about summary refs log tree commit diff
path: root/.venv/lib/python3.12/site-packages/litellm/llms/huggingface/chat
diff options
context:
space:
mode:
Diffstat (limited to '.venv/lib/python3.12/site-packages/litellm/llms/huggingface/chat')
-rw-r--r--.venv/lib/python3.12/site-packages/litellm/llms/huggingface/chat/handler.py769
-rw-r--r--.venv/lib/python3.12/site-packages/litellm/llms/huggingface/chat/transformation.py589
2 files changed, 1358 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/litellm/llms/huggingface/chat/handler.py b/.venv/lib/python3.12/site-packages/litellm/llms/huggingface/chat/handler.py
new file mode 100644
index 00000000..2b65e5b7
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/litellm/llms/huggingface/chat/handler.py
@@ -0,0 +1,769 @@
+## Uses the huggingface text generation inference API
+import json
+import os
+from typing import (
+    Any,
+    Callable,
+    Dict,
+    List,
+    Literal,
+    Optional,
+    Tuple,
+    Union,
+    cast,
+    get_args,
+)
+
+import httpx
+
+import litellm
+from litellm.litellm_core_utils.litellm_logging import Logging as LiteLLMLoggingObj
+from litellm.litellm_core_utils.streaming_handler import CustomStreamWrapper
+from litellm.llms.custom_httpx.http_handler import (
+    AsyncHTTPHandler,
+    HTTPHandler,
+    _get_httpx_client,
+    get_async_httpx_client,
+)
+from litellm.llms.huggingface.chat.transformation import (
+    HuggingfaceChatConfig as HuggingfaceConfig,
+)
+from litellm.types.llms.openai import AllMessageValues
+from litellm.types.utils import EmbeddingResponse
+from litellm.types.utils import Logprobs as TextCompletionLogprobs
+from litellm.types.utils import ModelResponse
+
+from ...base import BaseLLM
+from ..common_utils import HuggingfaceError
+
+hf_chat_config = HuggingfaceConfig()
+
+
+hf_tasks_embeddings = Literal[  # pipeline tags + hf tei endpoints - https://huggingface.github.io/text-embeddings-inference/#/
+    "sentence-similarity", "feature-extraction", "rerank", "embed", "similarity"
+]
+
+
+def get_hf_task_embedding_for_model(
+    model: str, task_type: Optional[str], api_base: str
+) -> Optional[str]:
+    if task_type is not None:
+        if task_type in get_args(hf_tasks_embeddings):
+            return task_type
+        else:
+            raise Exception(
+                "Invalid task_type={}. Expected one of={}".format(
+                    task_type, hf_tasks_embeddings
+                )
+            )
+    http_client = HTTPHandler(concurrent_limit=1)
+
+    model_info = http_client.get(url=api_base)
+
+    model_info_dict = model_info.json()
+
+    pipeline_tag: Optional[str] = model_info_dict.get("pipeline_tag", None)
+
+    return pipeline_tag
+
+
+async def async_get_hf_task_embedding_for_model(
+    model: str, task_type: Optional[str], api_base: str
+) -> Optional[str]:
+    if task_type is not None:
+        if task_type in get_args(hf_tasks_embeddings):
+            return task_type
+        else:
+            raise Exception(
+                "Invalid task_type={}. Expected one of={}".format(
+                    task_type, hf_tasks_embeddings
+                )
+            )
+    http_client = get_async_httpx_client(
+        llm_provider=litellm.LlmProviders.HUGGINGFACE,
+    )
+
+    model_info = await http_client.get(url=api_base)
+
+    model_info_dict = model_info.json()
+
+    pipeline_tag: Optional[str] = model_info_dict.get("pipeline_tag", None)
+
+    return pipeline_tag
+
+
+async def make_call(
+    client: Optional[AsyncHTTPHandler],
+    api_base: str,
+    headers: dict,
+    data: str,
+    model: str,
+    messages: list,
+    logging_obj,
+    timeout: Optional[Union[float, httpx.Timeout]],
+    json_mode: bool,
+) -> Tuple[Any, httpx.Headers]:
+    if client is None:
+        client = litellm.module_level_aclient
+
+    try:
+        response = await client.post(
+            api_base, headers=headers, data=data, stream=True, timeout=timeout
+        )
+    except httpx.HTTPStatusError as e:
+        error_headers = getattr(e, "headers", None)
+        error_response = getattr(e, "response", None)
+        if error_headers is None and error_response:
+            error_headers = getattr(error_response, "headers", None)
+        raise HuggingfaceError(
+            status_code=e.response.status_code,
+            message=str(await e.response.aread()),
+            headers=cast(dict, error_headers) if error_headers else None,
+        )
+    except Exception as e:
+        for exception in litellm.LITELLM_EXCEPTION_TYPES:
+            if isinstance(e, exception):
+                raise e
+        raise HuggingfaceError(status_code=500, message=str(e))
+
+    # LOGGING
+    logging_obj.post_call(
+        input=messages,
+        api_key="",
+        original_response=response,  # Pass the completion stream for logging
+        additional_args={"complete_input_dict": data},
+    )
+
+    return response.aiter_lines(), response.headers
+
+
+class Huggingface(BaseLLM):
+    _client_session: Optional[httpx.Client] = None
+    _aclient_session: Optional[httpx.AsyncClient] = None
+
+    def __init__(self) -> None:
+        super().__init__()
+
+    def completion(  # noqa: PLR0915
+        self,
+        model: str,
+        messages: list,
+        api_base: Optional[str],
+        model_response: ModelResponse,
+        print_verbose: Callable,
+        timeout: float,
+        encoding,
+        api_key,
+        logging_obj,
+        optional_params: dict,
+        litellm_params: dict,
+        custom_prompt_dict={},
+        acompletion: bool = False,
+        logger_fn=None,
+        client: Optional[Union[HTTPHandler, AsyncHTTPHandler]] = None,
+        headers: dict = {},
+    ):
+        super().completion()
+        exception_mapping_worked = False
+        try:
+            task, model = hf_chat_config.get_hf_task_for_model(model)
+            litellm_params["task"] = task
+            headers = hf_chat_config.validate_environment(
+                api_key=api_key,
+                headers=headers,
+                model=model,
+                messages=messages,
+                optional_params=optional_params,
+            )
+            completion_url = hf_chat_config.get_api_base(api_base=api_base, model=model)
+            data = hf_chat_config.transform_request(
+                model=model,
+                messages=messages,
+                optional_params=optional_params,
+                litellm_params=litellm_params,
+                headers=headers,
