aboutsummaryrefslogtreecommitdiff
path: root/.venv/lib/python3.12/site-packages/networkx/generators/tests/test_geometric.py
diff options
context:
space:
mode:
Diffstat (limited to '.venv/lib/python3.12/site-packages/networkx/generators/tests/test_geometric.py')
-rw-r--r--.venv/lib/python3.12/site-packages/networkx/generators/tests/test_geometric.py488
1 files changed, 488 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/networkx/generators/tests/test_geometric.py b/.venv/lib/python3.12/site-packages/networkx/generators/tests/test_geometric.py
new file mode 100644
index 00000000..f1c68bea
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/networkx/generators/tests/test_geometric.py
@@ -0,0 +1,488 @@
+import math
+import random
+from itertools import combinations
+
+import pytest
+
+import networkx as nx
+
+
+def l1dist(x, y):
+ return sum(abs(a - b) for a, b in zip(x, y))
+
+
+class TestRandomGeometricGraph:
+ """Unit tests for :func:`~networkx.random_geometric_graph`"""
+
+ def test_number_of_nodes(self):
+ G = nx.random_geometric_graph(50, 0.25, seed=42)
+ assert len(G) == 50
+ G = nx.random_geometric_graph(range(50), 0.25, seed=42)
+ assert len(G) == 50
+
+ def test_distances(self):
+ """Tests that pairs of vertices adjacent if and only if they are
+ within the prescribed radius.
+ """
+ # Use the Euclidean metric, the default according to the
+ # documentation.
+ G = nx.random_geometric_graph(50, 0.25)
+ for u, v in combinations(G, 2):
+ # Adjacent vertices must be within the given distance.
+ if v in G[u]:
+ assert math.dist(G.nodes[u]["pos"], G.nodes[v]["pos"]) <= 0.25
+ # Nonadjacent vertices must be at greater distance.
+ else:
+ assert not math.dist(G.nodes[u]["pos"], G.nodes[v]["pos"]) <= 0.25
+
+ def test_p(self):
+ """Tests for providing an alternate distance metric to the generator."""
+ # Use the L1 metric.
+ G = nx.random_geometric_graph(50, 0.25, p=1)
+ for u, v in combinations(G, 2):
+ # Adjacent vertices must be within the given distance.
+ if v in G[u]:
+ assert l1dist(G.nodes[u]["pos"], G.nodes[v]["pos"]) <= 0.25
+ # Nonadjacent vertices must be at greater distance.
+ else:
+ assert not l1dist(G.nodes[u]["pos"], G.nodes[v]["pos"]) <= 0.25
+
+ def test_node_names(self):
+ """Tests using values other than sequential numbers as node IDs."""
+ import string
+
+ nodes = list(string.ascii_lowercase)
+ G = nx.random_geometric_graph(nodes, 0.25)
+ assert len(G) == len(nodes)
+
+ for u, v in combinations(G, 2):
+ # Adjacent vertices must be within the given distance.
+ if v in G[u]:
+ assert math.dist(G.nodes[u]["pos"], G.nodes[v]["pos"]) <= 0.25
+ # Nonadjacent vertices must be at greater distance.
+ else:
+ assert not math.dist(G.nodes[u]["pos"], G.nodes[v]["pos"]) <= 0.25
+
+ def test_pos_name(self):
+ G = nx.random_geometric_graph(50, 0.25, seed=42, pos_name="coords")
+ assert all(len(d["coords"]) == 2 for n, d in G.nodes.items())
+
+
+class TestSoftRandomGeometricGraph:
+ """Unit tests for :func:`~networkx.soft_random_geometric_graph`"""
+
+ def test_number_of_nodes(self):
+ G = nx.soft_random_geometric_graph(50, 0.25, seed=42)
+ assert len(G) == 50
+ G = nx.soft_random_geometric_graph(range(50), 0.25, seed=42)
+ assert len(G) == 50
+
+ def test_distances(self):
+ """Tests that pairs of vertices adjacent if and only if they are
+ within the prescribed radius.
+ """
+ # Use the Euclidean metric, the default according to the
+ # documentation.
+ G = nx.soft_random_geometric_graph(50, 0.25)
+ for u, v in combinations(G, 2):
+ # Adjacent vertices must be within the given distance.
