aboutsummaryrefslogtreecommitdiff
path: root/.venv/lib/python3.12/site-packages/networkx/tests/test_convert_numpy.py
diff options
context:
space:
mode:
Diffstat (limited to '.venv/lib/python3.12/site-packages/networkx/tests/test_convert_numpy.py')
-rw-r--r--.venv/lib/python3.12/site-packages/networkx/tests/test_convert_numpy.py532
1 files changed, 532 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/networkx/tests/test_convert_numpy.py b/.venv/lib/python3.12/site-packages/networkx/tests/test_convert_numpy.py
new file mode 100644
index 00000000..1c39afde
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/networkx/tests/test_convert_numpy.py
@@ -0,0 +1,532 @@
+import itertools
+
+import pytest
+
+np = pytest.importorskip("numpy")
+npt = pytest.importorskip("numpy.testing")
+
+import networkx as nx
+from networkx.generators.classic import barbell_graph, cycle_graph, path_graph
+from networkx.utils import graphs_equal
+
+
+class TestConvertNumpyArray:
+ def setup_method(self):
+ self.G1 = barbell_graph(10, 3)
+ self.G2 = cycle_graph(10, create_using=nx.DiGraph)
+ self.G3 = self.create_weighted(nx.Graph())
+ self.G4 = self.create_weighted(nx.DiGraph())
+
+ def create_weighted(self, G):
+ g = cycle_graph(4)
+ G.add_nodes_from(g)
+ G.add_weighted_edges_from((u, v, 10 + u) for u, v in g.edges())
+ return G
+
+ def assert_equal(self, G1, G2):
+ assert sorted(G1.nodes()) == sorted(G2.nodes())
+ assert sorted(G1.edges()) == sorted(G2.edges())
+
+ def identity_conversion(self, G, A, create_using):
+ assert A.sum() > 0
+ GG = nx.from_numpy_array(A, create_using=create_using)
+ self.assert_equal(G, GG)
+ GW = nx.to_networkx_graph(A, create_using=create_using)
+ self.assert_equal(G, GW)
+ GI = nx.empty_graph(0, create_using).__class__(A)
+ self.assert_equal(G, GI)
+
+ def test_shape(self):
+ "Conversion from non-square array."
+ A = np.array([[1, 2, 3], [4, 5, 6]])
+ pytest.raises(nx.NetworkXError, nx.from_numpy_array, A)
+
+ def test_identity_graph_array(self):
+ "Conversion from graph to array to graph."
+ A = nx.to_numpy_array(self.G1)
+ self.identity_conversion(self.G1, A, nx.Graph())
+
+ def test_identity_digraph_array(self):
+ """Conversion from digraph to array to digraph."""
+ A = nx.to_numpy_array(self.G2)
+ self.identity_conversion(self.G2, A, nx.DiGraph())
+
+ def test_identity_weighted_graph_array(self):
+ """Conversion from weighted graph to array to weighted graph."""
+ A = nx.to_numpy_array(self.G3)
+ self.identity_conversion(self.G3, A, nx.Graph())
+
+ def test_identity_weighted_digraph_array(self):
+ """Conversion from weighted digraph to array to weighted digraph."""
+ A = nx.to_numpy_array(self.G4)
+ self.identity_conversion(self.G4, A, nx.DiGraph())
+
+ def test_nodelist(self):
+ """Conversion from graph to array to graph with nodelist."""
+ P4 = path_graph(4)
+ P3 = path_graph(3)
+ nodelist = list(P3)
+ A = nx.to_numpy_array(P4, nodelist=nodelist)
+ GA = nx.Graph(A)
+ self.assert_equal(GA, P3)
+
+ # Make nodelist ambiguous by containing duplicates.