+            )
+
+            ## LOGGING
+            logging_obj.pre_call(
+                input=data,
+                api_key=api_key,
+                additional_args={
+                    "complete_input_dict": data,
+                    "headers": headers,
+                    "api_base": completion_url,
+                    "acompletion": acompletion,
+                },
+            )
+            ## COMPLETION CALL
+
+            if acompletion is True:
+                ### ASYNC STREAMING
+                if optional_params.get("stream", False):
+                    return self.async_streaming(logging_obj=logging_obj, api_base=completion_url, data=data, headers=headers, model_response=model_response, model=model, timeout=timeout, messages=messages)  # type: ignore
+                else:
+                    ### ASYNC COMPLETION
+                    return self.acompletion(
+                        api_base=completion_url,
+                        data=data,
+                        headers=headers,
+                        model_response=model_response,
+                        encoding=encoding,
+                        model=model,
+                        optional_params=optional_params,
+                        timeout=timeout,
+                        litellm_params=litellm_params,
+                        logging_obj=logging_obj,
+                        api_key=api_key,
+                        messages=messages,
+                        client=(
+                            client
+                            if client is not None
+                            and isinstance(client, AsyncHTTPHandler)
+                            else None
+                        ),
+                    )
+            if client is None or not isinstance(client, HTTPHandler):
+                client = _get_httpx_client()
+            ### SYNC STREAMING
+            if "stream" in optional_params and optional_params["stream"] is True:
+                response = client.post(
+                    url=completion_url,
+                    headers=headers,
+                    data=json.dumps(data),
+                    stream=optional_params["stream"],
+                )
+                return response.iter_lines()
+            ### SYNC COMPLETION
+            else:
+                response = client.post(
+                    url=completion_url,
+                    headers=headers,
+                    data=json.dumps(data),
+                )
+
+                return hf_chat_config.transform_response(
+                    model=model,
+                    raw_response=response,
+                    model_response=model_response,
+                    logging_obj=logging_obj,
+                    api_key=api_key,
+                    request_data=data,
+                    messages=messages,
+                    optional_params=optional_params,
+                    encoding=encoding,
+                    json_mode=None,
+                    litellm_params=litellm_params,
+                )
+        except httpx.HTTPStatusError as e:
+            raise HuggingfaceError(
+                status_code=e.response.status_code,
+                message=e.response.text,
+                headers=e.response.headers,
+            )
+        except HuggingfaceError as e:
+            exception_mapping_worked = True
+            raise e
+        except Exception as e:
+            if exception_mapping_worked:
+                raise e
+            else:
+                import traceback
+
+                raise HuggingfaceError(status_code=500, message=traceback.format_exc())
+
+    async def acompletion(
+        self,
+        api_base: str,
+        data: dict,
+        headers: dict,
+        model_response: ModelResponse,
+        encoding: Any,
+        model: str,
+        optional_params: dict,
+        litellm_params: dict,
+        timeout: float,
+        logging_obj: LiteLLMLoggingObj,
+        api_key: str,
+        messages: List[AllMessageValues],
+        client: Optional[AsyncHTTPHandler] = None,
+    ):
+        response: Optional[httpx.Response] = None
+        try:
+            if client is None:
+                client = get_async_httpx_client(
+                    llm_provider=litellm.LlmProviders.HUGGINGFACE
+                )
+            ### ASYNC COMPLETION
+            http_response = await client.post(
+                url=api_base, headers=headers, data=json.dumps(data), timeout=timeout
+            )
+
+            response = http_response
+
+            return hf_chat_config.transform_response(
+                model=model,
+                raw_response=http_response,
+                model_response=model_response,
+                logging_obj=logging_obj,
+                api_key=api_key,
+                request_data=data,
+                messages=messages,
+                optional_params=optional_params,
+                encoding=encoding,
+                json_mode=None,
+                litellm_params=litellm_params,
+            )
+        except Exception as e:
+            if isinstance(e, httpx.TimeoutException):
+                raise HuggingfaceError(status_code=500, message="Request Timeout Error")
+            elif isinstance(e, HuggingfaceError):
+                raise e
+            elif response is not None and hasattr(response, "text"):
+                raise HuggingfaceError(
+                    status_code=500,
+                    message=f"{str(e)}\n\nOriginal Response: {response.text}",
+                    headers=response.headers,
+                )
+            else:
+                raise HuggingfaceError(status_code=500, message=f"{str(e)}")
+
+    async def async_streaming(
+        self,
+        logging_obj,
+        api_base: str,
+        data: dict,
+        headers: dict,
+        model_response: ModelResponse,
+        messages: List[AllMessageValues],
+        model: str,
+        timeout: float,
+        client: Optional[AsyncHTTPHandler] = None,
+    ):
+        completion_stream, _ = await make_call(
+            client=client,
+            api_base=api_base,
+            headers=headers,
+            data=json.dumps(data),
+            model=model,
+            messages=messages,
+            logging_obj=logging_obj,
+            timeout=timeout,
+            json_mode=False,
+        )
+        streamwrapper = CustomStreamWrapper(
+            completion_stream=completion_stream,
+            model=model,
+            custom_llm_provider="huggingface",
