aboutsummaryrefslogtreecommitdiff
path: root/.venv/lib/python3.12/site-packages/numpy/core/einsumfunc.py
diff options
context:
space:
mode:
Diffstat (limited to '.venv/lib/python3.12/site-packages/numpy/core/einsumfunc.py')
-rw-r--r--.venv/lib/python3.12/site-packages/numpy/core/einsumfunc.py1443
1 files changed, 1443 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/numpy/core/einsumfunc.py b/.venv/lib/python3.12/site-packages/numpy/core/einsumfunc.py
new file mode 100644
index 00000000..01966f0f
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/numpy/core/einsumfunc.py
@@ -0,0 +1,1443 @@
+"""
+Implementation of optimized einsum.
+
+"""
+import itertools
+import operator
+
+from numpy.core.multiarray import c_einsum
+from numpy.core.numeric import asanyarray, tensordot
+from numpy.core.overrides import array_function_dispatch
+
+__all__ = ['einsum', 'einsum_path']
+
+einsum_symbols = 'abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ'
+einsum_symbols_set = set(einsum_symbols)
+
+
+def _flop_count(idx_contraction, inner, num_terms, size_dictionary):
+ """
+ Computes the number of FLOPS in the contraction.
+
+ Parameters
+ ----------
+ idx_contraction : iterable
+ The indices involved in the contraction
+ inner : bool
+ Does this contraction require an inner product?
+ num_terms : int
+ The number of terms in a contraction
+ size_dictionary : dict
+ The size of each of the indices in idx_contraction
+
+ Returns
+ -------
+ flop_count : int
+ The total number of FLOPS required for the contraction.
+
+ Examples
+ --------
+
+ >>> _flop_count('abc', False, 1, {'a': 2, 'b':3, 'c':5})
+ 30
+
+ >>> _flop_count('abc', True, 2, {'a': 2, 'b':3, 'c':5})
+ 60
+
+ """
+
+ overall_size = _compute_size_by_dict(idx_contraction, size_dictionary)
+ op_factor = max(1, num_terms - 1)
+ if inner:
+ op_factor += 1
+
+ return overall_size * op_factor
+
+def _compute_size_by_dict(indices, idx_dict):
+ """
+ Computes the product of the elements in indices based on the dictionary
+ idx_dict.
+
+ Parameters
+ ----------
+ indices : iterable
+ Indices to base the product on.
+ idx_dict : dictionary
+ Dictionary of index sizes
+
+ Returns
+ -------
+ ret : int
+ The resulting product.
+
+ Examples
+ --------
+ >>> _compute_size_by_dict('abbc', {'a': 2, 'b':3, 'c':5})
+ 90
+
+ """
+ ret = 1
+ for i in indices:
+ ret *= idx_dict[i]
+ return ret
+
+
+def _find_contraction(positions, input_sets, output_set):
+ """
+ Finds the contraction for a given set of input and output sets.
+
+ Parameters
+ ----------
+ positions : iterable
+ Integer positions of terms used in the contraction.
+ input_sets : list
+ List of sets that represent the lhs side of the einsum subscript
+ output_set : set
+ Set that represents the rhs side of the overall einsum subscript
+
+ Returns
+ -------
+ new_result : set
+ The indices of the resulting contraction
+ remaining : list
+ List of sets that have not been contracted, the new set is appended to
+ the end of this list
+ idx_removed : set
+ Indices removed from the entire contraction
+ idx_contraction : set
+ The indices used in the current contraction
+
+ Examples
+ --------
+
+ # A simple dot product test case
+ >>> pos = (0, 1)
+ >>> isets = [set('ab'), set('bc')]
+ >>> oset = set('ac')
+ >>> _find_contraction(pos, isets, oset)
+ ({'a', 'c'}, [{'a', 'c'}], {'b'}, {'a', 'b', 'c'})
+
+ # A more complex case with additional terms in the contraction
+ >>> pos = (0, 2)
+ >>> isets = [set('abd'), set('ac'), set('bdc')]
+ >>> oset = set('ac')
+ >>> _find_contraction(pos, isets, oset)
+ ({'a', 'c'}, [{'a', 'c'}, {'a', 'c'}], {'b', 'd'}, {'a', 'b', 'c', 'd'})
+ """
+
+ idx_contract = set()
+ idx_remain = output_set.copy()
+ remaining = []
+ for ind, value in enumerate(input_sets):
+ if ind in positions:
+ idx_contract |= value
+ else:
+ remaining.append(value)
+ idx_remain |= value
+
+ new_result = idx_remain & idx_contract
+ idx_removed = (idx_contract - new_result)
+ remaining.append(new_result)
+
+ return (new_result, remaining, idx_removed, idx_contract)
+
+
+def _optimal_path(input_sets, output_set, idx_dict, memory_limit):
+ """
+ Computes all possible pair contractions, sieves the results based
+ on ``memory_limit`` and returns the lowest cost path. This algorithm
+ scales factorial with respect to the elements in the list ``input_sets``.
+
+ Parameters
+ ----------
+ input_sets : list
+ List of sets that represent the lhs side of the einsum subscript
+ output_set : set
+ Set that represents the rhs side of the overall einsum subscript
+ idx_dict : dictionary
+ Dictionary of index sizes
+ memory_limit : int
+ The maximum number of elements in a temporary array
+
+ Returns
+ -------
+ path : list
+ The optimal contraction order within the memory limit constraint.
+
+ Examples
+ --------
+ >>> isets = [set('abd'), set('ac'), set('bdc')]
+ >>> oset = set()
+ >>> idx_sizes = {'a': 1, 'b':2, 'c':3, 'd':4}
+ >>> _optimal_path(isets, oset, idx_sizes, 5000)
+ [(0, 2), (0, 1)]
+ """
+
+ full_results = [(0, [], input_sets)]
+ for iteration in range(len(input_sets) - 1):
+ iter_results = []
+
+ # Compute all unique pairs
+ for curr in full_results:
+ cost, positions, remaining = curr
+ for con in itertools.combinations(range(len(input_sets) - iteration), 2):
+
+ # Find the contraction
+ cont = _find_contraction(con, remaining, output_set)
+ new_result, new_input_sets, idx_removed, idx_contract = cont
+
+ # Sieve the results based on memory_limit
+ new_size = _compute_size_by_dict(new_result, idx_dict)
+ if new_size > memory_limit:
+ continue
+
+ # Build (total_cost, positions, indices_remaining)
+ total_cost = cost + _flop_count(idx_contract, idx_removed, len(con), idx_dict)
+ new_pos = positions + [con]
+ iter_results.append((total_cost, new_pos, new_input_sets))
+
+ # Update combinatorial list, if we did not find anything return best
+ # path + remaining contractions
+ if iter_results:
+ full_results = iter_results
+ else:
+ path = min(full_results, key=lambda x: x[0])[1]
+ path += [tuple(range(len(input_sets) - iteration))]
+ return path
+
+ # If we have not found anything return single einsum contraction
+ if len(full_results) == 0:
+ return [tuple(range(len(input_sets)))]
+
+ path = min(full_results, key=lambda x: x[0])[1]
+ return path
+
+def _parse_possible_contraction(positions, input_sets, output_set, idx_dict, memory_limit, path_cost, naive_cost):
+ """Compute the cost (removed size + flops) and resultant indices for
+ performing the contraction specified by ``positions``.
