3
+ assert_equal(arr['a'], 3)
+
+ @pytest.mark.parametrize("obj", [np.ones(3), np.ones(1, dtype="i,i")[()]])
+ def test_error_if_stored_buffer_info_is_corrupted(self, obj):
+ """
+ If a user extends a NumPy array before 1.20 and then runs it
+ on NumPy 1.20+. A C-subclassed array might in theory modify
+ the new buffer-info field. This checks that an error is raised
+ if this happens (for buffer export), an error is written on delete.
+ This is a sanity check to help users transition to safe code, it
+ may be deleted at any point.
+ """
+ # corrupt buffer info:
+ _multiarray_tests.corrupt_or_fix_bufferinfo(obj)
+ name = type(obj)
+ with pytest.raises(RuntimeError,
+ match=f".*{name} appears to be C subclassed"):
+ memoryview(obj)
+ # Fix buffer info again before we delete (or we lose the memory)
+ _multiarray_tests.corrupt_or_fix_bufferinfo(obj)
+
+ def test_no_suboffsets(self):
+ try:
+ import _testbuffer
+ except ImportError:
+ raise pytest.skip("_testbuffer is not available")
+
+ for shape in [(2, 3), (2, 3, 4)]:
+ data = list(range(np.prod(shape)))
+ buffer = _testbuffer.ndarray(data, shape, format='i',
+ flags=_testbuffer.ND_PIL)
+ msg = "NumPy currently does not support.*suboffsets"
+ with pytest.raises(BufferError, match=msg):
+ np.asarray(buffer)
+ with pytest.raises(BufferError, match=msg):
+ np.asarray([buffer])
+
+ # Also check (unrelated and more limited but similar) frombuffer:
+ with pytest.raises(BufferError):
+ np.frombuffer(buffer)
+
+
+class TestArrayCreationCopyArgument(object):
+
+ class RaiseOnBool:
+
+ def __bool__(self):
+ raise ValueError
+
+ true_vals = [True, np._CopyMode.ALWAYS, np.True_]
+ false_vals = [False, np._CopyMode.IF_NEEDED, np.False_]
+
+ def test_scalars(self):
+ # Test both numpy and python scalars
+ for dtype in np.typecodes["All"]:
+ arr = np.zeros((), dtype=dtype)
+ scalar = arr[()]
+ pyscalar = arr.item(0)
+
+ # Test never-copy raises error:
+ assert_raises(ValueError, np.array, scalar,
+ copy=np._CopyMode.NEVER)
+ assert_raises(ValueError, np.array, pyscalar,
+ copy=np._CopyMode.NEVER)
+ assert_raises(ValueError, np.array, pyscalar,
+ copy=self.RaiseOnBool())
+ assert_raises(ValueError, _multiarray_tests.npy_ensurenocopy,
+ [1])
+ # Casting with a dtype (to unsigned integers) can be special:
+ with pytest.raises(ValueError):
+ np.array(pyscalar, dtype=np.int64, copy=np._CopyMode.NEVER)
+
+ def test_compatible_cast(self):
+
+ # Some types are compatible even though they are different, no
+ # copy is necessary for them. This is mostly true for some integers
+ def int_types(byteswap=False):
+ int_types = (np.typecodes["Integer"] +
+ np.typecodes["UnsignedInteger"])
+ for int_type in int_types:
+ yield np.dtype(int_type)
+ if byteswap:
+ yield np.dtype(int_type).newbyteorder()
+
+ for int1 in int_types():
+ for int2 in int_types(True):
+ arr = np.arange(10, dtype=int1)
+
+ for copy in self.true_vals:
+ res = np.array(arr, copy=copy, dtype=int2)
+ assert res is not arr and res.flags.owndata
+ assert_array_equal(res, arr)
+
+ if int1 == int2:
+ # Casting is not necessary, base check is sufficient here
+ for copy in self.false_vals:
+ res = np.array(arr, copy=copy, dtype=int2)
+ assert res is arr or res.base is arr
+
+ res = np.array(arr,
+ copy=np._CopyMode.NEVER,
+ dtype=int2)
+ assert res is arr or res.base is arr
+
+ else:
+ # Casting is necessary, assert copy works:
+ for copy in self.false_vals:
+ res = np.array(arr, copy=copy, dtype=int2)
+ assert res is not arr and res.flags.owndata
+ assert_array_equal(res, arr)
+
+ assert_raises(ValueError, np.array,
+ arr, copy=np._CopyMode.NEVER,
+ dtype=int2)
+ assert_raises(ValueError, np.array,
+ arr, copy=None,
+ dtype=int2)
+
+ def test_buffer_interface(self):
+
+ # Buffer interface gives direct memory access (no copy)
+ arr = np.arange(10)
+ view = memoryview(arr)
+
+ # Checking bases is a bit tricky since numpy creates another
+ # memoryview, so use may_share_memory.
+ for copy in self.true_vals:
+ res = np.array(view, copy=copy)
+ assert not np.may_share_memory(arr, res)
+ for copy in self.false_vals:
+ res = np.array(view, copy=copy)
+ assert np.may_share_memory(arr, res)
+ res = np.array(view, copy=np._CopyMode.NEVER)
+ assert np.may_share_memory(arr, res)
+
+ def test_array_interfaces(self):
+ # Array interface gives direct memory access (much like a memoryview)
+ base_arr = np.arange(10)
+
+ class ArrayLike:
+ __array_interface__ = base_arr.__array_interface__
+
+ arr = ArrayLike()
+
+ for copy, val in [(True, None), (np._CopyMode.ALWAYS, None),
+ (False, arr), (np._CopyMode.IF_NEEDED, arr),
+ (np._CopyMode.NEVER, arr)]:
+ res = np.array(arr, copy=copy)
+ assert res.base is val
+
+ def test___array__(self):
+ base_arr = np.arange(10)
+
+ class ArrayLike:
+ def __array__(self):
+ # __array__ should return a copy, numpy cannot know this
+ # however.
+ return base_arr
+
+ arr = ArrayLike()
+
+ for copy in self.true_vals:
+ res = np.array(arr, copy=copy)
+ assert_array_equal(res, base_arr)
+ # An additional copy is currently forced by numpy in this case,
+ # you could argue, numpy does not trust the ArrayLike. This
+ # may be open for change:
+ assert res is not base_arr
+
+ for copy in self.false_vals:
+ res = np.array(arr, copy=False)
+ assert_array_equal(res, base_arr)
+ assert res is base_arr # numpy trusts the ArrayLike
+
+ with pytest.raises(ValueError):
+ np.array(arr, copy=np._CopyMode.NEVER)
+
+ @pytest.mark.parametrize(
+ "arr", [np.ones(()), np.arange(81).reshape((9, 9))])
+ @pytest.mark.parametrize("order1", ["C", "F", None])
+ @pytest.mark.parametrize("order2", ["C", "F", "A", "K"])
+ def test_order_mismatch(self, arr, order1, order2):
+ # The order is the main (python side) reason that can cause
+ # a never-copy to fail.
+ # Prepare C-order, F-order and non-contiguous arrays:
+ arr = arr.copy(order1)
+ if order1 == "C":
+ assert arr.flags.c_contiguous
+ elif order1 == "F":
+ assert arr.flags.f_contiguous
+ elif arr.ndim != 0:
+ # Make array non-contiguous
+ arr = arr[::2, ::2]
+ assert not arr.flags.forc
+
+ # Whether a copy is necessary depends on the order of arr:
+ if order2 == "C":
+ no_copy_necessary = arr.flags.c_contiguous
+ elif order2 == "F":
+ no_copy_necessary = arr.flags.f_contiguous
+ else:
+ # Keeporder and Anyorder are OK with non-contiguous output.
+ # This is not consistent with the `astype` behaviour which
+ # enforces contiguity for "A". It is probably historic from when
+ # "K" did not exist.
