aboutsummaryrefslogtreecommitdiff
path: root/.venv/lib/python3.12/site-packages/litellm/proxy/fine_tuning_endpoints/endpoints.py
diff options
context:
space:
mode:
Diffstat (limited to '.venv/lib/python3.12/site-packages/litellm/proxy/fine_tuning_endpoints/endpoints.py')
-rw-r--r--.venv/lib/python3.12/site-packages/litellm/proxy/fine_tuning_endpoints/endpoints.py473
1 files changed, 473 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/litellm/proxy/fine_tuning_endpoints/endpoints.py b/.venv/lib/python3.12/site-packages/litellm/proxy/fine_tuning_endpoints/endpoints.py
new file mode 100644
index 00000000..d4c4250b
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/litellm/proxy/fine_tuning_endpoints/endpoints.py
@@ -0,0 +1,473 @@
+#########################################################################
+
+# /v1/fine_tuning Endpoints
+
+# Equivalent of https://platform.openai.com/docs/api-reference/fine-tuning
+##########################################################################
+
+import asyncio
+import traceback
+from typing import Optional
+
+from fastapi import APIRouter, Depends, Request, Response
+
+import litellm
+from litellm._logging import verbose_proxy_logger
+from litellm.proxy._types import *
+from litellm.proxy.auth.user_api_key_auth import user_api_key_auth
+from litellm.proxy.common_request_processing import ProxyBaseLLMRequestProcessing
+from litellm.proxy.utils import handle_exception_on_proxy
+
+router = APIRouter()
+
+from litellm.types.llms.openai import LiteLLMFineTuningJobCreate
+
+fine_tuning_config = None
+
+
+def set_fine_tuning_config(config):
+ if config is None:
+ return
+
+ global fine_tuning_config
+ if not isinstance(config, list):
+ raise ValueError("invalid fine_tuning config, expected a list is not a list")
+
+ for element in config:
+ if isinstance(element, dict):
+ for key, value in element.items():
+ if isinstance(value, str) and value.startswith("os.environ/"):
+ element[key] = litellm.get_secret(value)
+
+ fine_tuning_config = config
+
+
+# Function to search for specific custom_llm_provider and return its configuration
+def get_fine_tuning_provider_config(
+ custom_llm_provider: str,
+):
+ global fine_tuning_config
+ if fine_tuning_config is None:
+ raise ValueError(
+ "fine_tuning_config is not set, set it on your config.yaml file."
+ )
+ for setting in fine_tuning_config:
+ if setting.get("custom_llm_provider") == custom_llm_provider:
+ return setting
+ return None
+
+
+@router.post(
+ "/v1/fine_tuning/jobs",
+ dependencies=[Depends(user_api_key_auth)],
+ tags=["fine-tuning"],
+ summary="✨ (Enterprise) Create Fine-Tuning Job",
+)
+@router.post(
+ "/fine_tuning/jobs",
+ dependencies=[Depends(user_api_key_auth)],
+ tags=["fine-tuning"],
+ summary="✨ (Enterprise) Create Fine-Tuning Job",
+)
+async def create_fine_tuning_job(
+ request: Request,
+ fastapi_response: Response,
+ fine_tuning_request: LiteLLMFineTuningJobCreate,
+ user_api_key_dict: UserAPIKeyAuth = Depends(user_api_key_auth),
+):
+ """
+ Creates a fine-tuning job which begins the process of creating a new model from a given dataset.
