about summary refs log tree commit diff
path: root/.venv/lib/python3.12/site-packages/litellm/llms/baseten.py
diff options
context:
space:
mode:
Diffstat (limited to '.venv/lib/python3.12/site-packages/litellm/llms/baseten.py')
-rw-r--r--.venv/lib/python3.12/site-packages/litellm/llms/baseten.py172
1 files changed, 172 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/litellm/llms/baseten.py b/.venv/lib/python3.12/site-packages/litellm/llms/baseten.py
new file mode 100644
index 00000000..e1d513d6
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/litellm/llms/baseten.py
@@ -0,0 +1,172 @@
+import json
+import time
+from typing import Callable
+
+import litellm
+from litellm.types.utils import ModelResponse, Usage
+
+
+class BasetenError(Exception):
+    def __init__(self, status_code, message):
+        self.status_code = status_code
+        self.message = message
+        super().__init__(
+            self.message
+        )  # Call the base class constructor with the parameters it needs
+
+
+def validate_environment(api_key):
+    headers = {
+        "accept": "application/json",
+        "content-type": "application/json",
+    }
+    if api_key:
+        headers["Authorization"] = f"Api-Key {api_key}"
+    return headers
+
+
+def completion(
+    model: str,
+    messages: list,
+    model_response: ModelResponse,
+    print_verbose: Callable,
+    encoding,
+    api_key,
+    logging_obj,
+    optional_params: dict,
+    litellm_params=None,
+    logger_fn=None,
+):
+    headers = validate_environment(api_key)
+    completion_url_fragment_1 = "https://app.baseten.co/models/"
+    completion_url_fragment_2 = "/predict"
+    model = model
+    prompt = ""
+    for message in messages:
+        if "role" in message:
+            if message["role"] == "user":
+                prompt += f"{message['content']}"
+            else:
+                prompt += f"{message['content']}"
+        else:
+            prompt += f"{message['content']}"
+    data = {
+        "inputs": prompt,
+        "prompt": prompt,
+        "parameters": optional_params,
+        "stream": (
+            True
+            if "stream" in optional_params and optional_params["stream"] is True
+            else False
+        ),
+    }
+
+    ## LOGGING
+    logging_obj.pre_call(
+        input=prompt,
+        api_key=api_key,
+        additional_args={"complete_input_dict": data},
+    )
+    ## COMPLETION CALL
+    response = litellm.module_level_client.post(
+        completion_url_fragment_1 + model + completion_url_fragment_2,
+        headers=headers,
+        data=json.dumps(data),
+        stream=(
+            True
+            if "stream" in optional_params and optional_params["stream"] is True
+            else False
+        ),
+    )
+    if "text/event-stream" in response.headers["Content-Type"] or (
+        "stream" in optional_params and optional_params["stream"] is True
+    ):
+        return response.iter_lines()
+    else:
+        ## LOGGING
+        logging_obj.post_call(
+            input=prompt,
+            api_key=api_key,
+            original_response=response.text,
+            additional_args={"complete_input_dict": data},
+        )
+        print_verbose(f"raw model_response: {response.text}")
+        ## RESPONSE OBJECT
+        completion_response = response.json()
+        if "error" in completion_response:
+            raise BasetenError(
+                message=completion_response["error"],
+                status_code=response.status_code,
+            )
+        else:
+            if "model_output" in completion_response:
+                if (
+                    isinstance(completion_response["model_output"], dict)
+                    and "data" in completion_response["model_output"]
+                    and isinstance(completion_response["model_output"]["data"], list)
+                ):
+                    model_response.choices[0].message.content = completion_response[  # type: ignore
+                        "model_output"
+                    ][
+                        "data"
+                    ][
+                        0
+                    ]
+                elif isinstance(completion_response["model_output"], str):
+                    model_response.choices[0].message.content = completion_response[  # type: ignore
+                        "model_output"
+                    ]
+            elif "completion" in completion_response and isinstance(
+                completion_response["completion"], str
+            ):
+                model_response.choices[0].message.content = completion_response[  # type: ignore
+                    "completion"
+                ]
+            elif isinstance(completion_response, list) and len(completion_response) > 0:
+                if "generated_text" not in completion_response:
+                    raise BasetenError(
+                        message=f"Unable to parse response. Original response: {response.text}",
+                        status_code=response.status_code,
+                    )
+                model_response.choices[0].message.content = completion_response[0][  # type: ignore
+                    "generated_text"
+                ]
+                ## GETTING LOGPROBS
+                if (
+                    "details" in completion_response[0]
+                    and "tokens" in completion_response[0]["details"]
+                ):
+                    model_response.choices[0].finish_reason = completion_response[0][
+                        "details"
+                    ]["finish_reason"]
+                    sum_logprob = 0
+                    for token in completion_response[0]["details"]["tokens"]:
+                        sum_logprob += token["logprob"]
+                    model_response.choices[0].logprobs = sum_logprob  # type: ignore
+            else:
+                raise BasetenError(
+                    message=f"Unable to parse response. Original response: {response.text}",
+                    status_code=response.status_code,
+                )
+
+        ## CALCULATING USAGE - baseten charges on time, not tokens - have some mapping of cost here.
+        prompt_tokens = len(encoding.encode(prompt))
+        completion_tokens = len(
+            encoding.encode(model_response["choices"][0]["message"]["content"])
+        )
+
+        model_response.created = int(time.time())
+        model_response.model = model
+        usage = Usage(
+            prompt_tokens=prompt_tokens,
+            completion_tokens=completion_tokens,
+            total_tokens=prompt_tokens + completion_tokens,
+        )
+
+        setattr(model_response, "usage", usage)
+        return model_response
+
+
+def embedding():
+    # logic for parsing in - calling - parsing out model embedding calls
+    pass