about summary refs log tree commit diff
path: root/.venv/lib/python3.12/site-packages/litellm/proxy/fine_tuning_endpoints
diff options
context:
space:
mode:
Diffstat (limited to '.venv/lib/python3.12/site-packages/litellm/proxy/fine_tuning_endpoints')
-rw-r--r--.venv/lib/python3.12/site-packages/litellm/proxy/fine_tuning_endpoints/endpoints.py473
1 files changed, 473 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/litellm/proxy/fine_tuning_endpoints/endpoints.py b/.venv/lib/python3.12/site-packages/litellm/proxy/fine_tuning_endpoints/endpoints.py
new file mode 100644
index 00000000..d4c4250b
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/litellm/proxy/fine_tuning_endpoints/endpoints.py
@@ -0,0 +1,473 @@
+#########################################################################
+
+#                          /v1/fine_tuning Endpoints
+
+# Equivalent of https://platform.openai.com/docs/api-reference/fine-tuning
+##########################################################################
+
+import asyncio
+import traceback
+from typing import Optional
+
+from fastapi import APIRouter, Depends, Request, Response
+
+import litellm
+from litellm._logging import verbose_proxy_logger
+from litellm.proxy._types import *
+from litellm.proxy.auth.user_api_key_auth import user_api_key_auth
+from litellm.proxy.common_request_processing import ProxyBaseLLMRequestProcessing
+from litellm.proxy.utils import handle_exception_on_proxy
+
+router = APIRouter()
+
+from litellm.types.llms.openai import LiteLLMFineTuningJobCreate
+
+fine_tuning_config = None
+
+
+def set_fine_tuning_config(config):
+    if config is None:
+        return
+
+    global fine_tuning_config
+    if not isinstance(config, list):
+        raise ValueError("invalid fine_tuning config, expected a list is not a list")
+
+    for element in config:
+        if isinstance(element, dict):
+            for key, value in element.items():
+                if isinstance(value, str) and value.startswith("os.environ/"):
+                    element[key] = litellm.get_secret(value)
+
+    fine_tuning_config = config
+
+
+# Function to search for specific custom_llm_provider and return its configuration
+def get_fine_tuning_provider_config(
+    custom_llm_provider: str,
+):
+    global fine_tuning_config
+    if fine_tuning_config is None:
+        raise ValueError(
+            "fine_tuning_config is not set, set it on your config.yaml file."
+        )
+    for setting in fine_tuning_config:
+        if setting.get("custom_llm_provider") == custom_llm_provider:
+            return setting
+    return None
+
+
+@router.post(
+    "/v1/fine_tuning/jobs",
+    dependencies=[Depends(user_api_key_auth)],
+    tags=["fine-tuning"],
+    summary="✨ (Enterprise) Create Fine-Tuning Job",
+)
+@router.post(
+    "/fine_tuning/jobs",
+    dependencies=[Depends(user_api_key_auth)],
+    tags=["fine-tuning"],
+    summary="✨ (Enterprise) Create Fine-Tuning Job",
+)
+async def create_fine_tuning_job(
+    request: Request,
+    fastapi_response: Response,
+    fine_tuning_request: LiteLLMFineTuningJobCreate,
+    user_api_key_dict: UserAPIKeyAuth = Depends(user_api_key_auth),
+):
+    """
+    Creates a fine-tuning job which begins the process of creating a new model from a given dataset.