+ This is the equivalent of POST https://api.openai.com/v1/fine_tuning/jobs
+
+ Supports Identical Params as: https://platform.openai.com/docs/api-reference/fine-tuning/create
+
+ Example Curl:
+ ```
+ curl http://localhost:4000/v1/fine_tuning/jobs \
+ -H "Content-Type: application/json" \
+ -H "Authorization: Bearer sk-1234" \
+ -d '{
+ "model": "gpt-3.5-turbo",
+ "training_file": "file-abc123",
+ "hyperparameters": {
+ "n_epochs": 4
+ }
+ }'
+ ```
+ """
+ from litellm.proxy.proxy_server import (
+ add_litellm_data_to_request,
+ general_settings,
+ premium_user,
+ proxy_config,
+ proxy_logging_obj,
+ version,
+ )
+
+ data = fine_tuning_request.model_dump(exclude_none=True)
+ try:
+ if premium_user is not True:
+ raise ValueError(
+ f"Only premium users can use this endpoint + {CommonProxyErrors.not_premium_user.value}"
+ )
+ # Convert Pydantic model to dict
+
+ verbose_proxy_logger.debug(
+ "Request received by LiteLLM:\n{}".format(json.dumps(data, indent=4)),
+ )
+
+ # Include original request and headers in the data
+ data = await add_litellm_data_to_request(
+ data=data,
+ request=request,
+ general_settings=general_settings,
+ user_api_key_dict=user_api_key_dict,
+ version=version,
+ proxy_config=proxy_config,
+ )
+
+ # get configs for custom_llm_provider
+ llm_provider_config = get_fine_tuning_provider_config(
+ custom_llm_provider=fine_tuning_request.custom_llm_provider,
+ )
+
+ # add llm_provider_config to data
+ if llm_provider_config is not None:
+ data.update(llm_provider_config)
+
+ response = await litellm.acreate_fine_tuning_job(**data)
+
+ ### ALERTING ###
+ asyncio.create_task(
+ proxy_logging_obj.update_request_status(
+ litellm_call_id=data.get("litellm_call_id", ""), status="success"
+ )
+ )
+
+ ### RESPONSE HEADERS ###
+ hidden_params = getattr(response, "_hidden_params", {}) or {}
+ model_id = hidden_params.get("model_id", None) or ""
+ cache_key = hidden_params.get("cache_key", None) or ""
+ api_base = hidden_params.get("api_base", None) or ""
+
+ fastapi_response.headers.update(
+ ProxyBaseLLMRequestProcessing.get_custom_headers(
+ user_api_key_dict=user_api_key_dict,
+ model_id=model_id,
+ cache_key=cache_key,
+ api_base=api_base,
+ version=version,
+ model_region=getattr(user_api_key_dict, "allowed_model_region", ""),
+ )
+ )
+
+ return response
+ except Exception as e:
+ await proxy_logging_obj.post_call_failure_hook(
+ user_api_key_dict=user_api_key_dict, original_exception=e, request_data=data
+ )
+ verbose_proxy_logger.error(
+ "litellm.proxy.proxy_server.create_fine_tuning_job(): Exception occurred - {}".format(
+ str(e)
+ )
+ )
+ verbose_proxy_logger.debug(traceback.format_exc())
+ raise handle_exception_on_proxy(e)
+
+
+@router.get(
+ "/v1/fine_tuning/jobs/{fine_tuning_job_id:path}",
+ dependencies=[Depends(user_api_key_auth)],
+ tags=["fine-tuning"],
+ summary="✨ (Enterprise) Retrieve Fine-Tuning Job",
+)
+@router.get(
+ "/fine_tuning/jobs/{fine_tuning_job_id:path}",
+ dependencies=[Depends(user_api_key_auth)],
+ tags=["fine-tuning"],
+ summary="✨ (Enterprise) Retrieve Fine-Tuning Job",
+)
+async def retrieve_fine_tuning_job(
+ request: Request,
+ fastapi_response: Response,
+ fine_tuning_job_id: str,
+ custom_llm_provider: Literal["openai", "azure"],
+ user_api_key_dict: UserAPIKeyAuth = Depends(user_api_key_auth),
+):
+ """
+ Retrieves a fine-tuning job.
+ This is the equivalent of GET https://api.openai.com/v1/fine_tuning/jobs/{fine_tuning_job_id}
+
+ Supported Query Params:
+ - `custom_llm_provider`: Name of the LiteLLM provider
+ - `fine_tuning_job_id`: The ID of the fine-tuning job to retrieve.
