diff options
Diffstat (limited to '.venv/lib/python3.12/site-packages/huggingface_hub')
127 files changed, 44625 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/huggingface_hub/__init__.py b/.venv/lib/python3.12/site-packages/huggingface_hub/__init__.py new file mode 100644 index 00000000..c7a0bc34 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/huggingface_hub/__init__.py @@ -0,0 +1,1431 @@ +# Copyright 2020 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +# *********** +# `huggingface_hub` init has 2 modes: +# - Normal usage: +# If imported to use it, all modules and functions are lazy-loaded. This means +# they exist at top level in module but are imported only the first time they are +# used. This way, `from huggingface_hub import something` will import `something` +# quickly without the hassle of importing all the features from `huggingface_hub`. +# - Static check: +# If statically analyzed, all modules and functions are loaded normally. This way +# static typing check works properly as well as autocomplete in text editors and +# IDEs. +# +# The static model imports are done inside the `if TYPE_CHECKING:` statement at +# the bottom of this file. Since module/functions imports are duplicated, it is +# mandatory to make sure to add them twice when adding one. This is checked in the +# `make quality` command. +# +# To update the static imports, please run the following command and commit the changes. +# ``` +# # Use script +# python utils/check_static_imports.py --update-file +# +# # Or run style on codebase +# make style +# ``` +# +# *********** +# Lazy loader vendored from https://github.com/scientific-python/lazy_loader +import importlib +import os +import sys +from typing import TYPE_CHECKING + + +__version__ = "0.29.3" + +# Alphabetical order of definitions is ensured in tests +# WARNING: any comment added in this dictionary definition will be lost when +# re-generating the file ! +_SUBMOD_ATTRS = { + "_commit_scheduler": [ + "CommitScheduler", + ], + "_inference_endpoints": [ + "InferenceEndpoint", + "InferenceEndpointError", + "InferenceEndpointStatus", + "InferenceEndpointTimeoutError", + "InferenceEndpointType", + ], + "_login": [ + "auth_list", + "auth_switch", + "interpreter_login", + "login", + "logout", + "notebook_login", + ], + "_snapshot_download": [ + "snapshot_download", + ], + "_space_api": [ + "SpaceHardware", + "SpaceRuntime", + "SpaceStage", + "SpaceStorage", + "SpaceVariable", + ], + "_tensorboard_logger": [ + "HFSummaryWriter", + ], + "_webhooks_payload": [ + "WebhookPayload", + "WebhookPayloadComment", + "WebhookPayloadDiscussion", + "WebhookPayloadDiscussionChanges", + "WebhookPayloadEvent", + "WebhookPayloadMovedTo", + "WebhookPayloadRepo", + "WebhookPayloadUrl", + "WebhookPayloadWebhook", + ], + "_webhooks_server": [ + "WebhooksServer", + "webhook_endpoint", + ], + "community": [ + "Discussion", + "DiscussionComment", + "DiscussionCommit", + "DiscussionEvent", + "DiscussionStatusChange", + "DiscussionTitleChange", + "DiscussionWithDetails", + ], + "constants": [ + "CONFIG_NAME", + "FLAX_WEIGHTS_NAME", + "HUGGINGFACE_CO_URL_HOME", + "HUGGINGFACE_CO_URL_TEMPLATE", + "PYTORCH_WEIGHTS_NAME", + "REPO_TYPE_DATASET", + "REPO_TYPE_MODEL", + "REPO_TYPE_SPACE", + "TF2_WEIGHTS_NAME", + "TF_WEIGHTS_NAME", + ], + "fastai_utils": [ + "_save_pretrained_fastai", + "from_pretrained_fastai", + "push_to_hub_fastai", + ], + "file_download": [ + "HfFileMetadata", + "_CACHED_NO_EXIST", + "get_hf_file_metadata", + "hf_hub_download", + "hf_hub_url", + "try_to_load_from_cache", + ], + "hf_api": [ + "Collection", + "CollectionItem", + "CommitInfo", + "CommitOperation", + "CommitOperationAdd", + "CommitOperationCopy", + "CommitOperationDelete", + "DatasetInfo", + "GitCommitInfo", + "GitRefInfo", + "GitRefs", + "HfApi", + "ModelInfo", + "RepoUrl", + "SpaceInfo", + "User", + "UserLikes", + "WebhookInfo", + "WebhookWatchedItem", + "accept_access_request", + "add_collection_item", + "add_space_secret", + "add_space_variable", + "auth_check", + "cancel_access_request", + "change_discussion_status", + "comment_discussion", + "create_branch", + "create_collection", + "create_commit", + "create_discussion", + "create_inference_endpoint", + "create_pull_request", + "create_repo", + "create_tag", + "create_webhook", + "dataset_info", + "delete_branch", + "delete_collection", + "delete_collection_item", + "delete_file", + "delete_folder", + "delete_inference_endpoint", + "delete_repo", + "delete_space_secret", + "delete_space_storage", + "delete_space_variable", + "delete_tag", + "delete_webhook", + "disable_webhook", + "duplicate_space", + "edit_discussion_comment", + "enable_webhook", + "file_exists", + "get_collection", + "get_dataset_tags", + "get_discussion_details", + "get_full_repo_name", + "get_inference_endpoint", + "get_model_tags", + "get_paths_info", + "get_repo_discussions", + "get_safetensors_metadata", + "get_space_runtime", + "get_space_variables", + "get_token_permission", + "get_user_overview", + "get_webhook", + "grant_access", + "list_accepted_access_requests", + "list_collections", + "list_datasets", + "list_inference_endpoints", + "list_liked_repos", + "list_models", + "list_organization_members", + "list_papers", + "list_pending_access_requests", + "list_rejected_access_requests", + "list_repo_commits", + "list_repo_files", + "list_repo_likers", + "list_repo_refs", + "list_repo_tree", + "list_spaces", + "list_user_followers", + "list_user_following", + "list_webhooks", + "merge_pull_request", + "model_info", + "move_repo", + "paper_info", + "parse_safetensors_file_metadata", + "pause_inference_endpoint", + "pause_space", + "preupload_lfs_files", + "reject_access_request", + "rename_discussion", + "repo_exists", + "repo_info", + "repo_type_and_id_from_hf_id", + "request_space_hardware", + "request_space_storage", + "restart_space", + "resume_inference_endpoint", + "revision_exists", + "run_as_future", + "scale_to_zero_inference_endpoint", + "set_space_sleep_time", + "space_info", + "super_squash_history", + "unlike", + "update_collection_item", + "update_collection_metadata", + "update_inference_endpoint", + "update_repo_settings", + "update_repo_visibility", + "update_webhook", + "upload_file", + "upload_folder", + "upload_large_folder", + "whoami", + ], + "hf_file_system": [ + "HfFileSystem", + "HfFileSystemFile", + "HfFileSystemResolvedPath", + "HfFileSystemStreamFile", + ], + "hub_mixin": [ + "ModelHubMixin", + "PyTorchModelHubMixin", + ], + "inference._client": [ + "InferenceClient", + "InferenceTimeoutError", + ], + "inference._generated._async_client": [ + "AsyncInferenceClient", + ], + "inference._generated.types": [ + "AudioClassificationInput", + "AudioClassificationOutputElement", + "AudioClassificationOutputTransform", + "AudioClassificationParameters", + "AudioToAudioInput", + "AudioToAudioOutputElement", + "AutomaticSpeechRecognitionEarlyStoppingEnum", + "AutomaticSpeechRecognitionGenerationParameters", + "AutomaticSpeechRecognitionInput", + "AutomaticSpeechRecognitionOutput", + "AutomaticSpeechRecognitionOutputChunk", + "AutomaticSpeechRecognitionParameters", + "ChatCompletionInput", + "ChatCompletionInputFunctionDefinition", + "ChatCompletionInputFunctionName", + "ChatCompletionInputGrammarType", + "ChatCompletionInputGrammarTypeType", + "ChatCompletionInputMessage", + "ChatCompletionInputMessageChunk", + "ChatCompletionInputMessageChunkType", + "ChatCompletionInputStreamOptions", + "ChatCompletionInputTool", + "ChatCompletionInputToolChoiceClass", + "ChatCompletionInputToolChoiceEnum", + "ChatCompletionInputURL", + "ChatCompletionOutput", + "ChatCompletionOutputComplete", + "ChatCompletionOutputFunctionDefinition", + "ChatCompletionOutputLogprob", + "ChatCompletionOutputLogprobs", + "ChatCompletionOutputMessage", + "ChatCompletionOutputToolCall", + "ChatCompletionOutputTopLogprob", + "ChatCompletionOutputUsage", + "ChatCompletionStreamOutput", + "ChatCompletionStreamOutputChoice", + "ChatCompletionStreamOutputDelta", + "ChatCompletionStreamOutputDeltaToolCall", + "ChatCompletionStreamOutputFunction", + "ChatCompletionStreamOutputLogprob", + "ChatCompletionStreamOutputLogprobs", + "ChatCompletionStreamOutputTopLogprob", + "ChatCompletionStreamOutputUsage", + "DepthEstimationInput", + "DepthEstimationOutput", + "DocumentQuestionAnsweringInput", + "DocumentQuestionAnsweringInputData", + "DocumentQuestionAnsweringOutputElement", + "DocumentQuestionAnsweringParameters", + "FeatureExtractionInput", + "FeatureExtractionInputTruncationDirection", + "FillMaskInput", + "FillMaskOutputElement", + "FillMaskParameters", + "ImageClassificationInput", + "ImageClassificationOutputElement", + "ImageClassificationOutputTransform", + "ImageClassificationParameters", + "ImageSegmentationInput", + "ImageSegmentationOutputElement", + "ImageSegmentationParameters", + "ImageSegmentationSubtask", + "ImageToImageInput", + "ImageToImageOutput", + "ImageToImageParameters", + "ImageToImageTargetSize", + "ImageToTextEarlyStoppingEnum", + "ImageToTextGenerationParameters", + "ImageToTextInput", + "ImageToTextOutput", + "ImageToTextParameters", + "ObjectDetectionBoundingBox", + "ObjectDetectionInput", + "ObjectDetectionOutputElement", + "ObjectDetectionParameters", + "Padding", + "QuestionAnsweringInput", + "QuestionAnsweringInputData", + "QuestionAnsweringOutputElement", + "QuestionAnsweringParameters", + "SentenceSimilarityInput", + "SentenceSimilarityInputData", + "SummarizationInput", + "SummarizationOutput", + "SummarizationParameters", + "SummarizationTruncationStrategy", + "TableQuestionAnsweringInput", + "TableQuestionAnsweringInputData", + "TableQuestionAnsweringOutputElement", + "TableQuestionAnsweringParameters", + "Text2TextGenerationInput", + "Text2TextGenerationOutput", + "Text2TextGenerationParameters", + "Text2TextGenerationTruncationStrategy", + "TextClassificationInput", + "TextClassificationOutputElement", + "TextClassificationOutputTransform", + "TextClassificationParameters", + "TextGenerationInput", + "TextGenerationInputGenerateParameters", + "TextGenerationInputGrammarType", + "TextGenerationOutput", + "TextGenerationOutputBestOfSequence", + "TextGenerationOutputDetails", + "TextGenerationOutputFinishReason", + "TextGenerationOutputPrefillToken", + "TextGenerationOutputToken", + "TextGenerationStreamOutput", + "TextGenerationStreamOutputStreamDetails", + "TextGenerationStreamOutputToken", + "TextToAudioEarlyStoppingEnum", + "TextToAudioGenerationParameters", + "TextToAudioInput", + "TextToAudioOutput", + "TextToAudioParameters", + "TextToImageInput", + "TextToImageOutput", + "TextToImageParameters", + "TextToSpeechEarlyStoppingEnum", + "TextToSpeechGenerationParameters", + "TextToSpeechInput", + "TextToSpeechOutput", + "TextToSpeechParameters", + "TextToVideoInput", + "TextToVideoOutput", + "TextToVideoParameters", + "TokenClassificationAggregationStrategy", + "TokenClassificationInput", + "TokenClassificationOutputElement", + "TokenClassificationParameters", + "TranslationInput", + "TranslationOutput", + "TranslationParameters", + "TranslationTruncationStrategy", + "TypeEnum", + "VideoClassificationInput", + "VideoClassificationOutputElement", + "VideoClassificationOutputTransform", + "VideoClassificationParameters", + "VisualQuestionAnsweringInput", + "VisualQuestionAnsweringInputData", + "VisualQuestionAnsweringOutputElement", + "VisualQuestionAnsweringParameters", + "ZeroShotClassificationInput", + "ZeroShotClassificationOutputElement", + "ZeroShotClassificationParameters", + "ZeroShotImageClassificationInput", + "ZeroShotImageClassificationOutputElement", + "ZeroShotImageClassificationParameters", + "ZeroShotObjectDetectionBoundingBox", + "ZeroShotObjectDetectionInput", + "ZeroShotObjectDetectionOutputElement", + "ZeroShotObjectDetectionParameters", + ], + "inference_api": [ + "InferenceApi", + ], + "keras_mixin": [ + "KerasModelHubMixin", + "from_pretrained_keras", + "push_to_hub_keras", + "save_pretrained_keras", + ], + "repocard": [ + "DatasetCard", + "ModelCard", + "RepoCard", + "SpaceCard", + "metadata_eval_result", + "metadata_load", + "metadata_save", + "metadata_update", + ], + "repocard_data": [ + "CardData", + "DatasetCardData", + "EvalResult", + "ModelCardData", + "SpaceCardData", + ], + "repository": [ + "Repository", + ], + "serialization": [ + "StateDictSplit", + "get_tf_storage_size", + "get_torch_storage_id", + "get_torch_storage_size", + "load_state_dict_from_file", + "load_torch_model", + "save_torch_model", + "save_torch_state_dict", + "split_state_dict_into_shards_factory", + "split_tf_state_dict_into_shards", + "split_torch_state_dict_into_shards", + ], + "serialization._dduf": [ + "DDUFEntry", + "export_entries_as_dduf", + "export_folder_as_dduf", + "read_dduf_file", + ], + "utils": [ + "CacheNotFound", + "CachedFileInfo", + "CachedRepoInfo", + "CachedRevisionInfo", + "CorruptedCacheException", + "DeleteCacheStrategy", + "HFCacheInfo", + "HfFolder", + "cached_assets_path", + "configure_http_backend", + "dump_environment_info", + "get_session", + "get_token", + "logging", + "scan_cache_dir", + ], +} + +# WARNING: __all__ is generated automatically, Any manual edit will be lost when re-generating this file ! +# +# To update the static imports, please run the following command and commit the changes. +# ``` +# # Use script +# python utils/check_all_variable.py --update +# +# # Or run style on codebase +# make style +# ``` + +__all__ = [ + "AsyncInferenceClient", + "AudioClassificationInput", + "AudioClassificationOutputElement", + "AudioClassificationOutputTransform", + "AudioClassificationParameters", + "AudioToAudioInput", + "AudioToAudioOutputElement", + "AutomaticSpeechRecognitionEarlyStoppingEnum", + "AutomaticSpeechRecognitionGenerationParameters", + "AutomaticSpeechRecognitionInput", + "AutomaticSpeechRecognitionOutput", + "AutomaticSpeechRecognitionOutputChunk", + "AutomaticSpeechRecognitionParameters", + "CONFIG_NAME", + "CacheNotFound", + "CachedFileInfo", + "CachedRepoInfo", + "CachedRevisionInfo", + "CardData", + "ChatCompletionInput", + "ChatCompletionInputFunctionDefinition", + "ChatCompletionInputFunctionName", + "ChatCompletionInputGrammarType", + "ChatCompletionInputGrammarTypeType", + "ChatCompletionInputMessage", + "ChatCompletionInputMessageChunk", + "ChatCompletionInputMessageChunkType", + "ChatCompletionInputStreamOptions", + "ChatCompletionInputTool", + "ChatCompletionInputToolChoiceClass", + "ChatCompletionInputToolChoiceEnum", + "ChatCompletionInputURL", + "ChatCompletionOutput", + "ChatCompletionOutputComplete", + "ChatCompletionOutputFunctionDefinition", + "ChatCompletionOutputLogprob", + "ChatCompletionOutputLogprobs", + "ChatCompletionOutputMessage", + "ChatCompletionOutputToolCall", + "ChatCompletionOutputTopLogprob", + "ChatCompletionOutputUsage", + "ChatCompletionStreamOutput", + "ChatCompletionStreamOutputChoice", + "ChatCompletionStreamOutputDelta", + "ChatCompletionStreamOutputDeltaToolCall", + "ChatCompletionStreamOutputFunction", + "ChatCompletionStreamOutputLogprob", + "ChatCompletionStreamOutputLogprobs", + "ChatCompletionStreamOutputTopLogprob", + "ChatCompletionStreamOutputUsage", + "Collection", + "CollectionItem", + "CommitInfo", + "CommitOperation", + "CommitOperationAdd", + "CommitOperationCopy", + "CommitOperationDelete", + "CommitScheduler", + "CorruptedCacheException", + "DDUFEntry", + "DatasetCard", + "DatasetCardData", + "DatasetInfo", + "DeleteCacheStrategy", + "DepthEstimationInput", + "DepthEstimationOutput", + "Discussion", + "DiscussionComment", + "DiscussionCommit", + "DiscussionEvent", + "DiscussionStatusChange", + "DiscussionTitleChange", + "DiscussionWithDetails", + "DocumentQuestionAnsweringInput", + "DocumentQuestionAnsweringInputData", + "DocumentQuestionAnsweringOutputElement", + "DocumentQuestionAnsweringParameters", + "EvalResult", + "FLAX_WEIGHTS_NAME", + "FeatureExtractionInput", + "FeatureExtractionInputTruncationDirection", + "FillMaskInput", + "FillMaskOutputElement", + "FillMaskParameters", + "GitCommitInfo", + "GitRefInfo", + "GitRefs", + "HFCacheInfo", + "HFSummaryWriter", + "HUGGINGFACE_CO_URL_HOME", + "HUGGINGFACE_CO_URL_TEMPLATE", + "HfApi", + "HfFileMetadata", + "HfFileSystem", + "HfFileSystemFile", + "HfFileSystemResolvedPath", + "HfFileSystemStreamFile", + "HfFolder", + "ImageClassificationInput", + "ImageClassificationOutputElement", + "ImageClassificationOutputTransform", + "ImageClassificationParameters", + "ImageSegmentationInput", + "ImageSegmentationOutputElement", + "ImageSegmentationParameters", + "ImageSegmentationSubtask", + "ImageToImageInput", + "ImageToImageOutput", + "ImageToImageParameters", + "ImageToImageTargetSize", + "ImageToTextEarlyStoppingEnum", + "ImageToTextGenerationParameters", + "ImageToTextInput", + "ImageToTextOutput", + "ImageToTextParameters", + "InferenceApi", + "InferenceClient", + "InferenceEndpoint", + "InferenceEndpointError", + "InferenceEndpointStatus", + "InferenceEndpointTimeoutError", + "InferenceEndpointType", + "InferenceTimeoutError", + "KerasModelHubMixin", + "ModelCard", + "ModelCardData", + "ModelHubMixin", + "ModelInfo", + "ObjectDetectionBoundingBox", + "ObjectDetectionInput", + "ObjectDetectionOutputElement", + "ObjectDetectionParameters", + "PYTORCH_WEIGHTS_NAME", + "Padding", + "PyTorchModelHubMixin", + "QuestionAnsweringInput", + "QuestionAnsweringInputData", + "QuestionAnsweringOutputElement", + "QuestionAnsweringParameters", + "REPO_TYPE_DATASET", + "REPO_TYPE_MODEL", + "REPO_TYPE_SPACE", + "RepoCard", + "RepoUrl", + "Repository", + "SentenceSimilarityInput", + "SentenceSimilarityInputData", + "SpaceCard", + "SpaceCardData", + "SpaceHardware", + "SpaceInfo", + "SpaceRuntime", + "SpaceStage", + "SpaceStorage", + "SpaceVariable", + "StateDictSplit", + "SummarizationInput", + "SummarizationOutput", + "SummarizationParameters", + "SummarizationTruncationStrategy", + "TF2_WEIGHTS_NAME", + "TF_WEIGHTS_NAME", + "TableQuestionAnsweringInput", + "TableQuestionAnsweringInputData", + "TableQuestionAnsweringOutputElement", + "TableQuestionAnsweringParameters", + "Text2TextGenerationInput", + "Text2TextGenerationOutput", + "Text2TextGenerationParameters", + "Text2TextGenerationTruncationStrategy", + "TextClassificationInput", + "TextClassificationOutputElement", + "TextClassificationOutputTransform", + "TextClassificationParameters", + "TextGenerationInput", + "TextGenerationInputGenerateParameters", + "TextGenerationInputGrammarType", + "TextGenerationOutput", + "TextGenerationOutputBestOfSequence", + "TextGenerationOutputDetails", + "TextGenerationOutputFinishReason", + "TextGenerationOutputPrefillToken", + "TextGenerationOutputToken", + "TextGenerationStreamOutput", + "TextGenerationStreamOutputStreamDetails", + "TextGenerationStreamOutputToken", + "TextToAudioEarlyStoppingEnum", + "TextToAudioGenerationParameters", + "TextToAudioInput", + "TextToAudioOutput", + "TextToAudioParameters", + "TextToImageInput", + "TextToImageOutput", + "TextToImageParameters", + "TextToSpeechEarlyStoppingEnum", + "TextToSpeechGenerationParameters", + "TextToSpeechInput", + "TextToSpeechOutput", + "TextToSpeechParameters", + "TextToVideoInput", + "TextToVideoOutput", + "TextToVideoParameters", + "TokenClassificationAggregationStrategy", + "TokenClassificationInput", + "TokenClassificationOutputElement", + "TokenClassificationParameters", + "TranslationInput", + "TranslationOutput", + "TranslationParameters", + "TranslationTruncationStrategy", + "TypeEnum", + "User", + "UserLikes", + "VideoClassificationInput", + "VideoClassificationOutputElement", + "VideoClassificationOutputTransform", + "VideoClassificationParameters", + "VisualQuestionAnsweringInput", + "VisualQuestionAnsweringInputData", + "VisualQuestionAnsweringOutputElement", + "VisualQuestionAnsweringParameters", + "WebhookInfo", + "WebhookPayload", + "WebhookPayloadComment", + "WebhookPayloadDiscussion", + "WebhookPayloadDiscussionChanges", + "WebhookPayloadEvent", + "WebhookPayloadMovedTo", + "WebhookPayloadRepo", + "WebhookPayloadUrl", + "WebhookPayloadWebhook", + "WebhookWatchedItem", + "WebhooksServer", + "ZeroShotClassificationInput", + "ZeroShotClassificationOutputElement", + "ZeroShotClassificationParameters", + "ZeroShotImageClassificationInput", + "ZeroShotImageClassificationOutputElement", + "ZeroShotImageClassificationParameters", + "ZeroShotObjectDetectionBoundingBox", + "ZeroShotObjectDetectionInput", + "ZeroShotObjectDetectionOutputElement", + "ZeroShotObjectDetectionParameters", + "_CACHED_NO_EXIST", + "_save_pretrained_fastai", + "accept_access_request", + "add_collection_item", + "add_space_secret", + "add_space_variable", + "auth_check", + "auth_list", + "auth_switch", + "cached_assets_path", + "cancel_access_request", + "change_discussion_status", + "comment_discussion", + "configure_http_backend", + "create_branch", + "create_collection", + "create_commit", + "create_discussion", + "create_inference_endpoint", + "create_pull_request", + "create_repo", + "create_tag", + "create_webhook", + "dataset_info", + "delete_branch", + "delete_collection", + "delete_collection_item", + "delete_file", + "delete_folder", + "delete_inference_endpoint", + "delete_repo", + "delete_space_secret", + "delete_space_storage", + "delete_space_variable", + "delete_tag", + "delete_webhook", + "disable_webhook", + "dump_environment_info", + "duplicate_space", + "edit_discussion_comment", + "enable_webhook", + "export_entries_as_dduf", + "export_folder_as_dduf", + "file_exists", + "from_pretrained_fastai", + "from_pretrained_keras", + "get_collection", + "get_dataset_tags", + "get_discussion_details", + "get_full_repo_name", + "get_hf_file_metadata", + "get_inference_endpoint", + "get_model_tags", + "get_paths_info", + "get_repo_discussions", + "get_safetensors_metadata", + "get_session", + "get_space_runtime", + "get_space_variables", + "get_tf_storage_size", + "get_token", + "get_token_permission", + "get_torch_storage_id", + "get_torch_storage_size", + "get_user_overview", + "get_webhook", + "grant_access", + "hf_hub_download", + "hf_hub_url", + "interpreter_login", + "list_accepted_access_requests", + "list_collections", + "list_datasets", + "list_inference_endpoints", + "list_liked_repos", + "list_models", + "list_organization_members", + "list_papers", + "list_pending_access_requests", + "list_rejected_access_requests", + "list_repo_commits", + "list_repo_files", + "list_repo_likers", + "list_repo_refs", + "list_repo_tree", + "list_spaces", + "list_user_followers", + "list_user_following", + "list_webhooks", + "load_state_dict_from_file", + "load_torch_model", + "logging", + "login", + "logout", + "merge_pull_request", + "metadata_eval_result", + "metadata_load", + "metadata_save", + "metadata_update", + "model_info", + "move_repo", + "notebook_login", + "paper_info", + "parse_safetensors_file_metadata", + "pause_inference_endpoint", + "pause_space", + "preupload_lfs_files", + "push_to_hub_fastai", + "push_to_hub_keras", + "read_dduf_file", + "reject_access_request", + "rename_discussion", + "repo_exists", + "repo_info", + "repo_type_and_id_from_hf_id", + "request_space_hardware", + "request_space_storage", + "restart_space", + "resume_inference_endpoint", + "revision_exists", + "run_as_future", + "save_pretrained_keras", + "save_torch_model", + "save_torch_state_dict", + "scale_to_zero_inference_endpoint", + "scan_cache_dir", + "set_space_sleep_time", + "snapshot_download", + "space_info", + "split_state_dict_into_shards_factory", + "split_tf_state_dict_into_shards", + "split_torch_state_dict_into_shards", + "super_squash_history", + "try_to_load_from_cache", + "unlike", + "update_collection_item", + "update_collection_metadata", + "update_inference_endpoint", + "update_repo_settings", + "update_repo_visibility", + "update_webhook", + "upload_file", + "upload_folder", + "upload_large_folder", + "webhook_endpoint", + "whoami", +] + + +def _attach(package_name, submodules=None, submod_attrs=None): + """Attach lazily loaded submodules, functions, or other attributes. + + Typically, modules import submodules and attributes as follows: + + ```py + import mysubmodule + import anothersubmodule + + from .foo import someattr + ``` + + The idea is to replace a package's `__getattr__`, `__dir__`, such that all imports + work exactly the way they would with normal imports, except that the import occurs + upon first use. + + The typical way to call this function, replacing the above imports, is: + + ```python + __getattr__, __dir__ = lazy.attach( + __name__, + ['mysubmodule', 'anothersubmodule'], + {'foo': ['someattr']} + ) + ``` + This functionality requires Python 3.7 or higher. + + Args: + package_name (`str`): + Typically use `__name__`. + submodules (`set`): + List of submodules to attach. + submod_attrs (`dict`): + Dictionary of submodule -> list of attributes / functions. + These attributes are imported as they are used. + + Returns: + __getattr__, __dir__, __all__ + + """ + if submod_attrs is None: + submod_attrs = {} + + if submodules is None: + submodules = set() + else: + submodules = set(submodules) + + attr_to_modules = {attr: mod for mod, attrs in submod_attrs.items() for attr in attrs} + + def __getattr__(name): + if name in submodules: + try: + return importlib.import_module(f"{package_name}.