+ if v in G[u]:
+ assert math.dist(G.nodes[u]["pos"], G.nodes[v]["pos"]) <= 0.25
+
+ def test_p(self):
+ """Tests for providing an alternate distance metric to the generator."""
+
+ # Use the L1 metric.
+ def dist(x, y):
+ return sum(abs(a - b) for a, b in zip(x, y))
+
+ G = nx.soft_random_geometric_graph(50, 0.25, p=1)
+ for u, v in combinations(G, 2):
+ # Adjacent vertices must be within the given distance.
+ if v in G[u]:
+ assert dist(G.nodes[u]["pos"], G.nodes[v]["pos"]) <= 0.25
+
+ def test_node_names(self):
+ """Tests using values other than sequential numbers as node IDs."""
+ import string
+
+ nodes = list(string.ascii_lowercase)
+ G = nx.soft_random_geometric_graph(nodes, 0.25)
+ assert len(G) == len(nodes)
+
+ for u, v in combinations(G, 2):
+ # Adjacent vertices must be within the given distance.
+ if v in G[u]:
+ assert math.dist(G.nodes[u]["pos"], G.nodes[v]["pos"]) <= 0.25
+
+ def test_p_dist_default(self):
+ """Tests default p_dict = 0.5 returns graph with edge count <= RGG with
+ same n, radius, dim and positions
+ """
+ nodes = 50
+ dim = 2
+ pos = {v: [random.random() for i in range(dim)] for v in range(nodes)}
+ RGG = nx.random_geometric_graph(50, 0.25, pos=pos)
+ SRGG = nx.soft_random_geometric_graph(50, 0.25, pos=pos)
+ assert len(SRGG.edges()) <= len(RGG.edges())
+
+ def test_p_dist_zero(self):
+ """Tests if p_dict = 0 returns disconnected graph with 0 edges"""
+
+ def p_dist(dist):
+ return 0
+
+ G = nx.soft_random_geometric_graph(50, 0.25, p_dist=p_dist)
+ assert len(G.edges) == 0
+
+ def test_pos_name(self):
+ G = nx.soft_random_geometric_graph(50, 0.25, seed=42, pos_name="coords")
+ assert all(len(d["coords"]) == 2 for n, d in G.nodes.items())
+
+
+def join(G, u, v, theta, alpha, metric):
+ """Returns ``True`` if and only if the nodes whose attributes are
+ ``du`` and ``dv`` should be joined, according to the threshold
+ condition for geographical threshold graphs.
+
+ ``G`` is an undirected NetworkX graph, and ``u`` and ``v`` are nodes
+ in that graph. The nodes must have node attributes ``'pos'`` and
+ ``'weight'``.
+
+ ``metric`` is a distance metric.
+ """
+ du, dv = G.nodes[u], G.nodes[v]
+ u_pos, v_pos = du["pos"], dv["pos"]
+ u_weight, v_weight = du["weight"], dv["weight"]
+ return (u_weight + v_weight) * metric(u_pos, v_pos) ** alpha >= theta
+
+
+class TestGeographicalThresholdGraph:
+ """Unit tests for :func:`~networkx.geographical_threshold_graph`"""
+
+ def test_number_of_nodes(self):
+ G = nx.geographical_threshold_graph(50, 100, seed=42)
+ assert len(G) == 50
+ G = nx.geographical_threshold_graph(range(50), 100, seed=42)
+ assert len(G) == 50
+
+ def test_distances(self):
+ """Tests that pairs of vertices adjacent if and only if their
+ distances meet the given threshold.
+ """
+ # Use the Euclidean metric and alpha = -2
+ # the default according to the documentation.
+ G = nx.geographical_threshold_graph(50, 10)
+ for u, v in combinations(G, 2):
+ # Adjacent vertices must exceed the threshold.
+ if v in G[u]:
+ assert join(G, u, v, 10, -2, math.dist)
+ # Nonadjacent vertices must not exceed the threshold.
+ else:
+ assert not join(G, u, v, 10, -2, math.dist)
+
+ def test_metric(self):
+ """Tests for providing an alternate distance metric to the generator."""
+ # Use the L1 metric.
+ G = nx.geographical_threshold_graph(50, 10, metric=l1dist)
+ for u, v in combinations(G, 2):
+ # Adjacent vertices must exceed the threshold.
+ if v in G[u]:
+ assert join(G, u, v, 10, -2, l1dist)
+ # Nonadjacent vertices must not exceed the threshold.