+ """
+ from litellm.proxy.proxy_server import (
+ add_litellm_data_to_request,
+ general_settings,
+ premium_user,
+ proxy_config,
+ proxy_logging_obj,
+ version,
+ )
+
+ data: dict = {}
+ try:
+ if premium_user is not True:
+ raise ValueError(
+ f"Only premium users can use this endpoint + {CommonProxyErrors.not_premium_user.value}"
+ )
+ # Include original request and headers in the data
+ data = await add_litellm_data_to_request(
+ data=data,
+ request=request,
+ general_settings=general_settings,
+ user_api_key_dict=user_api_key_dict,
+ version=version,
+ proxy_config=proxy_config,
+ )
+
+ # get configs for custom_llm_provider
+ llm_provider_config = get_fine_tuning_provider_config(
+ custom_llm_provider=custom_llm_provider
+ )
+
+ if llm_provider_config is not None:
+ data.update(llm_provider_config)
+
+ response = await litellm.aretrieve_fine_tuning_job(
+ **data,
+ fine_tuning_job_id=fine_tuning_job_id,
+ )
+
+ ### RESPONSE HEADERS ###
+ hidden_params = getattr(response, "_hidden_params", {}) or {}
+ model_id = hidden_params.get("model_id", None) or ""
+ cache_key = hidden_params.get("cache_key", None) or ""
+ api_base = hidden_params.get("api_base", None) or ""
+
+ fastapi_response.headers.update(
+ ProxyBaseLLMRequestProcessing.get_custom_headers(
+ user_api_key_dict=user_api_key_dict,
+ model_id=model_id,
+ cache_key=cache_key,
+ api_base=api_base,
+ version=version,
+ model_region=getattr(user_api_key_dict, "allowed_model_region", ""),
+ )
+ )
+
+ return response
+
+ except Exception as e:
+ await proxy_logging_obj.post_call_failure_hook(
+ user_api_key_dict=user_api_key_dict, original_exception=e, request_data=data
+ )
+ verbose_proxy_logger.error(
+ "litellm.proxy.proxy_server.list_fine_tuning_jobs(): Exception occurred - {}".format(
+ str(e)
+ )
+ )
+ verbose_proxy_logger.debug(traceback.format_exc())
+ raise handle_exception_on_proxy(e)
+
+
+@router.get(
+ "/v1/fine_tuning/jobs",
+ dependencies=[Depends(user_api_key_auth)],
+ tags=["fine-tuning"],
+ summary="✨ (Enterprise) List Fine-Tuning Jobs",
+)
+@router.get(
+ "/fine_tuning/jobs",
+ dependencies=[Depends(user_api_key_auth)],
+ tags=["fine-tuning"],
+ summary="✨ (Enterprise) List Fine-Tuning Jobs",
+)
+async def list_fine_tuning_jobs(
+ request: Request,
+ fastapi_response: Response,
+ custom_llm_provider: Literal["openai", "azure"],
+ after: Optional[str] = None,
+ limit: Optional[int] = None,
+ user_api_key_dict: UserAPIKeyAuth = Depends(user_api_key_auth),
+):
+ """
+ Lists fine-tuning jobs for the organization.
+ This is the equivalent of GET https://api.openai.com/v1/fine_tuning/jobs
+
+ Supported Query Params:
+ - `custom_llm_provider`: Name of the LiteLLM provider
+ - `after`: Identifier for the last job from the previous pagination request.
+ - `limit`: Number of fine-tuning jobs to retrieve (default is 20).
+ """
+ from litellm.proxy.proxy_server import (
+ add_litellm_data_to_request,
+ general_settings,
+ premium_user,
+ proxy_config,
+ proxy_logging_obj,
+ version,
+ )
+
+ data: dict = {}
+ try:
+ if premium_user is not True:
+ raise ValueError(
+ f"Only premium users can use this endpoint + {CommonProxyErrors.not_premium_user.value}"
+ )
+ # Include original request and headers in the data
+ data = await add_litellm_data_to_request(
+ data=data,
+ request=request,
+ general_settings=general_settings,
+ user_api_key_dict=user_api_key_dict,
+ version=version,
+ proxy_config=proxy_config,
+ )
+
+ # get configs for custom_llm_provider
+ llm_provider_config = get_fine_tuning_provider_config(
+ custom_llm_provider=custom_llm_provider
+ )
+
+ if llm_provider_config is not None:
+ data.update(llm_provider_config)
+
+ response = await litellm.alist_fine_tuning_jobs(
+ **data,
+ after=after,
+ limit=limit,
+ )
+
+ ### RESPONSE HEADERS ###