+ nodelist += [nodelist[0]]
+ pytest.raises(nx.NetworkXError, nx.to_numpy_array, P3, nodelist=nodelist)
+
+ # Make nodelist invalid by including nonexistent nodes
+ nodelist = [-1, 0, 1]
+ with pytest.raises(
+ nx.NetworkXError,
+ match=f"Nodes {nodelist - P3.nodes} in nodelist is not in G",
+ ):
+ nx.to_numpy_array(P3, nodelist=nodelist)
+
+ def test_weight_keyword(self):
+ WP4 = nx.Graph()
+ WP4.add_edges_from((n, n + 1, {"weight": 0.5, "other": 0.3}) for n in range(3))
+ P4 = path_graph(4)
+ A = nx.to_numpy_array(P4)
+ np.testing.assert_equal(A, nx.to_numpy_array(WP4, weight=None))
+ np.testing.assert_equal(0.5 * A, nx.to_numpy_array(WP4))
+ np.testing.assert_equal(0.3 * A, nx.to_numpy_array(WP4, weight="other"))
+
+ def test_from_numpy_array_type(self):
+ A = np.array([[1]])
+ G = nx.from_numpy_array(A)
+ assert type(G[0][0]["weight"]) == int
+
+ A = np.array([[1]]).astype(float)
+ G = nx.from_numpy_array(A)
+ assert type(G[0][0]["weight"]) == float
+
+ A = np.array([[1]]).astype(str)
+ G = nx.from_numpy_array(A)
+ assert type(G[0][0]["weight"]) == str
+
+ A = np.array([[1]]).astype(bool)
+ G = nx.from_numpy_array(A)
+ assert type(G[0][0]["weight"]) == bool
+
+ A = np.array([[1]]).astype(complex)
+ G = nx.from_numpy_array(A)
+ assert type(G[0][0]["weight"]) == complex
+
+ A = np.array([[1]]).astype(object)
+ pytest.raises(TypeError, nx.from_numpy_array, A)
+
+ A = np.array([[[1, 1, 1], [1, 1, 1]], [[1, 1, 1], [1, 1, 1]]])
+ with pytest.raises(
+ nx.NetworkXError, match=f"Input array must be 2D, not {A.ndim}"
+ ):
+ g = nx.from_numpy_array(A)
+
+ def test_from_numpy_array_dtype(self):
+ dt = [("weight", float), ("cost", int)]
+ A = np.array([[(1.0, 2)]], dtype=dt)
+ G = nx.from_numpy_array(A)
+ assert type(G[0][0]["weight"]) == float
+ assert type(G[0][0]["cost"]) == int
+ assert G[0][0]["cost"] == 2
+ assert G[0][0]["weight"] == 1.0
+
+ def test_from_numpy_array_parallel_edges(self):
+ """Tests that the :func:`networkx.from_numpy_array` function
+ interprets integer weights as the number of parallel edges when
+ creating a multigraph.
+
+ """
+ A = np.array([[1, 1], [1, 2]])
+ # First, with a simple graph, each integer entry in the adjacency
+ # matrix is interpreted as the weight of a single edge in the graph.
+ expected = nx.DiGraph()
+ edges = [(0, 0), (0, 1), (1, 0)]
+ expected.add_weighted_edges_from([(u, v, 1) for (u, v) in edges])
+ expected.add_edge(1, 1, weight=2)
+ actual = nx.from_numpy_array(A, parallel_edges=True, create_using=nx.DiGraph)
+ assert graphs_equal(actual, expected)
+ actual = nx.from_numpy_array(A, parallel_edges=False, create_using=nx.DiGraph)
+ assert graphs_equal(actual, expected)
+ # Now each integer entry in the adjacency matrix is interpreted as the
+ # number of parallel edges in the graph if the appropriate keyword
+ # argument is specified.
+ edges = [(0, 0), (0, 1), (1, 0), (1, 1), (1, 1)]
+ expected = nx.MultiDiGraph()
+ expected.add_weighted_edges_from([(u, v, 1) for (u, v) in edges])
+ actual = nx.from_numpy_array(
+ A, parallel_edges=True, create_using=nx.MultiDiGraph
+ )
+ assert graphs_equal(actual, expected)
+ expected = nx.MultiDiGraph()
+ expected.add_edges_from(set(edges), weight=1)
+ # The sole self-loop (edge 0) on vertex 1 should have weight 2.
