diff options
Diffstat (limited to '.venv/lib/python3.12/site-packages/networkx/tests/test_convert_numpy.py')
-rw-r--r-- | .venv/lib/python3.12/site-packages/networkx/tests/test_convert_numpy.py | 532 |
1 files changed, 532 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/networkx/tests/test_convert_numpy.py b/.venv/lib/python3.12/site-packages/networkx/tests/test_convert_numpy.py new file mode 100644 index 00000000..1c39afde --- /dev/null +++ b/.venv/lib/python3.12/site-packages/networkx/tests/test_convert_numpy.py @@ -0,0 +1,532 @@ +import itertools + +import pytest + +np = pytest.importorskip("numpy") +npt = pytest.importorskip("numpy.testing") + +import networkx as nx +from networkx.generators.classic import barbell_graph, cycle_graph, path_graph +from networkx.utils import graphs_equal + + +class TestConvertNumpyArray: + def setup_method(self): + self.G1 = barbell_graph(10, 3) + self.G2 = cycle_graph(10, create_using=nx.DiGraph) + self.G3 = self.create_weighted(nx.Graph()) + self.G4 = self.create_weighted(nx.DiGraph()) + + def create_weighted(self, G): + g = cycle_graph(4) + G.add_nodes_from(g) + G.add_weighted_edges_from((u, v, 10 + u) for u, v in g.edges()) + return G + + def assert_equal(self, G1, G2): + assert sorted(G1.nodes()) == sorted(G2.nodes()) + assert sorted(G1.edges()) == sorted(G2.edges()) + + def identity_conversion(self, G, A, create_using): + assert A.sum() > 0 + GG = nx.from_numpy_array(A, create_using=create_using) + self.assert_equal(G, GG) + GW = nx.to_networkx_graph(A, create_using=create_using) + self.assert_equal(G, GW) + GI = nx.empty_graph(0, create_using).__class__(A) + self.assert_equal(G, GI) + + def test_shape(self): + "Conversion from non-square array." + A = np.array([[1, 2, 3], [4, 5, 6]]) + pytest.raises(nx.NetworkXError, nx.from_numpy_array, A) + + def test_identity_graph_array(self): + "Conversion from graph to array to graph." + A = nx.to_numpy_array(self.G1) + self.identity_conversion(self.G1, A, nx.Graph()) + + def test_identity_digraph_array(self): + """Conversion from digraph to array to digraph.""" + A = nx.to_numpy_array(self.G2) + self.identity_conversion(self.G2, A, nx.DiGraph()) + + def test_identity_weighted_graph_array(self): + """Conversion from weighted graph to array to weighted graph.""" + A = nx.to_numpy_array(self.G3) + self.identity_conversion(self.G3, A, nx.Graph()) + + def test_identity_weighted_digraph_array(self): + """Conversion from weighted digraph to array to weighted digraph.""" + A = nx.to_numpy_array(self.G4) + self.identity_conversion(self.G4, A, nx.DiGraph()) + + def test_nodelist(self): + """Conversion from graph to array to graph with nodelist.""" + P4 = path_graph(4) + P3 = path_graph(3) + nodelist = list(P3) + A = nx.to_numpy_array(P4, nodelist=nodelist) + GA = nx.Graph(A) + self.assert_equal(GA, P3) + + # Make nodelist ambiguous by containing duplicates. + nodelist += [nodelist[0]] + pytest.raises(nx.NetworkXError, nx.to_numpy_array, P3, nodelist=nodelist) + + # Make nodelist invalid by including nonexistent nodes + nodelist = [-1, 0, 1] + with pytest.raises( + nx.NetworkXError, + match=f"Nodes {nodelist - P3.nodes} in nodelist is not in G", + ): + nx.to_numpy_array(P3, nodelist=nodelist) + + def test_weight_keyword(self): + WP4 = nx.Graph() + WP4.add_edges_from((n, n + 1, {"weight": 0.5, "other": 0.3}) for n in range(3)) + P4 = path_graph(4) + A = nx.to_numpy_array(P4) + np.testing.assert_equal(A, nx.to_numpy_array(WP4, weight=None)) + np.testing.assert_equal(0.5 * A, nx.to_numpy_array(WP4)) + np.testing.assert_equal(0.3 * A, nx.to_numpy_array(WP4, weight="other")) + + def