diff options
author | S. Solomon Darnell | 2025-03-28 21:52:21 -0500 |
---|---|---|
committer | S. Solomon Darnell | 2025-03-28 21:52:21 -0500 |
commit | 4a52a71956a8d46fcb7294ac71734504bb09bcc2 (patch) | |
tree | ee3dc5af3b6313e921cd920906356f5d4febc4ed /.venv/lib/python3.12/site-packages/networkx/generators/tests/test_geometric.py | |
parent | cc961e04ba734dd72309fb548a2f97d67d578813 (diff) | |
download | gn-ai-master.tar.gz |
Diffstat (limited to '.venv/lib/python3.12/site-packages/networkx/generators/tests/test_geometric.py')
-rw-r--r-- | .venv/lib/python3.12/site-packages/networkx/generators/tests/test_geometric.py | 488 |
1 files changed, 488 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/networkx/generators/tests/test_geometric.py b/.venv/lib/python3.12/site-packages/networkx/generators/tests/test_geometric.py new file mode 100644 index 00000000..f1c68bea --- /dev/null +++ b/.venv/lib/python3.12/site-packages/networkx/generators/tests/test_geometric.py @@ -0,0 +1,488 @@ +import math +import random +from itertools import combinations + +import pytest + +import networkx as nx + + +def l1dist(x, y): + return sum(abs(a - b) for a, b in zip(x, y)) + + +class TestRandomGeometricGraph: + """Unit tests for :func:`~networkx.random_geometric_graph`""" + + def test_number_of_nodes(self): + G = nx.random_geometric_graph(50, 0.25, seed=42) + assert len(G) == 50 + G = nx.random_geometric_graph(range(50), 0.25, seed=42) + assert len(G) == 50 + + def test_distances(self): + """Tests that pairs of vertices adjacent if and only if they are + within the prescribed radius. + """ + # Use the Euclidean metric, the default according to the + # documentation. + G = nx.random_geometric_graph(50, 0.25) + for u, v in combinations(G, 2): + # Adjacent vertices must be within the given distance. + if v in G[u]: + assert math.dist(G.nodes[u]["pos"], G.nodes[v]["pos"]) <= 0.25 + # Nonadjacent vertices must be at greater distance. + else: + assert not math.dist(G.nodes[u]["pos"], G.nodes[v]["pos"]) <= 0.25 + + def test_p(self): + """Tests for providing an alternate distance metric to the generator.""" + # Use the L1 metric. + G = nx.random_geometric_graph(50, 0.25, p=1) + for u, v in combinations(G, 2): + # Adjacent vertices must be within the given distance. + if v in G[u]: + assert l1dist(G.nodes[u]["pos"], G.nodes[v]["pos"]) <= 0.25 + # Nonadjacent vertices must be at greater distance. + else: + assert not l1dist(G.nodes[u]["pos"], G.nodes[v]["pos"]) <= 0.25 + + def test_node_names(self): + """Tests using values other than sequential numbers as node IDs.""" + import string + + nodes = list(string.ascii_lowercase) + G = nx.random_geometric_graph(nodes, 0.25) + assert len(G) == len(nodes) + + for u, v in combinations(G, 2): + # Adjacent vertices must be within the given distance. + if v in G[u]: + assert math.dist(G.nodes[u]["pos"], G.nodes[v]["pos"]) <= 0.25 + # Nonadjacent vertices must be at greater distance. + else: + assert not math.dist(G.nodes[u]["pos"], G.nodes[v]["pos"]) <= 0.25 + + def test_pos_name(self): + G = nx.random_geometric_graph(50, 0.25, seed=42, pos_name="coords") + assert all(len(d["coords"]) == 2 for n, d in G.nodes.items()) + + +class TestSoftRandomGeometricGraph: + """Unit tests for :func:`~networkx.soft_random_geometric_graph`""" + + def test_number_of_nodes(self): + G = nx.soft_random_geometric_graph(50, 0.25, seed=42) + assert len(G) == 50 + G = nx.soft_random_geometric_graph(range(50), 0.25, seed=42) + assert len(G) == 50 + + def test_distances(self): + """Tests that pairs of vertices adjacent if and only if they are + within the prescribed radius. + """ + # Use the Euclidean metric, the default according to the + # documentation. + G = nx.soft_random_geometric_graph(50, 0.25) + for u, v in combinations(G, 2): + # Adjacent vertices must be within the given distance. + if v in G[u]: + assert math.dist(G.nodes[u]["pos"], G.nodes[v]["pos"]) <= 0.25 + + def test_p(self): + """Tests for providing an alternate distance metric to the generator.""" + + # Use the L1 metric. + def dist(x, y): + return sum(abs(a - b) for a, b in zip(x, y)) + + G = nx.soft_random_geometric_graph(50, 0.25, p=1) + for u, v in combinations(G, 2): + # Adjacent vertices must be within the given distance. + if v in G[u]: + assert dist(G.nodes[u]["pos"], G.nodes[v]["pos"]) <= 0.25 + + def test_node_names(self): + """Tests using values other than sequential numbers as node IDs.""" + import string + + nodes = list(string.ascii_lowercase) + G = nx.soft_random_geometric_graph(nodes, 0.25) + assert len(G) == len(nodes) + + for u, v in combinations(G, 2): + # Adjacent vertices must be within the given distance. + if v in G[u]: + assert math.dist(G.nodes[u]["pos"], G.nodes[v]["pos"]) <= 0.25 + + def test_p_dist_default(self): + """Tests default p_dict = 0.5 returns graph with edge count <= RGG with + same n, radius, dim and positions + """ + nodes = 50 + dim = 2 + pos = {v: [random.random() for i in range(dim)] for v in range(nodes)} + RGG = nx.random_geometric_graph(50, 0.25, pos=pos) + SRGG = nx.soft_random_geometric_graph(50, 0.25, pos=pos) + assert len(SRGG.edges()) <= len(RGG.edges()) + + def test_p_dist_zero(self): + """Tests if p_dict = 0 returns disconnected graph with 0 edges""" + + def p_dist(dist): + return 0 + + G = nx.soft_random_geometric_graph(50, 0.25, p_dist=p_dist) + assert len(G.edges) == 0 + + def test_pos_name(self): + G = nx.soft_random_geometric_graph(50, 0.25, seed=42, pos_name="coords") + assert all(len(d["coords"]) == 2 for n, d in G.nodes.items()) + + +def join(G, u, v, theta, alpha, metric): + """Returns ``True`` if and only if the nodes whose attributes are + ``du`` and ``dv`` should be joined, according to the threshold + condition for geographical threshold graphs. + + ``G`` is an undirected NetworkX graph, and ``u`` and ``v`` are nodes + in that graph. The nodes must have node attributes ``'pos'`` and + ``'weight'``. + + ``metric`` is a distance metric. + """ + du, dv = G.nodes[u], G.nodes[v] + u_pos, v_pos = du["pos"], dv["pos"] + u_weight, v_weight = du["weight"], dv["weight"] + return (u_weight + v_weight) * metric(u_pos, v_pos) ** alpha >= theta + + +class TestGeographicalThresholdGraph: + """Unit tests for :func:`~networkx.geographical_threshold_graph`""" + + def test_number_of_nodes(self): + G = nx.geographical_threshold_graph(50, 100, seed=42) + assert len(G) == 50 + G = nx.geographical_threshold_graph(range(50), 100, seed=42) + assert len(G) == 50 + + def test_distances(self): + """Tests that pairs of vertices adjacent if and only if their + distances meet the given threshold. + """ + # Use the Euclidean metric and alpha = -2 + # the default according to the documentation. + G = nx.geographical_threshold_graph(50, 10) + for u, v in combinations(G, 2): + # Adjacent vertices must exceed the threshold. + if v in G[u]: + assert