aboutsummaryrefslogtreecommitdiff
path: root/.venv/lib/python3.12/site-packages/litellm/llms/huggingface/chat/handler.py
diff options
context:
space:
mode:
Diffstat (limited to '.venv/lib/python3.12/site-packages/litellm/llms/huggingface/chat/handler.py')
-rw-r--r--.venv/lib/python3.12/site-packages/litellm/llms/huggingface/chat/handler.py769
1 files changed, 769 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/litellm/llms/huggingface/chat/handler.py b/.venv/lib/python3.12/site-packages/litellm/llms/huggingface/chat/handler.py
new file mode 100644
index 00000000..2b65e5b7
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/litellm/llms/huggingface/chat/handler.py
@@ -0,0 +1,769 @@
+## Uses the huggingface text generation inference API
+import json
+import os
+from typing import (
+ Any,
+ Callable,
+ Dict,
+ List,
+ Literal,
+ Optional,
+ Tuple,
+ Union,
+ cast,
+ get_args,
+)
+
+import httpx
+
+import litellm
+from litellm.litellm_core_utils.litellm_logging import Logging as LiteLLMLoggingObj
+from litellm.litellm_core_utils.streaming_handler import CustomStreamWrapper
+from litellm.llms.custom_httpx.http_handler import (
+ AsyncHTTPHandler,
+ HTTPHandler,
+ _get_httpx_client,
+ get_async_httpx_client,
+)
+from litellm.llms.huggingface.chat.transformation import (
+ HuggingfaceChatConfig as HuggingfaceConfig,
+)
+from litellm.types.llms.openai import AllMessageValues
+from litellm.types.utils import EmbeddingResponse
+from litellm.types.utils import Logprobs as TextCompletionLogprobs
+from litellm.types.utils import ModelResponse
+
+from ...base import BaseLLM
+from ..common_utils import HuggingfaceError
+
+hf_chat_config = HuggingfaceConfig()
+
+
+hf_tasks_embeddings = Literal[ # pipeline tags + hf tei endpoints - https://huggingface.github.io/text-embeddings-inference/#/
+ "sentence-similarity", "feature-extraction", "rerank", "embed", "similarity"
+]
+
+
+def get_hf_task_embedding_for_model(
+ model: str, task_type: Optional[str], api_base: str
+) -> Optional[str]:
+ if task_type is not None:
+ if task_type in get_args(hf_tasks_embeddings):
+ return task_type
+ else:
+ raise Exception(
+ "Invalid task_type={}. Expected one of={}".format(
+ task_type, hf_tasks_embeddings
+ )
+ )
+ http_client = HTTPHandler(concurrent_limit=1)
+
+ model_info = http_client.get(url=api_base)
+
+ model_info_dict = model_info.json()
+
+ pipeline_tag: Optional[str] = model_info_dict.get("pipeline_tag", None)
+
+ return pipeline_tag
+
+
+async def async_get_hf_task_embedding_for_model(
+ model: str, task_type: Optional[str], api_base: str
+) -> Optional[str]:
+ if task_type is not None:
+ if task_type in get_args(hf_tasks_embeddings):
+ return task_type
+ else:
+ raise Exception(
+ "Invalid task_type={}. Expected one of={}".format(
+ task_type, hf_tasks_embeddings
+ )
+ )
+ http_client = get_async_httpx_client(
+ llm_provider=litellm.LlmProviders.HUGGINGFACE,
+ )
+
+ model_info = await http_client.get(url=api_base)
+
+ model_info_dict = model_info.json()
+
+ pipeline_tag: Optional[str] = model_info_dict.get("pipeline_tag", None)
+
+ return pipeline_tag
+
+
+async def make_call(
+ client: Optional[AsyncHTTPHandler],
+ api_base: str,
+ headers: dict,
+ data: str,
+ model: str,
+ messages: list,
+ logging_obj,
+ timeout: Optional[Union[float, httpx.Timeout]],
+ json_mode: bool,
+) -> Tuple[Any, httpx.Headers]:
+ if client is None:
+ client = litellm.module_level_aclient
+
+ try:
+ response = await client.post(
+ api_base, headers=headers, data=data, stream=True, timeout=timeout
+ )
+ except httpx.HTTPStatusError as e:
+ error_headers = getattr(e, "headers", None)
+ error_response = getattr(e, "response", None)
+ if error_headers is None and error_response:
+ error_headers = getattr(error_response, "headers", None)
+ raise HuggingfaceError(
+ status_code=e.response.status_code,
+ message=str(await e.response.aread()),
+ headers=cast(dict, error_headers) if error_headers else None,
+ )
+ except Exception as e:
+ for exception in litellm.LITELLM_EXCEPTION_TYPES:
+ if isinstance(e, exception):
+ raise e
+ raise HuggingfaceError(status_code=500, message=str(e))
+
+ # LOGGING
+ logging_obj.post_call(
+ input=messages,
+ api_key="",
+ original_response=response, # Pass the completion stream for logging
+ additional_args={"complete_input_dict": data},
+ )
+
+ return response.aiter_lines(), response.headers
+
+
+class Huggingface(BaseLLM):
+ _client_session: Optional[httpx.Client] = None
+ _aclient_session: Optional[httpx.AsyncClient] = None
+
+ def __init__(self) -> None:
+ super().__init__()
+
+ def completion( # noqa: PLR0915
+ self,
+ model: str,
+ messages: list,
+ api_base: Optional[str],
+ model_response: ModelResponse,
+ print_verbose: Callable,
+ timeout: float,
+ encoding,
+ api_key,
+ logging_obj,
+ optional_params: dict,
+ litellm_params: dict,
+ custom_prompt_dict={},
+ acompletion: bool = False,
+ logger_fn=None,
+ client: Optional[Union[HTTPHandler, AsyncHTTPHandler]] = None,
+ headers: dict = {},
+ ):
+ super().completion()
+ exception_mapping_worked = False
+ try:
+ task, model = hf_chat_config.get_hf_task_for_model(model)
+ litellm_params["task"] = task
+ headers = hf_chat_config.validate_environment(
+ api_key=api_key,
+ headers=headers,
+ model=model,
+ messages=messages,
+ optional_params=optional_params,
+ )
+ completion_url = hf_chat_config.get_api_base(api_base=api_base, model=model)
+ data = hf_chat_config.transform_request(
+ model=model,
+ messages=messages,
+ optional_params=optional_params,
+ litellm_params=litellm_params,
+ headers=headers,
+ )
+
+ ## LOGGING
+ logging_obj.pre_call(
+ input=data,
+ api_key=api_key,
+ additional_args={
+ "complete_input_dict": data,
+ "headers": headers,
+ "api_base": completion_url,
+ "acompletion": acompletion,
+ },
+ )
+ ## COMPLETION CALL
+
+ if acompletion is True:
+ ### ASYNC STREAMING
+ if optional_params.get("stream", False):
+ return self.async_streaming(logging_obj=logging_obj, api_base=completion_url, data=data, headers=headers, model_response=model_response, model=model, timeout=timeout, messages=messages) # type: ignore
+ else:
+ ### ASYNC COMPLETION
+ return self.acompletion(
+ api_base=completion_url,
+ data=data,
+ headers=headers,
+ model_response=model_response,
+ encoding=encoding,
+ model=model,
+ optional_params=optional_params,
+ timeout=timeout,
+ litellm_params=litellm_params,
+ logging_obj=logging_obj,
+ api_key=api_key,
+ messages=messages,
+ client=(
+ client
+ if client is not None
+ and isinstance(client, AsyncHTTPHandler)
+ else None
+ ),
+ )
+ if client is None or not isinstance(client, HTTPHandler):
+ client = _get_httpx_client()
+ ### SYNC STREAMING
+ if "stream" in optional_params and optional_params["stream"] is True:
+ response = client.post(