+            logging_obj=logging_obj,
+        )
+        return streamwrapper
+
+    def _transform_input_on_pipeline_tag(
+        self, input: List, pipeline_tag: Optional[str]
+    ) -> dict:
+        if pipeline_tag is None:
+            return {"inputs": input}
+        if pipeline_tag == "sentence-similarity" or pipeline_tag == "similarity":
+            if len(input) < 2:
+                raise HuggingfaceError(
+                    status_code=400,
+                    message="sentence-similarity requires 2+ sentences",
+                )
+            return {"inputs": {"source_sentence": input[0], "sentences": input[1:]}}
+        elif pipeline_tag == "rerank":
+            if len(input) < 2:
+                raise HuggingfaceError(
+                    status_code=400,
+                    message="reranker requires 2+ sentences",
+                )
+            return {"inputs": {"query": input[0], "texts": input[1:]}}
+        return {"inputs": input}  # default to feature-extraction pipeline tag
+
+    async def _async_transform_input(
+        self,
+        model: str,
+        task_type: Optional[str],
+        embed_url: str,
+        input: List,
+        optional_params: dict,
+    ) -> dict:
+        hf_task = await async_get_hf_task_embedding_for_model(
+            model=model, task_type=task_type, api_base=embed_url
+        )
+
+        data = self._transform_input_on_pipeline_tag(input=input, pipeline_tag=hf_task)
+
+        if len(optional_params.keys()) > 0:
+            data["options"] = optional_params
+
+        return data
+
+    def _process_optional_params(self, data: dict, optional_params: dict) -> dict:
+        special_options_keys = HuggingfaceConfig().get_special_options_params()
+        special_parameters_keys = [
+            "min_length",
+            "max_length",
+            "top_k",
+            "top_p",
+            "temperature",
+            "repetition_penalty",
+            "max_time",
+        ]
+
+        for k, v in optional_params.items():
+            if k in special_options_keys:
+                data.setdefault("options", {})
+                data["options"][k] = v
+            elif k in special_parameters_keys:
+                data.setdefault("parameters", {})
+                data["parameters"][k] = v
+            else:
+                data[k] = v
+
+        return data
+
+    def _transform_input(
+        self,
+        input: List,
+        model: str,
+        call_type: Literal["sync", "async"],
+        optional_params: dict,
+        embed_url: str,
+    ) -> dict:
+        data: Dict = {}
+
+        ## TRANSFORMATION ##
+        if "sentence-transformers" in model:
+            if len(input) == 0:
+                raise HuggingfaceError(
+                    status_code=400,
+                    message="sentence transformers requires 2+ sentences",
+                )
+            data = {"inputs": {"source_sentence": input[0], "sentences": input[1:]}}
+        else:
+            data = {"inputs": input}
+
+            task_type = optional_params.pop("input_type", None)
+
+            if call_type == "sync":
+                hf_task = get_hf_task_embedding_for_model(
+                    model=model, task_type=task_type, api_base=embed_url
+                )
+            elif call_type == "async":
+                return self._async_transform_input(
+                    model=model, task_type=task_type, embed_url=embed_url, input=input
+                )  # type: ignore
+
+            data = self._transform_input_on_pipeline_tag(
+                input=input, pipeline_tag=hf_task
+            )
+
+        if len(optional_params.keys()) > 0:
+            data = self._process_optional_params(
+                data=data, optional_params=optional_params
+            )
+
+        return data
+
+    def _process_embedding_response(
+        self,
+        embeddings: dict,
+        model_response: EmbeddingResponse,
+        model: str,
+        input: List,
+        encoding: Any,
+    ) -> EmbeddingResponse:
+        output_data = []
+        if "similarities" in embeddings:
+            for idx, embedding in embeddings["similarities"]:
+                output_data.append(
+                    {
+                        "object": "embedding",
+                        "index": idx,
+                        "embedding": embedding,  # flatten list returned from hf
+                    }
+                )
+        else:
+            for idx, embedding in enumerate(embeddings):
+                if isinstance(embedding, float):
+                    output_data.append(
+                        {
+                            "object": "embedding",
+                            "index": idx,
+                            "embedding": embedding,  # flatten list returned from hf
+                        }
+                    )
+                elif isinstance(embedding, list) and isinstance(embedding[0], float):
+                    output_data.append(
+                        {
+                            "object": "embedding",
+                            "index": idx,
+                            "embedding": embedding,  # flatten list returned from hf
+                        }
+                    )
+                else:
+                    output_data.append(
+                        {
+                            "object": "embedding",
+                            "index": idx,
+                            "embedding": embedding[0][
+                                0
+                            ],  # flatten list returned from hf
+                        }
+                    )
+        model_response.object = "list"
+        model_response.data = output_data
+        model_response.model = model
+        input_tokens = 0
+        for text in input:
+            input_tokens += len(encoding.encode(text))
+
+        setattr(
+            model_response,
+            "usage",
+            litellm.Usage(
+                prompt_tokens=input_tokens,
+                completion_tokens=input_tokens,
+                total_tokens=input_tokens,
+                prompt_tokens_details=None,
+                completion_tokens_details=None,
+            ),
+        )
+        return model_response
+
+    async def aembedding(
+        self,
+        model: str,
+        input: list,
+        model_response: litellm.utils.EmbeddingResponse,
+        timeout: Union[float, httpx.Timeout],
+        logging_obj: LiteLLMLoggingObj,
+        optional_params: dict,
