diff options
Diffstat (limited to '.venv/lib/python3.12/site-packages/numpy/core/shape_base.py')
-rw-r--r-- | .venv/lib/python3.12/site-packages/numpy/core/shape_base.py | 923 |
1 files changed, 923 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/numpy/core/shape_base.py b/.venv/lib/python3.12/site-packages/numpy/core/shape_base.py new file mode 100644 index 00000000..250fffd4 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/numpy/core/shape_base.py @@ -0,0 +1,923 @@ +__all__ = ['atleast_1d', 'atleast_2d', 'atleast_3d', 'block', 'hstack', + 'stack', 'vstack'] + +import functools +import itertools +import operator +import warnings + +from . import numeric as _nx +from . import overrides +from .multiarray import array, asanyarray, normalize_axis_index +from . import fromnumeric as _from_nx + + +array_function_dispatch = functools.partial( + overrides.array_function_dispatch, module='numpy') + + +def _atleast_1d_dispatcher(*arys): + return arys + + +@array_function_dispatch(_atleast_1d_dispatcher) +def atleast_1d(*arys): + """ + Convert inputs to arrays with at least one dimension. + + Scalar inputs are converted to 1-dimensional arrays, whilst + higher-dimensional inputs are preserved. + + Parameters + ---------- + arys1, arys2, ... : array_like + One or more input arrays. + + Returns + ------- + ret : ndarray + An array, or list of arrays, each with ``a.ndim >= 1``. + Copies are made only if necessary. + + See Also + -------- + atleast_2d, atleast_3d + + Examples + -------- + >>> np.atleast_1d(1.0) + array([1.]) + + >>> x = np.arange(9.0).reshape(3,3) + >>> np.atleast_1d(x) + array([[0., 1., 2.], + [3., 4., 5.], + [6., 7., 8.]]) + >>> np.atleast_1d(x) is x + True + + >>> np.atleast_1d(1, [3, 4]) + [array([1]), array([3, 4])] + + """ + res = [] + for ary in arys: + ary = asanyarray(ary) + if ary.ndim == 0: + result = ary.reshape(1) + else: + result = ary + res.append(result) + if len(res) == 1: + return res[0] + else: + return res + + +def _atleast_2d_dispatcher(*arys): + return arys + + +@array_function_dispatch(_atleast_2d_dispatcher) +def atleast_2d(*arys): + """ + View inputs as arrays with at least two dimensions. + + Parameters + ---------- + arys1, arys2, ... : array_like + One or more array-like sequences. Non-array inputs are converted + to arrays. Arrays that already have two or more dimensions are + preserved. + + Returns + ------- + res, res2, ... : ndarray + An array, or list of arrays, each with ``a.ndim >= 2``. + Copies are avoided where possible, and views with two or more + dimensions are returned. + + See Also + -------- + atleast_1d, atleast_3d + + Examples + -------- + >>> np.atleast_2d(3.0) + array([[3.]]) + + >>> x = np.arange(3.0) + >>> np.atleast_2d(x) + array([[0., 1., 2.]]) + >>> np.atleast_2d(x).base is x + True + + >>> np.atleast_2d(1, [1, 2], [[1, 2]]) + [array([[1]]), array([[1, 2]]), array([[1, 2]])] + + """ + res = [] + for ary in arys: + ary = asanyarray(ary) + if ary.ndim == 0: + result = ary.reshape(1, 1) + elif ary.ndim == 1: + result = ary[_nx.newaxis, :] + else: + result = ary + res.append(result) + if len(res) == 1: + return res[0] + else: + return res + + +def _atleast_3d_dispatcher(*arys): + return arys + + +@array_function_dispatch(_atleast_3d_dispatcher) +def atleast_3d(*arys): + """ + View inputs as arrays with at least three dimensions. + + Parameters + ---------- + arys1, arys2, ... : array_like + One or more array-like sequences. Non-array inputs are converted to + arrays. Arrays that already have three or more dimensions are + preserved. + + Returns + ------- + res1, res2, ... : ndarray + An array, or list of arrays, each with ``a.ndim >= 3``. Copies are + avoided where possible, and views with three or more dimensions are + returned. For example, a 1-D array of shape ``(N,)`` becomes a view + of shape ``(1, N, 1)``, and a 2-D array of shape ``(M, N)`` becomes a + view of shape ``(M, N, 