1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
|
import itertools
import pytest
np = pytest.importorskip("numpy")
npt = pytest.importorskip("numpy.testing")
import networkx as nx
from networkx.generators.classic import barbell_graph, cycle_graph, path_graph
from networkx.utils import graphs_equal
class TestConvertNumpyArray:
def setup_method(self):
self.G1 = barbell_graph(10, 3)
self.G2 = cycle_graph(10, create_using=nx.DiGraph)
self.G3 = self.create_weighted(nx.Graph())
self.G4 = self.create_weighted(nx.DiGraph())
def create_weighted(self, G):
g = cycle_graph(4)
G.add_nodes_from(g)
G.add_weighted_edges_from((u, v, 10 + u) for u, v in g.edges())
return G
def assert_equal(self, G1, G2):
assert sorted(G1.nodes()) == sorted(G2.nodes())
assert sorted(G1.edges()) == sorted(G2.edges())
def identity_conversion(self, G, A, create_using):
assert A.sum() > 0
GG = nx.from_numpy_array(A, create_using=create_using)
self.assert_equal(G, GG)
GW = nx.to_networkx_graph(A, create_using=create_using)
self.assert_equal(G, GW)
GI = nx.empty_graph(0, create_using).__class__(A)
self.assert_equal(G, GI)
def test_shape(self):
"Conversion from non-square array."
A = np.array([[1, 2, 3], [4, 5, 6]])
pytest.raises(nx.NetworkXError, nx.from_numpy_array, A)
def test_identity_graph_array(self):
"Conversion from graph to array to graph."
A = nx.to_numpy_array(self.G1)
self.identity_conversion(self.G1, A, nx.Graph())
def test_identity_digraph_array(self):
"""Conversion from digraph to array to digraph."""
A = nx.to_numpy_array(self.G2)
self.identity_conversion(self.G2, A, nx.DiGraph())
def test_identity_weighted_graph_array(self):
"""Conversion from weighted graph to array to weighted graph."""
A = nx.to_numpy_array(self.G3)
self.identity_conversion(self.G3, A, nx.Graph())
def test_identity_weighted_digraph_array(self):
"""Conversion from weighted digraph to array to weighted digraph."""
A = nx.to_numpy_array(self.G4)
self.identity_conversion(self.G4, A, nx.DiGraph())
def test_nodelist(self):
"""Conversion from graph to array to graph with nodelist."""
P4 = path_graph(4)
P3 = path_graph(3)
nodelist = list(P3)
A = nx.to_numpy_array(P4, nodelist=nodelist)
GA = nx.Graph(A)
self.assert_equal(GA, P3)
# Make nodelist ambiguous by containing duplicates.
nodelist += [nodelist[0]]
pytest.raises(nx.NetworkXError, nx.to_numpy_array, P3, nodelist=nodelist)
# Make nodelist invalid by including nonexistent nodes
nodelist = [-1, 0, 1]
with pytest.raises(
nx.NetworkXError,
match=f"Nodes {nodelist - P3.nodes} in nodelist is not in G",
):
nx.to_numpy_array(P3, nodelist=nodelist)
def test_weight_keyword(self):
WP4 = nx.Graph()
WP4.add_edges_from((n, n + 1, {"weight": 0.5, "other": 0.3}) for n in range(3))
P4 = path_graph(4)
A = nx.to_numpy_array(P4)
np.testing.assert_equal(A, nx.to_numpy_array(WP4, weight=None))
np.testing.assert_equal(0.5 * A, nx.to_numpy_array(WP4))
np.testing.assert_equal(0.3 * A, nx.to_numpy_array(WP4, weight="other"))
def test_from_numpy_array_type(self):
A = np.array([[1]])
G = nx.from_numpy_array(A)
assert type(G[0][0]["weight"]) == int
A = np.array([[1]]).astype(float)
G = nx.from_numpy_array(A)
assert type(G[0][0]["weight"]) == float
A = np.array([[1]]).astype(str)
G = nx.from_numpy_array(A)
assert type(G[0][0]["weight"]) == str
A = np.array([[1]]).astype(bool)
G = nx.from_numpy_array(A)
assert type(G[0][0]["weight"]) == bool
A = np.array([[1]]).astype(complex)
G = nx.from_numpy_array(A)
assert type(G[0][0]["weight"]) == complex
A = np.array([[1]]).astype(object)
pytest.raises(TypeError, nx.from_numpy_array, A)
A = np.array([[[1, 1, 1], [1, 1, 1]], [[1, 1, 1], [1, 1, 1]]])
with pytest.raises(
nx.NetworkXError, match=f"Input array must be 2D, not {A.ndim}"
):
g = nx.from_numpy_array(A)
def test_from_numpy_array_dtype(self):
dt = [("weight", float), ("cost", int)]
A = np.array([[(1.0, 2)]], dtype=dt)
G = nx.from_numpy_array(A)
assert type(G[0][0]["weight"]) == float
assert type(G[0][0]["cost"]) == int
assert G[0][0]["cost"] == 2
assert G[0][0]["weight"] == 1.0
def test_from_numpy_array_parallel_edges(self):
"""Tests that the :func:`networkx.from_numpy_array` function
interprets integer weights as the number of parallel edges when
creating a multigraph.