+ url=completion_url,
+ headers=headers,
+ data=json.dumps(data),
+ stream=optional_params["stream"],
+ )
+ return response.iter_lines()
+ ### SYNC COMPLETION
+ else:
+ response = client.post(
+ url=completion_url,
+ headers=headers,
+ data=json.dumps(data),
+ )
+
+ return hf_chat_config.transform_response(
+ model=model,
+ raw_response=response,
+ model_response=model_response,
+ logging_obj=logging_obj,
+ api_key=api_key,
+ request_data=data,
+ messages=messages,
+ optional_params=optional_params,
+ encoding=encoding,
+ json_mode=None,
+ litellm_params=litellm_params,
+ )
+ except httpx.HTTPStatusError as e:
+ raise HuggingfaceError(
+ status_code=e.response.status_code,
+ message=e.response.text,
+ headers=e.response.headers,
+ )
+ except HuggingfaceError as e:
+ exception_mapping_worked = True
+ raise e
+ except Exception as e:
+ if exception_mapping_worked:
+ raise e
+ else:
+ import traceback
+
+ raise HuggingfaceError(status_code=500, message=traceback.format_exc())
+
+ async def acompletion(
+ self,
+ api_base: str,
+ data: dict,
+ headers: dict,
+ model_response: ModelResponse,
+ encoding: Any,
+ model: str,
+ optional_params: dict,
+ litellm_params: dict,
+ timeout: float,
+ logging_obj: LiteLLMLoggingObj,
+ api_key: str,
+ messages: List[AllMessageValues],
+ client: Optional[AsyncHTTPHandler] = None,
+ ):
+ response: Optional[httpx.Response] = None
+ try:
+ if client is None:
+ client = get_async_httpx_client(
+ llm_provider=litellm.LlmProviders.HUGGINGFACE
+ )
+ ### ASYNC COMPLETION
+ http_response = await client.post(
+ url=api_base, headers=headers, data=json.dumps(data), timeout=timeout
+ )
+
+ response = http_response
+
+ return hf_chat_config.transform_response(
+ model=model,
+ raw_response=http_response,
+ model_response=model_response,
+ logging_obj=logging_obj,
+ api_key=api_key,
+ request_data=data,
+ messages=messages,
+ optional_params=optional_params,
+ encoding=encoding,
+ json_mode=None,
+ litellm_params=litellm_params,
+ )
+ except Exception as e:
+ if isinstance(e, httpx.TimeoutException):
+ raise HuggingfaceError(status_code=500, message="Request Timeout Error")
+ elif isinstance(e, HuggingfaceError):
+ raise e
+ elif response is not None and hasattr(response, "text"):
+ raise HuggingfaceError(
+ status_code=500,
+ message=f"{str(e)}\n\nOriginal Response: {response.text}",
+ headers=response.headers,
+ )
+ else:
+ raise HuggingfaceError(status_code=500, message=f"{str(e)}")
+
+ async def async_streaming(
+ self,
+ logging_obj,
+ api_base: str,
+ data: dict,
+ headers: dict,
+ model_response: ModelResponse,
+ messages: List[AllMessageValues],
+ model: str,
+ timeout: float,
+ client: Optional[AsyncHTTPHandler] = None,
+ ):
+ completion_stream, _ = await make_call(
+ client=client,
+ api_base=api_base,
+ headers=headers,
+ data=json.dumps(data),
+ model=model,
+ messages=messages,
+ logging_obj=logging_obj,
+ timeout=timeout,
+ json_mode=False,
+ )
+ streamwrapper = CustomStreamWrapper(
+ completion_stream=completion_stream,
+ model=model,
+ custom_llm_provider="huggingface",
+ logging_obj=logging_obj,
+ )
+ return streamwrapper
+
+ def _transform_input_on_pipeline_tag(
+ self, input: List, pipeline_tag: Optional[str]
+ ) -> dict:
+ if pipeline_tag is None:
+ return {"inputs": input}
+ if pipeline_tag == "sentence-similarity" or pipeline_tag == "similarity":
+ if len(input) < 2:
+ raise HuggingfaceError(
+ status_code=400,
+ message="sentence-similarity requires 2+ sentences",
+ )
+ return {"inputs": {"source_sentence": input[0], "sentences": input[1:]}}
+ elif pipeline_tag == "rerank":
+ if len(input) < 2:
+ raise HuggingfaceError(
+ status_code=400,
+ message="reranker requires 2+ sentences",
+ )
+ return {"inputs": {"query": input[0], "texts": input[1:]}}
+ return {"inputs": input} # default to feature-extraction pipeline tag
+
+ async def _async_transform_input(
+ self,
+ model: str,
+ task_type: Optional[str],
+ embed_url: str,
+ input: List,
+ optional_params: dict,
+ ) -> dict:
+ hf_task = await async_get_hf_task_embedding_for_model(
+ model=model, task_type=task_type, api_base=embed_url
+ )
+
+ data = self._transform_input_on_pipeline_tag(input=input, pipeline_tag=hf_task)
+
+ if len(optional_params.keys()) > 0:
+ data["options"] = optional_params
+
+ return data
+
+ def _process_optional_params(self, data: dict, optional_params: dict) -> dict:
+ special_options_keys = HuggingfaceConfig().get_special_options_params()
+ special_parameters_keys = [
+ "min_length",
+ "max_length",
+ "top_k",
+ "top_p",
+ "temperature",
+ "repetition_penalty",
+ "max_time",
+ ]
+
+ for k, v in optional_params.items():
+ if k in special_options_keys:
+ data.setdefault("options", {})
+ data["options"][k] = v
+ elif k in special_parameters_keys:
+ data.setdefault("parameters", {})
+ data["parameters"][k] = v
+ else:
+ data[k] = v
+
+ return data
+
+ def _transform_input(
+ self,
+ input: List,
+ model: str,
+ call_type: Literal["sync", "async"],
+ optional_params: dict,
+ embed_url: str,
+ ) -> dict:
+ data: Dict = {}
+
+ ## TRANSFORMATION ##
+ if "sentence-transformers" in model:
+ if len(input) == 0:
+ raise HuggingfaceError(
+ status_code=400,
+ message="sentence transformers requires 2+ sentences",
+ )
+ data = {"inputs": {"source_sentence": input[0], "sentences": input[1:]}}
+ else:
+ data = {"inputs": input}
+
+ task_type = optional_params.pop("input_type", None)
+
+ if call_type == "sync":
+ hf_task = get_hf_task_embedding_for_model(
+ model=model, task_type=task_type, api_base=embed_url
+ )
+ elif call_type == "async":
+ return self._async_transform_input(
+ model=model, task_type=task_type, embed_url=embed_url, input=input
+ ) # type: ignore
+
+ data = self._transform_input_on_pipeline_tag(
+ input=input, pipeline_tag=hf_task
+ )
+
+ if len(optional_params.keys()) > 0:
+ data = self._process_optional_params(
+ data=data, optional_params=optional_params
+ )
+
+ return data
+
+ def _process_embedding_response(
+ self,
+ embeddings: dict,
+ model_response: EmbeddingResponse,
+ model: str,
+ input: List,
+ encoding: Any,
+ ) -> EmbeddingResponse:
+ output_data = []
+ if "similarities" in embeddings:
+ for idx, embedding in embeddings["similarities"]:
+ output_data.append(
+ {
+ "object": "embedding",
+ "index": idx,
+ "embedding": embedding, # flatten list returned from hf
+ }
+ )
+ else:
+ for idx, embedding in enumerate(embeddings):
+ if isinstance(embedding, float):
+ output_data.append(
+ {
+ "object": "embedding",
+ "index": idx,
+ "embedding": embedding, # flatten list returned from hf
+ }
+ )
+ elif isinstance(embedding, list) and isinstance(embedding[0], float):
+ output_data.append(
+ {
+ "object": "embedding",
+ "index": idx,
+ "embedding": embedding, # flatten list returned from hf