+        api_base: str,
+        api_key: Optional[str],
+        headers: dict,
+        encoding: Callable,
+        client: Optional[AsyncHTTPHandler] = None,
+    ):
+        ## TRANSFORMATION ##
+        data = self._transform_input(
+            input=input,
+            model=model,
+            call_type="sync",
+            optional_params=optional_params,
+            embed_url=api_base,
+        )
+
+        ## LOGGING
+        logging_obj.pre_call(
+            input=input,
+            api_key=api_key,
+            additional_args={
+                "complete_input_dict": data,
+                "headers": headers,
+                "api_base": api_base,
+            },
+        )
+        ## COMPLETION CALL
+        if client is None:
+            client = get_async_httpx_client(
+                llm_provider=litellm.LlmProviders.HUGGINGFACE,
+            )
+
+        response = await client.post(api_base, headers=headers, data=json.dumps(data))
+
+        ## LOGGING
+        logging_obj.post_call(
+            input=input,
+            api_key=api_key,
+            additional_args={"complete_input_dict": data},
+            original_response=response,
+        )
+
+        embeddings = response.json()
+
+        if "error" in embeddings:
+            raise HuggingfaceError(status_code=500, message=embeddings["error"])
+
+        ## PROCESS RESPONSE ##
+        return self._process_embedding_response(
+            embeddings=embeddings,
+            model_response=model_response,
+            model=model,
+            input=input,
+            encoding=encoding,
+        )
+
+    def embedding(
+        self,
+        model: str,
+        input: list,
+        model_response: EmbeddingResponse,
+        optional_params: dict,
+        logging_obj: LiteLLMLoggingObj,
+        encoding: Callable,
+        api_key: Optional[str] = None,
+        api_base: Optional[str] = None,
+        timeout: Union[float, httpx.Timeout] = httpx.Timeout(None),
+        aembedding: Optional[bool] = None,
+        client: Optional[Union[HTTPHandler, AsyncHTTPHandler]] = None,
+        headers={},
+    ) -> EmbeddingResponse:
+        super().embedding()
+        headers = hf_chat_config.validate_environment(
+            api_key=api_key,
+            headers=headers,
+            model=model,
+            optional_params=optional_params,
+            messages=[],
+        )
+        # print_verbose(f"{model}, {task}")
+        embed_url = ""
+        if "https" in model:
+            embed_url = model
+        elif api_base:
+            embed_url = api_base
+        elif "HF_API_BASE" in os.environ:
+            embed_url = os.getenv("HF_API_BASE", "")
+        elif "HUGGINGFACE_API_BASE" in os.environ:
+            embed_url = os.getenv("HUGGINGFACE_API_BASE", "")
+        else:
+            embed_url = f"https://api-inference.huggingface.co/models/{model}"
+
+        ## ROUTING ##
+        if aembedding is True:
+            return self.aembedding(
+                input=input,
+                model_response=model_response,
+                timeout=timeout,
+                logging_obj=logging_obj,
+                headers=headers,
+                api_base=embed_url,  # type: ignore
+                api_key=api_key,
+                client=client if isinstance(client, AsyncHTTPHandler) else None,
+                model=model,
+                optional_params=optional_params,
+                encoding=encoding,
+            )
+
+        ## TRANSFORMATION ##
+
+        data = self._transform_input(
+            input=input,
+            model=model,
+            call_type="sync",
+            optional_params=optional_params,
+            embed_url=embed_url,
+        )
+
+        ## LOGGING
+        logging_obj.pre_call(
+            input=input,
+            api_key=api_key,
+            additional_args={
+                "complete_input_dict": data,
+                "headers": headers,
+                "api_base": embed_url,
+            },
+        )
+        ## COMPLETION CALL
+        if client is None or not isinstance(client, HTTPHandler):
+            client = HTTPHandler(concurrent_limit=1)
+        response = client.post(embed_url, headers=headers, data=json.dumps(data))
+
+        ## LOGGING
+        logging_obj.post_call(
+            input=input,
+            api_key=api_key,
+            additional_args={"complete_input_dict": data},
+            original_response=response,
+        )
+
+        embeddings = response.json()
+
+        if "error" in embeddings:
+            raise HuggingfaceError(status_code=500, message=embeddings["error"])
+
+        ## PROCESS RESPONSE ##
+        return self._process_embedding_response(
+            embeddings=embeddings,
+            model_response=model_response,
+            model=model,
+            input=input,
+            encoding=encoding,
+        )
+
+    def _transform_logprobs(
+        self, hf_response: Optional[List]
+    ) -> Optional[TextCompletionLogprobs]:
+        """
+        Transform Hugging Face logprobs to OpenAI.Completion() format
+        """
+        if hf_response is None:
+            return None
+
+        # Initialize an empty list for the transformed logprobs
+        _logprob: TextCompletionLogprobs = TextCompletionLogprobs(
+            text_offset=[],
+            token_logprobs=[],
+            tokens=[],
+            top_logprobs=[],
+        )
+
+        # For each Hugging Face response, transform the logprobs
+        for response in hf_response:
+            # Extract the relevant information from the response
+            response_details = response["details"]
+            top_tokens = response_details.get("top_tokens", {})
+
+            for i, token in enumerate(response_details["prefill"]):
+                # Extract the text of the token
+                token_text = token["text"]
+
+                # Extract the logprob of the token
+                token_logprob = token["logprob"]
+
+                # Add the token information to the 'token_info' list
+                cast(List[str], _logprob.tokens).append(token_text)
+                cast(List[float], _logprob.token_logprobs).append(token_logprob)
+
+                # stub this to work with llm eval harness
+                top_alt_tokens = {"": -1.0, "": -2.0, "": -3.0}  # noqa: F601
+                cast(List[Dict[str, float]], _logprob.top_logprobs).append(
+                    top_alt_tokens
+                )
+