"""
A = np.array([[1, 1], [1, 2]])
# First, with a simple graph, each integer entry in the adjacency
# matrix is interpreted as the weight of a single edge in the graph.
expected = nx.DiGraph()
edges = [(0, 0), (0, 1), (1, 0)]
expected.add_weighted_edges_from([(u, v, 1) for (u, v) in edges])
expected.add_edge(1, 1, weight=2)
actual = nx.from_numpy_array(A, parallel_edges=True, create_using=nx.DiGraph)
assert graphs_equal(actual, expected)
actual = nx.from_numpy_array(A, parallel_edges=False, create_using=nx.DiGraph)
assert graphs_equal(actual, expected)
# Now each integer entry in the adjacency matrix is interpreted as the
# number of parallel edges in the graph if the appropriate keyword
# argument is specified.
edges = [(0, 0), (0, 1), (1, 0), (1, 1), (1, 1)]
expected = nx.MultiDiGraph()
expected.add_weighted_edges_from([(u, v, 1) for (u, v) in edges])
actual = nx.from_numpy_array(
A, parallel_edges=True, create_using=nx.MultiDiGraph
)
assert graphs_equal(actual, expected)
expected = nx.MultiDiGraph()
expected.add_edges_from(set(edges), weight=1)
# The sole self-loop (edge 0) on vertex 1 should have weight 2.
expected[1][1][0]["weight"] = 2
actual = nx.from_numpy_array(
A, parallel_edges=False, create_using=nx.MultiDiGraph
)
assert graphs_equal(actual, expected)
@pytest.mark.parametrize(
"dt",
(
None, # default
int, # integer dtype
np.dtype(
[("weight", "f8"), ("color", "i1")]
), # Structured dtype with named fields
),
)
def test_from_numpy_array_no_edge_attr(self, dt):
A = np.array([[0, 1], [1, 0]], dtype=dt)
G = nx.from_numpy_array(A, edge_attr=None)
assert "weight" not in G.edges[0, 1]
assert len(G.edges[0, 1]) == 0
def test_from_numpy_array_multiedge_no_edge_attr(self):
A = np.array([[0, 2], [2, 0]])
G = nx.from_numpy_array(A, create_using=nx.MultiDiGraph, edge_attr=None)
assert all("weight" not in e for _, e in G[0][1].items())
assert len(G[0][1][0]) == 0
def test_from_numpy_array_custom_edge_attr(self):
A = np.array([[0, 2], [3, 0]])
G = nx.from_numpy_array(A, edge_attr="cost")
assert "weight" not in G.edges[0, 1]
assert G.edges[0, 1]["cost"] == 3
def test_symmetric(self):
"""Tests that a symmetric array has edges added only once to an
undirected multigraph when using :func:`networkx.from_numpy_array`.
"""
A = np.array([[0, 1], [1, 0]])
G = nx.from_numpy_array(A, create_using=nx.MultiGraph)
expected = nx.MultiGraph()
expected.add_edge(0, 1, weight=1)
assert graphs_equal(G, expected)
def test_dtype_int_graph(self):
"""Test that setting dtype int actually gives an integer array.
For more information, see GitHub pull request #1363.
"""
G = nx.complete_graph(3)
A = nx.to_numpy_array(G, dtype=int)
assert A.dtype == int
def test_dtype_int_multigraph(self):
"""Test that setting dtype int actually gives an integer array.