+ expected[1][1][0]["weight"] = 2
+ actual = nx.from_numpy_array(
+ A, parallel_edges=False, create_using=nx.MultiDiGraph
+ )
+ assert graphs_equal(actual, expected)
+
+ @pytest.mark.parametrize(
+ "dt",
+ (
+ None, # default
+ int, # integer dtype
+ np.dtype(
+ [("weight", "f8"), ("color", "i1")]
+ ), # Structured dtype with named fields
+ ),
+ )
+ def test_from_numpy_array_no_edge_attr(self, dt):
+ A = np.array([[0, 1], [1, 0]], dtype=dt)
+ G = nx.from_numpy_array(A, edge_attr=None)
+ assert "weight" not in G.edges[0, 1]
+ assert len(G.edges[0, 1]) == 0
+
+ def test_from_numpy_array_multiedge_no_edge_attr(self):
+ A = np.array([[0, 2], [2, 0]])
+ G = nx.from_numpy_array(A, create_using=nx.MultiDiGraph, edge_attr=None)
+ assert all("weight" not in e for _, e in G[0][1].items())
+ assert len(G[0][1][0]) == 0
+
+ def test_from_numpy_array_custom_edge_attr(self):
+ A = np.array([[0, 2], [3, 0]])
+ G = nx.from_numpy_array(A, edge_attr="cost")
+ assert "weight" not in G.edges[0, 1]
+ assert G.edges[0, 1]["cost"] == 3
+
+ def test_symmetric(self):
+ """Tests that a symmetric array has edges added only once to an
+ undirected multigraph when using :func:`networkx.from_numpy_array`.
+
+ """
+ A = np.array([[0, 1], [1, 0]])
+ G = nx.from_numpy_array(A, create_using=nx.MultiGraph)
+ expected = nx.MultiGraph()
+ expected.add_edge(0, 1, weight=1)
+ assert graphs_equal(G, expected)
+
+ def test_dtype_int_graph(self):
+ """Test that setting dtype int actually gives an integer array.
+
+ For more information, see GitHub pull request #1363.
+
+ """
+ G = nx.complete_graph(3)
+ A = nx.to_numpy_array(G, dtype=int)
+ assert A.dtype == int
+
+ def test_dtype_int_multigraph(self):
+ """Test that setting dtype int actually gives an integer array.
+
+ For more information, see GitHub pull request #1363.
+
+ """
+ G = nx.MultiGraph(nx.complete_graph(3))
+ A = nx.to_numpy_array(G, dtype=int)
+ assert A.dtype == int
+
+
+@pytest.fixture
+def multigraph_test_graph():
+ G = nx.MultiGraph()
+ G.add_edge(1, 2, weight=7)
+ G.add_edge(1, 2, weight=70)
+ return G
+
+
+@pytest.mark.parametrize(("operator", "expected"), ((sum, 77), (min, 7), (max, 70)))
+def test_numpy_multigraph(multigraph_test_graph, operator, expected):
+ A = nx.to_numpy_array(multigraph_test_graph, multigraph_weight=operator)
+ assert A[1, 0] == expected
+
+
+def test_to_numpy_array_multigraph_nodelist(multigraph_test_graph):
+ G = multigraph_test_graph
+ G.add_edge(0, 1, weight=3)
+ A = nx.to_numpy_array(G, nodelist=[1, 2])
+ assert A.shape == (2, 2)
+ assert A[1, 0] == 77
+
+
+@pytest.mark.parametrize(
+ "G, expected",
+ [
+ (nx.Graph(), np.array([[0, 1 + 2j], [1 + 2j, 0]], dtype=complex)),
+ (nx.DiGraph(), np.array([[0, 1 + 2j], [0, 0]], dtype=complex)),
+ ],
+)
+def test_to_numpy_array_complex_weights(G, expected):
+ G.add_edge(0, 1, weight=1 + 2j)
+ A = nx.to_numpy_array(G, dtype=complex)
+ npt.assert_array_equal(A, expected)
+
+
+def test_to_numpy_array_arbitrary_weights():
+ G = nx.DiGraph()
+ w = 922337203685477580102 # Out of range for int64
+ G.add_edge(0, 1, weight=922337203685477580102) # val not representable by int64
+ A = nx.to_numpy_array(G, dtype=object)
+ expected = np.array([[0, w], [0, 0]], dtype=object)
+ npt.assert_array_equal(A, expected)
+
+ # Undirected
+ A = nx.to_numpy_array(G.to_undirected(), dtype=object)
+ expected = np.array([[0, w], [w, 0]], dtype=object)
+ npt.assert_array_equal(A, expected)
+
+
+@pytest.mark.parametrize(
+ "func, expected",
+ ((min, -1), (max, 10), (sum, 11), (np.mean, 11 / 3), (np.median, 2)),
+)
+def test_to_numpy_array_multiweight_reduction(func, expected):
+ """Test various functions for reducing multiedge weights."""