+ else:
+ assert not join(G, u, v, 10, -2, l1dist)
+
+ def test_p_dist_zero(self):
+ """Tests if p_dict = 0 returns disconnected graph with 0 edges"""
+
+ def p_dist(dist):
+ return 0
+
+ G = nx.geographical_threshold_graph(50, 1, p_dist=p_dist)
+ assert len(G.edges) == 0
+
+ def test_pos_weight_name(self):
+ gtg = nx.geographical_threshold_graph
+ G = gtg(50, 100, seed=42, pos_name="coords", weight_name="wt")
+ assert all(len(d["coords"]) == 2 for n, d in G.nodes.items())
+ assert all(d["wt"] > 0 for n, d in G.nodes.items())
+
+
+class TestWaxmanGraph:
+ """Unit tests for the :func:`~networkx.waxman_graph` function."""
+
+ def test_number_of_nodes_1(self):
+ G = nx.waxman_graph(50, 0.5, 0.1, seed=42)
+ assert len(G) == 50
+ G = nx.waxman_graph(range(50), 0.5, 0.1, seed=42)
+ assert len(G) == 50
+
+ def test_number_of_nodes_2(self):
+ G = nx.waxman_graph(50, 0.5, 0.1, L=1)
+ assert len(G) == 50
+ G = nx.waxman_graph(range(50), 0.5, 0.1, L=1)
+ assert len(G) == 50
+
+ def test_metric(self):
+ """Tests for providing an alternate distance metric to the generator."""
+ # Use the L1 metric.
+ G = nx.waxman_graph(50, 0.5, 0.1, metric=l1dist)
+ assert len(G) == 50
+
+ def test_pos_name(self):
+ G = nx.waxman_graph(50, 0.5, 0.1, seed=42, pos_name="coords")
+ assert all(len(d["coords"]) == 2 for n, d in G.nodes.items())
+
+
+class TestNavigableSmallWorldGraph:
+ def test_navigable_small_world(self):
+ G = nx.navigable_small_world_graph(5, p=1, q=0, seed=42)
+ gg = nx.grid_2d_graph(5, 5).to_directed()
+ assert nx.is_isomorphic(G, gg)
+
+ G = nx.navigable_small_world_graph(5, p=1, q=0, dim=3)
+ gg = nx.grid_graph([5, 5, 5]).to_directed()
+ assert nx.is_isomorphic(G, gg)
+
+ G = nx.navigable_small_world_graph(5, p=1, q=0, dim=1)
+ gg = nx.grid_graph([5]).to_directed()
+ assert nx.is_isomorphic(G, gg)
+
+ def test_invalid_diameter_value(self):
+ with pytest.raises(nx.NetworkXException, match=".*p must be >= 1"):
+ nx.navigable_small_world_graph(5, p=0, q=0, dim=1)
+
+ def test_invalid_long_range_connections_value(self):
+ with pytest.raises(nx.NetworkXException, match=".*q must be >= 0"):
+ nx.navigable_small_world_graph(5, p=1, q=-1, dim=1)
+
+ def test_invalid_exponent_for_decaying_probability_value(self):
+ with pytest.raises(nx.NetworkXException, match=".*r must be >= 0"):
+ nx.navigable_small_world_graph(5, p=1, q=0, r=-1, dim=1)
+
+ def test_r_between_0_and_1(self):
+ """Smoke test for radius in range [0, 1]"""
+ # q=0 means no long-range connections
+ G = nx.navigable_small_world_graph(3, p=1, q=0, r=0.5, dim=2, seed=42)
+ expected = nx.grid_2d_graph(3, 3, create_using=nx.DiGraph)
+ assert nx.utils.graphs_equal(G, expected)
+
+ @pytest.mark.parametrize("seed", range(2478, 2578, 10))
+ def test_r_general_scaling(self, seed):
+ """The probability of adding a long-range edge scales with `1 / dist**r`,
+ so a navigable_small_world graph created with r < 1 should generally
+ result in more edges than a navigable_small_world graph with r >= 1
+ (for 0 < q << n).
+
+ N.B. this is probabilistic, so this test may not hold for all seeds."""