For more information, see GitHub pull request #1363.
"""
G = nx.MultiGraph(nx.complete_graph(3))
A = nx.to_numpy_array(G, dtype=int)
assert A.dtype == int
@pytest.fixture
def multigraph_test_graph():
G = nx.MultiGraph()
G.add_edge(1, 2, weight=7)
G.add_edge(1, 2, weight=70)
return G
@pytest.mark.parametrize(("operator", "expected"), ((sum, 77), (min, 7), (max, 70)))
def test_numpy_multigraph(multigraph_test_graph, operator, expected):
A = nx.to_numpy_array(multigraph_test_graph, multigraph_weight=operator)
assert A[1, 0] == expected
def test_to_numpy_array_multigraph_nodelist(multigraph_test_graph):
G = multigraph_test_graph
G.add_edge(0, 1, weight=3)
A = nx.to_numpy_array(G, nodelist=[1, 2])
assert A.shape == (2, 2)
assert A[1, 0] == 77
@pytest.mark.parametrize(
"G, expected",
[
(nx.Graph(), np.array([[0, 1 + 2j], [1 + 2j, 0]], dtype=complex)),
(nx.DiGraph(), np.array([[0, 1 + 2j], [0, 0]], dtype=complex)),
],
)
def test_to_numpy_array_complex_weights(G, expected):
G.add_edge(0, 1, weight=1 + 2j)
A = nx.to_numpy_array(G, dtype=complex)
npt.assert_array_equal(A, expected)
def test_to_numpy_array_arbitrary_weights():
G = nx.DiGraph()
w = 922337203685477580102 # Out of range for int64
G.add_edge(0, 1, weight=922337203685477580102) # val not representable by int64
A = nx.to_numpy_array(G, dtype=object)
expected = np.array([[0, w], [0, 0]], dtype=object)
npt.assert_array_equal(A, expected)
# Undirected
A = nx.to_numpy_array(G.to_undirected(), dtype=object)
expected = np.array([[0, w], [w, 0]], dtype=object)
npt.assert_array_equal(A, expected)
@pytest.mark.parametrize(
"func, expected",
((min, -1), (max, 10), (sum, 11), (np.mean, 11 / 3), (np.median, 2)),
)
def test_to_numpy_array_multiweight_reduction(func, expected):
"""Test various functions for reducing multiedge weights."""
G = nx.MultiDiGraph()
weights = [-1, 2, 10.0]
for w in weights:
G.add_edge(0, 1, weight=w)
A = nx.to_numpy_array(G, multigraph_weight=func, dtype=float)
assert np.allclose(A, [[0, expected], [0, 0]])
# Undirected case
A = nx.to_numpy_array(G.to_undirected(), multigraph_weight=func, dtype=float)
assert np.allclose(A, [[0, expected], [expected, 0]])
@pytest.mark.parametrize(
("G, expected"),
[
(nx.Graph(), [[(0, 0), (10, 5)], [(10, 5), (0, 0)]]),
(nx.DiGraph(), [[(0, 0), (10, 5)], [(0, 0), (0, 0)]]),
],
)
def test_to_numpy_array_structured_dtype_attrs_from_fields(G, expected):
"""When `dtype` is structured (i.e. has names) and `weight` is None, use
the named fields of the dtype to look up edge attributes."""
