aboutsummaryrefslogtreecommitdiff
path: root/.venv/lib/python3.12/site-packages/litellm/llms/baseten.py
diff options
context:
space:
mode:
authorS. Solomon Darnell2025-03-28 21:52:21 -0500
committerS. Solomon Darnell2025-03-28 21:52:21 -0500
commit4a52a71956a8d46fcb7294ac71734504bb09bcc2 (patch)
treeee3dc5af3b6313e921cd920906356f5d4febc4ed /.venv/lib/python3.12/site-packages/litellm/llms/baseten.py
parentcc961e04ba734dd72309fb548a2f97d67d578813 (diff)
downloadgn-ai-master.tar.gz
two version of R2R are hereHEADmaster
Diffstat (limited to '.venv/lib/python3.12/site-packages/litellm/llms/baseten.py')
-rw-r--r--.venv/lib/python3.12/site-packages/litellm/llms/baseten.py172
1 files changed, 172 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/litellm/llms/baseten.py b/.venv/lib/python3.12/site-packages/litellm/llms/baseten.py
new file mode 100644
index 00000000..e1d513d6
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/litellm/llms/baseten.py
@@ -0,0 +1,172 @@
+import json
+import time
+from typing import Callable
+
+import litellm
+from litellm.types.utils import ModelResponse, Usage
+
+
+class BasetenError(Exception):
+ def __init__(self, status_code, message):
+ self.status_code = status_code
+ self.message = message
+ super().__init__(
+ self.message
+ ) # Call the base class constructor with the parameters it needs
+
+
+def validate_environment(api_key):
+ headers = {
+ "accept": "application/json",
+ "content-type": "application/json",
+ }
+ if api_key:
+ headers["Authorization"] = f"Api-Key {api_key}"
+ return headers
+
+
+def completion(
+ model: str,
+ messages: list,
+ model_response: ModelResponse,
+ print_verbose: Callable,
+ encoding,
+ api_key,
+ logging_obj,
+ optional_params: dict,
+ litellm_params=None,
+ logger_fn=None,
+):
+ headers = validate_environment(api_key)
+ completion_url_fragment_1 = "https://app.baseten.co/models/"
+ completion_url_fragment_2 = "/predict"
+ model = model
+ prompt = ""
+ for message in messages:
+ if "role" in message:
+ if message["role"] == "user":
+ prompt += f"{message['content']}"
+ else:
+ prompt += f"{message['content']}"
+ else:
+ prompt += f"{message['content']}"
+ data = {
+ "inputs": prompt,
+ "prompt": prompt,
+ "parameters": optional_params,
+ "stream": (
+ True
+ if "stream" in optional_params and optional_params["stream"] is True
+ else False
+ ),
+ }
+
+ ## LOGGING
+ logging_obj.pre_call(
+ input=prompt,
+ api_key=api_key,
+ additional_args={"complete_input_dict": data},
+ )
+ ## COMPLETION CALL
+ response = litellm.module_level_client.post(
+ completion_url_fragment_1 + model + completion_url_fragment_2,
+ headers=headers,
+ data=json.dumps(data),
+ stream=(
+ True
+ if "stream" in optional_params and optional_params["stream"] is True
+ else False
+ ),
+ )
+ if "text/event-stream" in response.headers["Content-Type"] or (
+ "stream" in optional_params and optional_params["stream"] is True
+ ):
+ return response.iter_lines()
+ else:
+ ## LOGGING
+ logging_obj.post_call(
+ input=prompt,
+ api_key=api_key,
+ original_response=response.text,
+ additional_args={"complete_input_dict": data},
+ )
+ print_verbose(f"raw model_response: {response.text}")
+ ## RESPONSE OBJECT
+ completion_response = response.json()
+ if "error" in completion_response:
+ raise BasetenError(
+ message=completion_response["error"],
+ status_code=response.status_code,
+ )
+ else:
+ if "model_output" in completion_response:
+ if (
+ isinstance(completion_response["model_output"], dict)
+ and "data" in completion_response["model_output"]
+ and isinstance(completion_response["model_output"]["data"], list)
+ ):
+ model_response.choices[0].message.content = completion_response[ # type: ignore
+ "model_output"
+ ][
+ "data"
+ ][
+ 0
+ ]
+ elif isinstance(completion_response["model_output"], str):
+ model_response.choices[0].message.content = completion_response[ # type: ignore
+ "model_output"
+ ]
+ elif "completion" in completion_response and isinstance(
+ completion_response["completion"], str
+ ):
+ model_response.choices[0].message.content = completion_response[ # type: ignore
+ "completion"
+ ]
+ elif isinstance(completion_response, list) and len(completion_response) > 0:
+ if "generated_text" not in completion_response:
+ raise BasetenError(
+ message=f"Unable to parse response. Original response: {response.text}",
+ status_code=response.status_code,
+ )
+ model_response.choices[0].message.content = completion_response[0][ # type: ignore
+ "generated_text"
+ ]
+ ## GETTING LOGPROBS
+ if (
+ "details" in completion_response[0]
+ and "tokens" in completion_response[0]["details"]
+ ):
+ model_response.choices[0].finish_reason = completion_response[0][
+ "details"
+ ]["finish_reason"]
+ sum_logprob = 0
+ for token in completion_response[0]["details"]["tokens"]:
+ sum_logprob += token["logprob"]
+ model_response.choices[0].logprobs = sum_logprob # type: ignore
+ else:
+ raise BasetenError(
+ message=f"Unable to parse response. Original response: {response.text}",
+ status_code=response.status_code,
+ )
+
+ ## CALCULATING USAGE - baseten charges on time, not tokens - have some mapping of cost here.
+ prompt_tokens = len(encoding.encode(prompt))
+ completion_tokens = len(
+ encoding.encode(model_response["choices"][0]["message"]["content"])
+ )
+
+ model_response.created = int(time.time())
+ model_response.model = model
+ usage = Usage(
+ prompt_tokens=prompt_tokens,
+ completion_tokens=completion_tokens,
+ total_tokens=prompt_tokens + completion_tokens,
+ )
+
+ setattr(model_response, "usage", usage)
+ return model_response
+
+
+def embedding():
+ # logic for parsing in - calling - parsing out model embedding calls
+ pass