+            # For each element in the 'tokens' list, extract the relevant information
+            for i, token in enumerate(response_details["tokens"]):
+                # Extract the text of the token
+                token_text = token["text"]
+
+                # Extract the logprob of the token
+                token_logprob = token["logprob"]
+
+                top_alt_tokens = {}
+                temp_top_logprobs = []
+                if top_tokens != {}:
+                    temp_top_logprobs = top_tokens[i]
+
+                # top_alt_tokens should look like this: { "alternative_1": -1, "alternative_2": -2, "alternative_3": -3 }
+                for elem in temp_top_logprobs:
+                    text = elem["text"]
+                    logprob = elem["logprob"]
+                    top_alt_tokens[text] = logprob
+
+                # Add the token information to the 'token_info' list
+                cast(List[str], _logprob.tokens).append(token_text)
+                cast(List[float], _logprob.token_logprobs).append(token_logprob)
+                cast(List[Dict[str, float]], _logprob.top_logprobs).append(
+                    top_alt_tokens
+                )
+
+                # Add the text offset of the token
+                # This is computed as the sum of the lengths of all previous tokens
+                cast(List[int], _logprob.text_offset).append(
+                    sum(len(t["text"]) for t in response_details["tokens"][:i])
+                )
+
+        return _logprob
diff --git a/.venv/lib/python3.12/site-packages/litellm/llms/huggingface/chat/transformation.py b/.venv/lib/python3.12/site-packages/litellm/llms/huggingface/chat/transformation.py
new file mode 100644
index 00000000..858fda47
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/litellm/llms/huggingface/chat/transformation.py
@@ -0,0 +1,589 @@
+import json
+import os
+import time
+from copy import deepcopy
+from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union
+
+import httpx
+
+import litellm
+from litellm.litellm_core_utils.prompt_templates.common_utils import (
+    convert_content_list_to_str,
+)
+from litellm.litellm_core_utils.prompt_templates.factory import (
+    custom_prompt,
+    prompt_factory,
+)
+from litellm.litellm_core_utils.streaming_handler import CustomStreamWrapper
+from litellm.llms.base_llm.chat.transformation import BaseConfig, BaseLLMException
+from litellm.secret_managers.main import get_secret_str
+from litellm.types.llms.openai import AllMessageValues
+from litellm.types.utils import Choices, Message, ModelResponse, Usage
+from litellm.utils import token_counter
+
+from ..common_utils import HuggingfaceError, hf_task_list, hf_tasks, output_parser
+
+if TYPE_CHECKING:
+    from litellm.litellm_core_utils.litellm_logging import Logging as LiteLLMLoggingObj
+
+    LoggingClass = LiteLLMLoggingObj
+else:
+    LoggingClass = Any
+
+
+tgi_models_cache = None
+conv_models_cache = None
+
+
+class HuggingfaceChatConfig(BaseConfig):
+    """
+    Reference: https://huggingface.github.io/text-generation-inference/#/Text%20Generation%20Inference/compat_generate
+    """
+
+    hf_task: Optional[hf_tasks] = (
+        None  # litellm-specific param, used to know the api spec to use when calling huggingface api
+    )
+    best_of: Optional[int] = None
+    decoder_input_details: Optional[bool] = None
+    details: Optional[bool] = True  # enables returning logprobs + best of
+    max_new_tokens: Optional[int] = None
+    repetition_penalty: Optional[float] = None
+    return_full_text: Optional[bool] = (
+        False  # by default don't return the input as part of the output
+    )
+    seed: Optional[int] = None
+    temperature: Optional[float] = None
+    top_k: Optional[int] = None
+    top_n_tokens: Optional[int] = None
+    top_p: Optional[int] = None
+    truncate: Optional[int] = None
+    typical_p: Optional[float] = None
+    watermark: Optional[bool] = None
+
+    def __init__(
+        self,
+        best_of: Optional[int] = None,
+        decoder_input_details: Optional[bool] = None,
+        details: Optional[bool] = None,
+        max_new_tokens: Optional[int] = None,
+        repetition_penalty: Optional[float] = None,
+        return_full_text: Optional[bool] = None,
+        seed: Optional[int] = None,
+        temperature: Optional[float] = None,
+        top_k: Optional[int] = None,
+        top_n_tokens: Optional[int] = None,
+        top_p: Optional[int] = None,
+        truncate: Optional[int] = None,
+        typical_p: Optional[float] = None,
+        watermark: Optional[bool] = None,
+    ) -> None:
+        locals_ = locals().copy()
+        for key, value in locals_.items():
+            if key != "self" and value is not None:
+                setattr(self.__class__, key, value)
+
+    @classmethod
+    def get_config(cls):
+        return super().get_config()
+
+    def get_special_options_params(self):
+        return ["use_cache", "wait_for_model"]
+
+    def get_supported_openai_params(self, model: str):
+        return [
+            "stream",
+            "temperature",
+            "max_tokens",
+            "max_completion_tokens",
+            "top_p",
+            "stop",
+            "n",
+            "echo",
+        ]
+
+    def map_openai_params(
+        self,
+        non_default_params: Dict,
+        optional_params: Dict,
+        model: str,
+        drop_params: bool,
+    ) -> Dict:
+        for param, value in non_default_params.items():
+            # temperature, top_p, n, stream, stop, max_tokens, n, presence_penalty default to None
+            if param == "temperature":
+                if value == 0.0 or value == 0:
+                    # hugging face exception raised when temp==0
+                    # Failed: Error occurred: HuggingfaceException - Input validation error: `temperature` must be strictly positive
+                    value = 0.01
+                optional_params["temperature"] = value
+            if param == "top_p":
+                optional_params["top_p"] = value
+            if param == "n":
+                optional_params["best_of"] = value
+                optional_params["do_sample"] = (
+                    True  # Need to sample if you want best of for hf inference endpoints
+                )
+            if param == "stream":
+                optional_params["stream"] = value
+            if param == "stop":
+                optional_params["stop"] = value
+            if param == "max_tokens" or param == "max_completion_tokens":