+    This is the equivalent of POST https://api.openai.com/v1/fine_tuning/jobs
+
+    Supports Identical Params as: https://platform.openai.com/docs/api-reference/fine-tuning/create
+
+    Example Curl:
+    ```
+    curl http://localhost:4000/v1/fine_tuning/jobs \
+      -H "Content-Type: application/json" \
+      -H "Authorization: Bearer sk-1234" \
+      -d '{
+        "model": "gpt-3.5-turbo",
+        "training_file": "file-abc123",
+        "hyperparameters": {
+          "n_epochs": 4
+        }
+      }'
+    ```
+    """
+    from litellm.proxy.proxy_server import (
+        add_litellm_data_to_request,
+        general_settings,
+        premium_user,
+        proxy_config,
+        proxy_logging_obj,
+        version,
+    )
+
+    data = fine_tuning_request.model_dump(exclude_none=True)
+    try:
+        if premium_user is not True:
+            raise ValueError(
+                f"Only premium users can use this endpoint + {CommonProxyErrors.not_premium_user.value}"
+            )
+        # Convert Pydantic model to dict
+
+        verbose_proxy_logger.debug(
+            "Request received by LiteLLM:\n{}".format(json.dumps(data, indent=4)),
+        )
+
+        # Include original request and headers in the data
+        data = await add_litellm_data_to_request(
+            data=data,
+            request=request,
+            general_settings=general_settings,
+            user_api_key_dict=user_api_key_dict,
+            version=version,
+            proxy_config=proxy_config,
+        )
+
+        # get configs for custom_llm_provider
+        llm_provider_config = get_fine_tuning_provider_config(
+            custom_llm_provider=fine_tuning_request.custom_llm_provider,
+        )
+
+        # add llm_provider_config to data
+        if llm_provider_config is not None:
+            data.update(llm_provider_config)
+
+        response = await litellm.acreate_fine_tuning_job(**data)
+
+        ### ALERTING ###
+        asyncio.create_task(
+            proxy_logging_obj.update_request_status(
+                litellm_call_id=data.get("litellm_call_id", ""), status="success"
+            )
+        )
+
+        ### RESPONSE HEADERS ###
+        hidden_params = getattr(response, "_hidden_params", {}) or {}
+        model_id = hidden_params.get("model_id", None) or ""
+        cache_key = hidden_params.get("cache_key", None) or ""
+        api_base = hidden_params.get("api_base", None) or ""
+
+        fastapi_response.headers.update(
+            ProxyBaseLLMRequestProcessing.get_custom_headers(
+                user_api_key_dict=user_api_key_dict,
+                model_id=model_id,
+                cache_key=cache_key,
+                api_base=api_base,
+                version=version,
+                model_region=getattr(user_api_key_dict, "allowed_model_region", ""),
+            )
+        )
+
+        return response
+    except Exception as e:
+        await proxy_logging_obj.post_call_failure_hook(
+            user_api_key_dict=user_api_key_dict, original_exception=e, request_data=data
+        )
+        verbose_proxy_logger.error(
+            "litellm.proxy.proxy_server.create_fine_tuning_job(): Exception occurred - {}".format(
+                str(e)
+            )
+        )
+        verbose_proxy_logger.debug(traceback.format_exc())
+        raise handle_exception_on_proxy(e)
+
+
+@router.get(
+    "/v1/fine_tuning/jobs/{fine_tuning_job_id:path}",
+    dependencies=[Depends(user_api_key_auth)],
+    tags=["fine-tuning"],
+    summary="✨ (Enterprise) Retrieve Fine-Tuning Job",
+)
+@router.get(
+    "/fine_tuning/jobs/{fine_tuning_job_id:path}",
+    dependencies=[Depends(user_api_key_auth)],
+    tags=["fine-tuning"],
+    summary="✨ (Enterprise) Retrieve Fine-Tuning Job",
+)
+async def retrieve_fine_tuning_job(
+    request: Request,
+    fastapi_response: Response,
+    fine_tuning_job_id: str,
+    custom_llm_provider: Literal["openai", "azure"],
+    user_api_key_dict: UserAPIKeyAuth = Depends(user_api_key_auth),
+):
+    """
+    Retrieves a fine-tuning job.
+    This is the equivalent of GET https://api.openai.com/v1/fine_tuning/jobs/{fine_tuning_job_id}
+
+    Supported Query Params:
+    - `custom_llm_provider`: Name of the LiteLLM provider
+    - `fine_tuning_job_id`: The ID of the fine-tuning job to retrieve.