test_from_numpy_array_type(self): + A = np.array([[1]]) + G = nx.from_numpy_array(A) + assert type(G[0][0]["weight"]) == int + + A = np.array([[1]]).astype(float) + G = nx.from_numpy_array(A) + assert type(G[0][0]["weight"]) == float + + A = np.array([[1]]).astype(str) + G = nx.from_numpy_array(A) + assert type(G[0][0]["weight"]) == str + + A = np.array([[1]]).astype(bool) + G = nx.from_numpy_array(A) + assert type(G[0][0]["weight"]) == bool + + A = np.array([[1]]).astype(complex) + G = nx.from_numpy_array(A) + assert type(G[0][0]["weight"]) == complex + + A = np.array([[1]]).astype(object) + pytest.raises(TypeError, nx.from_numpy_array, A) + + A = np.array([[[1, 1, 1], [1, 1, 1]], [[1, 1, 1], [1, 1, 1]]]) + with pytest.raises( + nx.NetworkXError, match=f"Input array must be 2D, not {A.ndim}" + ): + g = nx.from_numpy_array(A) + + def test_from_numpy_array_dtype(self): + dt = [("weight", float), ("cost", int)] + A = np.array([[(1.0, 2)]], dtype=dt) + G = nx.from_numpy_array(A) + assert type(G[0][0]["weight"]) == float + assert type(G[0][0]["cost"]) == int + assert G[0][0]["cost"] == 2 + assert G[0][0]["weight"] == 1.0 + + def test_from_numpy_array_parallel_edges(self): + """Tests that the :func:`networkx.from_numpy_array` function + interprets integer weights as the number of parallel edges when + creating a multigraph. + + """ + A = np.array([[1, 1], [1, 2]]) + # First, with a simple graph, each integer entry in the adjacency + # matrix is interpreted as the weight of a single edge in the graph. + expected = nx.DiGraph() + edges = [(0, 0), (0, 1), (1, 0)] + expected.add_weighted_edges_from([(u, v, 1) for (u, v) in edges]) + expected.add_edge(1, 1, weight=2) + actual = nx.from_numpy_array(A, parallel_edges=True, create_using=nx.DiGraph) + assert graphs_equal(actual, expected) + actual = nx.from_numpy_array(A, parallel_edges=False, create_using=nx.DiGraph) + assert graphs_equal(actual, expected) + # Now each integer entry in the adjacency matrix is interpreted as the + # number of parallel edges in the graph if the appropriate keyword + # argument is specified. + edges = [(0, 0), (0, 1), (1, 0), (1, 1), (1, 1)] + expected = nx.MultiDiGraph() + expected.add_weighted_edges_from([(u, v, 1) for (u, v) in edges]) + actual = nx.from_numpy_array( + A, parallel_edges=True, create_using=nx.MultiDiGraph + ) + assert graphs_equal(actual, expected) + expected = nx.MultiDiGraph() + expected.add_edges_from(set(edges), weight=1) + # The sole self-loop (edge 0) on vertex 1 should have weight 2. + expected[1][1][0]["weight"] = 2 + actual = nx.from_numpy_array( + A, parallel_edges=False, create_using=nx.MultiDiGraph + ) + assert graphs_equal(actual, expected) + + @pytest.mark.parametrize( + "dt", + ( + None, # default + int, # integer dtype + np.dtype( + [("weight", "f8"), ("color", "i1")] + ), # Structured dtype with named fields + ), + ) + def test_from_numpy_array_no_edge_attr(self, dt): + A = np.array([[0, 1], [1, 0]], dtype=dt) + G = nx.from_numpy_array(A, edge_attr=None) + assert "weight" not in G.edges[0, 1] + assert len(G.edges[0, 1]) == 0 + + def test_from_numpy_array_multiedge_no_edge_attr(self): + A = np.array([[0, 2], [2, 0]]) + G = nx.from_numpy_array(A, create_using=nx.MultiDiGraph, edge_attr=None) + assert all("weight" not in e for _, e in G[0][1].items()) + assert len(G[0][1][0]) == 0 + + def test_from_numpy_array_custom_edge_attr(self): + A = np.array([[0, 2], [3, 0]]) + G = nx.from_numpy_array(A, edge_attr="cost") + assert "weight" not in G.edges[0, 1] + assert G.edges[0, 1]["cost"] == 3 + + def test_symmetric(self): + """Tests