+ G = nx.MultiDiGraph()
+ weights = [-1, 2, 10.0]
+ for w in weights:
+ G.add_edge(0, 1, weight=w)
+ A = nx.to_numpy_array(G, multigraph_weight=func, dtype=float)
+ assert np.allclose(A, [[0, expected], [0, 0]])
+
+ # Undirected case
+ A = nx.to_numpy_array(G.to_undirected(), multigraph_weight=func, dtype=float)
+ assert np.allclose(A, [[0, expected], [expected, 0]])
+
+
+@pytest.mark.parametrize(
+ ("G, expected"),
+ [
+ (nx.Graph(), [[(0, 0), (10, 5)], [(10, 5), (0, 0)]]),
+ (nx.DiGraph(), [[(0, 0), (10, 5)], [(0, 0), (0, 0)]]),
+ ],
+)
+def test_to_numpy_array_structured_dtype_attrs_from_fields(G, expected):
+ """When `dtype` is structured (i.e. has names) and `weight` is None, use
+ the named fields of the dtype to look up edge attributes."""
+ G.add_edge(0, 1, weight=10, cost=5.0)
+ dtype = np.dtype([("weight", int), ("cost", int)])
+ A = nx.to_numpy_array(G, dtype=dtype, weight=None)
+ expected = np.asarray(expected, dtype=dtype)
+ npt.assert_array_equal(A, expected)
+
+
+def test_to_numpy_array_structured_dtype_single_attr_default():
+ G = nx.path_graph(3)
+ dtype = np.dtype([("weight", float)]) # A single named field
+ A = nx.to_numpy_array(G, dtype=dtype, weight=None)
+ expected = np.array([[0, 1, 0], [1, 0, 1], [0, 1, 0]], dtype=float)
+ npt.assert_array_equal(A["weight"], expected)
+
+
+@pytest.mark.parametrize(
+ ("field_name", "expected_attr_val"),
+ [
+ ("weight", 1),
+ ("cost", 3),
+ ],
+)
+def test_to_numpy_array_structured_dtype_single_attr(field_name, expected_attr_val):
+ G = nx.Graph()
+ G.add_edge(0, 1, cost=3)
+ dtype = np.dtype([(field_name, float)])
+ A = nx.to_numpy_array(G, dtype=dtype, weight=None)
+ expected = np.array([[0, expected_attr_val], [expected_attr_val, 0]], dtype=float)
+ npt.assert_array_equal(A[field_name], expected)
+
+
+@pytest.mark.parametrize("graph_type", (nx.Graph, nx.DiGraph))
+@pytest.mark.parametrize(
+ "edge",
+ [
+ (0, 1), # No edge attributes
+ (0, 1, {"weight": 10}), # One edge attr
+ (0, 1, {"weight": 5, "flow": -4}), # Multiple but not all edge attrs
+ (0, 1, {"weight": 2.0, "cost": 10, "flow": -45}), # All attrs
+ ],
+)
+def test_to_numpy_array_structured_dtype_multiple_fields(graph_type, edge):
+ G = graph_type([edge])
+ dtype = np.dtype([("weight", float), ("cost", float), ("flow", float)])
+ A = nx.to_numpy_array(G, dtype=dtype, weight=None)
+ for attr in dtype.names:
+ expected = nx.to_numpy_array(G, dtype=float, weight=attr)
+ npt.assert_array_equal(A[attr], expected)
+
+
+@pytest.mark.parametrize("G", (nx.Graph(), nx.DiGraph()))
+def test_to_numpy_array_structured_dtype_scalar_nonedge(G):
+ G.add_edge(0, 1, weight=10)
+ dtype = np.dtype([("weight", float), ("cost", float)])
+ A = nx.to_numpy_array(G, dtype=dtype, weight=None, nonedge=np.nan)
+ for attr in dtype.names:
+ expected = nx.to_numpy_array(G, dtype=float, weight=attr, nonedge=np.nan)
+ npt.assert_array_equal(A[attr], expected)
+
+
+@pytest.mark.parametrize("G", (nx.Graph(), nx.DiGraph()))
+def test_to_numpy_array_structured_dtype_nonedge_ary(G):
+ """Similar to the scalar case, except has a different non-edge value for
+ each named field."""