+    """
+    from litellm.proxy.proxy_server import (
+        add_litellm_data_to_request,
+        general_settings,
+        premium_user,
+        proxy_config,
+        proxy_logging_obj,
+        version,
+    )
+
+    data: dict = {}
+    try:
+        if premium_user is not True:
+            raise ValueError(
+                f"Only premium users can use this endpoint + {CommonProxyErrors.not_premium_user.value}"
+            )
+        # Include original request and headers in the data
+        data = await add_litellm_data_to_request(
+            data=data,
+            request=request,
+            general_settings=general_settings,
+            user_api_key_dict=user_api_key_dict,
+            version=version,
+            proxy_config=proxy_config,
+        )
+
+        # get configs for custom_llm_provider
+        llm_provider_config = get_fine_tuning_provider_config(
+            custom_llm_provider=custom_llm_provider
+        )
+
+        if llm_provider_config is not None:
+            data.update(llm_provider_config)
+
+        response = await litellm.aretrieve_fine_tuning_job(
+            **data,
+            fine_tuning_job_id=fine_tuning_job_id,
+        )
+
+        ### RESPONSE HEADERS ###
+        hidden_params = getattr(response, "_hidden_params", {}) or {}
+        model_id = hidden_params.get("model_id", None) or ""
+        cache_key = hidden_params.get("cache_key", None) or ""
+        api_base = hidden_params.get("api_base", None) or ""
+
+        fastapi_response.headers.update(
+            ProxyBaseLLMRequestProcessing.get_custom_headers(
+                user_api_key_dict=user_api_key_dict,
+                model_id=model_id,
+                cache_key=cache_key,
+                api_base=api_base,
+                version=version,
+                model_region=getattr(user_api_key_dict, "allowed_model_region", ""),
+            )
+        )
+
+        return response
+
+    except Exception as e:
+        await proxy_logging_obj.post_call_failure_hook(
+            user_api_key_dict=user_api_key_dict, original_exception=e, request_data=data
+        )
+        verbose_proxy_logger.error(
+            "litellm.proxy.proxy_server.list_fine_tuning_jobs(): Exception occurred - {}".format(
+                str(e)
+            )
+        )
+        verbose_proxy_logger.debug(traceback.format_exc())
+        raise handle_exception_on_proxy(e)
+
+
+@router.get(
+    "/v1/fine_tuning/jobs",
+    dependencies=[Depends(user_api_key_auth)],
+    tags=["fine-tuning"],
+    summary="✨ (Enterprise) List Fine-Tuning Jobs",
+)
+@router.get(
+    "/fine_tuning/jobs",
+    dependencies=[Depends(user_api_key_auth)],
+    tags=["fine-tuning"],
+    summary="✨ (Enterprise) List Fine-Tuning Jobs",
+)
+async def list_fine_tuning_jobs(
+    request: Request,
+    fastapi_response: Response,
+    custom_llm_provider: Literal["openai", "azure"],
+    after: Optional[str] = None,
+    limit: Optional[int] = None,
+    user_api_key_dict: UserAPIKeyAuth = Depends(user_api_key_auth),
+):
+    """
+    Lists fine-tuning jobs for the organization.
+    This is the equivalent of GET https://api.openai.com/v1/fine_tuning/jobs
+
+    Supported Query Params:
+    - `custom_llm_provider`: Name of the LiteLLM provider
+    - `after`: Identifier for the last job from the previous pagination request.
+    - `limit`: Number of fine-tuning jobs to retrieve (default is 20).
+    """
+    from litellm.proxy.proxy_server import (
+        add_litellm_data_to_request,
+        general_settings,
+        premium_user,
+        proxy_config,
+        proxy_logging_obj,
+        version,
+    )
+
+    data: dict = {}
+    try:
+        if premium_user is not True:
+            raise ValueError(
+                f"Only premium users can use this endpoint + {CommonProxyErrors.not_premium_user.value}"
+            )
+        # Include original request and headers in the data
+        data = await add_litellm_data_to_request(
+            data=data,
+            request=request,
+            general_settings=general_settings,
+            user_api_key_dict=user_api_key_dict,
+            version=version,
+            proxy_config=proxy_config,
+        )
+
+        # get configs for custom_llm_provider
+        llm_provider_config = get_fine_tuning_provider_config(
+            custom_llm_provider=custom_llm_provider
+        )
+
+        if llm_provider_config is not None:
+            data.update(llm_provider_config)
+
+        response = await litellm.alist_fine_tuning_jobs(
+            **data,
+            after=after,
+            limit=limit,
+        )
+
+        ### RESPONSE HEADERS ###