+ }
+ )
+ else:
+ output_data.append(
+ {
+ "object": "embedding",
+ "index": idx,
+ "embedding": embedding[0][
+ 0
+ ], # flatten list returned from hf
+ }
+ )
+ model_response.object = "list"
+ model_response.data = output_data
+ model_response.model = model
+ input_tokens = 0
+ for text in input:
+ input_tokens += len(encoding.encode(text))
+
+ setattr(
+ model_response,
+ "usage",
+ litellm.Usage(
+ prompt_tokens=input_tokens,
+ completion_tokens=input_tokens,
+ total_tokens=input_tokens,
+ prompt_tokens_details=None,
+ completion_tokens_details=None,
+ ),
+ )
+ return model_response
+
+ async def aembedding(
+ self,
+ model: str,
+ input: list,
+ model_response: litellm.utils.EmbeddingResponse,
+ timeout: Union[float, httpx.Timeout],
+ logging_obj: LiteLLMLoggingObj,
+ optional_params: dict,
+ api_base: str,
+ api_key: Optional[str],
+ headers: dict,
+ encoding: Callable,
+ client: Optional[AsyncHTTPHandler] = None,
+ ):
+ ## TRANSFORMATION ##
+ data = self._transform_input(
+ input=input,
+ model=model,
+ call_type="sync",
+ optional_params=optional_params,
+ embed_url=api_base,
+ )
+
+ ## LOGGING
+ logging_obj.pre_call(
+ input=input,
+ api_key=api_key,
+ additional_args={
+ "complete_input_dict": data,
+ "headers": headers,
+ "api_base": api_base,
+ },
+ )
+ ## COMPLETION CALL
+ if client is None:
+ client = get_async_httpx_client(
+ llm_provider=litellm.LlmProviders.HUGGINGFACE,
+ )
+
+ response = await client.post(api_base, headers=headers, data=json.dumps(data))
+
+ ## LOGGING
+ logging_obj.post_call(
+ input=input,
+ api_key=api_key,
+ additional_args={"complete_input_dict": data},
+ original_response=response,
+ )
+
+ embeddings = response.json()
+
+ if "error" in embeddings:
+ raise HuggingfaceError(status_code=500, message=embeddings["error"])
+
+ ## PROCESS RESPONSE ##
+ return self._process_embedding_response(
+ embeddings=embeddings,
+ model_response=model_response,
+ model=model,
+ input=input,
+ encoding=encoding,
+ )
+
+ def embedding(
+ self,
+ model: str,
+ input: list,
+ model_response: EmbeddingResponse,
+ optional_params: dict,
+ logging_obj: LiteLLMLoggingObj,
+ encoding: Callable,
+ api_key: Optional[str] = None,
+ api_base: Optional[str] = None,
+ timeout: Union[float, httpx.Timeout] = httpx.Timeout(None),
+ aembedding: Optional[bool] = None,
+ client: Optional[Union[HTTPHandler, AsyncHTTPHandler]] = None,
+ headers={},
+ ) -> EmbeddingResponse:
+ super().embedding()
+ headers = hf_chat_config.validate_environment(
+ api_key=api_key,
+ headers=headers,
+ model=model,
+ optional_params=optional_params,
+ messages=[],
+ )
+ # print_verbose(f"{model}, {task}")
+ embed_url = ""
+ if "https" in model:
+ embed_url = model
+ elif api_base:
+ embed_url = api_base
+ elif "HF_API_BASE" in os.environ:
+ embed_url = os.getenv("HF_API_BASE", "")
+ elif "HUGGINGFACE_API_BASE" in os.environ:
+ embed_url = os.getenv("HUGGINGFACE_API_BASE", "")
+ else:
+ embed_url = f"https://api-inference.huggingface.co/models/{model}"
+
+ ## ROUTING ##
+ if aembedding is True:
+ return self.aembedding(
+ input=input,
+ model_response=model_response,
+ timeout=timeout,
+ logging_obj=logging_obj,
+ headers=headers,
+ api_base=embed_url, # type: ignore
+ api_key=api_key,
+ client=client if isinstance(client, AsyncHTTPHandler) else None,
+ model=model,
+ optional_params=optional_params,
+ encoding=encoding,