+ no_copy_necessary = True
+
+ # Test it for both the array and a memoryview
+ for view in [arr, memoryview(arr)]:
+ for copy in self.true_vals:
+ res = np.array(view, copy=copy, order=order2)
+ assert res is not arr and res.flags.owndata
+ assert_array_equal(arr, res)
+
+ if no_copy_necessary:
+ for copy in self.false_vals:
+ res = np.array(view, copy=copy, order=order2)
+ # res.base.obj refers to the memoryview
+ if not IS_PYPY:
+ assert res is arr or res.base.obj is arr
+
+ res = np.array(view, copy=np._CopyMode.NEVER,
+ order=order2)
+ if not IS_PYPY:
+ assert res is arr or res.base.obj is arr
+ else:
+ for copy in self.false_vals:
+ res = np.array(arr, copy=copy, order=order2)
+ assert_array_equal(arr, res)
+ assert_raises(ValueError, np.array,
+ view, copy=np._CopyMode.NEVER,
+ order=order2)
+ assert_raises(ValueError, np.array,
+ view, copy=None,
+ order=order2)
+
+ def test_striding_not_ok(self):
+ arr = np.array([[1, 2, 4], [3, 4, 5]])
+ assert_raises(ValueError, np.array,
+ arr.T, copy=np._CopyMode.NEVER,
+ order='C')
+ assert_raises(ValueError, np.array,
+ arr.T, copy=np._CopyMode.NEVER,
+ order='C', dtype=np.int64)
+ assert_raises(ValueError, np.array,
+ arr, copy=np._CopyMode.NEVER,
+ order='F')
+ assert_raises(ValueError, np.array,
+ arr, copy=np._CopyMode.NEVER,
+ order='F', dtype=np.int64)
+
+
+class TestArrayAttributeDeletion:
+
+ def test_multiarray_writable_attributes_deletion(self):
+ # ticket #2046, should not seqfault, raise AttributeError
+ a = np.ones(2)
+ attr = ['shape', 'strides', 'data', 'dtype', 'real', 'imag', 'flat']
+ with suppress_warnings() as sup:
+ sup.filter(DeprecationWarning, "Assigning the 'data' attribute")
+ for s in attr:
+ assert_raises(AttributeError, delattr, a, s)
+
+ def test_multiarray_not_writable_attributes_deletion(self):
+ a = np.ones(2)
+ attr = ["ndim", "flags", "itemsize", "size", "nbytes", "base",
+ "ctypes", "T", "__array_interface__", "__array_struct__",
+ "__array_priority__", "__array_finalize__"]
+ for s in attr:
+ assert_raises(AttributeError, delattr, a, s)
+
+ def test_multiarray_flags_writable_attribute_deletion(self):
+ a = np.ones(2).flags
+ attr = ['writebackifcopy', 'updateifcopy', 'aligned', 'writeable']
+ for s in attr:
+ assert_raises(AttributeError, delattr, a, s)
+
+ def test_multiarray_flags_not_writable_attribute_deletion(self):
+ a = np.ones(2).flags
+ attr = ["contiguous", "c_contiguous", "f_contiguous", "fortran",
+ "owndata", "fnc", "forc", "behaved", "carray", "farray",
+ "num"]
+ for s in attr:
+ assert_raises(AttributeError, delattr, a, s)
+
+
+class TestArrayInterface():
+ class Foo:
+ def __init__(self, value):
+ self.value = value
+ self.iface = {'typestr': 'f8'}
+
+ def __float__(self):
+ return float(self.value)
+
+ @property
+ def __array_interface__(self):
+ return self.iface
+
+
+ f = Foo(0.5)
+
+ @pytest.mark.parametrize('val, iface, expected', [
+ (f, {}, 0.5),
+ ([f], {}, [0.5]),
+ ([f, f], {}, [0.5, 0.5]),
+ (f, {'shape': ()}, 0.5),
+ (f, {'shape': None}, TypeError),
+ (f, {'shape': (1, 1)}, [[0.5]]),
+ (f, {'shape': (2,)}, ValueError),
+ (f, {'strides': ()}, 0.5),
+ (f, {'strides': (2,)}, ValueError),
+ (f, {'strides': 16}, TypeError),
+ ])
+ def test_scalar_interface(self, val, iface, expected):
+ # Test scalar coercion within the array interface
+ self.f.iface = {'typestr': 'f8'}
+ self.f.iface.update(iface)
+ if HAS_REFCOUNT:
+ pre_cnt = sys.getrefcount(np.dtype('f8'))
+ if isinstance(expected, type):
+ assert_raises(expected, np.array, val)
+ else:
+ result = np.array(val)
+ assert_equal(np.array(val), expected)
+ assert result.dtype == 'f8'
+ del result
+ if HAS_REFCOUNT:
+ post_cnt = sys.getrefcount(np.dtype('f8'))
+ assert_equal(pre_cnt, post_cnt)
+
+def test_interface_no_shape():
+ class ArrayLike:
+ array = np.array(1)
+ __array_interface__ = array.__array_interface__
+ assert_equal(np.array(ArrayLike()), 1)
+
+
+def test_array_interface_itemsize():
+ # See gh-6361
+ my_dtype = np.dtype({'names': ['A', 'B'], 'formats': ['f4', 'f4'],
+ 'offsets': [0, 8], 'itemsize': 16})
+ a = np.ones(10, dtype=my_dtype)
+ descr_t = np.dtype(a.__array_interface__['descr'])
+ typestr_t = np.dtype(a.__array_interface__['typestr'])
+ assert_equal(descr_t.itemsize, typestr_t.itemsize)
+
+
+def test_array_interface_empty_shape():
+ # See gh-7994
+ arr = np.array([1, 2, 3])
+ interface1 = dict(arr.__array_interface__)
+ interface1['shape'] = ()
+
+ class DummyArray1:
+ __array_interface__ = interface1
+
+ # NOTE: Because Py2 str/Py3 bytes supports the buffer interface, setting
+ # the interface data to bytes would invoke the bug this tests for, that
+ # __array_interface__ with shape=() is not allowed if the data is an object
+ # exposing the buffer interface
+ interface2 = dict(interface1)
+ interface2['data'] = arr[0].tobytes()
+
+ class DummyArray2:
+ __array_interface__ = interface2
+
+ arr1 = np.asarray(DummyArray1())
+ arr2 = np.asarray(DummyArray2())
+ arr3 = arr[:1].reshape(())
+ assert_equal(arr1, arr2)
+ assert_equal(arr1, arr3)
+
+def test_array_interface_offset():
+ arr = np.array([1, 2, 3], dtype='int32')
+ interface = dict(arr.__array_interface__)
+ interface['data'] = memoryview(arr)
+ interface['shape'] = (2,)
+ interface['offset'] = 4
+
+
+ class DummyArray:
+ __array_interface__ = interface
+
+ arr1 = np.asarray(DummyArray())
+ assert_equal(arr1, arr[1:])
+
+def test_array_interface_unicode_typestr():
+ arr = np.array([1, 2, 3], dtype='int32')
+ interface = dict(arr.__array_interface__)
+ interface['typestr'] = '\N{check mark}'
+
+ class DummyArray:
+ __array_interface__ = interface
+
+ # should not be UnicodeEncodeError
+ with pytest.raises(TypeError):
+ np.asarray(DummyArray())
+
+def test_flat_element_deletion():
+ it = np.ones(3).flat
+ try:
+ del it[1]
+ del it[1:2]
+ except TypeError:
+ pass
+ except Exception:
+ raise AssertionError
+
+
+def test_scalar_element_deletion():
+ a = np.zeros(2, dtype=[('x', 'int'), ('y', 'int')])
+ assert_raises(ValueError, a[0].__delitem__, 'x')
+
+
+class TestMapIter:
+ def test_mapiter(self):
+ # The actual tests are within the C code in
+ # multiarray/_multiarray_tests.c.src
+
+ a = np.arange(12).reshape((3, 4)).astype(float)
+ index = ([1, 1, 2, 0],
+ [0, 0, 2, 3])
+ vals = [50, 50, 30, 16]
+
+ _multiarray_tests.test_inplace_increment(a, index, vals)
+ assert_equal(a, [[0.00, 1., 2.0, 19.],
+ [104., 5., 6.0, 7.0],
+ [8.00, 9., 40., 11.]])
+
+ b = np.arange(6).astype(float)
+ index = (np.array([1, 2, 0]),)
+ vals = [50, 4, 100.1]
+ _multiarray_tests.test_inplace_increment(b, index, vals)
+ assert_equal(b, [100.1, 51., 6., 3., 4., 5.])