join(G, u, v, 10, -2, math.dist) + # Nonadjacent vertices must not exceed the threshold. + else: + assert not join(G, u, v, 10, -2, math.dist) + + def test_metric(self): + """Tests for providing an alternate distance metric to the generator.""" + # Use the L1 metric. + G = nx.geographical_threshold_graph(50, 10, metric=l1dist) + for u, v in combinations(G, 2): + # Adjacent vertices must exceed the threshold. + if v in G[u]: + assert join(G, u, v, 10, -2, l1dist) + # Nonadjacent vertices must not exceed the threshold. + else: + assert not join(G, u, v, 10, -2, l1dist) + + def test_p_dist_zero(self): + """Tests if p_dict = 0 returns disconnected graph with 0 edges""" + + def p_dist(dist): + return 0 + + G = nx.geographical_threshold_graph(50, 1, p_dist=p_dist) + assert len(G.edges) == 0 + + def test_pos_weight_name(self): + gtg = nx.geographical_threshold_graph + G = gtg(50, 100, seed=42, pos_name="coords", weight_name="wt") + assert all(len(d["coords"]) == 2 for n, d in G.nodes.items()) + assert all(d["wt"] > 0 for n, d in G.nodes.items()) + + +class TestWaxmanGraph: + """Unit tests for the :func:`~networkx.waxman_graph` function.""" + + def test_number_of_nodes_1(self): + G = nx.waxman_graph(50, 0.5, 0.1, seed=42) + assert len(G) == 50 + G = nx.waxman_graph(range(50), 0.5, 0.1, seed=42) + assert len(G) == 50 + + def test_number_of_nodes_2(self): + G = nx.waxman_graph(50, 0.5, 0.1, L=1) + assert len(G) == 50 + G = nx.waxman_graph(range(50), 0.5, 0.1, L=1) + assert len(G) == 50 + + def test_metric(self): + """Tests for providing an alternate distance metric to the generator.""" + # Use the L1 metric. + G = nx.waxman_graph(50, 0.5, 0.1, metric=l1dist) + assert len(G) == 50 + + def test_pos_name(self): + G = nx.waxman_graph(50, 0.5, 0.1, seed=42, pos_name="coords") + assert all(len(d["coords"]) == 2 for n, d in G.nodes.items()) + + +class TestNavigableSmallWorldGraph: + def test_navigable_small_world(self): + G = nx.navigable_small_world_graph(5, p=1, q=0, seed=42) + gg = nx.grid_2d_graph(5, 5).to_directed() + assert nx.is_isomorphic(G, gg) + + G = nx.navigable_small_world_graph(5, p=1, q=0, dim=3) + gg = nx.grid_graph([5, 5, 5]).to_directed() + assert nx.is_isomorphic(G, gg) + + G = nx.navigable_small_world_graph(5, p=1, q=0, dim=1) + gg = nx.grid_graph([5]).to_directed() + assert nx.is_isomorphic(G, gg) + + def test_invalid_diameter_value(self): + with pytest.raises(nx.NetworkXException, match=".*p must be >= 1"): + nx.navigable_small_world_graph(5, p=0, q=0, dim=1) + + def test_invalid_long_range_connections_value(self): + with pytest.raises(nx.NetworkXException, match=".*q must be >= 0"): + nx.navigable_small_world_graph(5, p=1, q=-1, dim=1) + + def test_invalid_exponent_for_decaying_probability_value(self): + with pytest.raises(nx.NetworkXException, match=".*r must be >= 0"): + nx.navigable_small_world_graph(5, p=1, q=0, r=-1, dim=1) + + def test_r_between_0_and_1(self): + """Smoke test for radius in range [0, 1]""" + # q=0 means no long-range connections + G = nx.navigable_small_world_graph(3, p=1, q=0, r=0.5, dim=2, seed=42) + expected = nx.grid_2d_graph(3, 3, create_using=nx.DiGraph) + assert nx.utils.graphs_equal(G, expected) + + @pytest.mark.parametrize("seed", range(2478, 2578, 10)) + def test_r_general_scaling(self, seed): + """The probability of adding a long-range edge scales with `1 / dist**r`, + so a navigable_small_world graph created with r < 1 should generally + result in more edges than a navigable_small_world graph with r >= 1 + (for 0 < q << n). + + N.B. this is probabilistic, so this test may not hold for all seeds.""" + G1 = nx.navigable_small_world_graph(7, q=3, r=0.5, seed=seed) + G2 = nx.navigable_small_world_graph(7, q=3, r=1, seed=seed) + G3 = nx.navigable_small_world_graph(7, q=3, r=2, seed=seed) + assert G1.number_of_edges() > G2.number_of_edges() + assert G2.number_of_edges() > G3.number_of_edges() + + +class TestThresholdedRandomGeometricGraph: + """Unit tests for :func:`~networkx.thresholded_random_geometric_graph`""" + + def test_number_of_nodes(self): + G = nx.thresholded_random_geometric_graph(50, 0.2, 0.1, seed=42) + assert len(G) == 50 + G = nx.thresholded_random_geometric_graph(range(50), 0.2, 0.1, seed=42) + assert len(G) == 50 + + def test_distances(self): + """Tests that pairs of vertices adjacent if and only if they are + within the prescribed radius. + """ + # Use the Euclidean metric, the default according to the + # documentation. + G = nx.thresholded_random_geometric_graph(50, 0.25, 0.1, seed=42) + for u, v in combinations(G, 2): + # Adjacent vertices must be within the given distance. + if v in G[u]: + assert math.dist(G.nodes[u]["pos"], G.nodes[v]["pos"]) <= 0.25 + + def test_p(self): + """Tests for providing an alternate distance metric to the generator.""" + + # Use the L1 metric. + def dist(x, y): + return sum(abs(a - b) for a, b in zip(x, y)) + + G = nx.thresholded_random_geometric_graph(50, 0.25, 0.1, p=1, seed=42) + for u, v in combinations(G, 2): + # Adjacent vertices must be within the given distance. + if v in G[u]: + assert dist(G.nodes[u]["pos"], G.nodes[v]["pos"]) <= 0.25 + + def test_node_names(self): + """Tests using values other than sequential numbers as node IDs.""" + import string + + nodes = list(string.ascii_lowercase) + G = nx.thresholded_random_geometric_graph(nodes, 0.25, 0.1, seed=42) + assert len(G) == len(nodes) + + for u, v in combinations(G, 2): + # Adjacent vertices must be within the given distance. + if v in G[u]: + assert math.dist(G.nodes[u]["pos"], G.nodes[v]["pos"]) <= 0.25 + + def test_theta(self): + """Tests that pairs of vertices adjacent if and only if their sum + weights exceeds the threshold parameter theta. + """ + G = nx.thresholded_random_geometric_graph(50, 0.25, 0.1, seed=42) + + for u, v in combinations(G, 2): + # Adjacent vertices must be within the given distance. + if v in G[u]: + assert (G.nodes[u]["weight"] + G.nodes[v]["weight"]) >= 0.1 + + def test_pos_name(self): + trgg = nx.thresholded_random_geometric_graph + G = trgg(50, 0.25, 0.1, seed=42, pos_name="p", weight_name="wt") + assert all(len(d["p"]) == 2 for n, d in G.nodes.items()) + assert all(d["wt"] > 0 for n, d in G.nodes.items()) + + +def test_geometric_edges_pos_attribute(): + G = nx.Graph() + G.add_nodes_from( + [ + (0, {"position": (0, 0)}), + (1, {"position": (0, 1)}), + (2, {"position": (1, 0)}), + ] + ) + expected_edges = [(0, 1), (0, 2)] + assert expected_edges == nx.geometric_edges(G, radius=1, pos_name="position") + + +def test_geometric_edges_raises_no_pos(): + G = nx.path_graph(3) + msg = "all nodes. must have a '" + with pytest.raises(nx.NetworkXError, match=msg): + nx.geometric_edges(G, radius=1) + + +def test_number_of_nodes_S1(): + G = nx.geometric_soft_configuration_graph( + beta=1.5, n=100, gamma=2.7, mean_degree=10, seed=42 + ) + assert len(G) == 100 + + +def