that a symmetric array has edges added only once to an + undirected multigraph when using :func:`networkx.from_numpy_array`. + + """ + A = np.array([[0, 1], [1, 0]]) + G = nx.from_numpy_array(A, create_using=nx.MultiGraph) + expected = nx.MultiGraph() + expected.add_edge(0, 1, weight=1) + assert graphs_equal(G, expected) + + def test_dtype_int_graph(self): + """Test that setting dtype int actually gives an integer array. + + For more information, see GitHub pull request #1363. + + """ + G = nx.complete_graph(3) + A = nx.to_numpy_array(G, dtype=int) + assert A.dtype == int + + def test_dtype_int_multigraph(self): + """Test that setting dtype int actually gives an integer array. + + For more information, see GitHub pull request #1363. + + """ + G = nx.MultiGraph(nx.complete_graph(3)) + A = nx.to_numpy_array(G, dtype=int) + assert A.dtype == int + + +@pytest.fixture +def multigraph_test_graph(): + G = nx.MultiGraph() + G.add_edge(1, 2, weight=7) + G.add_edge(1, 2, weight=70) + return G + + +@pytest.mark.parametrize(("operator", "expected"), ((sum, 77), (min, 7), (max, 70))) +def test_numpy_multigraph(multigraph_test_graph, operator, expected): + A = nx.to_numpy_array(multigraph_test_graph, multigraph_weight=operator) + assert A[1, 0] == expected + + +def test_to_numpy_array_multigraph_nodelist(multigraph_test_graph): + G = multigraph_test_graph + G.add_edge(0, 1, weight=3) + A = nx.to_numpy_array(G, nodelist=[1, 2]) + assert A.shape == (2, 2) + assert A[1, 0] == 77 + + +@pytest.mark.parametrize( + "G, expected", + [ + (nx.Graph(), np.array([[0, 1 + 2j], [1 + 2j, 0]], dtype=complex)), + (nx.DiGraph(), np.array([[0, 1 + 2j], [0, 0]], dtype=complex)), + ], +) +def test_to_numpy_array_complex_weights(G, expected): + G.add_edge(0, 1, weight=1 + 2j) + A = nx.to_numpy_array(G, dtype=complex) + npt.assert_array_equal(A, expected) + + +def test_to_numpy_array_arbitrary_weights(): + G = nx.DiGraph() + w = 922337203685477580102 # Out of range for int64 + G.add_edge(0, 1, weight=922337203685477580102) # val not representable by int64 + A = nx.to_numpy_array(G, dtype=object) + expected = np.array([[0, w], [0, 0]], dtype=object) + npt.assert_array_equal(A, expected) + + # Undirected + A = nx.to_numpy_array(G.to_undirected(), dtype=object) + expected = np.array([[0, w], [w, 0]], dtype=object) + npt.assert_array_equal(A, expected) + + +@pytest.mark.parametrize( + "func, expected", + ((min, -1), (max, 10), (sum, 11), (np.mean, 11 / 3), (np.median, 2)), +) +def test_to_numpy_array_multiweight_reduction(func, expected): + """Test various functions for reducing multiedge weights.""" + G = nx.MultiDiGraph() + weights = [-1, 2, 10.0] + for w in weights: + G.add_edge(0, 1, weight=w) + A = nx.to_numpy_array(G, multigraph_weight=func, dtype=float) + assert np.allclose(A, [[0, expected], [0, 0]]) + + # Undirected case + A = nx.to_numpy_array(G.to_undirected(), multigraph_weight=func, dtype=float) + assert np.allclose(A, [[0, expected], [expected, 0]]) + + +@pytest.mark.parametrize( + ("G, expected"), + [ + (nx.Graph(), [[(0, 0), (10, 5)], [(10, 5), (0, 0)]]), + (nx.DiGraph(), [[(0, 0), (10, 5)], [(0, 0), (0, 0)]]), + ], +) +def test_to_numpy_array_structured_dtype_attrs_from_fields(G, expected): + """When `dtype` is structured (i.e. has names) and `weight` is None, use + the named fields of the dtype to look up edge attributes.""" + G.add_edge(0, 1, weight=10, cost=5.0) + dtype = np.dtype([("weight", int), ("cost", int)]) + A = nx.to_numpy_array(G, dtype=dtype, weight=None) + expected = np.asarray(expected, dtype=dtype) + npt.assert_array_equal(A, expected) + + +def