+
+
+class TestAsCArray:
+ def test_1darray(self):
+ array = np.arange(24, dtype=np.double)
+ from_c = _multiarray_tests.test_as_c_array(array, 3)
+ assert_equal(array[3], from_c)
+
+ def test_2darray(self):
+ array = np.arange(24, dtype=np.double).reshape(3, 8)
+ from_c = _multiarray_tests.test_as_c_array(array, 2, 4)
+ assert_equal(array[2, 4], from_c)
+
+ def test_3darray(self):
+ array = np.arange(24, dtype=np.double).reshape(2, 3, 4)
+ from_c = _multiarray_tests.test_as_c_array(array, 1, 2, 3)
+ assert_equal(array[1, 2, 3], from_c)
+
+
+class TestConversion:
+ def test_array_scalar_relational_operation(self):
+ # All integer
+ for dt1 in np.typecodes['AllInteger']:
+ assert_(1 > np.array(0, dtype=dt1), "type %s failed" % (dt1,))
+ assert_(not 1 < np.array(0, dtype=dt1), "type %s failed" % (dt1,))
+
+ for dt2 in np.typecodes['AllInteger']:
+ assert_(np.array(1, dtype=dt1) > np.array(0, dtype=dt2),
+ "type %s and %s failed" % (dt1, dt2))
+ assert_(not np.array(1, dtype=dt1) < np.array(0, dtype=dt2),
+ "type %s and %s failed" % (dt1, dt2))
+
+ # Unsigned integers
+ for dt1 in 'BHILQP':
+ assert_(-1 < np.array(1, dtype=dt1), "type %s failed" % (dt1,))
+ assert_(not -1 > np.array(1, dtype=dt1), "type %s failed" % (dt1,))
+ assert_(-1 != np.array(1, dtype=dt1), "type %s failed" % (dt1,))
+
+ # Unsigned vs signed
+ for dt2 in 'bhilqp':
+ assert_(np.array(1, dtype=dt1) > np.array(-1, dtype=dt2),
+ "type %s and %s failed" % (dt1, dt2))
+ assert_(not np.array(1, dtype=dt1) < np.array(-1, dtype=dt2),
+ "type %s and %s failed" % (dt1, dt2))
+ assert_(np.array(1, dtype=dt1) != np.array(-1, dtype=dt2),
+ "type %s and %s failed" % (dt1, dt2))
+
+ # Signed integers and floats
+ for dt1 in 'bhlqp' + np.typecodes['Float']:
+ assert_(1 > np.array(-1, dtype=dt1), "type %s failed" % (dt1,))
+ assert_(not 1 < np.array(-1, dtype=dt1), "type %s failed" % (dt1,))
+ assert_(-1 == np.array(-1, dtype=dt1), "type %s failed" % (dt1,))
+
+ for dt2 in 'bhlqp' + np.typecodes['Float']:
+ assert_(np.array(1, dtype=dt1) > np.array(-1, dtype=dt2),
+ "type %s and %s failed" % (dt1, dt2))
+ assert_(not np.array(1, dtype=dt1) < np.array(-1, dtype=dt2),
+ "type %s and %s failed" % (dt1, dt2))
+ assert_(np.array(-1, dtype=dt1) == np.array(-1, dtype=dt2),
+ "type %s and %s failed" % (dt1, dt2))
+
+ def test_to_bool_scalar(self):
+ assert_equal(bool(np.array([False])), False)
+ assert_equal(bool(np.array([True])), True)
+ assert_equal(bool(np.array([[42]])), True)
+ assert_raises(ValueError, bool, np.array([1, 2]))
+
+ class NotConvertible:
+ def __bool__(self):
+ raise NotImplementedError
+
+ assert_raises(NotImplementedError, bool, np.array(NotConvertible()))
+ assert_raises(NotImplementedError, bool, np.array([NotConvertible()]))
+ if IS_PYSTON:
+ pytest.skip("Pyston disables recursion checking")
+
+ self_containing = np.array([None])
+ self_containing[0] = self_containing
+
+ Error = RecursionError
+
+ assert_raises(Error, bool, self_containing) # previously stack overflow
+ self_containing[0] = None # resolve circular reference
+
+ def test_to_int_scalar(self):
+ # gh-9972 means that these aren't always the same
+ int_funcs = (int, lambda x: x.__int__())
+ for int_func in int_funcs:
+ assert_equal(int_func(np.array(0)), 0)
+ with assert_warns(DeprecationWarning):
+ assert_equal(int_func(np.array([1])), 1)
+ with assert_warns(DeprecationWarning):
+ assert_equal(int_func(np.array([[42]])), 42)
+ assert_raises(TypeError, int_func, np.array([1, 2]))
+
+ # gh-9972
+ assert_equal(4, int_func(np.array('4')))
+ assert_equal(5, int_func(np.bytes_(b'5')))
+ assert_equal(6, int_func(np.str_('6')))
+
+ # The delegation of int() to __trunc__ was deprecated in
+ # Python 3.11.
+ if sys.version_info < (3, 11):
+ class HasTrunc:
+ def __trunc__(self):
+ return 3
+ assert_equal(3, int_func(np.array(HasTrunc())))
+ with assert_warns(DeprecationWarning):
+ assert_equal(3, int_func(np.array([HasTrunc()])))
+ else:
+ pass
+
+ class NotConvertible:
+ def __int__(self):
+ raise NotImplementedError
+ assert_raises(NotImplementedError,
+ int_func, np.array(NotConvertible()))
+ with assert_warns(DeprecationWarning):
+ assert_raises(NotImplementedError,
+ int_func, np.array([NotConvertible()]))
+
+
+class TestWhere:
+ def test_basic(self):
+ dts = [bool, np.int16, np.int32, np.int64, np.double, np.complex128,
+ np.longdouble, np.clongdouble]
+ for dt in dts:
+ c = np.ones(53, dtype=bool)
+ assert_equal(np.where( c, dt(0), dt(1)), dt(0))
+ assert_equal(np.where(~c, dt(0), dt(1)), dt(1))
+ assert_equal(np.where(True, dt(0), dt(1)), dt(0))
+ assert_equal(np.where(False, dt(0), dt(1)), dt(1))
+ d = np.ones_like(c).astype(dt)
+ e = np.zeros_like(d)
+ r = d.astype(dt)
+ c[7] = False
+ r[7] = e[7]
+ assert_equal(np.where(c, e, e), e)
+ assert_equal(np.where(c, d, e), r)
+ assert_equal(np.where(c, d, e[0]), r)
+ assert_equal(np.where(c, d[0], e), r)
+ assert_equal(np.where(c[::2], d[::2], e[::2]), r[::2])
+ assert_equal(np.where(c[1::2], d[1::2], e[1::2]), r[1::2])
+ assert_equal(np.where(c[::3], d[::3], e[::3]), r[::3])
+ assert_equal(np.where(c[1::3], d[1::3], e[1::3]), r[1::3])
+ assert_equal(np.where(c[::-2], d[::-2], e[::-2]), r[::-2])
+ assert_equal(np.where(c[::-3], d[::-3], e[::-3]), r[::-3])
+ assert_equal(np.where(c[1::-3], d[1::-3], e[1::-3]), r[1::-3])
+
+ def test_exotic(self):
+ # object
+ assert_array_equal(np.where(True, None, None), np.array(None))
+ # zero sized
+ m = np.array([], dtype=bool).reshape(0, 3)
+ b = np.array([], dtype=np.float64).reshape(0, 3)
+ assert_array_equal(np.where(m, 0, b), np.array([]).reshape(0, 3))
+
+ # object cast
+ d = np.array([-1.34, -0.16, -0.54, -0.31, -0.08, -0.95, 0.000, 0.313,
+ 0.547, -0.18, 0.876, 0.236, 1.969, 0.310, 0.699, 1.013,
+ 1.267, 0.229, -1.39, 0.487])
+ nan = float('NaN')
+ e = np.array(['5z', '0l', nan, 'Wz', nan, nan, 'Xq', 'cs', nan, nan,
+ 'QN', nan, nan, 'Fd', nan, nan, 'kp', nan, '36', 'i1'],
+ dtype=object)
+ m = np.array([0, 0, 1, 0, 1, 1, 0, 0, 1, 1,
+ 0, 1, 1, 0, 1, 1, 0, 1, 0, 0], dtype=bool)
+
+ r = e[:]
+ r[np.where(m)] = d[np.where(m)]
+ assert_array_equal(np.where(m, d, e), r)
+
+ r = e[:]
+ r[np.where(~m)] = d[np.where(~m)]
+ assert_array_equal(np.where(m, e, d), r)
+
+ assert_array_equal(np.where(m, e, e), e)
+
+ # minimal dtype result with NaN scalar (e.g required by pandas)
+ d = np.array([1., 2.], dtype=np.float32)
+ e = float('NaN')
+ assert_equal(np.where(True, d, e).dtype, np.float32)
+ e = float('Infinity')
+ assert_equal(np.where(True, d, e).dtype, np.float32)
+ e = float('-Infinity')
+ assert_equal(np.where(True, d, e).dtype, np.float32)
+ # also check upcast
+ e = float(1e150)
+ assert_equal(np.where(True, d, e).dtype, np.float64)
+
+ def test_ndim(self):
+ c = [True, False]
+ a = np.zeros((2, 25))
+ b = np.ones((2, 25))
+ r = np.where(np.array(c)[:,np.newaxis], a, b)
+ assert_array_equal(r[0], a[0])
+ assert_array_equal(r[1], b[0])
+
+ a = a.T
+ b = b.T
+ r = np.where(c, a, b)
+ assert_array_equal(r[:,0], a[:,0])
+ assert_array_equal(r[:,1], b[:,0])
+
+ def test_dtype_mix(self):
+ c = np.array([False, True, False, False, False, False, True, False,
+ False, False, True, False])
+ a = np.uint32(1)
+ b = np.array([5., 0., 3., 2., -1., -4., 0., -10., 10., 1., 0., 3.],
+ dtype=np.float64)
+ r = np.array([5., 1., 3., 2., -1., -4., 1., -10., 10., 1., 1., 3.],
+ dtype=np.float64)
+ assert_equal(np.where(c, a, b), r)
+
+ a = a.astype(np.float32)
+ b = b.astype(np.int64)
+ assert_equal(np.where(c, a, b), r)
+
+ # non bool mask
+ c = c.astype(int)
+ c[c != 0] = 34242324
+ assert_equal(np.where(c, a, b), r)
+ # invert
+ tmpmask = c != 0
+ c[c == 0] = 41247212
+ c[tmpmask] = 0
+ assert_equal(np.where(c, b, a), r)
+
+ def test_foreign(self):
+ c = np.array([False, True, False, False, False, False, True, False,
+ False, False, True, False])
+ r = np.array([5., 1., 3., 2., -1., -4., 1., -10., 10., 1., 1., 3.],
+ dtype=np.float64)
+ a = np.ones(1, dtype='>i4')
+ b = np.array([5., 0., 3., 2., -1., -4., 0., -10., 10., 1., 0., 3.],
+ dtype=np.float64)
+ assert_equal(np.where(c, a, b), r)
+
+ b = b.astype('>f8')
+ assert_equal(np.where(c, a, b), r)
+
+ a = a.astype('<i4')
+ assert_equal(np.where(c, a, b), r)
+
+ c = c.astype('>i4')
+ assert_equal(np.where(c, a, b), r)
+
+ def test_error(self):
+ c = [True, True]
+ a = np.ones((4, 5))
+ b = np.ones((5, 5))
+ assert_raises(ValueError, np.where, c, a, a)
+ assert_raises(ValueError, np.where, c[0], a, b)
+
+ def test_string(self):
+ # gh-4778 check strings are properly filled with nulls
+ a = np.array("abc")
+ b = np.array("x" * 753)
+ assert_equal(np.where(True, a, b), "abc")
+ assert_equal(np.where(False, b, a), "abc")
+
+ # check native datatype sized strings
+ a = np.array("abcd")
+ b = np.array("x" * 8)
+ assert_equal(np.where(True, a, b), "abcd")
+ assert_equal(np.where(False, b, a), "abcd")
+
+ def test_empty_result(self):
+ # pass empty where result through an assignment which reads the data of
+ # empty arrays, error detectable with valgrind, see gh-8922
+ x = np.zeros((1, 1))
+ ibad = np.vstack(np.where(x == 99.))