+
+ Parameters
+ ----------
+ positions : tuple of int
+ The locations of the proposed tensors to contract.
+ input_sets : list of sets
+ The indices found on each tensors.
+ output_set : set
+ The output indices of the expression.
+ idx_dict : dict
+ Mapping of each index to its size.
+ memory_limit : int
+ The total allowed size for an intermediary tensor.
+ path_cost : int
+ The contraction cost so far.
+ naive_cost : int
+ The cost of the unoptimized expression.
+
+ Returns
+ -------
+ cost : (int, int)
+ A tuple containing the size of any indices removed, and the flop cost.
+ positions : tuple of int
+ The locations of the proposed tensors to contract.
+ new_input_sets : list of sets
+ The resulting new list of indices if this proposed contraction is performed.
+
+ """
+
+ # Find the contraction
+ contract = _find_contraction(positions, input_sets, output_set)
+ idx_result, new_input_sets, idx_removed, idx_contract = contract
+
+ # Sieve the results based on memory_limit
+ new_size = _compute_size_by_dict(idx_result, idx_dict)
+ if new_size > memory_limit:
+ return None
+
+ # Build sort tuple
+ old_sizes = (_compute_size_by_dict(input_sets[p], idx_dict) for p in positions)
+ removed_size = sum(old_sizes) - new_size
+
+ # NB: removed_size used to be just the size of any removed indices i.e.:
+ # helpers.compute_size_by_dict(idx_removed, idx_dict)
+ cost = _flop_count(idx_contract, idx_removed, len(positions), idx_dict)
+ sort = (-removed_size, cost)
+
+ # Sieve based on total cost as well
+ if (path_cost + cost) > naive_cost:
+ return None
+
+ # Add contraction to possible choices
+ return [sort, positions, new_input_sets]
+
+
+def _update_other_results(results, best):
+ """Update the positions and provisional input_sets of ``results`` based on
+ performing the contraction result ``best``. Remove any involving the tensors
+ contracted.
+
+ Parameters
+ ----------
+ results : list
+ List of contraction results produced by ``_parse_possible_contraction``.
+ best : list
+ The best contraction of ``results`` i.e. the one that will be performed.
+
+ Returns
+ -------
+ mod_results : list
+ The list of modified results, updated with outcome of ``best`` contraction.
+ """
+
+ best_con = best[1]
+ bx, by = best_con
+ mod_results = []
+
+ for cost, (x, y), con_sets in results:
+
+ # Ignore results involving tensors just contracted
+ if x in best_con or y in best_con:
+ continue
+
+ # Update the input_sets
+ del con_sets[by - int(by > x) - int(by > y)]
+ del con_sets[bx - int(bx > x) - int(bx > y)]
+ con_sets.insert(-1, best[2][-1])
+
+ # Update the position indices
+ mod_con = x - int(x > bx) - int(x > by), y - int(y > bx) - int(y > by)
+ mod_results.append((cost, mod_con, con_sets))
+
+ return mod_results
+
+def _greedy_path(input_sets, output_set, idx_dict, memory_limit):
+ """
+ Finds the path by contracting the best pair until the input list is
+ exhausted. The best pair is found by minimizing the tuple
+ ``(-prod(indices_removed), cost)``. What this amounts to is prioritizing
+ matrix multiplication or inner product operations, then Hadamard like
+ operations, and finally outer operations. Outer products are limited by
+ ``memory_limit``. This algorithm scales cubically with respect to the
+ number of elements in the list ``input_sets``.
+
+ Parameters
+ ----------
+ input_sets : list
+ List of sets that represent the lhs side of the einsum subscript
+ output_set : set
+ Set that represents the rhs side of the overall einsum subscript
+ idx_dict : dictionary
+ Dictionary of index sizes
+ memory_limit : int
+ The maximum number of elements in a temporary array
+
+ Returns
+ -------
+ path : list
+ The greedy contraction order within the memory limit constraint.
+
+ Examples
+ --------
+ >>> isets = [set('abd'), set('ac'), set('bdc')]
+ >>> oset = set()
+ >>> idx_sizes = {'a': 1, 'b':2, 'c':3, 'd':4}
+ >>> _greedy_path(isets, oset, idx_sizes, 5000)
+ [(0, 2), (0, 1)]
+ """
+
+ # Handle trivial cases that leaked through
+ if len(input_sets) == 1:
+ return [(0,)]
+ elif len(input_sets) == 2:
+ return [(0, 1)]
+
+ # Build up a naive cost
+ contract = _find_contraction(range(len(input_sets)), input_sets, output_set)
+ idx_result, new_input_sets, idx_removed, idx_contract = contract
+ naive_cost = _flop_count(idx_contract, idx_removed, len(input_sets), idx_dict)
+
+ # Initially iterate over all pairs
+ comb_iter = itertools.combinations(range(len(input_sets)), 2)
+ known_contractions = []
+
+ path_cost = 0
+ path = []
+
+ for iteration in range(len(input_sets) - 1):
+
+ # Iterate over all pairs on first step, only previously found pairs on subsequent steps
+ for positions in comb_iter:
+
+ # Always initially ignore outer products
+ if input_sets[positions[0]].isdisjoint(input_sets[positions[1]]):
+ continue
+
+ result = _parse_possible_contraction(positions, input_sets, output_set, idx_dict, memory_limit, path_cost,
+ naive_cost)
+ if result is not None:
+ known_contractions.append(result)
+
+ # If we do not have a inner contraction, rescan pairs including outer products
+ if len(known_contractions) == 0:
+
+ # Then check the outer products
+ for positions in itertools.combinations(range(len(input_sets)), 2):
+ result = _parse_possible_contraction(positions, input_sets, output_set, idx_dict, memory_limit,
+ path_cost, naive_cost)
+ if result is not None:
+ known_contractions.append(result)
+
+ # If we still did not find any remaining contractions, default back to einsum like behavior
+ if len(known_contractions) == 0:
+ path.append(tuple(range(len(input_sets))))
+ break
+
+ # Sort based on first index
+ best = min(known_contractions, key=lambda x: x[0])
+
+ # Now propagate as many unused contractions as possible to next iteration
+ known_contractions = _update_other_results(known_contractions, best)
+
+ # Next iteration only compute contractions with the new tensor
+ # All other contractions have been accounted for
+ input_sets = best[2]
+ new_tensor_pos = len(input_sets) - 1
+ comb_iter = ((i, new_tensor_pos) for i in range(new_tensor_pos))
+
+ # Update path and total cost
+ path.append(best[1])
+ path_cost += best[0][1]
+
+ return path
+
+
+def _can_dot(inputs, result, idx_removed):
+ """
+ Checks if we can use BLAS (np.tensordot) call and its beneficial to do so.