1)``. + + See Also + -------- + atleast_1d, atleast_2d + + Examples + -------- + >>> np.atleast_3d(3.0) + array([[[3.]]]) + + >>> x = np.arange(3.0) + >>> np.atleast_3d(x).shape + (1, 3, 1) + + >>> x = np.arange(12.0).reshape(4,3) + >>> np.atleast_3d(x).shape + (4, 3, 1) + >>> np.atleast_3d(x).base is x.base # x is a reshape, so not base itself + True + + >>> for arr in np.atleast_3d([1, 2], [[1, 2]], [[[1, 2]]]): + ... print(arr, arr.shape) # doctest: +SKIP + ... + [[[1] + [2]]] (1, 2, 1) + [[[1] + [2]]] (1, 2, 1) + [[[1 2]]] (1, 1, 2) + + """ + res = [] + for ary in arys: + ary = asanyarray(ary) + if ary.ndim == 0: + result = ary.reshape(1, 1, 1) + elif ary.ndim == 1: + result = ary[_nx.newaxis, :, _nx.newaxis] + elif ary.ndim == 2: + result = ary[:, :, _nx.newaxis] + else: + result = ary + res.append(result) + if len(res) == 1: + return res[0] + else: + return res + + +def _arrays_for_stack_dispatcher(arrays): + if not hasattr(arrays, "__getitem__"): + raise TypeError('arrays to stack must be passed as a "sequence" type ' + 'such as list or tuple.') + + return tuple(arrays) + + +def _vhstack_dispatcher(tup, *, dtype=None, casting=None): + return _arrays_for_stack_dispatcher(tup) + + +@array_function_dispatch(_vhstack_dispatcher) +def vstack(tup, *, dtype=None, casting="same_kind"): + """ + Stack arrays in sequence vertically (row wise). + + This is equivalent to concatenation along the first axis after 1-D arrays + of shape `(N,)` have been reshaped to `(1,N)`. Rebuilds arrays divided by + `vsplit`. + + This function makes most sense for arrays with up to 3 dimensions. For + instance, for pixel-data with a height (first axis), width (second axis), + and r/g/b channels (third axis). The functions `concatenate`, `stack` and + `block` provide more general stacking and concatenation operations. + + ``np.row_stack`` is an alias for `vstack`. They are the same function. + + Parameters + ---------- + tup : sequence of ndarrays + The arrays must have the same shape along all but the first axis. + 1-D arrays must have the same length. + + dtype : str or dtype + If provided, the destination array will have this dtype. Cannot be + provided together with `out`. + + .. versionadded:: 1.24 + + casting : {'no', 'equiv', 'safe', 'same_kind', 'unsafe'}, optional + Controls what kind of data casting may occur. Defaults to 'same_kind'. + + .. versionadded:: 1.24 + + Returns + ------- + stacked : ndarray + The array formed by stacking the given arrays, will be at least 2-D. + + See Also + -------- + concatenate : Join a sequence of arrays along an existing axis. + stack : Join a sequence of arrays along a new axis. + block : Assemble an nd-array from nested lists of blocks. + hstack : Stack arrays in sequence horizontally (column wise). + dstack : Stack arrays in sequence depth wise (along third axis). + column_stack : Stack 1-D arrays as columns into a 2-D array. + vsplit : Split an array into multiple sub-arrays vertically (row-wise). + + Examples + -------- + >>> a = np.array([1, 2, 3]) + >>> b = np.array([4, 5, 6]) + >>> np.vstack((a,b)) + array([[1, 2, 3], + [4, 5, 6]]) + + >>> a = np.array([[1], [2], [3]]) + >>> b = np.array([[4], [5], [6]]) + >>> np.vstack((a,b)) + array([[1], + [2], + [3], + [4], + [5], + [6]]) + + """ + arrs = atleast_2d(*tup) + if not isinstance(arrs, list): + arrs = [arrs] + return _nx.concatenate(arrs, 0, dtype=dtype, casting=casting) + + +@array_function_dispatch(_vhstack_dispatcher) +def hstack(tup, *, dtype=None, casting="same_kind"): + """ + Stack arrays in sequence horizontally (column wise). + + This is equivalent to concatenation along the second axis, except for 1-D + arrays where it concatenates along the first axis. Rebuilds arrays divided + by `hsplit`. + + This function makes most sense for arrays with up to 3 dimensions. For + instance, for pixel-data with a height (first axis), width (second axis), + and r/g/b channels (third axis). The functions `concatenate`, `stack` and + `block` provide more general stacking and concatenation operations. + + Parameters + ---------- + tup : sequence of ndarrays + The arrays must have the same shape along all but the second axis, + except 1-D arrays which can be any length. + + dtype : str or dtype + If provided, the destination array will have this dtype. Cannot be + provided together with `out`. + + .. versionadded:: 1.24 + + casting : {'no', 'equiv', 'safe', 'same_kind', 'unsafe'}, optional + Controls what kind of data casting may occur. Defaults to 'same_kind'. + + .. versionadded:: 1.24 + + Returns + ------- + stacked : ndarray + The array formed by stacking the given arrays. + + See Also + -------- + concatenate : Join a sequence of arrays along an existing axis. + stack : Join a sequence of arrays along a new axis. + block : Assemble an nd-array from nested lists of blocks. + vstack : Stack arrays in sequence vertically (row wise). + dstack : Stack arrays in sequence depth wise (along third axis). + column_stack : Stack 1-D arrays as columns into a 2-D array. + hsplit : Split an array into multiple sub-arrays horizontally (column-wise). + + Examples + -------- + >>> a = np.array((1,2,3)) + >>> b = np.array((4,5,6)) + >>> np.hstack((a,b)) + array([1, 2, 3, 4, 5, 6]) + >>> a = np.array([[1],[2],[3]]) + >>> b = np.array([[4],[5],[6]]) + >>> np.hstack((a,b)) + array([[1, 4], + [2, 5], + [3, 6]]) + + """ + arrs = atleast_1d(*tup) + if not isinstance(arrs, list): + arrs = [arrs] + # As a special case, dimension 0 of 1-dimensional arrays is "horizontal" + if arrs and arrs[0].ndim == 1: + return _nx.concatenate(arrs, 0, dtype=dtype, casting=casting) + else: + return _nx.concatenate(arrs, 1, dtype=dtype, casting=casting) + + +def _stack_dispatcher(arrays, axis=None, out=None, *, + dtype=None, casting=None): + arrays = _arrays_for_stack_dispatcher(arrays) + if out is not None: + # optimize for the typical case where only arrays is provided + arrays = list(arrays) + arrays.append(out) + return arrays + + +@array_function_dispatch(_stack_dispatcher) +def stack(arrays, axis=0, out=None, *, dtype=None, casting="same_kind"): + """ + Join a sequence of arrays along a new axis. + + The ``axis`` parameter specifies the index of the new axis in the + dimensions of the result. For example, if ``axis=0`` it will be the first + dimension and if ``axis=-1`` it will be the last dimension. + + .. versionadded:: 1.10.0 + + Parameters + ---------- + arrays : sequence of array_like + Each array must have the same shape. + + axis : int, optional + The axis in the result array along which the input arrays are stacked. + + out : ndarray, optional + If provided, the destination to place the result. The shape must be + correct, matching that of what stack would have returned if no + out argument were specified. + + dtype : str or dtype + If provided, the destination array will have this dtype. Cannot be + provided together with `out`. + + .. versionadded:: 1.24 + + casting : {'no', 'equiv', 'safe', 'same_kind', 'unsafe'}, optional + Controls what kind of data casting may occur. Defaults to 'same_kind'. + + .. versionadded:: 1.24 + + + Returns + ------- + stacked : ndarray + The stacked array has one more dimension than the input arrays. + + See Also + -------- + concatenate : Join a sequence of arrays along an existing axis. + block : Assemble an nd-array from nested lists of blocks. + split : Split array into a list of multiple sub-arrays of equal size. + + Examples + -------- + >>> arrays = [np.random.randn(3, 4) for _ in range(10)] + >>> np.stack(arrays, axis=0).shape + (10, 3, 4) + + >>> np.stack(arrays, axis=1).shape + (3, 10, 4) + + >>> np.stack(arrays, axis=2).shape + (3, 4, 10) + + >>> a = np.array([1, 2, 3]) + >>> b = np.array([4, 5, 6]) + >>> np.stack((a, b)) + array([[1, 2, 3], + [4, 5, 6]]) + + >>> np.stack((a, b), axis=-1) + array([[1, 