+ assert_array_equal(ibad,
+ np.atleast_2d(np.array([[],[]], dtype=np.intp)))
+
+ def test_largedim(self):
+ # invalid read regression gh-9304
+ shape = [10, 2, 3, 4, 5, 6]
+ np.random.seed(2)
+ array = np.random.rand(*shape)
+
+ for i in range(10):
+ benchmark = array.nonzero()
+ result = array.nonzero()
+ assert_array_equal(benchmark, result)
+
+ def test_kwargs(self):
+ a = np.zeros(1)
+ with assert_raises(TypeError):
+ np.where(a, x=a, y=a)
+
+
+if not IS_PYPY:
+ # sys.getsizeof() is not valid on PyPy
+ class TestSizeOf:
+
+ def test_empty_array(self):
+ x = np.array([])
+ assert_(sys.getsizeof(x) > 0)
+
+ def check_array(self, dtype):
+ elem_size = dtype(0).itemsize
+
+ for length in [10, 50, 100, 500]:
+ x = np.arange(length, dtype=dtype)
+ assert_(sys.getsizeof(x) > length * elem_size)
+
+ def test_array_int32(self):
+ self.check_array(np.int32)
+
+ def test_array_int64(self):
+ self.check_array(np.int64)
+
+ def test_array_float32(self):
+ self.check_array(np.float32)
+
+ def test_array_float64(self):
+ self.check_array(np.float64)
+
+ def test_view(self):
+ d = np.ones(100)
+ assert_(sys.getsizeof(d[...]) < sys.getsizeof(d))
+
+ def test_reshape(self):
+ d = np.ones(100)
+ assert_(sys.getsizeof(d) < sys.getsizeof(d.reshape(100, 1, 1).copy()))
+
+ @_no_tracing
+ def test_resize(self):
+ d = np.ones(100)
+ old = sys.getsizeof(d)
+ d.resize(50)
+ assert_(old > sys.getsizeof(d))
+ d.resize(150)
+ assert_(old < sys.getsizeof(d))
+
+ def test_error(self):
+ d = np.ones(100)
+ assert_raises(TypeError, d.__sizeof__, "a")
+
+
+class TestHashing:
+
+ def test_arrays_not_hashable(self):
+ x = np.ones(3)
+ assert_raises(TypeError, hash, x)
+
+ def test_collections_hashable(self):
+ x = np.array([])
+ assert_(not isinstance(x, collections.abc.Hashable))
+
+
+class TestArrayPriority:
+ # This will go away when __array_priority__ is settled, meanwhile
+ # it serves to check unintended changes.
+ op = operator
+ binary_ops = [
+ op.pow, op.add, op.sub, op.mul, op.floordiv, op.truediv, op.mod,
+ op.and_, op.or_, op.xor, op.lshift, op.rshift, op.mod, op.gt,
+ op.ge, op.lt, op.le, op.ne, op.eq
+ ]
+
+ class Foo(np.ndarray):
+ __array_priority__ = 100.
+
+ def __new__(cls, *args, **kwargs):
+ return np.array(*args, **kwargs).view(cls)
+
+ class Bar(np.ndarray):
+ __array_priority__ = 101.
+
+ def __new__(cls, *args, **kwargs):
+ return np.array(*args, **kwargs).view(cls)
+
+ class Other:
+ __array_priority__ = 1000.
+
+ def _all(self, other):
+ return self.__class__()
+
+ __add__ = __radd__ = _all
+ __sub__ = __rsub__ = _all
+ __mul__ = __rmul__ = _all
+ __pow__ = __rpow__ = _all
+ __div__ = __rdiv__ = _all
+ __mod__ = __rmod__ = _all
+ __truediv__ = __rtruediv__ = _all
+ __floordiv__ = __rfloordiv__ = _all
+ __and__ = __rand__ = _all
+ __xor__ = __rxor__ = _all
+ __or__ = __ror__ = _all
+ __lshift__ = __rlshift__ = _all
+ __rshift__ = __rrshift__ = _all
+ __eq__ = _all
+ __ne__ = _all
+ __gt__ = _all
+ __ge__ = _all
+ __lt__ = _all
+ __le__ = _all
+
+ def test_ndarray_subclass(self):
+ a = np.array([1, 2])
+ b = self.Bar([1, 2])
+ for f in self.binary_ops:
+ msg = repr(f)
+ assert_(isinstance(f(a, b), self.Bar), msg)
+ assert_(isinstance(f(b, a), self.Bar), msg)
+
+ def test_ndarray_other(self):
+ a = np.array([1, 2])
+ b = self.Other()
+ for f in self.binary_ops:
+ msg = repr(f)
+ assert_(isinstance(f(a, b), self.Other), msg)
+ assert_(isinstance(f(b, a), self.Other), msg)
+
+ def test_subclass_subclass(self):
+ a = self.Foo([1, 2])
+ b = self.Bar([1, 2])
+ for f in self.binary_ops:
+ msg = repr(f)
+ assert_(isinstance(f(a, b), self.Bar), msg)
+ assert_(isinstance(f(b, a), self.Bar), msg)
+
+ def test_subclass_other(self):
+ a = self.Foo([1, 2])
+ b = self.Other()
+ for f in self.binary_ops:
+ msg = repr(f)
+ assert_(isinstance(f(a, b), self.Other), msg)
+ assert_(isinstance(f(b, a), self.Other), msg)
+
+
+class TestBytestringArrayNonzero:
+
+ def test_empty_bstring_array_is_falsey(self):
+ assert_(not np.array([''], dtype=str))
+
+ def test_whitespace_bstring_array_is_falsey(self):
+ a = np.array(['spam'], dtype=str)
+ a[0] = ' \0\0'
+ assert_(not a)
+
+ def test_all_null_bstring_array_is_falsey(self):
+ a = np.array(['spam'], dtype=str)
+ a[0] = '\0\0\0\0'
+ assert_(not a)
+
+ def test_null_inside_bstring_array_is_truthy(self):
+ a = np.array(['spam'], dtype=str)
+ a[0] = ' \0 \0'
+ assert_(a)
+
+
+class TestUnicodeEncoding:
+ """
+ Tests for encoding related bugs, such as UCS2 vs UCS4, round-tripping
+ issues, etc
+ """
+ def test_round_trip(self):
+ """ Tests that GETITEM, SETITEM, and PyArray_Scalar roundtrip """
+ # gh-15363
+ arr = np.zeros(shape=(), dtype="U1")
+ for i in range(1, sys.maxunicode + 1):
+ expected = chr(i)
+ arr[()] = expected
+ assert arr[()] == expected
+ assert arr.item() == expected
+
+ def test_assign_scalar(self):
+ # gh-3258
+ l = np.array(['aa', 'bb'])
+ l[:] = np.str_('cc')
+ assert_equal(l, ['cc', 'cc'])
+
+ def test_fill_scalar(self):
+ # gh-7227
+ l = np.array(['aa', 'bb'])
+ l.fill(np.str_('cc'))
+ assert_equal(l, ['cc', 'cc'])
+
+
+class TestUnicodeArrayNonzero:
+
+ def test_empty_ustring_array_is_falsey(self):
+ assert_(not np.array([''], dtype=np.str_))
+
+ def test_whitespace_ustring_array_is_falsey(self):
+ a = np.array(['eggs'], dtype=np.str_)
+ a[0] = ' \0\0'
+ assert_(not a)
+
+ def test_all_null_ustring_array_is_falsey(self):
+ a = np.array(['eggs'], dtype=np.str_)
+ a[0] = '\0\0\0\0'
+ assert_(not a)
+
+ def test_null_inside_ustring_array_is_truthy(self):
+ a = np.array(['eggs'], dtype=np.str_)