test_set_attributes_S1(): + G = nx.geometric_soft_configuration_graph( + beta=1.5, n=100, gamma=2.7, mean_degree=10, seed=42 + ) + kappas = nx.get_node_attributes(G, "kappa") + assert len(kappas) == 100 + thetas = nx.get_node_attributes(G, "theta") + assert len(thetas) == 100 + radii = nx.get_node_attributes(G, "radius") + assert len(radii) == 100 + + +def test_mean_kappas_mean_degree_S1(): + G = nx.geometric_soft_configuration_graph( + beta=2.5, n=50, gamma=2.7, mean_degree=10, seed=8023 + ) + + kappas = nx.get_node_attributes(G, "kappa") + mean_kappas = sum(kappas.values()) / len(kappas) + assert math.fabs(mean_kappas - 10) < 0.5 + + degrees = dict(G.degree()) + mean_degree = sum(degrees.values()) / len(degrees) + assert math.fabs(mean_degree - 10) < 1 + + +def test_dict_kappas_S1(): + kappas = {i: 10 for i in range(1000)} + G = nx.geometric_soft_configuration_graph(beta=1, kappas=kappas) + assert len(G) == 1000 + kappas = nx.get_node_attributes(G, "kappa") + assert all(kappa == 10 for kappa in kappas.values()) + + +def test_beta_clustering_S1(): + G1 = nx.geometric_soft_configuration_graph( + beta=1.5, n=100, gamma=3.5, mean_degree=10, seed=42 + ) + G2 = nx.geometric_soft_configuration_graph( + beta=3.0, n=100, gamma=3.5, mean_degree=10, seed=42 + ) + assert nx.average_clustering(G1) < nx.average_clustering(G2) + + +def test_wrong_parameters_S1(): + with pytest.raises( + nx.NetworkXError, + match="Please provide either kappas, or all 3 of: n, gamma and mean_degree.", + ): + G = nx.geometric_soft_configuration_graph( + beta=1.5, gamma=3.5, mean_degree=10, seed=42 + ) + + with pytest.raises( + nx.NetworkXError, + match="When kappas is input, n, gamma and mean_degree must not be.", + ): + kappas = {i: 10 for i in range(1000)} + G = nx.geometric_soft_configuration_graph( + beta=1.5, kappas=kappas, gamma=2.3, seed=42 + ) + + with pytest.raises( + nx.NetworkXError, + match="Please provide either kappas, or all 3 of: n, gamma and mean_degree.", + ): + G = nx.geometric_soft_configuration_graph(beta=1.5, seed=42) + + +def test_negative_beta_S1(): + with pytest.raises( + nx.NetworkXError, match="The parameter beta cannot be smaller or equal to 0." + ): + G = nx.geometric_soft_configuration_graph( + beta=-1, n=100, gamma=2.3, mean_degree=10, seed=42 + ) + + +def test_non_zero_clustering_beta_lower_one_S1(): + G = nx.geometric_soft_configuration_graph( + beta=0.5, n=100, gamma=3.5, mean_degree=10, seed=42 + ) + assert nx.average_clustering(G) > 0 + + +def test_mean_degree_influence_on_connectivity_S1(): + low_mean_degree = 2 + high_mean_degree = 20 + G_low = nx.geometric_soft_configuration_graph( + beta=1.2, n=100, gamma=2.7, mean_degree=low_mean_degree, seed=42 + ) + G_high = nx.geometric_soft_configuration_graph( + beta=1.2, n=100, gamma=2.7, mean_degree=high_mean_degree, seed=42 + ) + assert nx.number_connected_components(G_low) > nx.number_connected_components( + G_high + ) + + +def test_compare_mean_kappas_different_gammas_S1(): + G1 = nx.geometric_soft_configuration_graph( + beta=1.5, n=20, gamma=2.7, mean_degree=5, seed=42 + ) + G2 = nx.geometric_soft_configuration_graph( + beta=1.5, n=20, gamma=3.5, mean_degree=5, seed=42 + ) + kappas1 = nx.get_node_attributes(G1, "kappa") + mean_kappas1 = sum(kappas1.values()) / len(kappas1) + kappas2 = nx.get_node_attributes(G2, "kappa") + mean_kappas2 = sum(kappas2.values()) / len(kappas2) + assert math.fabs(mean_kappas1 - mean_kappas2) < 1 |