4], + [2, 5], + [3, 6]]) + + """ + arrays = [asanyarray(arr) for arr in arrays] + if not arrays: + raise ValueError('need at least one array to stack') + + shapes = {arr.shape for arr in arrays} + if len(shapes) != 1: + raise ValueError('all input arrays must have the same shape') + + result_ndim = arrays[0].ndim + 1 + axis = normalize_axis_index(axis, result_ndim) + + sl = (slice(None),) * axis + (_nx.newaxis,) + expanded_arrays = [arr[sl] for arr in arrays] + return _nx.concatenate(expanded_arrays, axis=axis, out=out, + dtype=dtype, casting=casting) + + +# Internal functions to eliminate the overhead of repeated dispatch in one of +# the two possible paths inside np.block. +# Use getattr to protect against __array_function__ being disabled. +_size = getattr(_from_nx.size, '__wrapped__', _from_nx.size) +_ndim = getattr(_from_nx.ndim, '__wrapped__', _from_nx.ndim) +_concatenate = getattr(_from_nx.concatenate, + '__wrapped__', _from_nx.concatenate) + + +def _block_format_index(index): + """ + Convert a list of indices ``[0, 1, 2]`` into ``"arrays[0][1][2]"``. + """ + idx_str = ''.join('[{}]'.format(i) for i in index if i is not None) + return 'arrays' + idx_str + + +def _block_check_depths_match(arrays, parent_index=[]): + """ + Recursive function checking that the depths of nested lists in `arrays` + all match. Mismatch raises a ValueError as described in the block + docstring below. + + The entire index (rather than just the depth) needs to be calculated + for each innermost list, in case an error needs to be raised, so that + the index of the offending list can be printed as part of the error. + + Parameters + ---------- + arrays : nested list of arrays + The arrays to check + parent_index : list of int + The full index of `arrays` within the nested lists passed to + `_block_check_depths_match` at the top of the recursion. + + Returns + ------- + first_index : list of int + The full index of an element from the bottom of the nesting in + `arrays`. If any element at the bottom is an empty list, this will + refer to it, and the last index along the empty axis will be None. + max_arr_ndim : int + The maximum of the ndims of the arrays nested in `arrays`. + final_size: int + The number of elements in the final array. This is used the motivate + the choice of algorithm used using benchmarking wisdom. + + """ + if type(arrays) is tuple: + # not strictly necessary, but saves us from: + # - more than one way to do things - no point treating tuples like + # lists + # - horribly confusing behaviour that results when tuples are + # treated like ndarray + raise TypeError( + '{} is a tuple. ' + 'Only lists can be used to arrange blocks, and np.block does ' + 'not allow implicit conversion from tuple to ndarray.'.format( + _block_format_index(parent_index) + ) + ) + elif type(arrays) is list and len(arrays) > 0: + idxs_ndims = (_block_check_depths_match(arr, parent_index + [i]) + for i, arr in enumerate(arrays)) + + first_index, max_arr_ndim, final_size = next(idxs_ndims) + for index, ndim, size in idxs_ndims: + final_size += size + if ndim > max_arr_ndim: + max_arr_ndim = ndim + if len(index) != len(first_index): + raise ValueError( + "List depths are mismatched. First element was at depth " + "{}, but there is an element at depth {} ({})".format( + len(first_index), + len(index), + _block_format_index(index) + ) + ) + # propagate our flag that indicates an empty list at the bottom + if index[-1] is None: + first_index = index + + return first_index, max_arr_ndim, final_size + elif type(arrays) is list and len(arrays) == 0: + # We've 'bottomed out' on an empty list + return parent_index + [None], 0, 0 + else: + # We've 'bottomed out' - arrays is either a scalar or an array + size = _size(arrays) + return parent_index, _ndim(arrays), size + + +def _atleast_nd(a, ndim): + # Ensures `a` has at least `ndim` dimensions by prepending + # ones to `a.shape` as necessary + return array(a, ndmin=ndim, copy=False, subok=True) + + +def _accumulate(values): + return list(itertools.accumulate(values)) + + +def _concatenate_shapes(shapes, axis): + """Given array shapes, return the resulting shape and slices prefixes. + + These help in nested concatenation. + + Returns + ------- + shape: tuple of int + This tuple satisfies:: + + shape, _ = _concatenate_shapes([arr.shape for shape in arrs], axis) + shape == concatenate(arrs, axis).shape + + slice_prefixes: tuple of (slice(start, end), ) + For a list of arrays being concatenated, this returns the slice + in the larger array at axis that needs to be sliced into. + + For example, the following holds:: + + ret = concatenate([a, b, c], axis) + _, (sl_a, sl_b, sl_c) = concatenate_slices([a, b, c], axis) + + ret[(slice(None),) * axis + sl_a] == a + ret[(slice(None),) * axis + sl_b] == b + ret[(slice(None),) * axis + sl_c] == c + + These are called slice prefixes since they are used in the recursive + blocking algorithm to compute the left-most slices during the + recursion. Therefore, they must be prepended to rest of the slice + that was computed deeper in the recursion. + + These are returned as tuples to ensure that they can quickly be added + to existing slice tuple without creating a new tuple every time. + + """ + # Cache a result that will be reused. + shape_at_axis = [shape[axis] for shape in shapes] + + # Take a shape, any shape + first_shape = shapes[0] + first_shape_pre = first_shape[:axis] + first_shape_post = first_shape[axis+1:] + + if any(shape[:axis] != first_shape_pre or + shape[axis+1:] != first_shape_post for shape in shapes): + raise ValueError( + 'Mismatched array shapes in block along axis {}.'.format(axis)) + + shape = (first_shape_pre + (sum(shape_at_axis),) + first_shape[axis+1:]) + + offsets_at_axis = _accumulate(shape_at_axis) + slice_prefixes = [(slice(start, end),) + for start, end in zip([0] + offsets_at_axis, + offsets_at_axis)] + return shape, slice_prefixes + + +def _block_info_recursion(arrays, max_depth, result_ndim, depth=0): + """ + Returns the shape of the final array, along with a list + of slices and a list of arrays that can be used for assignment inside the + new array + + Parameters + ---------- + arrays : nested list of arrays + The arrays to check + max_depth : list of int + The number of nested lists + result_ndim : int + The number of dimensions in thefinal array. + + Returns + ------- + shape : tuple of int + The shape that the final array will take on. + slices: list of tuple of slices + The slices into the full array required for assignment. These are + required to be prepended with ``(Ellipsis, )`` to obtain to correct + final index. + arrays: list of ndarray + The data to assign to each slice of the full array + + """ + if depth < max_depth: + shapes, slices, arrays = zip( + *[_block_info_recursion(arr, max_depth, result_ndim, depth+1) + for arr in arrays]) + + axis = result_ndim - max_depth + depth + shape, slice_prefixes = _concatenate_shapes(shapes, axis) + + # Prepend the slice prefix and flatten the slices + slices = [slice_prefix + the_slice + for slice_prefix, inner_slices in zip(slice_prefixes, slices) + for the_slice in inner_slices] + + # Flatten the array list + arrays = functools.reduce(operator.add, arrays) + + return shape, slices, arrays + else: + # We've 'bottomed out' - arrays is either a scalar or an array + # type(arrays) is not list + # Return the slice and the array inside a list to be consistent with + # the recursive case. + arr = _atleast_nd(arrays, result_ndim) + return arr.shape, [()], [arr] + + +def _block(arrays, max_depth, result_ndim, depth=0): + """ + Internal implementation of block based on repeated concatenation. + `arrays` is the argument passed to + block. `max_depth` is the depth of nested lists within `arrays` and + `result_ndim` is the greatest of the dimensions of the arrays in + `arrays` and the depth of the lists in `arrays` (see block docstring + for details). + """ + if depth < max_depth: + arrs = [_block(arr, max_depth, result_ndim, depth+1) + for arr in arrays] + return _concatenate(arrs, axis=-(max_depth-depth)) + else: + # We've 'bottomed out' - arrays is either a scalar or an array + # type(arrays) is not list + return _atleast_nd(arrays, result_ndim) + + +def _block_dispatcher(arrays): + # Use type(...) is list to match the behavior of np.block(), which special + # cases list specifically rather than allowing for generic iterables or + # tuple. Also, we know that list.__array_function__ will never exist. + if type(arrays) is list: + for subarrays in arrays: + yield from _block_dispatcher(subarrays) + else: + yield arrays + + +@array_function_dispatch(_block_dispatcher) +def block(arrays): + """ + Assemble an nd-array from nested lists of blocks. + + Blocks in the innermost lists are concatenated (see `concatenate`) along + the last dimension (-1), then these are concatenated along the + second-last dimension (-2), and so on until the outermost list is reached. + + Blocks can be of any dimension, but will not be broadcasted using the normal + rules. Instead, leading axes of size 1 are inserted, to make ``block.ndim`` + the same for all blocks. This is primarily useful for working with scalars, + and means that code like ``np.block([v, 1])`` is valid, where + ``v.ndim == 1``. + + When the nested list is two levels deep, this allows block matrices to be + constructed from their components. + + .. versionadded:: 1.13.0 + + Parameters + ---------- + arrays : nested list of array_like or scalars (but not tuples) + If passed a single ndarray or scalar (a nested list of depth 0), this + is returned unmodified (and not copied). + + Elements shapes must match along the appropriate axes (without + broadcasting), but leading 1s will be prepended to the shape as + necessary to make the dimensions match. + + Returns + ------- + block_array : ndarray + The array assembled from the given blocks. + + The dimensionality of the output is equal to the greatest of: + * the dimensionality of all the inputs + * the depth to which the input list is nested + + Raises + ------ + ValueError + * If list depths are mismatched - for instance, ``[[a, b], c]`` is + illegal, and should be spelt ``[[a, b], [c]]`` + * If lists are empty - for instance, ``[[a, b], []]`` + + See Also + -------- + concatenate : Join a sequence of arrays along an existing axis. + stack : Join a sequence of arrays along a new axis. + vstack : Stack arrays in sequence vertically (row wise). + hstack : Stack arrays in sequence horizontally (column wise). + dstack : Stack arrays in sequence depth wise (along third axis). + column_stack : Stack 1-D arrays as columns into a 2-D array. + vsplit : Split an array into multiple sub-arrays vertically (row-wise). + + Notes + ----- + + When called with only scalars, ``np.block`` is equivalent to an ndarray + call. So ``np.block([[1, 2], [3, 4]])`` is equivalent to + ``np.array([[1, 2], [3, 4]])``. + + This function does not enforce that the blocks lie on a fixed grid. + ``np.block([[a, b], [c, d]])`` is not restricted to arrays of the form:: + + AAAbb + AAAbb + cccDD + + But is also allowed to produce, for some ``a, b, c, d``:: + + AAAbb + AAAbb + cDDDD + + Since concatenation happens along the last axis first, `block` is _not_ + capable of producing the following directly:: + + AAAbb + cccbb + cccDD + + Matlab's "square bracket stacking", ``[A, B, ...; p, q, ...]``, is + equivalent to ``np.block([[A, B, ...], [p, q, ...]])