+ a[0] = ' \0 \0'
+ assert_(a)
+
+
+class TestFormat:
+
+ def test_0d(self):
+ a = np.array(np.pi)
+ assert_equal('{:0.3g}'.format(a), '3.14')
+ assert_equal('{:0.3g}'.format(a[()]), '3.14')
+
+ def test_1d_no_format(self):
+ a = np.array([np.pi])
+ assert_equal('{}'.format(a), str(a))
+
+ def test_1d_format(self):
+ # until gh-5543, ensure that the behaviour matches what it used to be
+ a = np.array([np.pi])
+ assert_raises(TypeError, '{:30}'.format, a)
+
+from numpy.testing import IS_PYPY
+
+class TestCTypes:
+
+ def test_ctypes_is_available(self):
+ test_arr = np.array([[1, 2, 3], [4, 5, 6]])
+
+ assert_equal(ctypes, test_arr.ctypes._ctypes)
+ assert_equal(tuple(test_arr.ctypes.shape), (2, 3))
+
+ def test_ctypes_is_not_available(self):
+ from numpy.core import _internal
+ _internal.ctypes = None
+ try:
+ test_arr = np.array([[1, 2, 3], [4, 5, 6]])
+
+ assert_(isinstance(test_arr.ctypes._ctypes,
+ _internal._missing_ctypes))
+ assert_equal(tuple(test_arr.ctypes.shape), (2, 3))
+ finally:
+ _internal.ctypes = ctypes
+
+ def _make_readonly(x):
+ x.flags.writeable = False
+ return x
+
+ @pytest.mark.parametrize('arr', [
+ np.array([1, 2, 3]),
+ np.array([['one', 'two'], ['three', 'four']]),
+ np.array((1, 2), dtype='i4,i4'),
+ np.zeros((2,), dtype=
+ np.dtype(dict(
+ formats=['<i4', '<i4'],
+ names=['a', 'b'],
+ offsets=[0, 2],
+ itemsize=6
+ ))
+ ),
+ np.array([None], dtype=object),
+ np.array([]),
+ np.empty((0, 0)),
+ _make_readonly(np.array([1, 2, 3])),
+ ], ids=[
+ '1d',
+ '2d',
+ 'structured',
+ 'overlapping',
+ 'object',
+ 'empty',
+ 'empty-2d',
+ 'readonly'
+ ])
+ def test_ctypes_data_as_holds_reference(self, arr):
+ # gh-9647
+ # create a copy to ensure that pytest does not mess with the refcounts
+ arr = arr.copy()
+
+ arr_ref = weakref.ref(arr)
+
+ ctypes_ptr = arr.ctypes.data_as(ctypes.c_void_p)
+
+ # `ctypes_ptr` should hold onto `arr`
+ del arr
+ break_cycles()
+ assert_(arr_ref() is not None, "ctypes pointer did not hold onto a reference")
+
+ # but when the `ctypes_ptr` object dies, so should `arr`
+ del ctypes_ptr
+ if IS_PYPY:
+ # Pypy does not recycle arr objects immediately. Trigger gc to
+ # release arr. Cpython uses refcounts. An explicit call to gc
+ # should not be needed here.
+ break_cycles()
+ assert_(arr_ref() is None, "unknowable whether ctypes pointer holds a reference")
+
+ def test_ctypes_as_parameter_holds_reference(self):
+ arr = np.array([None]).copy()
+
+ arr_ref = weakref.ref(arr)
+
+ ctypes_ptr = arr.ctypes._as_parameter_
+
+ # `ctypes_ptr` should hold onto `arr`
+ del arr
+ break_cycles()
+ assert_(arr_ref() is not None, "ctypes pointer did not hold onto a reference")
+
+ # but when the `ctypes_ptr` object dies, so should `arr`
+ del ctypes_ptr
+ if IS_PYPY:
+ break_cycles()
+ assert_(arr_ref() is None, "unknowable whether ctypes pointer holds a reference")
+
+
+class TestWritebackIfCopy:
+ # all these tests use the WRITEBACKIFCOPY mechanism
+ def test_argmax_with_out(self):
+ mat = np.eye(5)
+ out = np.empty(5, dtype='i2')
+ res = np.argmax(mat, 0, out=out)
+ assert_equal(res, range(5))
+
+ def test_argmin_with_out(self):
+ mat = -np.eye(5)
+ out = np.empty(5, dtype='i2')
+ res = np.argmin(mat, 0, out=out)
+ assert_equal(res, range(5))
+
+ def test_insert_noncontiguous(self):
+ a = np.arange(6).reshape(2,3).T # force non-c-contiguous
+ # uses arr_insert
+ np.place(a, a>2, [44, 55])
+ assert_equal(a, np.array([[0, 44], [1, 55], [2, 44]]))
+ # hit one of the failing paths
+ assert_raises(ValueError, np.place, a, a>20, [])
+
+ def test_put_noncontiguous(self):
+ a = np.arange(6).reshape(2,3).T # force non-c-contiguous
+ np.put(a, [0, 2], [44, 55])
+ assert_equal(a, np.array([[44, 3], [55, 4], [2, 5]]))
+
+ def test_putmask_noncontiguous(self):
+ a = np.arange(6).reshape(2,3).T # force non-c-contiguous
+ # uses arr_putmask
+ np.putmask(a, a>2, a**2)
+ assert_equal(a, np.array([[0, 9], [1, 16], [2, 25]]))
+
+ def test_take_mode_raise(self):
+ a = np.arange(6, dtype='int')
+ out = np.empty(2, dtype='int')
+ np.take(a, [0, 2], out=out, mode='raise')
+ assert_equal(out, np.array([0, 2]))
+
+ def test_choose_mod_raise(self):
+ a = np.array([[1, 0, 1], [0, 1, 0], [1, 0, 1]])
+ out = np.empty((3,3), dtype='int')
+ choices = [-10, 10]
+ np.choose(a, choices, out=out, mode='raise')
+ assert_equal(out, np.array([[ 10, -10, 10],
+ [-10, 10, -10],
+ [ 10, -10, 10]]))
+
+ def test_flatiter__array__(self):
+ a = np.arange(9).reshape(3,3)
+ b = a.T.flat
+ c = b.__array__()
+ # triggers the WRITEBACKIFCOPY resolution, assuming refcount semantics
+ del c
+
+ def test_dot_out(self):
+ # if HAVE_CBLAS, will use WRITEBACKIFCOPY
+ a = np.arange(9, dtype=float).reshape(3,3)
+ b = np.dot(a, a, out=a)
+ assert_equal(b, np.array([[15, 18, 21], [42, 54, 66], [69, 90, 111]]))
+
+ def test_view_assign(self):
+ from numpy.core._multiarray_tests import npy_create_writebackifcopy, npy_resolve
+
+ arr = np.arange(9).reshape(3, 3).T
+ arr_wb = npy_create_writebackifcopy(arr)
+ assert_(arr_wb.flags.writebackifcopy)
+ assert_(arr_wb.base is arr)
+ arr_wb[...] = -100
+ npy_resolve(arr_wb)
+ # arr changes after resolve, even though we assigned to arr_wb
+ assert_equal(arr, -100)
+ # after resolve, the two arrays no longer reference each other
+ assert_(arr_wb.ctypes.data != 0)
+ assert_equal(arr_wb.base, None)
+ # assigning to arr_wb does not get transferred to arr
+ arr_wb[...] = 100
+ assert_equal(arr, -100)
+
+ @pytest.mark.leaks_references(
+ reason="increments self in dealloc; ignore since deprecated path.")