+ G1 = nx.navigable_small_world_graph(7, q=3, r=0.5, seed=seed)
+ G2 = nx.navigable_small_world_graph(7, q=3, r=1, seed=seed)
+ G3 = nx.navigable_small_world_graph(7, q=3, r=2, seed=seed)
+ assert G1.number_of_edges() > G2.number_of_edges()
+ assert G2.number_of_edges() > G3.number_of_edges()
+
+
+class TestThresholdedRandomGeometricGraph:
+ """Unit tests for :func:`~networkx.thresholded_random_geometric_graph`"""
+
+ def test_number_of_nodes(self):
+ G = nx.thresholded_random_geometric_graph(50, 0.2, 0.1, seed=42)
+ assert len(G) == 50
+ G = nx.thresholded_random_geometric_graph(range(50), 0.2, 0.1, seed=42)
+ assert len(G) == 50
+
+ def test_distances(self):
+ """Tests that pairs of vertices adjacent if and only if they are
+ within the prescribed radius.
+ """
+ # Use the Euclidean metric, the default according to the
+ # documentation.
+ G = nx.thresholded_random_geometric_graph(50, 0.25, 0.1, seed=42)
+ for u, v in combinations(G, 2):
+ # Adjacent vertices must be within the given distance.
+ if v in G[u]:
+ assert math.dist(G.nodes[u]["pos"], G.nodes[v]["pos"]) <= 0.25
+
+ def test_p(self):
+ """Tests for providing an alternate distance metric to the generator."""
+
+ # Use the L1 metric.
+ def dist(x, y):
+ return sum(abs(a - b) for a, b in zip(x, y))
+
+ G = nx.thresholded_random_geometric_graph(50, 0.25, 0.1, p=1, seed=42)
+ for u, v in combinations(G, 2):
+ # Adjacent vertices must be within the given distance.
+ if v in G[u]:
+ assert dist(G.nodes[u]["pos"], G.nodes[v]["pos"]) <= 0.25
+
+ def test_node_names(self):
+ """Tests using values other than sequential numbers as node IDs."""
+ import string
+
+ nodes = list(string.ascii_lowercase)
+ G = nx.thresholded_random_geometric_graph(nodes, 0.25, 0.1, seed=42)
+ assert len(G) == len(nodes)
+
+ for u, v in combinations(G, 2):
+ # Adjacent vertices must be within the given distance.
+ if v in G[u]:
+ assert math.dist(G.nodes[u]["pos"], G.nodes[v]["pos"]) <= 0.25
+
+ def test_theta(self):
+ """Tests that pairs of vertices adjacent if and only if their sum
+ weights exceeds the threshold parameter theta.
+ """
+ G = nx.thresholded_random_geometric_graph(50, 0.25, 0.1, seed=42)
+
+ for u, v in combinations(G, 2):
+ # Adjacent vertices must be within the given distance.
+ if v in G[u]:
+ assert (G.nodes[u]["weight"] + G.nodes[v]["weight"]) >= 0.1
+
+ def test_pos_name(self):
+ trgg = nx.thresholded_random_geometric_graph
+ G = trgg(50, 0.25, 0.1, seed=42, pos_name="p", weight_name="wt")
+ assert all(len(d["p"]) == 2 for n, d in G.nodes.items())
+ assert all(d["wt"] > 0 for n, d in G.nodes.items())
+
+
+def test_geometric_edges_pos_attribute():
+ G = nx.Graph()
+ G.add_nodes_from(
+ [
+ (0, {"position": (0, 0)}),
+ (1, {"position": (0, 1)}),
+ (2, {"position": (1, 0)}),
+ ]
+ )
+ expected_edges = [(0, 1), (0, 2)]
+ assert expected_edges == nx.geometric_edges(G, radius=1, pos_name="position")
+
+
+def test_geometric_edges_raises_no_pos():
+ G = nx.path_graph(3)
+ msg = "all nodes. must have a '"
+ with pytest.raises(nx.NetworkXError, match=msg):
+ nx.geometric_edges(G, radius=1)
+
+
+def test_number_of_nodes_S1():
+ G = nx.geometric_soft_configuration_graph(
+ beta=1.5, n=100, gamma=2.7, mean_degree=10, seed=42
+ )
+ assert len(G) == 100
+
+
+def test_set_attributes_S1():
+ G = nx.geometric_soft_configuration_graph(