+ G.add_edge(0, 1, weight=10)
+ dtype = np.dtype([("weight", float), ("cost", float)])
+ nonedges = np.array([(0, np.inf)], dtype=dtype)
+ A = nx.to_numpy_array(G, dtype=dtype, weight=None, nonedge=nonedges)
+ for attr in dtype.names:
+ nonedge = nonedges[attr]
+ expected = nx.to_numpy_array(G, dtype=float, weight=attr, nonedge=nonedge)
+ npt.assert_array_equal(A[attr], expected)
+
+
+def test_to_numpy_array_structured_dtype_with_weight_raises():
+ """Using both a structured dtype (with named fields) and specifying a `weight`
+ parameter is ambiguous."""
+ G = nx.path_graph(3)
+ dtype = np.dtype([("weight", int), ("cost", int)])
+ exception_msg = "Specifying `weight` not supported for structured dtypes"
+ with pytest.raises(ValueError, match=exception_msg):
+ nx.to_numpy_array(G, dtype=dtype) # Default is weight="weight"
+ with pytest.raises(ValueError, match=exception_msg):
+ nx.to_numpy_array(G, dtype=dtype, weight="cost")
+
+
+@pytest.mark.parametrize("graph_type", (nx.MultiGraph, nx.MultiDiGraph))
+def test_to_numpy_array_structured_multigraph_raises(graph_type):
+ G = nx.path_graph(3, create_using=graph_type)
+ dtype = np.dtype([("weight", int), ("cost", int)])
+ with pytest.raises(nx.NetworkXError, match="Structured arrays are not supported"):
+ nx.to_numpy_array(G, dtype=dtype, weight=None)
+
+
+def test_from_numpy_array_nodelist_bad_size():
+ """An exception is raised when `len(nodelist) != A.shape[0]`."""
+ n = 5 # Number of nodes
+ A = np.diag(np.ones(n - 1), k=1) # Adj. matrix for P_n
+ expected = nx.path_graph(n)
+
+ assert graphs_equal(nx.from_numpy_array(A, edge_attr=None), expected)
+ nodes = list(range(n))
+ assert graphs_equal(
+ nx.from_numpy_array(A, edge_attr=None, nodelist=nodes), expected
+ )
+
+ # Too many node labels
+ nodes = list(range(n + 1))
+ with pytest.raises(ValueError, match="nodelist must have the same length as A"):
+ nx.from_numpy_array(A, nodelist=nodes)
+
+ # Too few node labels
+ nodes = list(range(n - 1))
+ with pytest.raises(ValueError, match="nodelist must have the same length as A"):
+ nx.from_numpy_array(A, nodelist=nodes)
+
+
+@pytest.mark.parametrize(
+ "nodes",
+ (
+ [4, 3, 2, 1, 0],
+ [9, 7, 1, 2, 8],
+ ["a", "b", "c", "d", "e"],
+ [(0, 0), (1, 1), (2, 3), (0, 2), (3, 1)],
+ ["A", 2, 7, "spam", (1, 3)],
+ ),
+)
+def test_from_numpy_array_nodelist(nodes):
+ A = np.diag(np.ones(4), k=1)
+ # Without edge attributes
+ expected = nx.relabel_nodes(
+ nx.path_graph(5), mapping=dict(enumerate(nodes)), copy=True
+ )
+ G = nx.from_numpy_array(A, edge_attr=None, nodelist=nodes)