+ def test_dealloc_warning(self):
+ with suppress_warnings() as sup:
+ sup.record(RuntimeWarning)
+ arr = np.arange(9).reshape(3, 3)
+ v = arr.T
+ _multiarray_tests.npy_abuse_writebackifcopy(v)
+ assert len(sup.log) == 1
+
+ def test_view_discard_refcount(self):
+ from numpy.core._multiarray_tests import npy_create_writebackifcopy, npy_discard
+
+ arr = np.arange(9).reshape(3, 3).T
+ orig = arr.copy()
+ if HAS_REFCOUNT:
+ arr_cnt = sys.getrefcount(arr)
+ arr_wb = npy_create_writebackifcopy(arr)
+ assert_(arr_wb.flags.writebackifcopy)
+ assert_(arr_wb.base is arr)
+ arr_wb[...] = -100
+ npy_discard(arr_wb)
+ # arr remains unchanged after discard
+ assert_equal(arr, orig)
+ # after discard, the two arrays no longer reference each other
+ assert_(arr_wb.ctypes.data != 0)
+ assert_equal(arr_wb.base, None)
+ if HAS_REFCOUNT:
+ assert_equal(arr_cnt, sys.getrefcount(arr))
+ # assigning to arr_wb does not get transferred to arr
+ arr_wb[...] = 100
+ assert_equal(arr, orig)
+
+
+class TestArange:
+ def test_infinite(self):
+ assert_raises_regex(
+ ValueError, "size exceeded",
+ np.arange, 0, np.inf
+ )
+
+ def test_nan_step(self):
+ assert_raises_regex(
+ ValueError, "cannot compute length",
+ np.arange, 0, 1, np.nan
+ )
+
+ def test_zero_step(self):
+ assert_raises(ZeroDivisionError, np.arange, 0, 10, 0)
+ assert_raises(ZeroDivisionError, np.arange, 0.0, 10.0, 0.0)
+
+ # empty range
+ assert_raises(ZeroDivisionError, np.arange, 0, 0, 0)
+ assert_raises(ZeroDivisionError, np.arange, 0.0, 0.0, 0.0)
+
+ def test_require_range(self):
+ assert_raises(TypeError, np.arange)
+ assert_raises(TypeError, np.arange, step=3)
+ assert_raises(TypeError, np.arange, dtype='int64')
+ assert_raises(TypeError, np.arange, start=4)
+
+ def test_start_stop_kwarg(self):
+ keyword_stop = np.arange(stop=3)
+ keyword_zerotostop = np.arange(start=0, stop=3)
+ keyword_start_stop = np.arange(start=3, stop=9)
+
+ assert len(keyword_stop) == 3
+ assert len(keyword_zerotostop) == 3
+ assert len(keyword_start_stop) == 6
+ assert_array_equal(keyword_stop, keyword_zerotostop)
+
+ def test_arange_booleans(self):
+ # Arange makes some sense for booleans and works up to length 2.
+ # But it is weird since `arange(2, 4, dtype=bool)` works.
+ # Arguably, much or all of this could be deprecated/removed.
+ res = np.arange(False, dtype=bool)
+ assert_array_equal(res, np.array([], dtype="bool"))
+
+ res = np.arange(True, dtype="bool")
+ assert_array_equal(res, [False])
+
+ res = np.arange(2, dtype="bool")
+ assert_array_equal(res, [False, True])
+
+ # This case is especially weird, but drops out without special case:
+ res = np.arange(6, 8, dtype="bool")
+ assert_array_equal(res, [True, True])
+
+ with pytest.raises(TypeError):
+ np.arange(3, dtype="bool")
+
+ @pytest.mark.parametrize("dtype", ["S3", "U", "5i"])
+ def test_rejects_bad_dtypes(self, dtype):
+ dtype = np.dtype(dtype)
+ DType_name = re.escape(str(type(dtype)))
+ with pytest.raises(TypeError,
+ match=rf"arange\(\) not supported for inputs .* {DType_name}"):
+ np.arange(2, dtype=dtype)
+
+ def test_rejects_strings(self):
+ # Explicitly test error for strings which may call "b" - "a":
+ DType_name = re.escape(str(type(np.array("a").dtype)))
+ with pytest.raises(TypeError,
+ match=rf"arange\(\) not supported for inputs .* {DType_name}"):
+ np.arange("a", "b")
+
+ def test_byteswapped(self):
+ res_be = np.arange(1, 1000, dtype=">i4")
+ res_le = np.arange(1, 1000, dtype="<i4")
+ assert res_be.dtype == ">i4"
+ assert res_le.dtype == "<i4"
+ assert_array_equal(res_le, res_be)
+
+ @pytest.mark.parametrize("which", [0, 1, 2])
+ def test_error_paths_and_promotion(self, which):
+ args = [0, 1, 2] # start, stop, and step
+ args[which] = np.float64(2.) # should ensure float64 output
+
+ assert np.arange(*args).dtype == np.float64
+
+ # Cover stranger error path, test only to achieve code coverage!
+ args[which] = [None, []]
+ with pytest.raises(ValueError):
+ # Fails discovering start dtype
+ np.arange(*args)
+
+
+class TestArrayFinalize:
+ """ Tests __array_finalize__ """
+
+ def test_receives_base(self):
+ # gh-11237
+ class SavesBase(np.ndarray):
+ def __array_finalize__(self, obj):
+ self.saved_base = self.base
+
+ a = np.array(1).view(SavesBase)
+ assert_(a.saved_base is a.base)
+
+ def test_bad_finalize1(self):
+ class BadAttributeArray(np.ndarray):
+ @property
+ def __array_finalize__(self):
+ raise RuntimeError("boohoo!")
+
+ with pytest.raises(TypeError, match="not callable"):
+ np.arange(10).view(BadAttributeArray)
+
+ def test_bad_finalize2(self):
+ class BadAttributeArray(np.ndarray):
+ def __array_finalize__(self):
+ raise RuntimeError("boohoo!")
+
+ with pytest.raises(TypeError, match="takes 1 positional"):
+ np.arange(10).view(BadAttributeArray)
+
+ def test_bad_finalize3(self):
+ class BadAttributeArray(np.ndarray):
+ def __array_finalize__(self, obj):
+ raise RuntimeError("boohoo!")
+
+ with pytest.raises(RuntimeError, match="boohoo!"):
+ np.arange(10).view(BadAttributeArray)
+
+ def test_lifetime_on_error(self):
+ # gh-11237
+ class RaisesInFinalize(np.ndarray):
+ def __array_finalize__(self, obj):
+ # crash, but keep this object alive
+ raise Exception(self)
+
+ # a plain object can't be weakref'd
+ class Dummy: pass
+
+ # get a weak reference to an object within an array
+ obj_arr = np.array(Dummy())
+ obj_ref = weakref.ref(obj_arr[()])
+
+ # get an array that crashed in __array_finalize__
+ with assert_raises(Exception) as e:
+ obj_arr.view(RaisesInFinalize)
+
+ obj_subarray = e.exception.args[0]
+ del e
+ assert_(isinstance(obj_subarray, RaisesInFinalize))
+
+ # reference should still be held by obj_arr
+ break_cycles()
+ assert_(obj_ref() is not None, "object should not already be dead")
+
+ del obj_arr
+ break_cycles()
+ assert_(obj_ref() is not None, "obj_arr should not hold the last reference")
+
+ del obj_subarray
+ break_cycles()
+ assert_(obj_ref() is None, "no references should remain")
+
+ def test_can_use_super(self):
+ class SuperFinalize(np.ndarray):
+ def __array_finalize__(self, obj):
+ self.saved_result = super().__array_finalize__(obj)
+
+ a = np.array(1).view(SuperFinalize)
+ assert_(a.saved_result is None)
+
+
+def test_orderconverter_with_nonASCII_unicode_ordering():
+ # gh-7475
+ a = np.arange(5)
+ assert_raises(ValueError, a.flatten, order='\xe2')
+
+
+def test_equal_override():
+ # gh-9153: ndarray.__eq__ uses special logic for structured arrays, which
+ # did not respect overrides with __array_priority__ or __array_ufunc__.
+ # The PR fixed this for __array_priority__ and __array_ufunc__ = None.
+ class MyAlwaysEqual:
+ def __eq__(self, other):
+ return "eq"
+
+ def __ne__(self, other):
+ return "ne"
+
+ class MyAlwaysEqualOld(MyAlwaysEqual):
+ __array_priority__ = 10000
+
+ class MyAlwaysEqualNew(MyAlwaysEqual):
+ __array_ufunc__ = None
+
+ array = np.array([(0, 1), (2, 3)], dtype='i4,i4')
+ for my_always_equal_cls in MyAlwaysEqualOld, MyAlwaysEqualNew:
+ my_always_equal = my_always_equal_cls()
+ assert_equal(my_always_equal == array, 'eq')
+ assert_equal(array == my_always_equal, 'eq')
+ assert_equal(my_always_equal != array, 'ne')
+ assert_equal(array != my_always_equal, 'ne')
+
+
+@pytest.mark.parametrize("op", [operator.eq, operator.ne])
+@pytest.mark.parametrize(["dt1", "dt2"], [
+ ([("f", "i")], [("f", "i")]), # structured comparison (successful)
+ ("M8", "d"), # impossible comparison: result is all True or False
+ ("d", "d"), # valid comparison
+ ])
+def test_equal_subclass_no_override(op, dt1, dt2):
+ # Test how the three different possible code-paths deal with subclasses
+
+ class MyArr(np.ndarray):
+ called_wrap = 0
+
+ def __array_wrap__(self, new):
+ type(self).called_wrap += 1
+ return super().__array_wrap__(new)
+
+ numpy_arr = np.zeros(5, dtype=dt1)
+ my_arr = np.zeros(5, dtype=dt2).view(MyArr)
+
+ assert type(op(numpy_arr, my_arr)) is MyArr
+ assert type(op(my_arr, numpy_arr)) is MyArr
+ # We expect 2 calls (more if there were more fields):
+ assert MyArr.called_wrap == 2
+
+
+@pytest.mark.parametrize(["dt1", "dt2"], [
+ ("M8[ns]", "d"),
+ ("M8[s]", "l"),
+ ("m8[ns]", "d"),
+ # Missing: ("m8[ns]", "l") as timedelta currently promotes ints
+ ("M8[s]", "m8[s]"),
+ ("S5", "U5"),
+ # Structured/void dtypes have explicit paths not tested here.