+
+ Parameters
+ ----------
+ inputs : list of str
+ Specifies the subscripts for summation.
+ result : str
+ Resulting summation.
+ idx_removed : set
+ Indices that are removed in the summation
+
+
+ Returns
+ -------
+ type : bool
+ Returns true if BLAS should and can be used, else False
+
+ Notes
+ -----
+ If the operations is BLAS level 1 or 2 and is not already aligned
+ we default back to einsum as the memory movement to copy is more
+ costly than the operation itself.
+
+
+ Examples
+ --------
+
+ # Standard GEMM operation
+ >>> _can_dot(['ij', 'jk'], 'ik', set('j'))
+ True
+
+ # Can use the standard BLAS, but requires odd data movement
+ >>> _can_dot(['ijj', 'jk'], 'ik', set('j'))
+ False
+
+ # DDOT where the memory is not aligned
+ >>> _can_dot(['ijk', 'ikj'], '', set('ijk'))
+ False
+
+ """
+
+ # All `dot` calls remove indices
+ if len(idx_removed) == 0:
+ return False
+
+ # BLAS can only handle two operands
+ if len(inputs) != 2:
+ return False
+
+ input_left, input_right = inputs
+
+ for c in set(input_left + input_right):
+ # can't deal with repeated indices on same input or more than 2 total
+ nl, nr = input_left.count(c), input_right.count(c)
+ if (nl > 1) or (nr > 1) or (nl + nr > 2):
+ return False
+
+ # can't do implicit summation or dimension collapse e.g.
+ # "ab,bc->c" (implicitly sum over 'a')
+ # "ab,ca->ca" (take diagonal of 'a')
+ if nl + nr - 1 == int(c in result):
+ return False
+
+ # Build a few temporaries
+ set_left = set(input_left)
+ set_right = set(input_right)
+ keep_left = set_left - idx_removed
+ keep_right = set_right - idx_removed
+ rs = len(idx_removed)
+
+ # At this point we are a DOT, GEMV, or GEMM operation
+
+ # Handle inner products
+
+ # DDOT with aligned data
+ if input_left == input_right:
+ return True
+
+ # DDOT without aligned data (better to use einsum)
+ if set_left == set_right:
+ return False
+
+ # Handle the 4 possible (aligned) GEMV or GEMM cases
+
+ # GEMM or GEMV no transpose
+ if input_left[-rs:] == input_right[:rs]:
+ return True
+
+ # GEMM or GEMV transpose both
+ if input_left[:rs] == input_right[-rs:]:
+ return True
+
+ # GEMM or GEMV transpose right
+ if input_left[-rs:] == input_right[-rs:]:
+ return True
+
+ # GEMM or GEMV transpose left
+ if input_left[:rs] == input_right[:rs]:
+ return True
+
+ # Einsum is faster than GEMV if we have to copy data
+ if not keep_left or not keep_right:
+ return False
+
+ # We are a matrix-matrix product, but we need to copy data
+ return True
+
+
+def _parse_einsum_input(operands):
+ """
+ A reproduction of einsum c side einsum parsing in python.
+
+ Returns
+ -------
+ input_strings : str
+ Parsed input strings
+ output_string : str
+ Parsed output string
+ operands : list of array_like
+ The operands to use in the numpy contraction
+
+ Examples
+ --------
+ The operand list is simplified to reduce printing:
+
+ >>> np.random.seed(123)
+ >>> a = np.random.rand(4, 4)
+ >>> b = np.random.rand(4, 4, 4)
+ >>> _parse_einsum_input(('...a,...a->...', a, b))
+ ('za,xza', 'xz', [a, b]) # may vary
+
+ >>> _parse_einsum_input((a, [Ellipsis, 0], b, [Ellipsis, 0]))
+ ('za,xza', 'xz', [a, b]) # may vary
+ """
+
+ if len(operands) == 0:
+ raise ValueError("No input operands")
+
+ if isinstance(operands[0], str):
+ subscripts = operands[0].replace(" ", "")
+ operands = [asanyarray(v) for v in operands[1:]]
+
+ # Ensure all characters are valid
+ for s in subscripts:
+ if s in '.,->':
+ continue
+ if s not in einsum_symbols:
+ raise ValueError("Character %s is not a valid symbol." % s)
+
+ else:
+ tmp_operands = list(operands)
+ operand_list = []
+ subscript_list = []
+ for p in range(len(operands) // 2):
+ operand_list.append(tmp_operands.pop(0))
+ subscript_list.append(tmp_operands.pop(0))
+
+ output_list = tmp_operands[-1] if len(tmp_operands) else None
+ operands = [asanyarray(v) for v in operand_list]
+ subscripts = ""
+ last = len(subscript_list) - 1
+ for num, sub in enumerate(subscript_list):
+ for s in sub:
+ if s is Ellipsis:
+ subscripts += "..."
+ else:
+ try:
+ s = operator.index(s)
+ except TypeError as e:
+ raise TypeError("For this input type lists must contain "
+ "either int or Ellipsis") from e
+ subscripts += einsum_symbols[s]
+ if num != last:
+ subscripts += ","
+
+ if output_list is not None:
+ subscripts += "->"
+ for s in output_list:
+ if s is Ellipsis:
+ subscripts += "..."
+ else:
+ try:
+ s = operator.index(s)
+ except TypeError as e:
+ raise TypeError("For this input type lists must contain "
+ "either int or Ellipsis") from e
+ subscripts += einsum_symbols[s]
+ # Check for proper "->"
+ if ("-" in subscripts) or (">" in subscripts):
+ invalid = (subscripts.count("-") > 1) or (subscripts.count(">") > 1)
+ if invalid or (subscripts.count("->") != 1):
+ raise ValueError("Subscripts can only contain one '->'.")