{name}") + except Exception as e: + print(f"Error importing {package_name}.{name}: {e}") + raise + elif name in attr_to_modules: + submod_path = f"{package_name}.{attr_to_modules[name]}" + try: + submod = importlib.import_module(submod_path) + except Exception as e: + print(f"Error importing {submod_path}: {e}") + raise + attr = getattr(submod, name) + + # If the attribute lives in a file (module) with the same + # name as the attribute, ensure that the attribute and *not* + # the module is accessible on the package. + if name == attr_to_modules[name]: + pkg = sys.modules[package_name] + pkg.__dict__[name] = attr + + return attr + else: + raise AttributeError(f"No {package_name} attribute {name}") + + def __dir__(): + return __all__ + + return __getattr__, __dir__ + + +__getattr__, __dir__ = _attach(__name__, submodules=[], submod_attrs=_SUBMOD_ATTRS) + +if os.environ.get("EAGER_IMPORT", ""): + for attr in __all__: + __getattr__(attr) + +# WARNING: any content below this statement is generated automatically. Any manual edit +# will be lost when re-generating this file ! +# +# To update the static imports, please run the following command and commit the changes. +# ``` +# # Use script +# python utils/check_static_imports.py --update +# +# # Or run style on codebase +# make style +# ``` +if TYPE_CHECKING: # pragma: no cover + from ._commit_scheduler import CommitScheduler # noqa: F401 + from ._inference_endpoints import ( + InferenceEndpoint, # noqa: F401 + InferenceEndpointError, # noqa: F401 + InferenceEndpointStatus, # noqa: F401 + InferenceEndpointTimeoutError, # noqa: F401 + InferenceEndpointType, # noqa: F401 + ) + from ._login import ( + auth_list, # noqa: F401 + auth_switch, # noqa: F401 + interpreter_login, # noqa: F401 + login, # noqa: F401 + logout, # noqa: F401 + notebook_login, # noqa: F401 + ) + from ._snapshot_download import snapshot_download # noqa: F401 + from ._space_api import ( + SpaceHardware, # noqa: F401 + SpaceRuntime, # noqa: F401 + SpaceStage, # noqa: F401 + SpaceStorage, # noqa: F401 + SpaceVariable, # noqa: F401 + ) + from ._tensorboard_logger import HFSummaryWriter # noqa: F401 + from ._webhooks_payload import ( + WebhookPayload, # noqa: F401 + WebhookPayloadComment, # noqa: F401 + WebhookPayloadDiscussion, # noqa: F401 + WebhookPayloadDiscussionChanges, # noqa: F401 + WebhookPayloadEvent, # noqa: F401 + WebhookPayloadMovedTo, # noqa: F401 + WebhookPayloadRepo, # noqa: F401 + WebhookPayloadUrl, # noqa: F401 + WebhookPayloadWebhook, # noqa: F401 + ) + from ._webhooks_server import ( + WebhooksServer, # noqa: F401 + webhook_endpoint, # noqa: F401 + ) + from .community import ( + Discussion, # noqa: F401 + DiscussionComment, # noqa: F401 + DiscussionCommit, # noqa: F401 + DiscussionEvent, # noqa: F401 + DiscussionStatusChange, # noqa: F401 + DiscussionTitleChange, # noqa: F401 + DiscussionWithDetails, # noqa: F401 + ) + from .constants import ( + CONFIG_NAME, # noqa: F401 + FLAX_WEIGHTS_NAME, # noqa: F401 + HUGGINGFACE_CO_URL_HOME, # noqa: F401 + HUGGINGFACE_CO_URL_TEMPLATE, # noqa: F401 + PYTORCH_WEIGHTS_NAME, # noqa: F401 + REPO_TYPE_DATASET, # noqa: F401 + REPO_TYPE_MODEL, # noqa: F401 + REPO_TYPE_SPACE, # noqa: F401 + TF2_WEIGHTS_NAME, # noqa: F401 + TF_WEIGHTS_NAME, # noqa: F401 + ) + from .fastai_utils import ( + _save_pretrained_fastai, # noqa: F401 + from_pretrained_fastai, # noqa: F401 + push_to_hub_fastai, # noqa: F401 + ) + from .file_download import ( + _CACHED_NO_EXIST, # noqa: F401 + HfFileMetadata, # noqa: F401 + get_hf_file_metadata, # noqa: F401 + hf_hub_download, # noqa: F401 + hf_hub_url, # noqa: F401 + try_to_load_from_cache, # noqa: F401 + ) + from .hf_api import ( + Collection, # noqa: F401 + CollectionItem, # noqa: F401 + CommitInfo, # noqa: F401 + CommitOperation, # noqa: F401 + CommitOperationAdd, # noqa: F401 + CommitOperationCopy, # noqa: F401 + CommitOperationDelete, # noqa: F401 + DatasetInfo, # noqa: F401 + GitCommitInfo, # noqa: F401 + GitRefInfo, # noqa: F401 + GitRefs, # noqa: F401 + HfApi, # noqa: F401 + ModelInfo, # noqa: F401 + RepoUrl, # noqa: F401 + SpaceInfo, # noqa: F401 + User, # noqa: F401 + UserLikes, # noqa: F401 + WebhookInfo, # noqa: F401 + WebhookWatchedItem, # noqa: F401 + accept_access_request, # noqa: F401 + add_collection_item, # noqa: F401 + add_space_secret, # noqa: F401 + add_space_variable, # noqa: F401 + auth_check, # noqa: F401 + cancel_access_request, # noqa: F401 + change_discussion_status, # noqa: F401 + comment_discussion, # noqa: F401 + create_branch, # noqa: F401 + create_collection, # noqa: F401 + create_commit, # noqa: F401 + create_discussion, # noqa: F401 + create_inference_endpoint, # noqa: F401 + create_pull_request, # noqa: F401 + create_repo, # noqa: F401 + create_tag, # noqa: F401 + create_webhook, # noqa: F401 + dataset_info, # noqa: F401 + delete_branch, # noqa: F401 + delete_collection, # noqa: F401 + delete_collection_item, # noqa: F401 + delete_file, # noqa: F401 + delete_folder, # noqa: F401 + delete_inference_endpoint, # noqa: F401 + delete_repo, # noqa: F401 + delete_space_secret, # noqa: F401 + delete_space_storage, # noqa: F401 + delete_space_variable, # noqa: F401 + delete_tag, # noqa: F401 + delete_webhook, # noqa: F401 + disable_webhook, # noqa: F401 + duplicate_space, # noqa: F401 + edit_discussion_comment, # noqa: F401 + enable_webhook, # noqa: F401 + file_exists, # noqa: F401 + get_collection, # noqa: F401 + get_dataset_tags, # noqa: F401 + get_discussion_details, # noqa: F401 + get_full_repo_name, # noqa: F401 + get_inference_endpoint, # noqa: F401 + get_model_tags, # noqa: F401 + get_paths_info, # noqa: F401 + get_repo_discussions, # noqa: F401 + get_safetensors_metadata, # noqa: F401 + get_space_runtime, # noqa: F401 + get_space_variables, # noqa: F401 + get_token_permission, # noqa: F401 + get_user_overview, # noqa: F401 + get_webhook, # noqa: F401 + grant_access, # noqa: F401 + list_accepted_access_requests, # noqa: F401 + list_collections, # noqa: F401 + list_datasets, # noqa: F401 + list_inference_endpoints, # noqa: F401 + list_liked_repos, # noqa: F401 + list_models, # noqa: F401 + list_organization_members, # noqa: F401 + list_papers, # noqa: F401 + list_pending_access_requests, # noqa: F401 + list_rejected_access_requests, # noqa: F401 + list_repo_commits, # noqa: F401 + list_repo_files, # noqa: F401 + list_repo_likers, # noqa: F401 + list_repo_refs, # noqa: F401 + list_repo_tree, # noqa: F401 + list_spaces, # noqa: F401 + list_user_followers, # noqa: F401 + list_user_following, # noqa: F401 + list_webhooks, # noqa: F401 + merge_pull_request, # noqa: F401 + model_info, # noqa: F401 + move_repo, # noqa: F401 + paper_info, # noqa: F401 + parse_safetensors_file_metadata, # noqa: F401 + pause_inference_endpoint, # noqa: F401 + pause_space, # noqa: F401 + preupload_lfs_files, # noqa: F401 + reject_access_request, # noqa: F401 + rename_discussion, # noqa: F401 + repo_exists, # noqa: F401 + repo_info, # noqa: F401 + repo_type_and_id_from_hf_id, # noqa: F401 + request_space_hardware, # noqa: F401 + request_space_storage, # noqa: F401 + restart_space, # noqa: F401 + resume_inference_endpoint, # noqa: F401 + revision_exists, # noqa: F401 + run_as_future, # noqa: F401 + scale_to_zero_inference_endpoint, # noqa: F401 + set_space_sleep_time, # noqa: F401 + space_info, # noqa: F401 + super_squash_history, # noqa: F401 + unlike, # noqa: F401 + update_collection_item, # noqa: F401 + update_collection_metadata, # noqa: F401 + update_inference_endpoint, # noqa: F401 + update_repo_settings, # noqa: F401 + update_repo_visibility, # noqa: F401 + update_webhook, # noqa: F401 + upload_file, # noqa: F401 + upload_folder, # noqa: F401 + upload_large_folder, # noqa: F401 + whoami, # noqa: F401 + ) + from .hf_file_system import ( + HfFileSystem, # noqa: F401 + HfFileSystemFile, # noqa: F401 + HfFileSystemResolvedPath, # noqa: F401 + HfFileSystemStreamFile, # noqa: F401 + ) + from .hub_mixin import ( + ModelHubMixin, # noqa: F401 + PyTorchModelHubMixin, # noqa: F401 + ) + from .inference._client import ( + InferenceClient, # noqa: F401 + InferenceTimeoutError, # noqa: F401 + ) + from .inference._generated._async_client import AsyncInferenceClient # noqa: F401 + from .inference._generated.types import ( + AudioClassificationInput, # noqa: F401 + AudioClassificationOutputElement, # noqa: F401 + AudioClassificationOutputTransform, # noqa: F401 + AudioClassificationParameters, # noqa: F401 + AudioToAudioInput, # noqa: F401 + AudioToAudioOutputElement, # noqa: F401 + AutomaticSpeechRecognitionEarlyStoppingEnum, # noqa: F401 + AutomaticSpeechRecognitionGenerationParameters, # noqa: F401 + AutomaticSpeechRecognitionInput, # noqa: F401 + AutomaticSpeechRecognitionOutput, # noqa: F401 + AutomaticSpeechRecognitionOutputChunk, # noqa: F401 + AutomaticSpeechRecognitionParameters, # noqa: F401 + ChatCompletionInput, # noqa: F401 + ChatCompletionInputFunctionDefinition, # noqa: F401 + ChatCompletionInputFunctionName, # noqa: F401 + ChatCompletionInputGrammarType, # noqa: F401 + ChatCompletionInputGrammarTypeType, # noqa: F401 + ChatCompletionInputMessage, # noqa: F401 + ChatCompletionInputMessageChunk, # noqa: F401 + ChatCompletionInputMessageChunkType, # noqa: F401 + ChatCompletionInputStreamOptions, # noqa: F401 + ChatCompletionInputTool, # noqa: F401 + ChatCompletionInputToolChoiceClass, # noqa: F401 + ChatCompletionInputToolChoiceEnum, # noqa: F401 + ChatCompletionInputURL, # noqa: F401 + ChatCompletionOutput, # noqa: F401 + ChatCompletionOutputComplete, # noqa: F401 + ChatCompletionOutputFunctionDefinition, # noqa: F401 + ChatCompletionOutputLogprob, # noqa: F401 + ChatCompletionOutputLogprobs, # noqa: F401 + ChatCompletionOutputMessage, # noqa: F401 + ChatCompletionOutputToolCall, # noqa: F401 + ChatCompletionOutputTopLogprob, # noqa: F401 + ChatCompletionOutputUsage, # noqa: F401 + ChatCompletionStreamOutput, # noqa: F401 + ChatCompletionStreamOutputChoice, # noqa: F401 + ChatCompletionStreamOutputDelta, # noqa: F401 + ChatCompletionStreamOutputDeltaToolCall, # noqa: F401 + ChatCompletionStreamOutputFunction, # noqa: F401 + ChatCompletionStreamOutputLogprob, # noqa: F401 + ChatCompletionStreamOutputLogprobs, # noqa: F401 + ChatCompletionStreamOutputTopLogprob, # noqa: F401 + ChatCompletionStreamOutputUsage, # noqa: F401 + DepthEstimationInput, # noqa: F401 + DepthEstimationOutput, # noqa: F401 + DocumentQuestionAnsweringInput, # noqa: F401 + DocumentQuestionAnsweringInputData, # noqa: F401 + DocumentQuestionAnsweringOutputElement, # noqa: F401 + DocumentQuestionAnsweringParameters, # noqa: F401 + FeatureExtractionInput, # noqa: F401 + FeatureExtractionInputTruncationDirection, # noqa: F401 + FillMaskInput, # noqa: F401 + FillMaskOutputElement, # noqa: F401 + FillMaskParameters, # noqa: F401 + ImageClassificationInput, # noqa: F401 + ImageClassificationOutputElement, # noqa: F401 + ImageClassificationOutputTransform, # noqa: F401 + ImageClassificationParameters, # noqa: F401 + ImageSegmentationInput, # noqa: F401 + ImageSegmentationOutputElement, # noqa: F401 + ImageSegmentationParameters, # noqa: F401 + ImageSegmentationSubtask, # noqa: F401 + ImageToImageInput, # noqa: F401 + ImageToImageOutput, # noqa: F401 + ImageToImageParameters, # noqa: F401 + ImageToImageTargetSize, # noqa: F401 + ImageToTextEarlyStoppingEnum, # noqa: F401 + ImageToTextGenerationParameters, # noqa: F401 + ImageToTextInput, # noqa: F401 + ImageToTextOutput, # noqa: F401 + ImageToTextParameters, # noqa: F401 + ObjectDetectionBoundingBox, # noqa: F401 + ObjectDetectionInput, # noqa: F401 + ObjectDetectionOutputElement, # noqa: F401 + ObjectDetectionParameters, # noqa: F401 + Padding, # noqa: F401 + QuestionAnsweringInput, # noqa: F401 + QuestionAnsweringInputData, # noqa: F401 + QuestionAnsweringOutputElement, # noqa: F401 + QuestionAnsweringParameters, # noqa: F401 + SentenceSimilarityInput, # noqa: F401 + SentenceSimilarityInputData, # noqa: F401 + SummarizationInput, # noqa: F401 + SummarizationOutput, # noqa: F401 + SummarizationParameters, # noqa: F401 + SummarizationTruncationStrategy, # noqa: F401 + TableQuestionAnsweringInput, # noqa: F401 + TableQuestionAnsweringInputData, # noqa: F401 + TableQuestionAnsweringOutputElement, # noqa: F401 + TableQuestionAnsweringParameters, # noqa: F401 + Text2TextGenerationInput, # noqa: F401 + Text2TextGenerationOutput, # noqa: F401 + Text2TextGenerationParameters, # noqa: F401 + Text2TextGenerationTruncationStrategy, # noqa: F401 + TextClassificationInput, # noqa: F401 + TextClassificationOutputElement, # noqa: F401 + TextClassificationOutputTransform, # noqa: F401 + TextClassificationParameters, # noqa: F401 + TextGenerationInput, # noqa: F401 + TextGenerationInputGenerateParameters, # noqa: F401 + TextGenerationInputGrammarType, # noqa: F401 + TextGenerationOutput, # noqa: F401 + TextGenerationOutputBestOfSequence, # noqa: F401 + TextGenerationOutputDetails, # noqa: F401 + TextGenerationOutputFinishReason, # noqa: F401 + TextGenerationOutputPrefillToken, # noqa: F401 + TextGenerationOutputToken, # noqa: F401 + TextGenerationStreamOutput, # noqa: F401 + TextGenerationStreamOutputStreamDetails, # noqa: F401 + TextGenerationStreamOutputToken, # noqa: F401 + TextToAudioEarlyStoppingEnum, # noqa: F401 + TextToAudioGenerationParameters, # noqa: F401 + TextToAudioInput, # noqa: F401 + TextToAudioOutput, # noqa: F401 + TextToAudioParameters, # noqa: F401 + TextToImageInput, # noqa: F401 + TextToImageOutput, # noqa: F401 + TextToImageParameters, # noqa: F401 + TextToSpeechEarlyStoppingEnum, # noqa: F401 + TextToSpeechGenerationParameters, # noqa: F401 + TextToSpeechInput, # noqa: F401 + TextToSpeechOutput, # noqa: F401 + TextToSpeechParameters, # noqa: F401 + TextToVideoInput, # noqa: F401 + TextToVideoOutput, # noqa: F401 + TextToVideoParameters, # noqa: F401 + TokenClassificationAggregationStrategy, # noqa: F401 + TokenClassificationInput, # noqa: F401 + TokenClassificationOutputElement, # noqa: F401 + TokenClassificationParameters, # noqa: F401 + TranslationInput, # noqa: F401 + TranslationOutput, # noqa: F401 + TranslationParameters, # noqa: F401 + TranslationTruncationStrategy, # noqa: F401 + TypeEnum, # noqa: F401 + VideoClassificationInput, # noqa: F401 + VideoClassificationOutputElement, # noqa: F401 + VideoClassificationOutputTransform, # noqa: F401 + VideoClassificationParameters, # noqa: F401 + VisualQuestionAnsweringInput, # noqa: F401 + VisualQuestionAnsweringInputData, # noqa: F401 + VisualQuestionAnsweringOutputElement, # noqa: F401 + VisualQuestionAnsweringParameters, # noqa: F401 + ZeroShotClassificationInput, # noqa: F401 + ZeroShotClassificationOutputElement, # noqa: F401 + ZeroShotClassificationParameters, # noqa: F401 + ZeroShotImageClassificationInput, # noqa: F401 + ZeroShotImageClassificationOutputElement, # noqa: F401 + ZeroShotImageClassificationParameters, # noqa: F401 + ZeroShotObjectDetectionBoundingBox, # noqa: F401 + ZeroShotObjectDetectionInput, # noqa: F401 + ZeroShotObjectDetectionOutputElement, # noqa: F401 + ZeroShotObjectDetectionParameters, # noqa: F401 + ) + from .inference_api import InferenceApi # noqa: F401 + from .keras_mixin import ( + KerasModelHubMixin, # noqa: F401 + from_pretrained_keras, # noqa: F401 + push_to_hub_keras, # noqa: F401 + save_pretrained_keras, # noqa: F401 + ) + from .repocard import ( + DatasetCard, # noqa: F401 + ModelCard, # noqa: F401 + RepoCard, # noqa: F401 + SpaceCard, # noqa: F401 + metadata_eval_result, # noqa: F401 + metadata_load, # noqa: F401 + metadata_save, # noqa: F401 + metadata_update, # noqa: F401 + ) + from .repocard_data import ( + CardData, # noqa: F401 + DatasetCardData, # noqa: F401 + EvalResult, # noqa: F401 + ModelCardData, # noqa: F401 + SpaceCardData, # noqa: F401 + ) + from .repository import Repository # noqa: F401 + from .serialization import ( + StateDictSplit, # noqa: F401 + get_tf_storage_size, # noqa: F401 + get_torch_storage_id, # noqa: F401 + get_torch_storage_size, # noqa: F401 + load_state_dict_from_file, # noqa: F401 + load_torch_model, # noqa: F401 + save_torch_model, # noqa: F401 + save_torch_state_dict, # noqa: F401 + split_state_dict_into_shards_factory, # noqa: F401 + split_tf_state_dict_into_shards, # noqa: F401 + split_torch_state_dict_into_shards, # noqa: F401 + ) + from .serialization._dduf import ( + DDUFEntry, # noqa: F401 + export_entries_as_dduf, # noqa: F401 + export_folder_as_dduf, # noqa: F401 + read_dduf_file, # noqa: F401 + ) + from .utils import ( + CachedFileInfo, # noqa: F401 + CachedRepoInfo, # noqa: F401 + CachedRevisionInfo, # noqa: F401 + CacheNotFound, # noqa: F401 + CorruptedCacheException, # noqa: F401 + DeleteCacheStrategy, # noqa: F401 + HFCacheInfo, # noqa: F401 + HfFolder, # noqa: F401 + cached_assets_path, # noqa: F401 + configure_http_backend, # noqa: F401 + dump_environment_info, # noqa: F401 + get_session, # noqa: F401 + get_token, # noqa: F401 + logging, # noqa: F401 + scan_cache_dir, # noqa: F401 + ) diff --git a/.venv/lib/python3.12/site-packages/huggingface_hub/_commit_api.py b/.venv/lib/python3.12/site-packages/huggingface_hub/_commit_api.py new file mode 100644 index 00000000..783a3d2e --- /dev/null +++ b/.venv/lib/python3.12/site-packages/huggingface_hub/_commit_api.py @@ -0,0 +1,758 @@ +""" +Type definitions and utilities for the `create_commit` API +""" + +import base64 +import io +import os +import warnings +from collections import defaultdict +from contextlib import contextmanager +from dataclasses import dataclass, field +from itertools import groupby +from pathlib import Path, PurePosixPath +from typing import TYPE_CHECKING, Any, BinaryIO, Dict, Iterable, Iterator, List, Literal, Optional, Tuple, Union + +from tqdm.contrib.concurrent import thread_map + +from . import constants +from .errors import EntryNotFoundError +from .file_download import hf_hub_url +from .lfs import UploadInfo, lfs_upload, post_lfs_batch_info +from .utils import ( + FORBIDDEN_FOLDERS, + chunk_iterable, + get_session, + hf_raise_for_status, + logging, + sha, + tqdm_stream_file, + validate_hf_hub_args, +) +from .utils import tqdm as hf_tqdm + + +if TYPE_CHECKING: + from .hf_api import RepoFile + + +logger = logging.get_logger(__name__) + + +UploadMode = Literal["lfs", "regular"] + +# Max is 1,000 per request on the Hub for HfApi.get_paths_info +# Otherwise we get: +# HfHubHTTPError: 413 Client Error: Payload Too Large for url: https://huggingface.co/api/datasets/xxx (Request ID: xxx)\n\ntoo many parameters +# See https://github.com/huggingface/huggingface_hub/issues/1503 +FETCH_LFS_BATCH_SIZE = 500 + + +@dataclass +class CommitOperationDelete: + """ + Data structure holding necessary info to delete a file or a folder from a repository + on the Hub. + + Args: + path_in_repo (`str`): + Relative filepath in the repo, for example: `"checkpoints/1fec34a/weights.bin"` + for a file or `"checkpoints/1fec34a/"` for a folder. + is_folder (`bool` or `Literal["auto"]`, *optional*) + Whether the Delete Operation applies to a folder or not. If "auto", the path + type (file or folder) is guessed automatically by looking if path ends with + a "/" (folder) or not (file). To explicitly set the path type, you can set + `is_folder=True` or `is_folder=False`. + """ + + path_in_repo: str + is_folder: Union[bool, Literal["auto"]] = "auto" + + def __post_init__(self): + self.path_in_repo = _validate_path_in_repo(self.path_in_repo) + + if self.is_folder == "auto": + self.is_folder = self.path_in_repo.endswith("/") + if not isinstance(self.is_folder, bool): + raise ValueError( + f"Wrong value for `is_folder`. Must be one of [`True`, `False`, `'auto'`]. Got '{self.is_folder}'." + ) + + +@dataclass +class CommitOperationCopy: + """ + Data structure holding necessary info to copy a file in a repository on the Hub. + + Limitations: + - Only LFS files can be copied. To copy a regular file, you need to download it locally and re-upload it + - Cross-repository copies are not supported. + + Note: you can combine a [`CommitOperationCopy`] and a [`CommitOperationDelete`] to rename an LFS file on the Hub. + + Args: + src_path_in_repo (`str`): + Relative filepath in the repo of the file to be copied, e.g. `"checkpoints/1fec34a/weights.bin"`. + path_in_repo (`str`): + Relative filepath in the repo where to copy the file, e.g. `"checkpoints/1fec34a/weights_copy.bin"`. + src_revision (`str`, *optional*): + The git revision of the file to be copied. Can be any valid git revision. + Default to the target commit revision. + """ + + src_path_in_repo: str + path_in_repo: str + src_revision: Optional[str] = None + # set to the OID of the file to be copied if it has already been uploaded + # useful to determine if a commit will be empty or not. + _src_oid: Optional[str] = None + # set to the OID of the file to copy to if it has already been uploaded + # useful to determine if a commit will be empty or not. + _dest_oid: Optional[str] = None + + def __post_init__(self): + self.src_path_in_repo = _validate_path_in_repo(self.src_path_in_repo) + self.path_in_repo = _validate_path_in_repo(self.path_in_repo) + + +@dataclass +class CommitOperationAdd: + """ + Data structure holding necessary info to upload a file to a repository on the Hub. + + Args: + path_in_repo (`str`): + Relative filepath in the repo, for example: `"checkpoints/1fec34a/weights.bin"` + path_or_fileobj (`str`, `Path`, `bytes`, or `BinaryIO`): + Either: + - a path to a local file (as `str` or `pathlib.Path`) to upload + - a buffer of bytes (`bytes`) holding the content of the file to upload + - a "file object" (subclass of `io.BufferedIOBase`), typically obtained + with `open(path, "rb")`. It must support `seek()` and `tell()` methods. + + Raises: + [`ValueError`](https://docs.python.org/3/library/exceptions.html#ValueError) + If `path_or_fileobj` is not one of `str`, `Path`, `bytes` or `io.BufferedIOBase`. + [`ValueError`](https://docs.python.org/3/library/exceptions.html#ValueError) + If `path_or_fileobj` is a `str` or `Path` but not a path to an existing file. + [`ValueError`](https://docs.python.org/3/library/exceptions.html#ValueError) + If `path_or_fileobj` is a `io.BufferedIOBase` but it doesn't support both + `seek()` and `tell()`. + """ + + path_in_repo: str + path_or_fileobj: Union[str, Path, bytes, BinaryIO] + upload_info: UploadInfo = field(init=False, repr=False) + + # Internal attributes + + # set to "lfs" or "regular" once known + _upload_mode: Optional[UploadMode] = field(init=False, repr=False, default=None) + + # set to True if .gitignore rules prevent the file from being uploaded as LFS + # (server-side check) + _should_ignore: Optional[bool] = field(init=False, repr=False, default=None) + + # set to the remote OID of the file if it has already been uploaded + # useful to determine if a commit will be empty or not + _remote_oid: Optional[str] = field(init=False, repr=False, default=None) + + # set to True once the file has been uploaded as LFS + _is_uploaded: bool = field(init=False, repr=False, default=False) + + # set to True once the file has been committed + _is_committed: bool = field(init=False, repr=False, default=False) + + def __post_init__(self) -> None: + """Validates `path_or_fileobj` and compute `upload_info`.""" + self.path_in_repo = _validate_path_in_repo(self.path_in_repo) + + # Validate `path_or_fileobj` value + if isinstance(self.path_or_fileobj, Path): + self.path_or_fileobj = str(self.path_or_fileobj) + if isinstance(self.path_or_fileobj, str): + path_or_fileobj = os.path.normpath(os.path.expanduser(self.path_or_fileobj)) + if not os.path.isfile(path_or_fileobj): + raise ValueError(f"Provided path: '{path_or_fileobj}' is not a file on the local file system") + elif not isinstance(self.path_or_fileobj, (io.BufferedIOBase, bytes)): + # ^^ Inspired from: https://stackoverflow.com/questions/44584829/how-to-determine-if-file-is-opened-in-binary-or-text-mode + raise ValueError( + "path_or_fileobj must be either an instance of str, bytes or" + " io.BufferedIOBase. If you passed a file-like