+])
+def test_no_loop_gives_all_true_or_false(dt1, dt2):
+ # Make sure they broadcast to test result shape, use random values, since
+ # the actual value should be ignored
+ arr1 = np.random.randint(5, size=100).astype(dt1)
+ arr2 = np.random.randint(5, size=99)[:, np.newaxis].astype(dt2)
+
+ res = arr1 == arr2
+ assert res.shape == (99, 100)
+ assert res.dtype == bool
+ assert not res.any()
+
+ res = arr1 != arr2
+ assert res.shape == (99, 100)
+ assert res.dtype == bool
+ assert res.all()
+
+ # incompatible shapes raise though
+ arr2 = np.random.randint(5, size=99).astype(dt2)
+ with pytest.raises(ValueError):
+ arr1 == arr2
+
+ with pytest.raises(ValueError):
+ arr1 != arr2
+
+ # Basic test with another operation:
+ with pytest.raises(np.core._exceptions._UFuncNoLoopError):
+ arr1 > arr2
+
+
+@pytest.mark.parametrize("op", [
+ operator.eq, operator.ne, operator.le, operator.lt, operator.ge,
+ operator.gt])
+def test_comparisons_forwards_error(op):
+ class NotArray:
+ def __array__(self):
+ raise TypeError("run you fools")
+
+ with pytest.raises(TypeError, match="run you fools"):
+ op(np.arange(2), NotArray())
+
+ with pytest.raises(TypeError, match="run you fools"):
+ op(NotArray(), np.arange(2))
+
+
+def test_richcompare_scalar_boolean_singleton_return():
+ # These are currently guaranteed to be the boolean singletons, but maybe
+ # returning NumPy booleans would also be OK:
+ assert (np.array(0) == "a") is False
+ assert (np.array(0) != "a") is True
+ assert (np.int16(0) == "a") is False
+ assert (np.int16(0) != "a") is True
+
+
+@pytest.mark.parametrize("op", [
+ operator.eq, operator.ne, operator.le, operator.lt, operator.ge,
+ operator.gt])
+def test_ragged_comparison_fails(op):
+ # This needs to convert the internal array to True/False, which fails:
+ a = np.array([1, np.array([1, 2, 3])], dtype=object)
+ b = np.array([1, np.array([1, 2, 3])], dtype=object)
+
+ with pytest.raises(ValueError, match="The truth value.*ambiguous"):
+ op(a, b)
+
+
+@pytest.mark.parametrize(
+ ["fun", "npfun"],
+ [
+ (_multiarray_tests.npy_cabs, np.absolute),
+ (_multiarray_tests.npy_carg, np.angle)
+ ]
+)
+@pytest.mark.parametrize("x", [1, np.inf, -np.inf, np.nan])
+@pytest.mark.parametrize("y", [1, np.inf, -np.inf, np.nan])
+@pytest.mark.parametrize("test_dtype", np.complexfloating.__subclasses__())
+def test_npymath_complex(fun, npfun, x, y, test_dtype):
+ # Smoketest npymath functions
+ z = test_dtype(complex(x, y))
+ with np.errstate(invalid='ignore'):
+ # Fallback implementations may emit a warning for +-inf (see gh-24876):
+ # RuntimeWarning: invalid value encountered in absolute
+ got = fun(z)
+ expected = npfun(z)
+ assert_allclose(got, expected)
+
+
+def test_npymath_real():
+ # Smoketest npymath functions
+ from numpy.core._multiarray_tests import (
+ npy_log10, npy_cosh, npy_sinh, npy_tan, npy_tanh)
+
+ funcs = {npy_log10: np.log10,
+ npy_cosh: np.cosh,
+ npy_sinh: np.sinh,
+ npy_tan: np.tan,
+ npy_tanh: np.tanh}
+ vals = (1, np.inf, -np.inf, np.nan)
+ types = (np.float32, np.float64, np.longdouble)
+
+ with np.errstate(all='ignore'):
+ for fun, npfun in funcs.items():
+ for x, t in itertools.product(vals, types):
+ z = t(x)
+ got = fun(z)
+ expected = npfun(z)
+ assert_allclose(got, expected)
+
+def test_uintalignment_and_alignment():
+ # alignment code needs to satisfy these requirements:
+ # 1. numpy structs match C struct layout
+ # 2. ufuncs/casting is safe wrt to aligned access
+ # 3. copy code is safe wrt to "uint alidned" access
+ #
+ # Complex types are the main problem, whose alignment may not be the same
+ # as their "uint alignment".
+ #
+ # This test might only fail on certain platforms, where uint64 alignment is
+ # not equal to complex64 alignment. The second 2 tests will only fail
+ # for DEBUG=1.
+
+ d1 = np.dtype('u1,c8', align=True)
+ d2 = np.dtype('u4,c8', align=True)
+ d3 = np.dtype({'names': ['a', 'b'], 'formats': ['u1', d1]}, align=True)
+
+ assert_equal(np.zeros(1, dtype=d1)['f1'].flags['ALIGNED'], True)
+ assert_equal(np.zeros(1, dtype=d2)['f1'].flags['ALIGNED'], True)
+ assert_equal(np.zeros(1, dtype='u1,c8')['f1'].flags['ALIGNED'], False)
+
+ # check that C struct matches numpy struct size
+ s = _multiarray_tests.get_struct_alignments()
+ for d, (alignment, size) in zip([d1,d2,d3], s):
+ assert_equal(d.alignment, alignment)
+ assert_equal(d.itemsize, size)
+
+ # check that ufuncs don't complain in debug mode
+ # (this is probably OK if the aligned flag is true above)
+ src = np.zeros((2,2), dtype=d1)['f1'] # 4-byte aligned, often
+ np.exp(src) # assert fails?
+
+ # check that copy code doesn't complain in debug mode
+ dst = np.zeros((2,2), dtype='c8')
+ dst[:,1] = src[:,1] # assert in lowlevel_strided_loops fails?
+
+class TestAlignment:
+ # adapted from scipy._lib.tests.test__util.test__aligned_zeros
+ # Checks that unusual memory alignments don't trip up numpy.
+ # In particular, check RELAXED_STRIDES don't trip alignment assertions in
+ # NDEBUG mode for size-0 arrays (gh-12503)
+
+ def check(self, shape, dtype, order, align):
+ err_msg = repr((shape, dtype, order, align))
+ x = _aligned_zeros(shape, dtype, order, align=align)
+ if align is None:
+ align = np.dtype(dtype).alignment
+ assert_equal(x.__array_interface__['data'][0] % align, 0)
+ if hasattr(shape, '__len__'):
+ assert_equal(x.shape, shape, err_msg)
+ else:
+ assert_equal(x.shape, (shape,), err_msg)
+ assert_equal(x.dtype, dtype)
+ if order == "C":
+ assert_(x.flags.c_contiguous, err_msg)
+ elif order == "F":
+ if x.size > 0:
+ assert_(x.flags.f_contiguous, err_msg)
+ elif order is None:
+ assert_(x.flags.c_contiguous, err_msg)
+ else:
+ raise ValueError()
+
+ def test_various_alignments(self):
+ for align in [1, 2, 3, 4, 8, 12, 16, 32, 64, None]:
+ for n in [0, 1, 3, 11]:
+ for order in ["C", "F", None]:
+ for dtype in list(np.typecodes["All"]) + ['i4,i4,i4']:
+ if dtype == 'O':
+ # object dtype can't be misaligned
+ continue
+ for shape in [n, (1, 2, 3, n)]:
+ self.check(shape, np.dtype(dtype), order, align)
+
+ def test_strided_loop_alignments(self):
+ # particularly test that complex64 and float128 use right alignment
+ # code-paths, since these are particularly problematic. It is useful to
+ # turn on USE_DEBUG for this test, so lowlevel-loop asserts are run.
+ for align in [1, 2, 4, 8, 12, 16, None]:
+ xf64 = _aligned_zeros(3, np.float64)
+
+ xc64 = _aligned_zeros(3, np.complex64, align=align)
+ xf128 = _aligned_zeros(3, np.longdouble, align=align)
+
+ # test casting, both to and from misaligned
+ with suppress_warnings() as sup:
+ sup.filter(np.ComplexWarning, "Casting complex values")
+ xc64.astype('f8')
+ xf64.astype(np.complex64)
+ test = xc64 + xf64
+
+ xf128.astype('f8')
+ xf64.astype(np.longdouble)
+ test = xf128 + xf64
+
+ test = xf128 + xc64
+
+ # test copy, both to and from misaligned
+ # contig copy
+ xf64[:] = xf64.copy()
+ xc64[:] = xc64.copy()
+ xf128[:] = xf128.copy()
+ # strided copy
+ xf64[::2] = xf64[::2].copy()
+ xc64[::2] = xc64[::2].copy()
+ xf128[::2] = xf128[::2].copy()
+
+def test_getfield():
+ a = np.arange(32, dtype='uint16')
+ if sys.byteorder == 'little':
+ i = 0
+ j = 1
+ else:
+ i = 1
+ j = 0
+ b = a.getfield('int8', i)
+ assert_equal(b, a)
+ b = a.getfield('int8', j)
+ assert_equal(b, 0)
+ pytest.raises(ValueError, a.getfield, 'uint8', -1)
+ pytest.raises(ValueError, a.getfield, 'uint8', 16)
+ pytest.raises(ValueError, a.getfield, 'uint64', 0)
+
+
+class TestViewDtype:
+ """
+ Verify that making a view of a non-contiguous array works as expected.