+ hidden_params = getattr(response, "_hidden_params", {}) or {}
+ model_id = hidden_params.get("model_id", None) or ""
+ cache_key = hidden_params.get("cache_key", None) or ""
+ api_base = hidden_params.get("api_base", None) or ""
+
+ fastapi_response.headers.update(
+ ProxyBaseLLMRequestProcessing.get_custom_headers(
+ user_api_key_dict=user_api_key_dict,
+ model_id=model_id,
+ cache_key=cache_key,
+ api_base=api_base,
+ version=version,
+ model_region=getattr(user_api_key_dict, "allowed_model_region", ""),
+ )
+ )
+
+ return response
+
+ except Exception as e:
+ await proxy_logging_obj.post_call_failure_hook(
+ user_api_key_dict=user_api_key_dict, original_exception=e, request_data=data
+ )
+ verbose_proxy_logger.error(
+ "litellm.proxy.proxy_server.list_fine_tuning_jobs(): Exception occurred - {}".format(
+ str(e)
+ )
+ )
+ verbose_proxy_logger.debug(traceback.format_exc())
+ raise handle_exception_on_proxy(e)
+
+
+@router.post(
+ "/v1/fine_tuning/jobs/{fine_tuning_job_id:path}/cancel",
+ dependencies=[Depends(user_api_key_auth)],
+ tags=["fine-tuning"],
+ summary="✨ (Enterprise) Cancel Fine-Tuning Jobs",
+)
+@router.post(
+ "/fine_tuning/jobs/{fine_tuning_job_id:path}/cancel",
+ dependencies=[Depends(user_api_key_auth)],
+ tags=["fine-tuning"],
+ summary="✨ (Enterprise) Cancel Fine-Tuning Jobs",
+)
+async def cancel_fine_tuning_job(
+ request: Request,
+ fastapi_response: Response,
+ fine_tuning_job_id: str,
+ user_api_key_dict: UserAPIKeyAuth = Depends(user_api_key_auth),
+):
+ """
+ Cancel a fine-tuning job.
+
+ This is the equivalent of POST https://api.openai.com/v1/fine_tuning/jobs/{fine_tuning_job_id}/cancel
+
+ Supported Query Params:
+ - `custom_llm_provider`: Name of the LiteLLM provider
+ - `fine_tuning_job_id`: The ID of the fine-tuning job to cancel.
+ """
+ from litellm.proxy.proxy_server import (
+ add_litellm_data_to_request,
+ general_settings,
+ premium_user,
+ proxy_config,
+ proxy_logging_obj,
+ version,
+ )
+
+ data: dict = {}
+ try:
+ if premium_user is not True:
+ raise ValueError(
+ f"Only premium users can use this endpoint + {CommonProxyErrors.not_premium_user.value}"
+ )
+ # Include original request and headers in the data
+ data = await add_litellm_data_to_request(
+ data=data,
+ request=request,
+ general_settings=general_settings,
+ user_api_key_dict=user_api_key_dict,
+ version=version,
+ proxy_config=proxy_config,
+ )
+
+ request_body = await request.json()
+
+ custom_llm_provider = request_body.get("custom_llm_provider", None)
+
+ # get configs for custom_llm_provider
+ llm_provider_config = get_fine_tuning_provider_config(
+ custom_llm_provider=custom_llm_provider
+ )
+
+ if llm_provider_config is not None:
+ data.update(llm_provider_config)
+
+ response = await litellm.acancel_fine_tuning_job(
+ **data,
+ fine_tuning_job_id=fine_tuning_job_id,
+ )
+
+ ### RESPONSE HEADERS ###
+ hidden_params = getattr(response, "_hidden_params", {}) or {}
+ model_id = hidden_params.get("model_id", None) or ""
+ cache_key = hidden_params.get("cache_key", None) or ""
+ api_base = hidden_params.get("api_base", None) or ""
+
+ fastapi_response.headers.update(
+ ProxyBaseLLMRequestProcessing.get_custom_headers(
+ user_api_key_dict=user_api_key_dict,
+ model_id=model_id,
+ cache_key=cache_key,
+ api_base=api_base,
+ version=version,
+ model_region=getattr(user_api_key_dict, "allowed_model_region", ""),
+ )
+ )
+
+ return response
+
+ except Exception as e:
+ await proxy_logging_obj.post_call_failure_hook(
+ user_api_key_dict=user_api_key_dict, original_exception=e, request_data=data
+ )
+ verbose_proxy_logger.error(
+ "litellm.proxy.proxy_server.list_fine_tuning_jobs(): Exception occurred - {}".format(
+ str(e)
+ )
+ )
+ verbose_proxy_logger.debug(traceback.format_exc())
+ raise handle_exception_on_proxy(e)