object, make sure it is" + " in binary mode." + ) + if isinstance(self.path_or_fileobj, io.BufferedIOBase): + try: + self.path_or_fileobj.tell() + self.path_or_fileobj.seek(0, os.SEEK_CUR) + except (OSError, AttributeError) as exc: + raise ValueError( + "path_or_fileobj is a file-like object but does not implement seek() and tell()" + ) from exc + + # Compute "upload_info" attribute + if isinstance(self.path_or_fileobj, str): + self.upload_info = UploadInfo.from_path(self.path_or_fileobj) + elif isinstance(self.path_or_fileobj, bytes): + self.upload_info = UploadInfo.from_bytes(self.path_or_fileobj) + else: + self.upload_info = UploadInfo.from_fileobj(self.path_or_fileobj) + + @contextmanager + def as_file(self, with_tqdm: bool = False) -> Iterator[BinaryIO]: + """ + A context manager that yields a file-like object allowing to read the underlying + data behind `path_or_fileobj`. + + Args: + with_tqdm (`bool`, *optional*, defaults to `False`): + If True, iterating over the file object will display a progress bar. Only + works if the file-like object is a path to a file. Pure bytes and buffers + are not supported. + + Example: + + ```python + >>> operation = CommitOperationAdd( + ... path_in_repo="remote/dir/weights.h5", + ... path_or_fileobj="./local/weights.h5", + ... ) + CommitOperationAdd(path_in_repo='remote/dir/weights.h5', path_or_fileobj='./local/weights.h5') + + >>> with operation.as_file() as file: + ... content = file.read() + + >>> with operation.as_file(with_tqdm=True) as file: + ... while True: + ... data = file.read(1024) + ... if not data: + ... break + config.json: 100%|█████████████████████████| 8.19k/8.19k [00:02<00:00, 3.72kB/s] + + >>> with operation.as_file(with_tqdm=True) as file: + ... requests.put(..., data=file) + config.json: 100%|█████████████████████████| 8.19k/8.19k [00:02<00:00, 3.72kB/s] + ``` + """ + if isinstance(self.path_or_fileobj, str) or isinstance(self.path_or_fileobj, Path): + if with_tqdm: + with tqdm_stream_file(self.path_or_fileobj) as file: + yield file + else: + with open(self.path_or_fileobj, "rb") as file: + yield file + elif isinstance(self.path_or_fileobj, bytes): + yield io.BytesIO(self.path_or_fileobj) + elif isinstance(self.path_or_fileobj, io.BufferedIOBase): + prev_pos = self.path_or_fileobj.tell() + yield self.path_or_fileobj + self.path_or_fileobj.seek(prev_pos, io.SEEK_SET) + + def b64content(self) -> bytes: + """ + The base64-encoded content of `path_or_fileobj` + + Returns: `bytes` + """ + with self.as_file() as file: + return base64.b64encode(file.read()) + + @property + def _local_oid(self) -> Optional[str]: + """Return the OID of the local file. + + This OID is then compared to `self._remote_oid` to check if the file has changed compared to the remote one. + If the file did not change, we won't upload it again to prevent empty commits. + + For LFS files, the OID corresponds to the SHA256 of the file content (used a LFS ref). + For regular files, the OID corresponds to the SHA1 of the file content. + Note: this is slightly different to git OID computation since the oid of an LFS file is usually the git-SHA1 of the + pointer file content (not the actual file content). However, using the SHA256 is enough to detect changes + and more convenient client-side. + """ + if self._upload_mode is None: + return None + elif self._upload_mode == "lfs": + return self.upload_info.sha256.hex() + else: + # Regular file => compute sha1 + # => no need to read by chunk since the file is guaranteed to be <=5MB. + with self.as_file() as file: + return sha.git_hash(file.read()) + + +def _validate_path_in_repo(path_in_repo: str) -> str: + # Validate `path_in_repo` value to prevent a server-side issue + if path_in_repo.startswith("/"): + path_in_repo = path_in_repo[1:] + if path_in_repo == "." or path_in_repo == ".." or path_in_repo.startswith("../"): + raise ValueError(f"Invalid `path_in_repo` in CommitOperation: '{path_in_repo}'") + if path_in_repo.startswith("./"): + path_in_repo = path_in_repo[2:] + for forbidden in FORBIDDEN_FOLDERS: + if any(part == forbidden for part in path_in_repo.split("/")): + raise ValueError( + f"Invalid `path_in_repo` in CommitOperation: cannot update files under a '{forbidden}/' folder (path:" + f" '{path_in_repo}')." + ) + return path_in_repo + + +CommitOperation = Union[CommitOperationAdd, CommitOperationCopy, CommitOperationDelete] + + +def _warn_on_overwriting_operations(operations: List[CommitOperation]) -> None: + """ + Warn user when a list of operations is expected to overwrite itself in a single + commit. + + Rules: + - If a filepath is updated by multiple `CommitOperationAdd` operations, a warning + message is triggered. + - If a filepath is updated at least once by a `CommitOperationAdd` and then deleted + by a `CommitOperationDelete`, a warning is triggered. + - If a `CommitOperationDelete` deletes a filepath that is then updated by a + `CommitOperationAdd`, no warning is triggered. This is usually useless (no need to + delete before upload) but can happen if a user deletes an entire folder and then + add new files to it. + """ + nb_additions_per_path: Dict[str, int] = defaultdict(int) + for operation in operations: + path_in_repo = operation.path_in_repo + if isinstance(operation, CommitOperationAdd): + if nb_additions_per_path[path_in_repo] > 0: + warnings.warn( + "About to update multiple times the same file in the same commit:" + f" '{path_in_repo}'. This can cause undesired inconsistencies in" + " your repo." + ) + nb_additions_per_path[path_in_repo] += 1 + for parent in PurePosixPath(path_in_repo).parents: + # Also keep track of number of updated files per folder + # => warns if deleting a folder overwrite some contained files + nb_additions_per_path[str(parent)] += 1 + if isinstance(operation, CommitOperationDelete): + if nb_additions_per_path[str(PurePosixPath(path_in_repo))] > 0: + if operation.is_folder: + warnings.warn( + "About to delete a folder containing files that have just been" + f" updated within the same commit: '{path_in_repo}'. This can" + " cause undesired inconsistencies in your repo." + ) + else: + warnings.warn( + "About to delete a file that have just been updated within the" + f" same commit: '{path_in_repo}'. This can cause undesired" + " inconsistencies in your repo." + ) + + +@validate_hf_hub_args +def _upload_lfs_files( + *, + additions: List[CommitOperationAdd], + repo_type: str, + repo_id: str, + headers: Dict[str, str], + endpoint: Optional[str] = None, + num_threads: int = 5, + revision: Optional[str] = None, +): + """ + Uploads the content of `additions` to the Hub using the large file storage protocol. + + Relevant external documentation: + - LFS Batch API: https://github.com/git-lfs/git-lfs/blob/main/docs/api/batch.md + + Args: + additions (`List` of `CommitOperationAdd`): + The files to be uploaded + repo_type (`str`): + Type of the repo to upload to: `"model"`, `"dataset"` or `"space"`. + repo_id (`str`): + A namespace (user or an organization) and a repo name separated + by a `/`. + headers (`Dict[str, str]`): + Headers to use for the request, including authorization headers and user agent. + num_threads (`int`, *optional*): + The number of concurrent threads to use when uploading. Defaults to 5. + revision (`str`, *optional*): + The git revision to upload to. + + Raises: + [`EnvironmentError`](https://docs.python.org/3/library/exceptions.html#EnvironmentError) + If an upload failed for any reason + [`ValueError`](https://docs.python.org/3/library/exceptions.html#ValueError) + If the server returns malformed responses + [`HTTPError`](https://requests.readthedocs.io/en/latest/api/#requests.HTTPError) + If the LFS batch endpoint returned an HTTP error. + """ + # Step 1: retrieve upload instructions from the LFS batch endpoint. + # Upload instructions are retrieved by chunk of 256 files to avoid reaching + # the payload limit. + batch_actions: List[Dict] = [] + for chunk in chunk_iterable(additions, chunk_size=256): + batch_actions_chunk, batch_errors_chunk = post_lfs_batch_info( + upload_infos=[op.upload_info for op in chunk], + repo_id=repo_id, + repo_type=repo_type, + revision=revision, + endpoint=endpoint, + headers=headers, + token=None, # already