+ assert graphs_equal(G, expected)
+
+ # With edge attributes
+ nx.set_edge_attributes(expected, 1.0, name="weight")
+ G = nx.from_numpy_array(A, nodelist=nodes)
+ assert graphs_equal(G, expected)
+
+
+@pytest.mark.parametrize(
+ "nodes",
+ (
+ [4, 3, 2, 1, 0],
+ [9, 7, 1, 2, 8],
+ ["a", "b", "c", "d", "e"],
+ [(0, 0), (1, 1), (2, 3), (0, 2), (3, 1)],
+ ["A", 2, 7, "spam", (1, 3)],
+ ),
+)
+def test_from_numpy_array_nodelist_directed(nodes):
+ A = np.diag(np.ones(4), k=1)
+ # Without edge attributes
+ H = nx.DiGraph([(0, 1), (1, 2), (2, 3), (3, 4)])
+ expected = nx.relabel_nodes(H, mapping=dict(enumerate(nodes)), copy=True)
+ G = nx.from_numpy_array(A, create_using=nx.DiGraph, edge_attr=None, nodelist=nodes)
+ assert graphs_equal(G, expected)
+
+ # With edge attributes
+ nx.set_edge_attributes(expected, 1.0, name="weight")
+ G = nx.from_numpy_array(A, create_using=nx.DiGraph, nodelist=nodes)
+ assert graphs_equal(G, expected)
+
+
+@pytest.mark.parametrize(
+ "nodes",
+ (
+ [4, 3, 2, 1, 0],
+ [9, 7, 1, 2, 8],
+ ["a", "b", "c", "d", "e"],
+ [(0, 0), (1, 1), (2, 3), (0, 2), (3, 1)],
+ ["A", 2, 7, "spam", (1, 3)],
+ ),
+)
+def test_from_numpy_array_nodelist_multigraph(nodes):
+ A = np.array(
+ [
+ [0, 1, 0, 0, 0],
+ [1, 0, 2, 0, 0],
+ [0, 2, 0, 3, 0],
+ [0, 0, 3, 0, 4],
+ [0, 0, 0, 4, 0],
+ ]
+ )
+
+ H = nx.MultiGraph()
+ for i, edge in enumerate(((0, 1), (1, 2), (2, 3), (3, 4))):
+ H.add_edges_from(itertools.repeat(edge, i + 1))
+ expected = nx.relabel_nodes(H, mapping=dict(enumerate(nodes)), copy=True)
+
+ G = nx.from_numpy_array(
+ A,
+ parallel_edges=True,
+ create_using=nx.MultiGraph,
+ edge_attr=None,
+ nodelist=nodes,
+ )
+ assert graphs_equal(G, expected)
+
+
+@pytest.mark.parametrize(
+ "nodes",
+ (
+ [4, 3, 2, 1, 0],
+ [9, 7, 1, 2, 8],
+ ["a", "b", "c", "d", "e"],
+ [(0, 0), (1, 1), (2, 3), (0, 2), (3, 1)],
+ ["A", 2, 7, "spam", (1, 3)],
+ ),
+)
+@pytest.mark.parametrize("graph", (nx.complete_graph, nx.cycle_graph, nx.wheel_graph))
+def test_from_numpy_array_nodelist_rountrip(graph, nodes):
+ G = graph(5)
+ A = nx.to_numpy_array(G)
+ expected = nx.relabel_nodes(G, mapping=dict(enumerate(nodes)), copy=True)
+ H = nx.from_numpy_array(A, edge_attr=None, nodelist=nodes)
+ assert graphs_equal(H, expected)
+
+ # With an isolated node
+ G = graph(4)
+ G.add_node("foo")
+ A = nx.to_numpy_array(G)
+ expected = nx.relabel_nodes(G, mapping=dict(zip(G.nodes, nodes)), copy=True)
+ H = nx.from_numpy_array(A, edge_attr=None, nodelist=nodes)
+ assert graphs_equal(H, expected)