``. + + Examples + -------- + The most common use of this function is to build a block matrix + + >>> A = np.eye(2) * 2 + >>> B = np.eye(3) * 3 + >>> np.block([ + ... [A, np.zeros((2, 3))], + ... [np.ones((3, 2)), B ] + ... ]) + array([[2., 0., 0., 0., 0.], + [0., 2., 0., 0., 0.], + [1., 1., 3., 0., 0.], + [1., 1., 0., 3., 0.], + [1., 1., 0., 0., 3.]]) + + With a list of depth 1, `block` can be used as `hstack` + + >>> np.block([1, 2, 3]) # hstack([1, 2, 3]) + array([1, 2, 3]) + + >>> a = np.array([1, 2, 3]) + >>> b = np.array([4, 5, 6]) + >>> np.block([a, b, 10]) # hstack([a, b, 10]) + array([ 1, 2, 3, 4, 5, 6, 10]) + + >>> A = np.ones((2, 2), int) + >>> B = 2 * A + >>> np.block([A, B]) # hstack([A, B]) + array([[1, 1, 2, 2], + [1, 1, 2, 2]]) + + With a list of depth 2, `block` can be used in place of `vstack`: + + >>> a = np.array([1, 2, 3]) + >>> b = np.array([4, 5, 6]) + >>> np.block([[a], [b]]) # vstack([a, b]) + array([[1, 2, 3], + [4, 5, 6]]) + + >>> A = np.ones((2, 2), int) + >>> B = 2 * A + >>> np.block([[A], [B]]) # vstack([A, B]) + array([[1, 1], + [1, 1], + [2, 2], + [2, 2]]) + + It can also be used in places of `atleast_1d` and `atleast_2d` + + >>> a = np.array(0) + >>> b = np.array([1]) + >>> np.block([a]) # atleast_1d(a) + array([0]) + >>> np.block([b]) # atleast_1d(b) + array([1]) + + >>> np.block([[a]]) # atleast_2d(a) + array([[0]]) + >>> np.block([[b]]) # atleast_2d(b) + array([[1]]) + + + """ + arrays, list_ndim, result_ndim, final_size = _block_setup(arrays) + + # It was found through benchmarking that making an array of final size + # around 256x256 was faster by straight concatenation on a + # i7-7700HQ processor and dual channel ram 2400MHz. + # It didn't seem to matter heavily on the dtype used. + # + # A 2D array using repeated concatenation requires 2 copies of the array. + # + # The fastest algorithm will depend on the ratio of CPU power to memory + # speed. + # One can monitor the results of the benchmark + # https://pv.github.io/numpy-bench/#bench_shape_base.Block2D.time_block2d + # to tune this parameter until a C version of the `_block_info_recursion` + # algorithm is implemented which would likely be faster than the python + # version. + if list_ndim * final_size > (2 * 512 * 512): + return _block_slicing(arrays, list_ndim, result_ndim) + else: + return _block_concatenate(arrays, list_ndim, result_ndim) + + +# These helper functions are mostly used for testing. +# They allow us to write tests that directly call `_block_slicing` +# or `_block_concatenate` without blocking large arrays to force the wisdom +# to trigger the desired path. +def _block_setup(arrays): + """ + Returns + (`arrays`, list_ndim, result_ndim, final_size) + """ + bottom_index, arr_ndim, final_size = _block_check_depths_match(arrays) + list_ndim = len(bottom_index) + if bottom_index and bottom_index[-1] is None: + raise ValueError( + 'List at {} cannot be empty'.format( + _block_format_index(bottom_index) + ) + ) + result_ndim = max(arr_ndim, list_ndim) + return arrays, list_ndim, result_ndim, final_size + + +def _block_slicing(arrays, list_ndim, result_ndim): + shape, slices, arrays = _block_info_recursion( + arrays, list_ndim, result_ndim) + dtype = _nx.result_type(*[arr.dtype for arr in arrays]) + + # Test preferring F only in the case that all input arrays are F + F_order = all(arr.flags['F_CONTIGUOUS'] for arr in arrays) + C_order = all(arr.flags['C_CONTIGUOUS'] for arr in arrays) + order = 'F' if F_order and not C_order else 'C' + result = _nx.empty(shape=shape, dtype=dtype, order=order) + # Note: In a c implementation, the function + # PyArray_CreateMultiSortedStridePerm could be used for more advanced + # guessing of the desired order. + + for the_slice, arr in zip(slices, arrays): + result[(Ellipsis,) + the_slice] = arr + return result + + +def _block_concatenate(arrays, list_ndim, result_ndim): + result = _block(arrays, list_ndim, result_ndim) + if list_ndim == 0: + # Catch an edge case where _block returns a view because + # `arrays` is a single numpy array and not a list of numpy arrays. + # This might copy scalars or lists twice, but this isn't a likely + # usecase for those interested in performance + result = result.copy() + return result |