+
+ # Parse ellipses
+ if "." in subscripts:
+ used = subscripts.replace(".", "").replace(",", "").replace("->", "")
+ unused = list(einsum_symbols_set - set(used))
+ ellipse_inds = "".join(unused)
+ longest = 0
+
+ if "->" in subscripts:
+ input_tmp, output_sub = subscripts.split("->")
+ split_subscripts = input_tmp.split(",")
+ out_sub = True
+ else:
+ split_subscripts = subscripts.split(',')
+ out_sub = False
+
+ for num, sub in enumerate(split_subscripts):
+ if "." in sub:
+ if (sub.count(".") != 3) or (sub.count("...") != 1):
+ raise ValueError("Invalid Ellipses.")
+
+ # Take into account numerical values
+ if operands[num].shape == ():
+ ellipse_count = 0
+ else:
+ ellipse_count = max(operands[num].ndim, 1)
+ ellipse_count -= (len(sub) - 3)
+
+ if ellipse_count > longest:
+ longest = ellipse_count
+
+ if ellipse_count < 0:
+ raise ValueError("Ellipses lengths do not match.")
+ elif ellipse_count == 0:
+ split_subscripts[num] = sub.replace('...', '')
+ else:
+ rep_inds = ellipse_inds[-ellipse_count:]
+ split_subscripts[num] = sub.replace('...', rep_inds)
+
+ subscripts = ",".join(split_subscripts)
+ if longest == 0:
+ out_ellipse = ""
+ else:
+ out_ellipse = ellipse_inds[-longest:]
+
+ if out_sub:
+ subscripts += "->" + output_sub.replace("...", out_ellipse)
+ else:
+ # Special care for outputless ellipses
+ output_subscript = ""
+ tmp_subscripts = subscripts.replace(",", "")
+ for s in sorted(set(tmp_subscripts)):
+ if s not in (einsum_symbols):
+ raise ValueError("Character %s is not a valid symbol." % s)
+ if tmp_subscripts.count(s) == 1:
+ output_subscript += s
+ normal_inds = ''.join(sorted(set(output_subscript) -
+ set(out_ellipse)))
+
+ subscripts += "->" + out_ellipse + normal_inds
+
+ # Build output string if does not exist
+ if "->" in subscripts:
+ input_subscripts, output_subscript = subscripts.split("->")
+ else:
+ input_subscripts = subscripts
+ # Build output subscripts
+ tmp_subscripts = subscripts.replace(",", "")
+ output_subscript = ""
+ for s in sorted(set(tmp_subscripts)):
+ if s not in einsum_symbols:
+ raise ValueError("Character %s is not a valid symbol." % s)
+ if tmp_subscripts.count(s) == 1:
+ output_subscript += s
+
+ # Make sure output subscripts are in the input
+ for char in output_subscript:
+ if char not in input_subscripts:
+ raise ValueError("Output character %s did not appear in the input"
+ % char)
+
+ # Make sure number operands is equivalent to the number of terms
+ if len(input_subscripts.split(',')) != len(operands):
+ raise ValueError("Number of einsum subscripts must be equal to the "
+ "number of operands.")
+
+ return (input_subscripts, output_subscript, operands)
+
+
+def _einsum_path_dispatcher(*operands, optimize=None, einsum_call=None):
+ # NOTE: technically, we should only dispatch on array-like arguments, not
+ # subscripts (given as strings). But separating operands into
+ # arrays/subscripts is a little tricky/slow (given einsum's two supported
+ # signatures), so as a practical shortcut we dispatch on everything.
+ # Strings will be ignored for dispatching since they don't define
+ # __array_function__.
+ return operands
+
+
+@array_function_dispatch(_einsum_path_dispatcher, module='numpy')
+def einsum_path(*operands, optimize='greedy', einsum_call=False):
+ """
+ einsum_path(subscripts, *operands, optimize='greedy')
+
+ Evaluates the lowest cost contraction order for an einsum expression by
+ considering the creation of intermediate arrays.
+
+ Parameters
+ ----------
+ subscripts : str
+ Specifies the subscripts for summation.
+ *operands : list of array_like
+ These are the arrays for the operation.
+ optimize : {bool, list, tuple, 'greedy', 'optimal'}
+ Choose the type of path. If a tuple is provided, the second argument is
+ assumed to be the maximum intermediate size created. If only a single
+ argument is provided the largest input or output array size is used
+ as a maximum intermediate size.
+
+ * if a list is given that starts with ``einsum_path``, uses this as the
+ contraction path
+ * if False no optimization is taken
+ * if True defaults to the 'greedy' algorithm
+ * 'optimal' An algorithm that combinatorially explores all possible
+ ways of contracting the listed tensors and chooses the least costly
+ path. Scales exponentially with the number of terms in the
+ contraction.
+ * 'greedy' An algorithm that chooses the best pair contraction
+ at each step. Effectively, this algorithm searches the largest inner,
+ Hadamard, and then outer products at each step. Scales cubically with
+ the number of terms in the contraction. Equivalent to the 'optimal'
+ path for most contractions.
+
+ Default is 'greedy'.
+
+ Returns
+ -------
+ path : list of tuples
+ A list representation of the einsum path.
+ string_repr : str
+ A printable representation of the einsum path.
+
+ Notes
+ -----
+ The resulting path indicates which terms of the input contraction should be
+ contracted first, the result of this contraction is then appended to the
+ end of the contraction list. This list can then be iterated over until all
+ intermediate contractions are complete.
+
+ See Also
+ --------
+ einsum, linalg.multi_dot
+
+ Examples
+ --------
+
+ We can begin with a chain dot example. In this case, it is optimal to
+ contract the ``b`` and ``c`` tensors first as represented by the first
+ element of the path ``(1, 2)``. The resulting tensor is added to the end
+ of the contraction and the remaining contraction ``(0, 1)`` is then
+ completed.
+
+ >>> np.random.seed(123)
+ >>> a = np.random.rand(2, 2)
+ >>> b = np.random.rand(2, 5)
+ >>> c = np.random.rand(5, 2)
+ >>> path_info = np.einsum_path('ij,jk,kl->il', a, b, c, optimize='greedy')
+ >>> print(path_info[0])
+ ['einsum_path', (1, 2), (0, 1)]
+ >>> print(path_info[1])
+ Complete contraction: ij,jk,kl->il # may vary
+ Naive scaling: 4
+ Optimized scaling: 3
+ Naive FLOP count: 1.600e+02
+ Optimized FLOP count: 5.600e+01
+ Theoretical speedup: 2.857
+ Largest intermediate: 4.000e+00 elements
+ -------------------------------------------------------------------------
+ scaling current remaining
+ -------------------------------------------------------------------------
+ 3 kl,jk->jl ij,jl->il
+ 3 jl,ij->il il->il
+
+
+ A more complex index transformation example.