+ """
+ def test_smaller_dtype_multiple(self):
+ # x is non-contiguous
+ x = np.arange(10, dtype='<i4')[::2]
+ with pytest.raises(ValueError,
+ match='the last axis must be contiguous'):
+ x.view('<i2')
+ expected = [[0, 0], [2, 0], [4, 0], [6, 0], [8, 0]]
+ assert_array_equal(x[:, np.newaxis].view('<i2'), expected)
+
+ def test_smaller_dtype_not_multiple(self):
+ # x is non-contiguous
+ x = np.arange(5, dtype='<i4')[::2]
+
+ with pytest.raises(ValueError,
+ match='the last axis must be contiguous'):
+ x.view('S3')
+ with pytest.raises(ValueError,
+ match='When changing to a smaller dtype'):
+ x[:, np.newaxis].view('S3')
+
+ # Make sure the problem is because of the dtype size
+ expected = [[b''], [b'\x02'], [b'\x04']]
+ assert_array_equal(x[:, np.newaxis].view('S4'), expected)
+
+ def test_larger_dtype_multiple(self):
+ # x is non-contiguous in the first dimension, contiguous in the last
+ x = np.arange(20, dtype='<i2').reshape(10, 2)[::2, :]
+ expected = np.array([[65536], [327684], [589832],
+ [851980], [1114128]], dtype='<i4')
+ assert_array_equal(x.view('<i4'), expected)
+
+ def test_larger_dtype_not_multiple(self):
+ # x is non-contiguous in the first dimension, contiguous in the last
+ x = np.arange(20, dtype='<i2').reshape(10, 2)[::2, :]
+ with pytest.raises(ValueError,
+ match='When changing to a larger dtype'):
+ x.view('S3')
+ # Make sure the problem is because of the dtype size
+ expected = [[b'\x00\x00\x01'], [b'\x04\x00\x05'], [b'\x08\x00\t'],
+ [b'\x0c\x00\r'], [b'\x10\x00\x11']]
+ assert_array_equal(x.view('S4'), expected)
+
+ def test_f_contiguous(self):
+ # x is F-contiguous
+ x = np.arange(4 * 3, dtype='<i4').reshape(4, 3).T
+ with pytest.raises(ValueError,
+ match='the last axis must be contiguous'):
+ x.view('<i2')
+
+ def test_non_c_contiguous(self):
+ # x is contiguous in axis=-1, but not C-contiguous in other axes
+ x = np.arange(2 * 3 * 4, dtype='i1').\
+ reshape(2, 3, 4).transpose(1, 0, 2)
+ expected = [[[256, 770], [3340, 3854]],
+ [[1284, 1798], [4368, 4882]],
+ [[2312, 2826], [5396, 5910]]]
+ assert_array_equal(x.view('<i2'), expected)
+
+
+@pytest.mark.xfail(_SUPPORTS_SVE, reason="gh-22982")
+# Test various array sizes that hit different code paths in quicksort-avx512
+@pytest.mark.parametrize("N", np.arange(1, 512))
+@pytest.mark.parametrize("dtype", ['e', 'f', 'd'])
+def test_sort_float(N, dtype):
+ # Regular data with nan sprinkled
+ np.random.seed(42)
+ arr = -0.5 + np.random.sample(N).astype(dtype)
+ arr[np.random.choice(arr.shape[0], 3)] = np.nan
+ assert_equal(np.sort(arr, kind='quick'), np.sort(arr, kind='heap'))
+
+ # (2) with +INF
+ infarr = np.inf*np.ones(N, dtype=dtype)
+ infarr[np.random.choice(infarr.shape[0], 5)] = -1.0
+ assert_equal(np.sort(infarr, kind='quick'), np.sort(infarr, kind='heap'))
+
+ # (3) with -INF
+ neginfarr = -np.inf*np.ones(N, dtype=dtype)
+ neginfarr[np.random.choice(neginfarr.shape[0], 5)] = 1.0
+ assert_equal(np.sort(neginfarr, kind='quick'),
+ np.sort(neginfarr, kind='heap'))
+
+ # (4) with +/-INF
+ infarr = np.inf*np.ones(N, dtype=dtype)
+ infarr[np.random.choice(infarr.shape[0], (int)(N/2))] = -np.inf
+ assert_equal(np.sort(infarr, kind='quick'), np.sort(infarr, kind='heap'))
+
+def test_sort_float16():
+ arr = np.arange(65536, dtype=np.int16)
+ temp = np.frombuffer(arr.tobytes(), dtype=np.float16)
+ data = np.copy(temp)
+ np.random.shuffle(data)
+ data_backup = data
+ assert_equal(np.sort(data, kind='quick'),
+ np.sort(data_backup, kind='heap'))
+
+
+@pytest.mark.parametrize("N", np.arange(1, 512))
+@pytest.mark.parametrize("dtype", ['h', 'H', 'i', 'I', 'l', 'L'])
+def test_sort_int(N, dtype):
+ # Random data with MAX and MIN sprinkled
+ minv = np.iinfo(dtype).min
+ maxv = np.iinfo(dtype).max
+ arr = np.random.randint(low=minv, high=maxv-1, size=N, dtype=dtype)
+ arr[np.random.choice(arr.shape[0], 10)] = minv
+ arr[np.random.choice(arr.shape[0], 10)] = maxv
+ assert_equal(np.sort(arr, kind='quick'), np.sort(arr, kind='heap'))
+
+
+def test_sort_uint():
+ # Random data with NPY_MAX_UINT32 sprinkled
+ rng = np.random.default_rng(42)
+ N = 2047
+ maxv = np.iinfo(np.uint32).max
+ arr = rng.integers(low=0, high=maxv, size=N).astype('uint32')
+ arr[np.random.choice(arr.shape[0], 10)] = maxv
+ assert_equal(np.sort(arr, kind='quick'), np.sort(arr, kind='heap'))
+
+def test_private_get_ndarray_c_version():
+ assert isinstance(_get_ndarray_c_version(), int)
+
+
+@pytest.mark.parametrize("N", np.arange(1, 512))
+@pytest.mark.parametrize("dtype", [np.float32, np.float64])
+def test_argsort_float(N, dtype):
+ rnd = np.random.RandomState(116112)
+ # (1) Regular data with a few nan: doesn't use vectorized sort
+ arr = -0.5 + rnd.random(N).astype(dtype)
+ arr[rnd.choice(arr.shape[0], 3)] = np.nan
+ assert_arg_sorted(arr, np.argsort(arr, kind='quick'))
+
+ # (2) Random data with inf at the end of array
+ # See: https://github.com/intel/x86-simd-sort/pull/39
+ arr = -0.5 + rnd.rand(N).astype(dtype)
+ arr[N-1] = np.inf
+ assert_arg_sorted(arr, np.argsort(arr, kind='quick'))
+
+
+@pytest.mark.parametrize("N", np.arange(2, 512))
+@pytest.mark.parametrize("dtype", [np.int32, np.uint32, np.int64, np.uint64])
+def test_argsort_int(N, dtype):
+ rnd = np.random.RandomState(1100710816)
+ # (1) random data with min and max values
+ minv = np.iinfo(dtype).min
+ maxv = np.iinfo(dtype).max
+ arr = rnd.randint(low=minv, high=maxv, size=N, dtype=dtype)
+ i, j = rnd.choice(N, 2, replace=False)
+ arr[i] = minv
+ arr[j] = maxv
+ assert_arg_sorted(arr, np.argsort(arr, kind='quick'))
+
+ # (2) random data with max value at the end of array
+ # See: https://github.com/intel/x86-simd-sort/pull/39
+ arr = rnd.randint(low=minv, high=maxv, size=N, dtype=dtype)
+ arr[N-1] = maxv
+ assert_arg_sorted(arr, np.argsort(arr, kind='quick'))
+
+
+@pytest.mark.skipif(not HAS_REFCOUNT, reason="Python lacks refcounts")
+def test_gh_22683():
+ b = 777.68760986
+ a = np.array([b] * 10000, dtype=object)
+ refc_start = sys.getrefcount(b)
+ np.choose(np.zeros(10000, dtype=int), [a], out=a)
+ np.choose(np.zeros(10000, dtype=int), [a], out=a)
+ refc_end = sys.getrefcount(b)
+ assert refc_end - refc_start < 10
+
+
+def test_gh_24459():
+ a = np.zeros((50, 3), dtype=np.float64)
+ with pytest.raises(TypeError):
+ np.choose(a, [3, -1])