+ beta=1.5, n=100, gamma=2.7, mean_degree=10, seed=42
+ )
+ kappas = nx.get_node_attributes(G, "kappa")
+ assert len(kappas) == 100
+ thetas = nx.get_node_attributes(G, "theta")
+ assert len(thetas) == 100
+ radii = nx.get_node_attributes(G, "radius")
+ assert len(radii) == 100
+
+
+def test_mean_kappas_mean_degree_S1():
+ G = nx.geometric_soft_configuration_graph(
+ beta=2.5, n=50, gamma=2.7, mean_degree=10, seed=8023
+ )
+
+ kappas = nx.get_node_attributes(G, "kappa")
+ mean_kappas = sum(kappas.values()) / len(kappas)
+ assert math.fabs(mean_kappas - 10) < 0.5
+
+ degrees = dict(G.degree())
+ mean_degree = sum(degrees.values()) / len(degrees)
+ assert math.fabs(mean_degree - 10) < 1
+
+
+def test_dict_kappas_S1():
+ kappas = {i: 10 for i in range(1000)}
+ G = nx.geometric_soft_configuration_graph(beta=1, kappas=kappas)
+ assert len(G) == 1000
+ kappas = nx.get_node_attributes(G, "kappa")
+ assert all(kappa == 10 for kappa in kappas.values())
+
+
+def test_beta_clustering_S1():
+ G1 = nx.geometric_soft_configuration_graph(
+ beta=1.5, n=100, gamma=3.5, mean_degree=10, seed=42
+ )
+ G2 = nx.geometric_soft_configuration_graph(
+ beta=3.0, n=100, gamma=3.5, mean_degree=10, seed=42
+ )
+ assert nx.average_clustering(G1) < nx.average_clustering(G2)
+
+
+def test_wrong_parameters_S1():
+ with pytest.raises(
+ nx.NetworkXError,
+ match="Please provide either kappas, or all 3 of: n, gamma and mean_degree.",
+ ):
+ G = nx.geometric_soft_configuration_graph(
+ beta=1.5, gamma=3.5, mean_degree=10, seed=42
+ )
+
+ with pytest.raises(
+ nx.NetworkXError,
+ match="When kappas is input, n, gamma and mean_degree must not be.",
+ ):
+ kappas = {i: 10 for i in range(1000)}
+ G = nx.geometric_soft_configuration_graph(
+ beta=1.5, kappas=kappas, gamma=2.3, seed=42
+ )
+
+ with pytest.raises(
+ nx.NetworkXError,
+ match="Please provide either kappas, or all 3 of: n, gamma and mean_degree.",
+ ):
+ G = nx.geometric_soft_configuration_graph(beta=1.5, seed=42)
+
+
+def test_negative_beta_S1():
+ with pytest.raises(
+ nx.NetworkXError, match="The parameter beta cannot be smaller or equal to 0."
+ ):
+ G = nx.geometric_soft_configuration_graph(
+ beta=-1, n=100, gamma=2.3, mean_degree=10, seed=42
+ )
+
+
+def test_non_zero_clustering_beta_lower_one_S1():
+ G = nx.geometric_soft_configuration_graph(
+ beta=0.5, n=100, gamma=3.5, mean_degree=10, seed=42
+ )
+ assert nx.average_clustering(G) > 0
+
+
+def test_mean_degree_influence_on_connectivity_S1():
+ low_mean_degree = 2
+ high_mean_degree = 20
+ G_low = nx.geometric_soft_configuration_graph(
+ beta=1.2, n=100, gamma=2.7, mean_degree=low_mean_degree, seed=42
+ )
+ G_high = nx.geometric_soft_configuration_graph(
+ beta=1.2, n=100, gamma=2.7, mean_degree=high_mean_degree, seed=42
+ )
+ assert nx.number_connected_components(G_low) > nx.number_connected_components(
+ G_high
+ )
+
+
+def test_compare_mean_kappas_different_gammas_S1():
+ G1 = nx.geometric_soft_configuration_graph(
+ beta=1.5, n=20, gamma=2.7, mean_degree=5, seed=42
+ )
+ G2 = nx.geometric_soft_configuration_graph(
+ beta=1.5, n=20, gamma=3.5, mean_degree=5, seed=42
+ )
+ kappas1 = nx.get_node_attributes(G1, "kappa")
+ mean_kappas1 = sum(kappas1.values()) / len(kappas1)
+ kappas2 = nx.get_node_attributes(G2, "kappa")
+ mean_kappas2 = sum(kappas2.values()) / len(kappas2)
+ assert math.fabs(mean_kappas1 - mean_kappas2) < 1