+                # HF TGI raises the following exception when max_new_tokens==0
+                # Failed: Error occurred: HuggingfaceException - Input validation error: `max_new_tokens` must be strictly positive
+                if value == 0:
+                    value = 1
+                optional_params["max_new_tokens"] = value
+            if param == "echo":
+                # https://huggingface.co/docs/huggingface_hub/main/en/package_reference/inference_client#huggingface_hub.InferenceClient.text_generation.decoder_input_details
+                #  Return the decoder input token logprobs and ids. You must set details=True as well for it to be taken into account. Defaults to False
+                optional_params["decoder_input_details"] = True
+
+        return optional_params
+
+    def get_hf_api_key(self) -> Optional[str]:
+        return get_secret_str("HUGGINGFACE_API_KEY")
+
+    def read_tgi_conv_models(self):
+        try:
+            global tgi_models_cache, conv_models_cache
+            # Check if the cache is already populated
+            # so we don't keep on reading txt file if there are 1k requests
+            if (tgi_models_cache is not None) and (conv_models_cache is not None):
+                return tgi_models_cache, conv_models_cache
+            # If not, read the file and populate the cache
+            tgi_models = set()
+            script_directory = os.path.dirname(os.path.abspath(__file__))
+            script_directory = os.path.dirname(script_directory)
+            # Construct the file path relative to the script's directory
+            file_path = os.path.join(
+                script_directory,
+                "huggingface_llms_metadata",
+                "hf_text_generation_models.txt",
+            )
+
+            with open(file_path, "r") as file:
+                for line in file:
+                    tgi_models.add(line.strip())
+
+            # Cache the set for future use
+            tgi_models_cache = tgi_models
+
+            # If not, read the file and populate the cache
+            file_path = os.path.join(
+                script_directory,
+                "huggingface_llms_metadata",
+                "hf_conversational_models.txt",
+            )
+            conv_models = set()
+            with open(file_path, "r") as file:
+                for line in file:
+                    conv_models.add(line.strip())
+            # Cache the set for future use
+            conv_models_cache = conv_models
+            return tgi_models, conv_models
+        except Exception:
+            return set(), set()
+
+    def get_hf_task_for_model(self, model: str) -> Tuple[hf_tasks, str]:
+        # read text file, cast it to set
+        # read the file called "huggingface_llms_metadata/hf_text_generation_models.txt"
+        if model.split("/")[0] in hf_task_list:
+            split_model = model.split("/", 1)
+            return split_model[0], split_model[1]  # type: ignore
+        tgi_models, conversational_models = self.read_tgi_conv_models()
+
+        if model in tgi_models:
+            return "text-generation-inference", model
+        elif model in conversational_models:
+            return "conversational", model
+        elif "roneneldan/TinyStories" in model:
+            return "text-generation", model
+        else:
+            return "text-generation-inference", model  # default to tgi
+
+    def transform_request(
+        self,
+        model: str,
+        messages: List[AllMessageValues],
+        optional_params: dict,
+        litellm_params: dict,
+        headers: dict,
+    ) -> dict:
+        task = litellm_params.get("task", None)
+        ## VALIDATE API FORMAT
+        if task is None or not isinstance(task, str) or task not in hf_task_list:
+            raise Exception(
+                "Invalid hf task - {}. Valid formats - {}.".format(task, hf_tasks)
+            )
+
+        ## Load Config
+        config = litellm.HuggingfaceConfig.get_config()
+        for k, v in config.items():
+            if (
+                k not in optional_params
+            ):  # completion(top_k=3) > huggingfaceConfig(top_k=3) <- allows for dynamic variables to be passed in
+                optional_params[k] = v
+
+        ### MAP INPUT PARAMS
+        #### HANDLE SPECIAL PARAMS
+        special_params = self.get_special_options_params()
+        special_params_dict = {}
+        # Create a list of keys to pop after iteration
+        keys_to_pop = []
+
+        for k, v in optional_params.items():
+            if k in special_params:
+                special_params_dict[k] = v
+                keys_to_pop.append(k)
+
+        # Pop the keys from the dictionary after iteration
+        for k in keys_to_pop:
+            optional_params.pop(k)
+        if task == "conversational":
+            inference_params = deepcopy(optional_params)
+            inference_params.pop("details")
+            inference_params.pop("return_full_text")
+            past_user_inputs = []
+            generated_responses = []
+            text = ""
+            for message in messages:
+                if message["role"] == "user":
+                    if text != "":
+                        past_user_inputs.append(text)
+                    text = convert_content_list_to_str(message)
+                elif message["role"] == "assistant" or message["role"] == "system":
+                    generated_responses.append(convert_content_list_to_str(message))
+            data = {
+                "inputs": {
+                    "text": text,
+                    "past_user_inputs": past_user_inputs,
+                    "generated_responses": generated_responses,
+                },
+                "parameters": inference_params,
+            }
+
+        elif task == "text-generation-inference":
+            # always send "details" and "return_full_text" as params
+            if model in litellm.custom_prompt_dict:
+                # check if the model has a registered custom prompt
+                model_prompt_details = litellm.custom_prompt_dict[model]
+                prompt = custom_prompt(
+                    role_dict=model_prompt_details.get("roles", None),
+                    initial_prompt_value=model_prompt_details.get(
+                        "initial_prompt_value", ""
+                    ),
+                    final_prompt_value=model_prompt_details.get(
+                        "final_prompt_value", ""
+                    ),
+                    messages=messages,