+
+ >>> I = np.random.rand(10, 10, 10, 10)
+ >>> C = np.random.rand(10, 10)
+ >>> path_info = np.einsum_path('ea,fb,abcd,gc,hd->efgh', C, C, I, C, C,
+ ... optimize='greedy')
+
+ >>> print(path_info[0])
+ ['einsum_path', (0, 2), (0, 3), (0, 2), (0, 1)]
+ >>> print(path_info[1])
+ Complete contraction: ea,fb,abcd,gc,hd->efgh # may vary
+ Naive scaling: 8
+ Optimized scaling: 5
+ Naive FLOP count: 8.000e+08
+ Optimized FLOP count: 8.000e+05
+ Theoretical speedup: 1000.000
+ Largest intermediate: 1.000e+04 elements
+ --------------------------------------------------------------------------
+ scaling current remaining
+ --------------------------------------------------------------------------
+ 5 abcd,ea->bcde fb,gc,hd,bcde->efgh
+ 5 bcde,fb->cdef gc,hd,cdef->efgh
+ 5 cdef,gc->defg hd,defg->efgh
+ 5 defg,hd->efgh efgh->efgh
+ """
+
+ # Figure out what the path really is
+ path_type = optimize
+ if path_type is True:
+ path_type = 'greedy'
+ if path_type is None:
+ path_type = False
+
+ explicit_einsum_path = False
+ memory_limit = None
+
+ # No optimization or a named path algorithm
+ if (path_type is False) or isinstance(path_type, str):
+ pass
+
+ # Given an explicit path
+ elif len(path_type) and (path_type[0] == 'einsum_path'):
+ explicit_einsum_path = True
+
+ # Path tuple with memory limit
+ elif ((len(path_type) == 2) and isinstance(path_type[0], str) and
+ isinstance(path_type[1], (int, float))):
+ memory_limit = int(path_type[1])
+ path_type = path_type[0]
+
+ else:
+ raise TypeError("Did not understand the path: %s" % str(path_type))
+
+ # Hidden option, only einsum should call this
+ einsum_call_arg = einsum_call
+
+ # Python side parsing
+ input_subscripts, output_subscript, operands = _parse_einsum_input(operands)
+
+ # Build a few useful list and sets
+ input_list = input_subscripts.split(',')
+ input_sets = [set(x) for x in input_list]
+ output_set = set(output_subscript)
+ indices = set(input_subscripts.replace(',', ''))
+
+ # Get length of each unique dimension and ensure all dimensions are correct
+ dimension_dict = {}
+ broadcast_indices = [[] for x in range(len(input_list))]
+ for tnum, term in enumerate(input_list):
+ sh = operands[tnum].shape
+ if len(sh) != len(term):
+ raise ValueError("Einstein sum subscript %s does not contain the "
+ "correct number of indices for operand %d."
+ % (input_subscripts[tnum], tnum))
+ for cnum, char in enumerate(term):
+ dim = sh[cnum]
+
+ # Build out broadcast indices
+ if dim == 1:
+ broadcast_indices[tnum].append(char)
+
+ if char in dimension_dict.keys():
+ # For broadcasting cases we always want the largest dim size
+ if dimension_dict[char] == 1:
+ dimension_dict[char] = dim
+ elif dim not in (1, dimension_dict[char]):
+ raise ValueError("Size of label '%s' for operand %d (%d) "
+ "does not match previous terms (%d)."
+ % (char, tnum, dimension_dict[char], dim))
+ else:
+ dimension_dict[char] = dim
+
+ # Convert broadcast inds to sets
+ broadcast_indices = [set(x) for x in broadcast_indices]
+
+ # Compute size of each input array plus the output array
+ size_list = [_compute_size_by_dict(term, dimension_dict)
+ for term in input_list + [output_subscript]]
+ max_size = max(size_list)
+
+ if memory_limit is None:
+ memory_arg = max_size
+ else:
+ memory_arg = memory_limit
+
+ # Compute naive cost
+ # This isn't quite right, need to look into exactly how einsum does this
+ inner_product = (sum(len(x) for x in input_sets) - len(indices)) > 0
+ naive_cost = _flop_count(indices, inner_product, len(input_list), dimension_dict)
+
+ # Compute the path
+ if explicit_einsum_path:
+ path = path_type[1:]
+ elif (
+ (path_type is False)
+ or (len(input_list) in [1, 2])
+ or (indices == output_set)
+ ):
+ # Nothing to be optimized, leave it to einsum
+ path = [tuple(range(len(input_list)))]
+ elif path_type == "greedy":
+ path = _greedy_path(input_sets, output_set, dimension_dict, memory_arg)
+ elif path_type == "optimal":
+ path = _optimal_path(input_sets, output_set, dimension_dict, memory_arg)
+ else:
+ raise KeyError("Path name %s not found", path_type)
+
+ cost_list, scale_list, size_list, contraction_list = [], [], [], []
+
+ # Build contraction tuple (positions, gemm, einsum_str, remaining)
+ for cnum, contract_inds in enumerate(path):
+ # Make sure we remove inds from right to left
+ contract_inds = tuple(sorted(list(contract_inds), reverse=True))
+
+ contract = _find_contraction(contract_inds, input_sets, output_set)
+ out_inds, input_sets, idx_removed, idx_contract = contract
+
+ cost = _flop_count(idx_contract, idx_removed, len(contract_inds), dimension_dict)
+ cost_list.append(cost)
+ scale_list.append(len(idx_contract))
+ size_list.append(_compute_size_by_dict(out_inds, dimension_dict))
+
+ bcast = set()
+ tmp_inputs = []
+ for x in contract_inds:
+ tmp_inputs.append(input_list.pop(x))
+ bcast |= broadcast_indices.pop(x)
+
+ new_bcast_inds = bcast - idx_removed
+
+ # If we're broadcasting, nix blas
+ if not len(idx_removed & bcast):
+ do_blas = _can_dot(tmp_inputs, out_inds, idx_removed)
+ else:
+ do_blas = False
+
+ # Last contraction
+ if (cnum - len(path)) == -1:
+ idx_result = output_subscript
+ else:
+ sort_result = [(dimension_dict[ind], ind) for ind in out_inds]
+ idx_result = "".join([x[1] for x in sorted(sort_result)])
+
+ input_list.append(idx_result)
+ broadcast_indices.append(new_bcast_inds)
+ einsum_str = ",".join(tmp_inputs) + "->" + idx_result
+
+ contraction = (contract_inds, idx_removed, einsum_str, input_list[:], do_blas)
+ contraction_list.append(contraction)
+
+ opt_cost = sum(cost_list) + 1
+
+ if len(input_list) != 1:
+ # Explicit "einsum_path" is usually trusted, but we detect this kind of
+ # mistake in order to prevent from returning an intermediate value.