G.add_edge(0, 1, weight=10, cost=5.0)
dtype = np.dtype([("weight", int), ("cost", int)])
A = nx.to_numpy_array(G, dtype=dtype, weight=None)
expected = np.asarray(expected, dtype=dtype)
npt.assert_array_equal(A, expected)
def test_to_numpy_array_structured_dtype_single_attr_default():
G = nx.path_graph(3)
dtype = np.dtype([("weight", float)]) # A single named field
A = nx.to_numpy_array(G, dtype=dtype, weight=None)
expected = np.array([[0, 1, 0], [1, 0, 1], [0, 1, 0]], dtype=float)
npt.assert_array_equal(A["weight"], expected)
@pytest.mark.parametrize(
("field_name", "expected_attr_val"),
[
("weight", 1),
("cost", 3),
],
)
def test_to_numpy_array_structured_dtype_single_attr(field_name, expected_attr_val):
G = nx.Graph()
G.add_edge(0, 1, cost=3)
dtype = np.dtype([(field_name, float)])
A = nx.to_numpy_array(G, dtype=dtype, weight=None)
expected = np.array([[0, expected_attr_val], [expected_attr_val, 0]], dtype=float)
npt.assert_array_equal(A[field_name], expected)
@pytest.mark.parametrize("graph_type", (nx.Graph, nx.DiGraph))
@pytest.mark.parametrize(
"edge",
[
(0, 1), # No edge attributes
(0, 1, {"weight": 10}), # One edge attr
(0, 1, {"weight": 5, "flow": -4}), # Multiple but not all edge attrs
(0, 1, {"weight": 2.0, "cost": 10, "flow": -45}), # All attrs
],
)
def test_to_numpy_array_structured_dtype_multiple_fields(graph_type, edge):
G = graph_type([edge])
dtype = np.dtype([("weight", float), ("cost", float), ("flow", float)])
A = nx.to_numpy_array(G, dtype=dtype, weight=None)
for attr in dtype.names:
expected = nx.to_numpy_array(G, dtype=float, weight=attr)
npt.assert_array_equal(A[attr], expected)
@pytest.mark.parametrize("G", (nx.Graph(), nx.DiGraph()))
def test_to_numpy_array_structured_dtype_scalar_nonedge(G):
G.add_edge(0, 1, weight=10)
dtype = np.dtype([("weight", float), ("cost", float)])
A = nx.to_numpy_array(G, dtype=dtype, weight=None, nonedge=np.nan)
for attr in dtype.names:
expected = nx.to_numpy_array(G, dtype=float, weight=attr, nonedge=np.nan)
npt.assert_array_equal(A[attr], expected)
@pytest.mark.parametrize("G", (nx.Graph(), nx.DiGraph()))
def test_to_numpy_array_structured_dtype_nonedge_ary(G):
"""Similar to the scalar case, except has a different non-edge value for
each named field."""
G.add_edge(0, 1, weight=10)
dtype = np.dtype([("weight", float), ("cost", float)])
nonedges = np.array([(0, np.inf)], dtype=dtype)
A = nx.to_numpy_array(G, dtype=dtype, weight=None, nonedge=nonedges)
for attr in dtype.names:
nonedge = nonedges[attr]
expected = nx.to_numpy_array(G, dtype=float, weight=attr, nonedge=nonedge)
npt.assert_array_equal(A[attr], expected)
def test_to_numpy_array_structured_dtype_with_weight_raises():
"""Using both a structured dtype (with named fields) and specifying a `weight`
parameter is ambiguous."""
G = nx.path_graph(3)
dtype = np.dtype([("weight", int), ("cost", int)])
exception_msg = "Specifying `weight` not supported for structured dtypes"
with pytest.raises(ValueError, match=exception_msg):
nx.to_numpy_array(G, dtype=dtype) # Default is weight="weight"
with pytest.raises(ValueError, match=exception_msg):
nx.to_numpy_array(G, dtype=dtype, weight="cost")
@pytest.mark.parametrize("graph_type", (nx.MultiGraph, nx.MultiDiGraph))
def test_to_numpy_array_structured_multigraph_raises(graph_type):
G = nx.path_graph(3, create_using=graph_type)
dtype = np.dtype([("weight", int), ("cost", int)])
with pytest.raises(nx.NetworkXError, match="Structured arrays are not supported"):
nx.to_numpy_array(G, dtype=dtype, weight=None)
def test_from_numpy_array_nodelist_bad_size():
"""An exception is raised when `len(nodelist) != A.shape[0]`."""