+                )
+            else:
+                prompt = prompt_factory(model=model, messages=messages)
+            data = {
+                "inputs": prompt,  # type: ignore
+                "parameters": optional_params,
+                "stream": (  # type: ignore
+                    True
+                    if "stream" in optional_params
+                    and isinstance(optional_params["stream"], bool)
+                    and optional_params["stream"] is True  # type: ignore
+                    else False
+                ),
+            }
+        else:
+            # Non TGI and Conversational llms
+            # We need this branch, it removes 'details' and 'return_full_text' from params
+            if model in litellm.custom_prompt_dict:
+                # check if the model has a registered custom prompt
+                model_prompt_details = litellm.custom_prompt_dict[model]
+                prompt = custom_prompt(
+                    role_dict=model_prompt_details.get("roles", {}),
+                    initial_prompt_value=model_prompt_details.get(
+                        "initial_prompt_value", ""
+                    ),
+                    final_prompt_value=model_prompt_details.get(
+                        "final_prompt_value", ""
+                    ),
+                    bos_token=model_prompt_details.get("bos_token", ""),
+                    eos_token=model_prompt_details.get("eos_token", ""),
+                    messages=messages,
+                )
+            else:
+                prompt = prompt_factory(model=model, messages=messages)
+            inference_params = deepcopy(optional_params)
+            inference_params.pop("details")
+            inference_params.pop("return_full_text")
+            data = {
+                "inputs": prompt,  # type: ignore
+            }
+            if task == "text-generation-inference":
+                data["parameters"] = inference_params
+                data["stream"] = (  # type: ignore
+                    True  # type: ignore
+                    if "stream" in optional_params and optional_params["stream"] is True
+                    else False
+                )
+
+        ### RE-ADD SPECIAL PARAMS
+        if len(special_params_dict.keys()) > 0:
+            data.update({"options": special_params_dict})
+
+        return data
+
+    def get_api_base(self, api_base: Optional[str], model: str) -> str:
+        """
+        Get the API base for the Huggingface API.
+
+        Do not add the chat/embedding/rerank extension here. Let the handler do this.
+        """
+        if "https" in model:
+            completion_url = model
+        elif api_base is not None:
+            completion_url = api_base
+        elif "HF_API_BASE" in os.environ:
+            completion_url = os.getenv("HF_API_BASE", "")
+        elif "HUGGINGFACE_API_BASE" in os.environ:
+            completion_url = os.getenv("HUGGINGFACE_API_BASE", "")
+        else:
+            completion_url = f"https://api-inference.huggingface.co/models/{model}"
+
+        return completion_url
+
+    def validate_environment(
+        self,
+        headers: Dict,
+        model: str,
+        messages: List[AllMessageValues],
+        optional_params: Dict,
+        api_key: Optional[str] = None,
+        api_base: Optional[str] = None,
+    ) -> Dict:
+        default_headers = {
+            "content-type": "application/json",
+        }
+        if api_key is not None:
+            default_headers["Authorization"] = (
+                f"Bearer {api_key}"  # Huggingface Inference Endpoint default is to accept bearer tokens
+            )
+
+        headers = {**headers, **default_headers}
+        return headers
+
+    def get_error_class(
+        self, error_message: str, status_code: int, headers: Union[dict, httpx.Headers]
+    ) -> BaseLLMException:
+        return HuggingfaceError(
+            status_code=status_code, message=error_message, headers=headers
+        )
+
+    def _convert_streamed_response_to_complete_response(
+        self,
+        response: httpx.Response,
+        logging_obj: LoggingClass,
+        model: str,
+        data: dict,
+        api_key: Optional[str] = None,
+    ) -> List[Dict[str, Any]]:
+        streamed_response = CustomStreamWrapper(
+            completion_stream=response.iter_lines(),
+            model=model,
+            custom_llm_provider="huggingface",
+            logging_obj=logging_obj,
+        )
+        content = ""
+        for chunk in streamed_response:
+            content += chunk["choices"][0]["delta"]["content"]
+        completion_response: List[Dict[str, Any]] = [{"generated_text": content}]
+        ## LOGGING
+        logging_obj.post_call(
+            input=data,
+            api_key=api_key,
+            original_response=completion_response,
+            additional_args={"complete_input_dict": data},
+        )
+        return completion_response
+
+    def convert_to_model_response_object(  # noqa: PLR0915
+        self,
+        completion_response: Union[List[Dict[str, Any]], Dict[str, Any]],
+        model_response: ModelResponse,
+        task: Optional[hf_tasks],
+        optional_params: dict,
+        encoding: Any,
+        messages: List[AllMessageValues],
+        model: str,
+    ):
+        if task is None:
+            task = "text-generation-inference"  # default to tgi
+
+        if task == "conversational":
+            if len(completion_response["generated_text"]) > 0:  # type: ignore
+                model_response.choices[0].message.content = completion_response[  # type: ignore
+                    "generated_text"
+                ]
+        elif task == "text-generation-inference":
+            if (
+                not isinstance(completion_response, list)
+                or not isinstance(completion_response[0], dict)
+                or "generated_text" not in completion_response[0]
+            ):
+                raise HuggingfaceError(
+                    status_code=422,
+                    message=f"response is not in expected format - {completion_response}",
+                    headers=None,
+                )
+
+            if len(completion_response[0]["generated_text"]) > 0:
+                model_response.choices[0].message.content = output_parser(  # type: ignore
+                    completion_response[0]["generated_text"]
+                )
+            ## GETTING LOGPROBS + FINISH REASON
+            if (