+ )
+
+ ## TRANSFORMATION ##
+
+ data = self._transform_input(
+ input=input,
+ model=model,
+ call_type="sync",
+ optional_params=optional_params,
+ embed_url=embed_url,
+ )
+
+ ## LOGGING
+ logging_obj.pre_call(
+ input=input,
+ api_key=api_key,
+ additional_args={
+ "complete_input_dict": data,
+ "headers": headers,
+ "api_base": embed_url,
+ },
+ )
+ ## COMPLETION CALL
+ if client is None or not isinstance(client, HTTPHandler):
+ client = HTTPHandler(concurrent_limit=1)
+ response = client.post(embed_url, headers=headers, data=json.dumps(data))
+
+ ## LOGGING
+ logging_obj.post_call(
+ input=input,
+ api_key=api_key,
+ additional_args={"complete_input_dict": data},
+ original_response=response,
+ )
+
+ embeddings = response.json()
+
+ if "error" in embeddings:
+ raise HuggingfaceError(status_code=500, message=embeddings["error"])
+
+ ## PROCESS RESPONSE ##
+ return self._process_embedding_response(
+ embeddings=embeddings,
+ model_response=model_response,
+ model=model,
+ input=input,
+ encoding=encoding,
+ )
+
+ def _transform_logprobs(
+ self, hf_response: Optional[List]
+ ) -> Optional[TextCompletionLogprobs]:
+ """
+ Transform Hugging Face logprobs to OpenAI.Completion() format
+ """
+ if hf_response is None:
+ return None
+
+ # Initialize an empty list for the transformed logprobs
+ _logprob: TextCompletionLogprobs = TextCompletionLogprobs(
+ text_offset=[],
+ token_logprobs=[],
+ tokens=[],
+ top_logprobs=[],
+ )
+
+ # For each Hugging Face response, transform the logprobs
+ for response in hf_response:
+ # Extract the relevant information from the response
+ response_details = response["details"]
+ top_tokens = response_details.get("top_tokens", {})
+
+ for i, token in enumerate(response_details["prefill"]):
+ # Extract the text of the token
+ token_text = token["text"]
+
+ # Extract the logprob of the token
+ token_logprob = token["logprob"]
+
+ # Add the token information to the 'token_info' list
+ cast(List[str], _logprob.tokens).append(token_text)
+ cast(List[float], _logprob.token_logprobs).append(token_logprob)
+
+ # stub this to work with llm eval harness
+ top_alt_tokens = {"": -1.0, "": -2.0, "": -3.0} # noqa: F601
+ cast(List[Dict[str, float]], _logprob.top_logprobs).append(
+ top_alt_tokens
+ )
+
+ # For each element in the 'tokens' list, extract the relevant information
+ for i, token in enumerate(response_details["tokens"]):
+ # Extract the text of the token
+ token_text = token["text"]
+
+ # Extract the logprob of the token
+ token_logprob = token["logprob"]
+
+ top_alt_tokens = {}
+ temp_top_logprobs = []
+ if top_tokens != {}:
+ temp_top_logprobs = top_tokens[i]
+
+ # top_alt_tokens should look like this: { "alternative_1": -1, "alternative_2": -2, "alternative_3": -3 }
+ for elem in temp_top_logprobs:
+ text = elem["text"]
+ logprob = elem["logprob"]
+ top_alt_tokens[text] = logprob
+
+ # Add the token information to the 'token_info' list
+ cast(List[str], _logprob.tokens).append(token_text)
+ cast(List[float], _logprob.token_logprobs).append(token_logprob)
+ cast(List[Dict[str, float]], _logprob.top_logprobs).append(
+ top_alt_tokens
+ )
+
+ # Add the text offset of the token
+ # This is computed as the sum of the lengths of all previous tokens
+ cast(List[int], _logprob.text_offset).append(
+ sum(len(t["text"]) for t in response_details["tokens"][:i])
+ )
+
+ return _logprob