+ raise RuntimeError(
+ "Invalid einsum_path is specified: {} more operands has to be "
+ "contracted.".format(len(input_list) - 1))
+
+ if einsum_call_arg:
+ return (operands, contraction_list)
+
+ # Return the path along with a nice string representation
+ overall_contraction = input_subscripts + "->" + output_subscript
+ header = ("scaling", "current", "remaining")
+
+ speedup = naive_cost / opt_cost
+ max_i = max(size_list)
+
+ path_print = " Complete contraction: %s\n" % overall_contraction
+ path_print += " Naive scaling: %d\n" % len(indices)
+ path_print += " Optimized scaling: %d\n" % max(scale_list)
+ path_print += " Naive FLOP count: %.3e\n" % naive_cost
+ path_print += " Optimized FLOP count: %.3e\n" % opt_cost
+ path_print += " Theoretical speedup: %3.3f\n" % speedup
+ path_print += " Largest intermediate: %.3e elements\n" % max_i
+ path_print += "-" * 74 + "\n"
+ path_print += "%6s %24s %40s\n" % header
+ path_print += "-" * 74
+
+ for n, contraction in enumerate(contraction_list):
+ inds, idx_rm, einsum_str, remaining, blas = contraction
+ remaining_str = ",".join(remaining) + "->" + output_subscript
+ path_run = (scale_list[n], einsum_str, remaining_str)
+ path_print += "\n%4d %24s %40s" % path_run
+
+ path = ['einsum_path'] + path
+ return (path, path_print)
+
+
+def _einsum_dispatcher(*operands, out=None, optimize=None, **kwargs):
+ # Arguably we dispatch on more arguments than we really should; see note in
+ # _einsum_path_dispatcher for why.
+ yield from operands
+ yield out
+
+
+# Rewrite einsum to handle different cases
+@array_function_dispatch(_einsum_dispatcher, module='numpy')
+def einsum(*operands, out=None, optimize=False, **kwargs):
+ """
+ einsum(subscripts, *operands, out=None, dtype=None, order='K',
+ casting='safe', optimize=False)
+
+ Evaluates the Einstein summation convention on the operands.
+
+ Using the Einstein summation convention, many common multi-dimensional,
+ linear algebraic array operations can be represented in a simple fashion.
+ In *implicit* mode `einsum` computes these values.
+
+ In *explicit* mode, `einsum` provides further flexibility to compute
+ other array operations that might not be considered classical Einstein
+ summation operations, by disabling, or forcing summation over specified
+ subscript labels.
+
+ See the notes and examples for clarification.
+
+ Parameters
+ ----------
+ subscripts : str
+ Specifies the subscripts for summation as comma separated list of
+ subscript labels. An implicit (classical Einstein summation)
+ calculation is performed unless the explicit indicator '->' is
+ included as well as subscript labels of the precise output form.
+ operands : list of array_like
+ These are the arrays for the operation.
+ out : ndarray, optional
+ If provided, the calculation is done into this array.
+ dtype : {data-type, None}, optional
+ If provided, forces the calculation to use the data type specified.
+ Note that you may have to also give a more liberal `casting`
+ parameter to allow the conversions. Default is None.
+ order : {'C', 'F', 'A', 'K'}, optional
+ Controls the memory layout of the output. 'C' means it should
+ be C contiguous. 'F' means it should be Fortran contiguous,
+ 'A' means it should be 'F' if the inputs are all 'F', 'C' otherwise.
+ 'K' means it should be as close to the layout as the inputs as
+ is possible, including arbitrarily permuted axes.
+ Default is 'K'.
+ casting : {'no', 'equiv', 'safe', 'same_kind', 'unsafe'}, optional
+ Controls what kind of data casting may occur. Setting this to
+ 'unsafe' is not recommended, as it can adversely affect accumulations.
+
+ * 'no' means the data types should not be cast at all.
+ * 'equiv' means only byte-order changes are allowed.
+ * 'safe' means only casts which can preserve values are allowed.
+ * 'same_kind' means only safe casts or casts within a kind,
+ like float64 to float32, are allowed.
+ * 'unsafe' means any data conversions may be done.
+
+ Default is 'safe'.
+ optimize : {False, True, 'greedy', 'optimal'}, optional
+ Controls if intermediate optimization should occur. No optimization
+ will occur if False and True will default to the 'greedy' algorithm.
+ Also accepts an explicit contraction list from the ``np.einsum_path``
+ function. See ``np.einsum_path`` for more details. Defaults to False.
+
+ Returns
+ -------
+ output : ndarray
+ The calculation based on the Einstein summation convention.
+
+ See Also
+ --------
+ einsum_path, dot, inner, outer, tensordot, linalg.multi_dot
+ einops :
+ similar verbose interface is provided by
+ `einops <https://github.com/arogozhnikov/einops>`_ package to cover
+ additional operations: transpose, reshape/flatten, repeat/tile,
+ squeeze/unsqueeze and reductions.
+ opt_einsum :
+ `opt_einsum <https://optimized-einsum.readthedocs.io/en/stable/>`_
+ optimizes contraction order for einsum-like expressions
+ in backend-agnostic manner.
+
+ Notes
+ -----
+ .. versionadded:: 1.6.0
+
+ The Einstein summation convention can be used to compute
+ many multi-dimensional, linear algebraic array operations. `einsum`
+ provides a succinct way of representing these.
+
+ A non-exhaustive list of these operations,
+ which can be computed by `einsum`, is shown below along with examples:
+
+ * Trace of an array, :py:func:`numpy.trace`.
+ * Return a diagonal, :py:func:`numpy.diag`.
+ * Array axis summations, :py:func:`numpy.sum`.
+ * Transpositions and permutations, :py:func:`numpy.transpose`.
+ * Matrix multiplication and dot product, :py:func:`numpy.matmul` :py:func:`numpy.dot`.
+ * Vector inner and outer products, :py:func:`numpy.inner` :py:func:`numpy.outer`.
+ * Broadcasting, element-wise and scalar multiplication, :py:func:`numpy.multiply`.
+ * Tensor contractions, :py:func:`numpy.tensordot`.
+ * Chained array operations, in efficient calculation order, :py:func:`numpy.einsum_path`.
+
+ The subscripts string is a comma-separated list of subscript labels,
+ where each label refers to a dimension of the corresponding operand.
+ Whenever a label is repeated it is summed, so ``np.einsum('i,i', a, b)``
+ is equivalent to :py:func:`np.inner(a,b) <numpy.inner>`. If a label
+ appears only once, it is not summed, so ``np.einsum('i', a)`` produces a
+ view of ``a`` with no changes. A further example ``np.einsum('ij,jk', a, b)``
+ describes traditional matrix multiplication and is equivalent to
+ :py:func:`np.matmul(a,b) <numpy.matmul>`. Repeated subscript labels in one
+ operand take the diagonal. For example, ``np.einsum('ii', a)`` is equivalent
+ to :py:func:`np.trace(a) <numpy.trace>`.