n = 5 # Number of nodes
A = np.diag(np.ones(n - 1), k=1) # Adj. matrix for P_n
expected = nx.path_graph(n)
assert graphs_equal(nx.from_numpy_array(A, edge_attr=None), expected)
nodes = list(range(n))
assert graphs_equal(
nx.from_numpy_array(A, edge_attr=None, nodelist=nodes), expected
)
# Too many node labels
nodes = list(range(n + 1))
with pytest.raises(ValueError, match="nodelist must have the same length as A"):
nx.from_numpy_array(A, nodelist=nodes)
# Too few node labels
nodes = list(range(n - 1))
with pytest.raises(ValueError, match="nodelist must have the same length as A"):
nx.from_numpy_array(A, nodelist=nodes)
@pytest.mark.parametrize(
"nodes",
(
[4, 3, 2, 1, 0],
[9, 7, 1, 2, 8],
["a", "b", "c", "d", "e"],
[(0, 0), (1, 1), (2, 3), (0, 2), (3, 1)],
["A", 2, 7, "spam", (1, 3)],
),
)
def test_from_numpy_array_nodelist(nodes):
A = np.diag(np.ones(4), k=1)
# Without edge attributes
expected = nx.relabel_nodes(
nx.path_graph(5), mapping=dict(enumerate(nodes)), copy=True
)
G = nx.from_numpy_array(A, edge_attr=None, nodelist=nodes)
assert graphs_equal(G, expected)
# With edge attributes
nx.set_edge_attributes(expected, 1.0, name="weight")
G = nx.from_numpy_array(A, nodelist=nodes)
assert graphs_equal(G, expected)
@pytest.mark.parametrize(
"nodes",
(
[4, 3, 2, 1, 0],
[9, 7, 1, 2, 8],
["a", "b", "c", "d", "e"],
[(0, 0), (1, 1), (2, 3), (0, 2), (3, 1)],
["A", 2, 7, "spam", (1, 3)],
),
)
def test_from_numpy_array_nodelist_directed(nodes):
A = np.diag(np.ones(4), k=1)
# Without edge attributes
H = nx.DiGraph([(0, 1), (1, 2), (2, 3), (3, 4)])
expected = nx.relabel_nodes(H, mapping=dict(enumerate(nodes)), copy=True)
G = nx.from_numpy_array(A, create_using=nx.DiGraph, edge_attr=None, nodelist=nodes)
assert graphs_equal(G, expected)
# With edge attributes
nx.set_edge_attributes(expected, 1.0, name="weight")
G = nx.from_numpy_array(A, create_using=nx.DiGraph, nodelist=nodes)
assert graphs_equal(G, expected)
@pytest.mark.parametrize(
"nodes",
(
[4, 3, 2, 1, 0],
[9, 7, 1, 2, 8],
["a", "b", "c", "d", "e"],
[(0, 0), (1, 1), (2, 3), (0, 2), (3, 1)],
["A", 2, 7, "spam", (1, 3)],
),
)
def test_from_numpy_array_nodelist_multigraph(nodes):
A = np.array(
[
[0, 1, 0, 0, 0],
[1, 0, 2, 0, 0],
[0, 2, 0, 3, 0],
[0, 0, 3, 0, 4],
[0, 0, 0, 4, 0],
]
)
H = nx.MultiGraph()
for i, edge in enumerate(((0, 1), (1, 2), (2, 3), (3, 4))):
H.add_edges_from(itertools.repeat(edge, i + 1))
expected = nx.relabel_nodes(H, mapping=dict(enumerate(nodes)), copy=True)
G = nx.from_numpy_array(
A,
parallel_edges=True,
create_using=nx.MultiGraph,
edge_attr=None,
nodelist=nodes,
)
assert graphs_equal(G, expected)
@pytest.mark.parametrize(
"nodes",
(
[4, 3, 2, 1, 0],
[9, 7, 1, 2, 8],
["a", "b", "c", "d", "e"],
[(0, 0), (1, 1), (2, 3), (0, 2), (3, 1)],
["A", 2, 7, "spam", (1, 3)],
),
)
@pytest.mark.parametrize("graph", (nx.complete_graph, nx.cycle_graph, nx.wheel_graph))
def test_from_numpy_array_nodelist_rountrip(graph, nodes):
G = graph(5)
A = nx.to_numpy_array(G)
expected = nx.relabel_nodes(G, mapping=dict(enumerate(nodes)), copy=True)
H = nx.from_numpy_array(A, edge_attr=None, nodelist=nodes)
assert graphs_equal(H, expected)
# With an isolated node
G = graph(4)
G.add_node("foo")
A = nx.to_numpy_array(G)
expected = nx.relabel_nodes(G, mapping=dict(zip(G.nodes, nodes)), copy=True)
H = nx.from_numpy_array(A, edge_attr=None, nodelist=nodes)
assert graphs_equal(H, expected)
|