+                "details" in completion_response[0]
+                and "tokens" in completion_response[0]["details"]
+            ):
+                model_response.choices[0].finish_reason = completion_response[0][
+                    "details"
+                ]["finish_reason"]
+                sum_logprob = 0
+                for token in completion_response[0]["details"]["tokens"]:
+                    if token["logprob"] is not None:
+                        sum_logprob += token["logprob"]
+                setattr(model_response.choices[0].message, "_logprob", sum_logprob)  # type: ignore
+            if "best_of" in optional_params and optional_params["best_of"] > 1:
+                if (
+                    "details" in completion_response[0]
+                    and "best_of_sequences" in completion_response[0]["details"]
+                ):
+                    choices_list = []
+                    for idx, item in enumerate(
+                        completion_response[0]["details"]["best_of_sequences"]
+                    ):
+                        sum_logprob = 0
+                        for token in item["tokens"]:
+                            if token["logprob"] is not None:
+                                sum_logprob += token["logprob"]
+                        if len(item["generated_text"]) > 0:
+                            message_obj = Message(
+                                content=output_parser(item["generated_text"]),
+                                logprobs=sum_logprob,
+                            )
+                        else:
+                            message_obj = Message(content=None)
+                        choice_obj = Choices(
+                            finish_reason=item["finish_reason"],
+                            index=idx + 1,
+                            message=message_obj,
+                        )
+                        choices_list.append(choice_obj)
+                    model_response.choices.extend(choices_list)
+        elif task == "text-classification":
+            model_response.choices[0].message.content = json.dumps(  # type: ignore
+                completion_response
+            )
+        else:
+            if (
+                isinstance(completion_response, list)
+                and len(completion_response[0]["generated_text"]) > 0
+            ):
+                model_response.choices[0].message.content = output_parser(  # type: ignore
+                    completion_response[0]["generated_text"]
+                )
+        ## CALCULATING USAGE
+        prompt_tokens = 0
+        try:
+            prompt_tokens = token_counter(model=model, messages=messages)
+        except Exception:
+            # this should remain non blocking we should not block a response returning if calculating usage fails
+            pass
+        output_text = model_response["choices"][0]["message"].get("content", "")
+        if output_text is not None and len(output_text) > 0:
+            completion_tokens = 0
+            try:
+                completion_tokens = len(
+                    encoding.encode(
+                        model_response["choices"][0]["message"].get("content", "")
+                    )
+                )  ##[TODO] use the llama2 tokenizer here
+            except Exception:
+                # this should remain non blocking we should not block a response returning if calculating usage fails
+                pass
+        else:
+            completion_tokens = 0
+
+        model_response.created = int(time.time())
+        model_response.model = model
+        usage = Usage(
+            prompt_tokens=prompt_tokens,
+            completion_tokens=completion_tokens,
+            total_tokens=prompt_tokens + completion_tokens,
+        )
+        setattr(model_response, "usage", usage)
+        model_response._hidden_params["original_response"] = completion_response
+        return model_response
+
+    def transform_response(
+        self,
+        model: str,
+        raw_response: httpx.Response,
+        model_response: ModelResponse,
+        logging_obj: LoggingClass,
+        request_data: Dict,
+        messages: List[AllMessageValues],
+        optional_params: Dict,
+        litellm_params: Dict,
+        encoding: Any,
+        api_key: Optional[str] = None,
+        json_mode: Optional[bool] = None,
+    ) -> ModelResponse:
+        ## Some servers might return streaming responses even though stream was not set to true. (e.g. Baseten)
+        task = litellm_params.get("task", None)
+        is_streamed = False
+        if (
+            raw_response.__dict__["headers"].get("Content-Type", "")
+            == "text/event-stream"
+        ):
+            is_streamed = True
+
+        # iterate over the complete streamed response, and return the final answer
+        if is_streamed:
+            completion_response = self._convert_streamed_response_to_complete_response(
+                response=raw_response,
+                logging_obj=logging_obj,
+                model=model,
+                data=request_data,
+                api_key=api_key,
+            )
+        else:
+            ## LOGGING
+            logging_obj.post_call(
+                input=request_data,
+                api_key=api_key,
+                original_response=raw_response.text,
+                additional_args={"complete_input_dict": request_data},
+            )
+            ## RESPONSE OBJECT
+            try:
+                completion_response = raw_response.json()
+                if isinstance(completion_response, dict):
+                    completion_response = [completion_response]
+            except Exception:
+                raise HuggingfaceError(
+                    message=f"Original Response received: {raw_response.text}",
+                    status_code=raw_response.status_code,
+                )
+
+        if isinstance(completion_response, dict) and "error" in completion_response:
+            raise HuggingfaceError(
+                message=completion_response["error"],  # type: ignore
+                status_code=raw_response.status_code,
+            )
+        return self.convert_to_model_response_object(
+            completion_response=completion_response,
+            model_response=model_response,
+            task=task if task is not None and task in hf_task_list else None,
+            optional_params=optional_params,
+            encoding=encoding,
+            messages=messages,
+            model=model,
+        )