+
+ In *implicit mode*, the chosen subscripts are important
+ since the axes of the output are reordered alphabetically. This
+ means that ``np.einsum('ij', a)`` doesn't affect a 2D array, while
+ ``np.einsum('ji', a)`` takes its transpose. Additionally,
+ ``np.einsum('ij,jk', a, b)`` returns a matrix multiplication, while,
+ ``np.einsum('ij,jh', a, b)`` returns the transpose of the
+ multiplication since subscript 'h' precedes subscript 'i'.
+
+ In *explicit mode* the output can be directly controlled by
+ specifying output subscript labels. This requires the
+ identifier '->' as well as the list of output subscript labels.
+ This feature increases the flexibility of the function since
+ summing can be disabled or forced when required. The call
+ ``np.einsum('i->', a)`` is like :py:func:`np.sum(a, axis=-1) <numpy.sum>`,
+ and ``np.einsum('ii->i', a)`` is like :py:func:`np.diag(a) <numpy.diag>`.
+ The difference is that `einsum` does not allow broadcasting by default.
+ Additionally ``np.einsum('ij,jh->ih', a, b)`` directly specifies the
+ order of the output subscript labels and therefore returns matrix
+ multiplication, unlike the example above in implicit mode.
+
+ To enable and control broadcasting, use an ellipsis. Default
+ NumPy-style broadcasting is done by adding an ellipsis
+ to the left of each term, like ``np.einsum('...ii->...i', a)``.
+ To take the trace along the first and last axes,
+ you can do ``np.einsum('i...i', a)``, or to do a matrix-matrix
+ product with the left-most indices instead of rightmost, one can do
+ ``np.einsum('ij...,jk...->ik...', a, b)``.
+
+ When there is only one operand, no axes are summed, and no output
+ parameter is provided, a view into the operand is returned instead
+ of a new array. Thus, taking the diagonal as ``np.einsum('ii->i', a)``
+ produces a view (changed in version 1.10.0).
+
+ `einsum` also provides an alternative way to provide the subscripts
+ and operands as ``einsum(op0, sublist0, op1, sublist1, ..., [sublistout])``.
+ If the output shape is not provided in this format `einsum` will be
+ calculated in implicit mode, otherwise it will be performed explicitly.
+ The examples below have corresponding `einsum` calls with the two
+ parameter methods.
+
+ .. versionadded:: 1.10.0
+
+ Views returned from einsum are now writeable whenever the input array
+ is writeable. For example, ``np.einsum('ijk...->kji...', a)`` will now
+ have the same effect as :py:func:`np.swapaxes(a, 0, 2) <numpy.swapaxes>`
+ and ``np.einsum('ii->i', a)`` will return a writeable view of the diagonal
+ of a 2D array.
+
+ .. versionadded:: 1.12.0
+
+ Added the ``optimize`` argument which will optimize the contraction order
+ of an einsum expression. For a contraction with three or more operands this
+ can greatly increase the computational efficiency at the cost of a larger
+ memory footprint during computation.
+
+ Typically a 'greedy' algorithm is applied which empirical tests have shown
+ returns the optimal path in the majority of cases. In some cases 'optimal'
+ will return the superlative path through a more expensive, exhaustive search.
+ For iterative calculations it may be advisable to calculate the optimal path
+ once and reuse that path by supplying it as an argument. An example is given
+ below.
+
+ See :py:func:`numpy.einsum_path` for more details.
+
+ Examples
+ --------
+ >>> a = np.arange(25).reshape(5,5)
+ >>> b = np.arange(5)
+ >>> c = np.arange(6).reshape(2,3)
+
+ Trace of a matrix:
+
+ >>> np.einsum('ii', a)
+ 60
+ >>> np.einsum(a, [0,0])
+ 60
+ >>> np.trace(a)
+ 60
+
+ Extract the diagonal (requires explicit form):
+
+ >>> np.einsum('ii->i', a)
+ array([ 0, 6, 12, 18, 24])
+ >>> np.einsum(a, [0,0], [0])
+ array([ 0, 6, 12, 18, 24])
+ >>> np.diag(a)
+ array([ 0, 6, 12, 18, 24])
+
+ Sum over an axis (requires explicit form):
+
+ >>> np.einsum('ij->i', a)
+ array([ 10, 35, 60, 85, 110])
+ >>> np.einsum(a, [0,1], [0])
+ array([ 10, 35, 60, 85, 110])
+ >>> np.sum(a, axis=1)
+ array([ 10, 35, 60, 85, 110])
+
+ For higher dimensional arrays summing a single axis can be done with ellipsis:
+
+ >>> np.einsum('...j->...', a)
+ array([ 10, 35, 60, 85, 110])
+ >>> np.einsum(a, [Ellipsis,1], [Ellipsis])
+ array([ 10, 35, 60, 85, 110])
+
+ Compute a matrix transpose, or reorder any number of axes:
+
+ >>> np.einsum('ji', c)
+ array([[0, 3],
+ [1, 4],
+ [2, 5]])
+ >>> np.einsum('ij->ji', c)
+ array([[0, 3],
+ [1, 4],
+ [2, 5]])
+ >>> np.einsum(c, [1,0])
+ array([[0, 3],
+ [1, 4],
+ [2, 5]])
+ >>> np.transpose(c)
+ array([[0, 3],
+ [1, 4],
+ [2, 5]])
+
+ Vector inner products:
+
+ >>> np.einsum('i,i', b, b)
+ 30
+ >>> np.einsum(b, [0], b, [0])
+ 30
+ >>> np.inner(b,b)
+ 30
+
+ Matrix vector multiplication:
+
+ >>> np.einsum('ij,j', a, b)
+ array([ 30, 80, 130, 180, 230])
+ >>> np.einsum(a, [0,1], b, [1])
+ array([ 30, 80, 130, 180, 230])
+ >>> np.dot(a, b)
+ array([ 30, 80, 130, 180, 230])
+ >>> np.einsum('...j,j', a, b)
+ array([ 30, 80, 130, 180, 230])
+
+ Broadcasting and scalar multiplication:
+
+ >>> np.einsum('..., ...', 3, c)
+ array([[ 0, 3, 6],
+ [ 9, 12, 15]])
+ >>> np.einsum(',ij', 3, c)
+ array([[ 0, 3, 6],
+ [ 9, 12, 15]])
+ >>> np.einsum(3, [Ellipsis], c, [Ellipsis])
+ array([[ 0, 3, 6],
+ [ 9, 12, 15]])
+ >>> np.multiply(3, c)
+ array([[ 0, 3, 6],
+ [ 9, 12, 15]])
+
+ Vector outer product:
+
+ >>> np.einsum('i,j', np.arange(2)+1, b)
+ array([[0, 1, 2, 3, 4],
+ [0, 2, 4, 6, 8]])
+ >>> np.einsum(np.arange(2)+1, [0], b, [1])
+ array([[0, 1, 2, 3, 4],
+ [0, 2, 4, 6, 8]])
+ >>> np.outer(np.arange(2)+1, b)
+ array([[0, 1, 2, 3, 4],
+ [0, 2, 4, 6, 8]])
+
+ Tensor contraction:
+
+ >>> a = np.arange(60.).reshape(3,4,5)
+ >>> b = np.arange(24.).reshape(4,3,2)
+ >>> np.einsum('ijk,jil->kl', a, b)
+ array([[4400., 4730.],
+ [4532., 4874.],
+ [4664., 5018.],
+ [4796., 5162.],
+ [4928., 5306.]])