test_to_numpy_array_structured_dtype_single_attr_default(): + G = nx.path_graph(3) + dtype = np.dtype([("weight", float)]) # A single named field + A = nx.to_numpy_array(G, dtype=dtype, weight=None) + expected = np.array([[0, 1, 0], [1, 0, 1], [0, 1, 0]], dtype=float) + npt.assert_array_equal(A["weight"], expected) + + +@pytest.mark.parametrize( + ("field_name", "expected_attr_val"), + [ + ("weight", 1), + ("cost", 3), + ], +) +def test_to_numpy_array_structured_dtype_single_attr(field_name, expected_attr_val): + G = nx.Graph() + G.add_edge(0, 1, cost=3) + dtype = np.dtype([(field_name, float)]) + A = nx.to_numpy_array(G, dtype=dtype, weight=None) + expected = np.array([[0, expected_attr_val], [expected_attr_val, 0]], dtype=float) + npt.assert_array_equal(A[field_name], expected) + + +@pytest.mark.parametrize("graph_type", (nx.Graph, nx.DiGraph)) +@pytest.mark.parametrize( + "edge", + [ + (0, 1), # No edge attributes + (0, 1, {"weight": 10}), # One edge attr + (0, 1, {"weight": 5, "flow": -4}), # Multiple but not all edge attrs + (0, 1, {"weight": 2.0, "cost": 10, "flow": -45}), # All attrs + ], +) +def test_to_numpy_array_structured_dtype_multiple_fields(graph_type, edge): + G = graph_type([edge]) + dtype = np.dtype([("weight", float), ("cost", float), ("flow", float)]) + A = nx.to_numpy_array(G, dtype=dtype, weight=None) + for attr in dtype.names: + expected = nx.to_numpy_array(G, dtype=float, weight=attr) + npt.assert_array_equal(A[attr], expected) + + +@pytest.mark.parametrize("G", (nx.Graph(), nx.DiGraph())) +def test_to_numpy_array_structured_dtype_scalar_nonedge(G): + G.add_edge(0, 1, weight=10) + dtype = np.dtype([("weight", float), ("cost", float)]) + A = nx.to_numpy_array(G, dtype=dtype, weight=None, nonedge=np.nan) + for attr in dtype.names: + expected = nx.to_numpy_array(G, dtype=float, weight=attr, nonedge=np.nan) + npt.assert_array_equal(A[attr], expected) + + +@pytest.mark.parametrize("G", (nx.Graph(), nx.DiGraph())) +def test_to_numpy_array_structured_dtype_nonedge_ary(G): + """Similar to the scalar case, except has a different non-edge value for + each named field.""" + G.add_edge(0, 1, weight=10) + dtype = np.dtype([("weight", float), ("cost", float)]) + nonedges = np.array([(0, np.inf)], dtype=dtype) + A = nx.to_numpy_array(G, dtype=dtype, weight=None, nonedge=nonedges) + for attr in dtype.names: + nonedge = nonedges[attr] + expected = nx.to_numpy_array(G, dtype=float, weight=attr, nonedge=nonedge) + npt.assert_array_equal(A[attr], expected) + + +def test_to_numpy_array_structured_dtype_with_weight_raises(): + """Using both a structured dtype (with named fields) and specifying a `weight` + parameter is ambiguous.""" + G = nx.path_graph(3) + dtype = np.dtype([("weight", int), ("cost", int)]) + exception_msg = "Specifying `weight` not supported for structured dtypes" + with pytest.raises(ValueError, match=exception_msg): + nx.to_numpy_array(G, dtype=dtype) # Default is weight="weight" + with pytest.raises(ValueError, match=exception_msg): + nx.to_numpy_array(G, dtype=dtype, weight="cost") + + +@pytest.mark.parametrize("graph_type", (nx.MultiGraph, nx.MultiDiGraph)) +def test_to_numpy_array_structured_multigraph_raises(graph_type): + G = nx.path_graph(3, create_using=graph_type) + dtype = np.dtype([("weight", int), ("cost", int)]) + with pytest.raises(nx.NetworkXError, match="Structured arrays are not supported"): + nx.to_numpy_array(G, dtype=dtype, weight=None) + + +def test_from_numpy_array_nodelist_bad_size(): + """An exception is raised when `len(nodelist) != A.shape[0]`.""" + n = 5 # Number of nodes + A = np.diag(np.ones(n - 1), k=1) # Adj. matrix for P_n + expected = nx.path_graph(n) + + assert graphs_equal(nx.from_numpy_array(A, edge_attr=None), expected) + nodes = list(range(n)) + assert graphs_equal( + nx.from_numpy_array(A, edge_attr=None, nodelist=nodes), expected + ) + + # Too many node labels + nodes = list(range(n + 1)) + with pytest.raises(ValueError, match="nodelist must have the same length as A"): + nx.from_numpy_array(A, nodelist=nodes) + + # Too few node labels + nodes = list(range(n - 1)) + with pytest.raises(ValueError, match="nodelist must have the same length as A"): + nx.from_numpy_array(A, nodelist=nodes) + + +@pytest.mark.parametrize( + "nodes", + ( + [4, 3, 2, 1, 0], + [9, 7, 1, 2, 8], + ["a", "b", "c", "d", "e"], + [(0, 0), (1, 1), (2, 3), (0, 2), (3, 1)], + ["A", 2, 7, "spam", (1, 3)], + ), +) +def test_from_numpy_array_nodelist(nodes): + A = np.diag(np.ones(4), k=1) + # Without edge attributes + expected = nx.relabel_nodes( + nx.path_graph(5), mapping=dict(enumerate(nodes)), copy=True + ) + G = nx.from_numpy_array(A, edge_attr=None, nodelist=nodes) + assert graphs_equal(G, expected) + + # With edge attributes + nx.set_edge_attributes(expected, 1.0, name="weight") + G = nx.from_numpy_array(A, nodelist=nodes) + assert graphs_equal(G, expected) + + +@pytest.mark.parametrize( + "nodes", + ( + [4, 3, 2, 1, 0], + [9, 7, 1, 2, 8], + ["a", "b", "c", "d", "e"], + [(0, 0), (1, 1), (2, 3), (0, 2), (3, 1)], + ["A", 2, 7, "spam", (1, 3)], + ), +) +def test_from_numpy_array_nodelist_directed(nodes): + A = np.diag(np.ones(4), k=1) + # Without edge attributes + H = nx.DiGraph([(0, 1), (1, 2), (2, 3), (3, 4)]) + expected = nx.relabel_nodes(H, mapping=dict(enumerate(nodes)), copy=True) + G = nx.from_numpy_array(A, create_using=nx.DiGraph, edge_attr=None, nodelist=nodes) + assert graphs_equal(G, expected) + + # With edge attributes + nx.set_edge_attributes(expected, 1.0, name="weight") + G = nx.from_numpy_array(A, create_using=nx.DiGraph, nodelist=nodes) + assert graphs_equal(G, expected) + + +@pytest.mark.parametrize( + "nodes", + ( + [4, 3, 2, 1, 0], + [9, 7, 1, 2, 8], + ["a", "b", "c", "d", "e"], + [(0, 0), (1, 1), (2, 3), (0, 2), (3, 1)], + ["A", 2, 7, "spam", (1, 3)], + ), +) +def test_from_numpy_array_nodelist_multigraph(nodes): + A = np.array( + [ + [0, 1, 0, 0, 0], + [1, 0, 2, 0, 0], + [0, 2, 0, 3, 0], + [0, 0, 3, 0, 4], + [0, 0, 0, 4, 0], + ] + ) + + H = nx.MultiGraph() + for i, edge in enumerate(((0, 1), (1, 2), (2, 3), (3, 4))): + H.add_edges_from(itertools.repeat(edge, i + 1)) + expected = nx.relabel_nodes(H, mapping=dict(enumerate(nodes)), copy=True) + + G = nx.from_numpy_array( + A, + parallel_edges=True, + create_using=nx.MultiGraph, + edge_attr=None, + nodelist=nodes, + ) + assert graphs_equal(G, expected) + + +@pytest.mark.parametrize( + "nodes", + ( + [4, 3, 2, 1, 0], + [9, 7, 1, 2, 8], + ["a", "b", "c", "d", "e"], + [(0, 0), (1, 1), (2, 3), (0, 2), (3, 1)], + ["A", 2, 7, "spam", (1, 3)], + ), +) +@pytest.mark.parametrize("graph", (nx.complete_graph, nx.cycle_graph, nx.wheel_graph)) +def test_from_numpy_array_nodelist_rountrip(graph, nodes): + G = graph(5) + A = nx.to_numpy_array(G) + expected = nx.relabel_nodes(G, mapping=dict(enumerate(nodes)), copy=True) + H = nx.from_numpy_array(A, edge_attr=None, nodelist=nodes) + assert graphs_equal(H, expected) + + # With an isolated node + G = graph(4) + G.add_node("foo") + A = nx.to_numpy_array(G) + expected = nx.relabel_nodes(G, mapping=dict(zip(G.nodes, nodes)), copy=True) + H = nx.from_numpy_array(A, edge_attr=None, nodelist=nodes) + assert graphs_equal(H, expected) |