+        hidden_params = getattr(response, "_hidden_params", {}) or {}
+        model_id = hidden_params.get("model_id", None) or ""
+        cache_key = hidden_params.get("cache_key", None) or ""
+        api_base = hidden_params.get("api_base", None) or ""
+
+        fastapi_response.headers.update(
+            ProxyBaseLLMRequestProcessing.get_custom_headers(
+                user_api_key_dict=user_api_key_dict,
+                model_id=model_id,
+                cache_key=cache_key,
+                api_base=api_base,
+                version=version,
+                model_region=getattr(user_api_key_dict, "allowed_model_region", ""),
+            )
+        )
+
+        return response
+
+    except Exception as e:
+        await proxy_logging_obj.post_call_failure_hook(
+            user_api_key_dict=user_api_key_dict, original_exception=e, request_data=data
+        )
+        verbose_proxy_logger.error(
+            "litellm.proxy.proxy_server.list_fine_tuning_jobs(): Exception occurred - {}".format(
+                str(e)
+            )
+        )
+        verbose_proxy_logger.debug(traceback.format_exc())
+        raise handle_exception_on_proxy(e)
+
+
+@router.post(
+    "/v1/fine_tuning/jobs/{fine_tuning_job_id:path}/cancel",
+    dependencies=[Depends(user_api_key_auth)],
+    tags=["fine-tuning"],
+    summary="✨ (Enterprise) Cancel Fine-Tuning Jobs",
+)
+@router.post(
+    "/fine_tuning/jobs/{fine_tuning_job_id:path}/cancel",
+    dependencies=[Depends(user_api_key_auth)],
+    tags=["fine-tuning"],
+    summary="✨ (Enterprise) Cancel Fine-Tuning Jobs",
+)
+async def cancel_fine_tuning_job(
+    request: Request,
+    fastapi_response: Response,
+    fine_tuning_job_id: str,
+    user_api_key_dict: UserAPIKeyAuth = Depends(user_api_key_auth),
+):
+    """
+    Cancel a fine-tuning job.
+
+    This is the equivalent of POST https://api.openai.com/v1/fine_tuning/jobs/{fine_tuning_job_id}/cancel
+
+    Supported Query Params:
+    - `custom_llm_provider`: Name of the LiteLLM provider
+    - `fine_tuning_job_id`: The ID of the fine-tuning job to cancel.
+    """
+    from litellm.proxy.proxy_server import (
+        add_litellm_data_to_request,
+        general_settings,
+        premium_user,
+        proxy_config,
+        proxy_logging_obj,
+        version,
+    )
+
+    data: dict = {}
+    try:
+        if premium_user is not True:
+            raise ValueError(
+                f"Only premium users can use this endpoint + {CommonProxyErrors.not_premium_user.value}"
+            )
+        # Include original request and headers in the data
+        data = await add_litellm_data_to_request(
+            data=data,
+            request=request,
+            general_settings=general_settings,
+            user_api_key_dict=user_api_key_dict,
+            version=version,
+            proxy_config=proxy_config,
+        )
+
+        request_body = await request.json()
+
+        custom_llm_provider = request_body.get("custom_llm_provider", None)
+
+        # get configs for custom_llm_provider
+        llm_provider_config = get_fine_tuning_provider_config(
+            custom_llm_provider=custom_llm_provider
+        )
+
+        if llm_provider_config is not None:
+            data.update(llm_provider_config)
+
+        response = await litellm.acancel_fine_tuning_job(
+            **data,
+            fine_tuning_job_id=fine_tuning_job_id,
+        )
+
+        ### RESPONSE HEADERS ###
+        hidden_params = getattr(response, "_hidden_params", {}) or {}
+        model_id = hidden_params.get("model_id", None) or ""
+        cache_key = hidden_params.get("cache_key", None) or ""
+        api_base = hidden_params.get("api_base", None) or ""
+
+        fastapi_response.headers.update(
+            ProxyBaseLLMRequestProcessing.get_custom_headers(
+                user_api_key_dict=user_api_key_dict,
+                model_id=model_id,
+                cache_key=cache_key,
+                api_base=api_base,
+                version=version,
+                model_region=getattr(user_api_key_dict, "allowed_model_region", ""),
+            )
+        )
+
+        return response
+
+    except Exception as e:
+        await proxy_logging_obj.post_call_failure_hook(
+            user_api_key_dict=user_api_key_dict, original_exception=e, request_data=data
+        )
+        verbose_proxy_logger.error(
+            "litellm.proxy.proxy_server.list_fine_tuning_jobs(): Exception occurred - {}".format(
+                str(e)
+            )
+        )
+        verbose_proxy_logger.debug(traceback.format_exc())
+        raise handle_exception_on_proxy(e)