+ >>> np.einsum(a, [0,1,2], b, [1,0,3], [2,3])
+ array([[4400., 4730.],
+ [4532., 4874.],
+ [4664., 5018.],
+ [4796., 5162.],
+ [4928., 5306.]])
+ >>> np.tensordot(a,b, axes=([1,0],[0,1]))
+ array([[4400., 4730.],
+ [4532., 4874.],
+ [4664., 5018.],
+ [4796., 5162.],
+ [4928., 5306.]])
+
+ Writeable returned arrays (since version 1.10.0):
+
+ >>> a = np.zeros((3, 3))
+ >>> np.einsum('ii->i', a)[:] = 1
+ >>> a
+ array([[1., 0., 0.],
+ [0., 1., 0.],
+ [0., 0., 1.]])
+
+ Example of ellipsis use:
+
+ >>> a = np.arange(6).reshape((3,2))
+ >>> b = np.arange(12).reshape((4,3))
+ >>> np.einsum('ki,jk->ij', a, b)
+ array([[10, 28, 46, 64],
+ [13, 40, 67, 94]])
+ >>> np.einsum('ki,...k->i...', a, b)
+ array([[10, 28, 46, 64],
+ [13, 40, 67, 94]])
+ >>> np.einsum('k...,jk', a, b)
+ array([[10, 28, 46, 64],
+ [13, 40, 67, 94]])
+
+ Chained array operations. For more complicated contractions, speed ups
+ might be achieved by repeatedly computing a 'greedy' path or pre-computing the
+ 'optimal' path and repeatedly applying it, using an
+ `einsum_path` insertion (since version 1.12.0). Performance improvements can be
+ particularly significant with larger arrays:
+
+ >>> a = np.ones(64).reshape(2,4,8)
+
+ Basic `einsum`: ~1520ms (benchmarked on 3.1GHz Intel i5.)
+
+ >>> for iteration in range(500):
+ ... _ = np.einsum('ijk,ilm,njm,nlk,abc->',a,a,a,a,a)
+
+ Sub-optimal `einsum` (due to repeated path calculation time): ~330ms
+
+ >>> for iteration in range(500):
+ ... _ = np.einsum('ijk,ilm,njm,nlk,abc->',a,a,a,a,a, optimize='optimal')
+
+ Greedy `einsum` (faster optimal path approximation): ~160ms
+
+ >>> for iteration in range(500):
+ ... _ = np.einsum('ijk,ilm,njm,nlk,abc->',a,a,a,a,a, optimize='greedy')
+
+ Optimal `einsum` (best usage pattern in some use cases): ~110ms
+
+ >>> path = np.einsum_path('ijk,ilm,njm,nlk,abc->',a,a,a,a,a, optimize='optimal')[0]
+ >>> for iteration in range(500):
+ ... _ = np.einsum('ijk,ilm,njm,nlk,abc->',a,a,a,a,a, optimize=path)
+
+ """
+ # Special handling if out is specified
+ specified_out = out is not None
+
+ # If no optimization, run pure einsum
+ if optimize is False:
+ if specified_out:
+ kwargs['out'] = out
+ return c_einsum(*operands, **kwargs)
+
+ # Check the kwargs to avoid a more cryptic error later, without having to
+ # repeat default values here
+ valid_einsum_kwargs = ['dtype', 'order', 'casting']
+ unknown_kwargs = [k for (k, v) in kwargs.items() if
+ k not in valid_einsum_kwargs]
+ if len(unknown_kwargs):
+ raise TypeError("Did not understand the following kwargs: %s"
+ % unknown_kwargs)
+
+ # Build the contraction list and operand
+ operands, contraction_list = einsum_path(*operands, optimize=optimize,
+ einsum_call=True)
+
+ # Handle order kwarg for output array, c_einsum allows mixed case
+ output_order = kwargs.pop('order', 'K')
+ if output_order.upper() == 'A':
+ if all(arr.flags.f_contiguous for arr in operands):
+ output_order = 'F'
+ else:
+ output_order = 'C'
+
+ # Start contraction loop
+ for num, contraction in enumerate(contraction_list):
+ inds, idx_rm, einsum_str, remaining, blas = contraction
+ tmp_operands = [operands.pop(x) for x in inds]
+
+ # Do we need to deal with the output?
+ handle_out = specified_out and ((num + 1) == len(contraction_list))
+
+ # Call tensordot if still possible
+ if blas:
+ # Checks have already been handled
+ input_str, results_index = einsum_str.split('->')
+ input_left, input_right = input_str.split(',')
+
+ tensor_result = input_left + input_right
+ for s in idx_rm:
+ tensor_result = tensor_result.replace(s, "")
+
+ # Find indices to contract over
+ left_pos, right_pos = [], []
+ for s in sorted(idx_rm):
+ left_pos.append(input_left.find(s))
+ right_pos.append(input_right.find(s))
+
+ # Contract!
+ new_view = tensordot(*tmp_operands, axes=(tuple(left_pos), tuple(right_pos)))
+
+ # Build a new view if needed
+ if (tensor_result != results_index) or handle_out:
+ if handle_out:
+ kwargs["out"] = out
+ new_view = c_einsum(tensor_result + '->' + results_index, new_view, **kwargs)
+
+ # Call einsum
+ else:
+ # If out was specified
+ if handle_out:
+ kwargs["out"] = out
+
+ # Do the contraction
+ new_view = c_einsum(einsum_str, *tmp_operands, **kwargs)
+
+ # Append new items and dereference what we can
+ operands.append(new_view)
+ del tmp_operands, new_view
+
+ if specified_out:
+ return out
+ else:
+ return asanyarray(operands[0], order=output_order)