passed in 'headers' + ) + + # If at least 1 error, we do not retrieve information for other chunks + if batch_errors_chunk: + message = "\n".join( + [ + f"Encountered error for file with OID {err.get('oid')}: `{err.get('error', {}).get('message')}" + for err in batch_errors_chunk + ] + ) + raise ValueError(f"LFS batch endpoint returned errors:\n{message}") + + batch_actions += batch_actions_chunk + oid2addop = {add_op.upload_info.sha256.hex(): add_op for add_op in additions} + + # Step 2: ignore files that have already been uploaded + filtered_actions = [] + for action in batch_actions: + if action.get("actions") is None: + logger.debug( + f"Content of file {oid2addop[action['oid']].path_in_repo} is already" + " present upstream - skipping upload." + ) + else: + filtered_actions.append(action) + + if len(filtered_actions) == 0: + logger.debug("No LFS files to upload.") + return + + # Step 3: upload files concurrently according to these instructions + def _wrapped_lfs_upload(batch_action) -> None: + try: + operation = oid2addop[batch_action["oid"]] + lfs_upload(operation=operation, lfs_batch_action=batch_action, headers=headers, endpoint=endpoint) + except Exception as exc: + raise RuntimeError(f"Error while uploading '{operation.path_in_repo}' to the Hub.") from exc + + if constants.HF_HUB_ENABLE_HF_TRANSFER: + logger.debug(f"Uploading {len(filtered_actions)} LFS files to the Hub using `hf_transfer`.") + for action in hf_tqdm(filtered_actions, name="huggingface_hub.lfs_upload"): + _wrapped_lfs_upload(action) + elif len(filtered_actions) == 1: + logger.debug("Uploading 1 LFS file to the Hub") + _wrapped_lfs_upload(filtered_actions[0]) + else: + logger.debug( + f"Uploading {len(filtered_actions)} LFS files to the Hub using up to {num_threads} threads concurrently" + ) + thread_map( + _wrapped_lfs_upload, + filtered_actions, + desc=f"Upload {len(filtered_actions)} LFS files", + max_workers=num_threads, + tqdm_class=hf_tqdm, + ) + + +def _validate_preupload_info(preupload_info: dict): + files = preupload_info.get("files") + if not isinstance(files, list): + raise ValueError("preupload_info is improperly formatted") + for file_info in files: + if not ( + isinstance(file_info, dict) + and isinstance(file_info.get("path"), str) + and isinstance(file_info.get("uploadMode"), str) + and (file_info["uploadMode"] in ("lfs", "regular")) + ): + raise ValueError("preupload_info is improperly formatted:") + return preupload_info + + +@validate_hf_hub_args +def _fetch_upload_modes( + additions: Iterable[CommitOperationAdd], + repo_type: str, + repo_id: str, + headers: Dict[str, str], + revision: str, + endpoint: Optional[str] = None, + create_pr: bool = False, + gitignore_content: Optional[str] = None, +) -> None: + """ + Requests the Hub "preupload" endpoint to determine whether each input file should be uploaded as a regular git blob + or as git LFS blob. Input `additions` are mutated in-place with the upload mode. + + Args: + additions (`Iterable` of :class:`CommitOperationAdd`): + Iterable of :class:`CommitOperationAdd` describing the files to + upload to the Hub. + repo_type (`str`): + Type of the repo to upload to: `"model"`, `"dataset"` or `"space"`. + repo_id (`str`): + A namespace (user or an organization) and a repo name separated + by a `/`. + headers (`Dict[str, str]`): + Headers to use for the request, including authorization headers and user agent. + revision (`str`): + The git revision to upload the files to. Can be any valid git revision. + gitignore_content (`str`, *optional*): + The content of the `.gitignore` file to know which files should be ignored. The order of priority + is to first check if `gitignore_content` is passed, then check if the `.gitignore` file is present + in the list of files to commit and finally default to the `.gitignore` file already hosted on the Hub + (if any). + Raises: + [`~utils.HfHubHTTPError`] + If the Hub API returned an error. + [`ValueError`](https://docs.python.org/3/library/exceptions.html#ValueError) + If the Hub API response is improperly formatted. + """ + endpoint = endpoint if endpoint is not None else constants.ENDPOINT + + # Fetch upload mode (LFS or regular) chunk by chunk. + upload_modes: Dict[str, UploadMode] = {} + should_ignore_info: Dict[str, bool] = {} + oid_info: Dict[str, Optional[str]] = {} + + for chunk in chunk_iterable(additions, 256): + payload: Dict = { + "files": [ + { + "path": op.path_in_repo, + "sample": base64.b64encode(op.upload_info.sample).decode("ascii"), + "size": op.upload_info.size, + } + for op in chunk + ] + } + if gitignore_content is not None: + payload["gitIgnore"] = gitignore_content + + resp = get_session().post( + f"{endpoint}/api/{repo_type}s/{repo_id}/preupload/{revision}", + json=payload, + headers=headers, + params={"create_pr": "1"} if create_pr else None, + ) + hf_raise_for_status(resp) + preupload_info = _validate_preupload_info(resp.json()) + upload_modes.update(**{file["path"]: file["uploadMode"] for file in preupload_info["files"]}) + should_ignore_info.update(**{file["path"]: file["shouldIgnore"] for file in preupload_info["files"]}) + oid_info.update(**{file["path"]: file.get("oid") for file in preupload_info["files"]}) + + # Set upload mode for each addition operation + for addition in additions: + addition._upload_mode = upload_modes[addition.path_in_repo] + addition._should_ignore = should_ignore_info[addition.path_in_repo] + addition._remote_oid = oid_info[addition.path_in_repo] + + # Empty files cannot be uploaded as LFS (S3 would fail with a 501 Not Implemented) + # => empty files are uploaded as "regular" to still allow users to commit them. + for addition in additions: + if addition.upload_info.size == 0: + addition._upload_mode = "regular" + + +@validate_hf_hub_args +def _fetch_files_to_copy( + copies: Iterable[CommitOperationCopy], + repo_type: str, + repo_id: str, + headers: Dict[str, str], + revision: str, + endpoint: Optional[str] = None, +) -> Dict[Tuple[str, Optional[str]], Union["RepoFile", bytes]]: + """ + Fetch information about the files to copy. + + For LFS files, we only need their metadata (file size and sha256) while for regular files + we need to download the raw content from the Hub. + + Args: + copies (`Iterable` of :class:`CommitOperationCopy`): + Iterable of :class:`CommitOperationCopy` describing the files to + copy on the Hub. + repo_type (`str`): + Type of the repo to upload to: `"model"`, `"dataset"` or `"space"`. + repo_id (`str`): + A namespace (user or an organization) and a repo name separated + by a `/`. + headers (`Dict[str, str]`): + Headers to use for the request, including authorization headers and user agent. + revision (`str`): + The git revision to upload the files to. Can be any valid git revision. + + Returns: `Dict[Tuple[str, Optional[str]], Union[RepoFile, bytes]]]` + Key is the file path and revision of the file to copy. + Value is the raw content as bytes (for regular files) or the file information as a RepoFile (for LFS files). + + Raises: + [`~utils.HfHubHTTPError`] + If the Hub API returned an error. + [`ValueError`](https://docs.python.org/3/library/exceptions.html#ValueError) + If the Hub API response is improperly formatted. + """ + from .hf_api import HfApi, RepoFolder + + hf_api = HfApi(endpoint=endpoint, headers=headers) + files_to_copy: Dict[Tuple[str, Optional[str]], Union["RepoFile", bytes]] = {} + # Store (path, revision) -> oid mapping + oid_info: Dict[Tuple[str, Optional[str]], Optional[str]] = {} + # 1. Fetch OIDs for destination paths in batches. + dest_paths = [op.path_in_repo for op in copies] + for offset in range(0, len(dest_paths), FETCH_LFS_BATCH_SIZE): + dest_repo_files = hf_api.get_paths_info( + repo_id=repo_id, + paths=dest_paths[offset : offset + FETCH_LFS_BATCH_SIZE], + revision=revision, + repo_type=repo_type, + ) + for file in dest_repo_files: + if not isinstance(file, RepoFolder): + oid_info[(file.path, revision)] = file.blob_id + + # 2. Group by source revision and fetch source file info in batches. + for src_revision, operations in groupby(copies, key=lambda op: op.src_revision): + operations = list(operations) # type: ignore + src_paths = [op.src_path_in_repo for op in operations] + for offset in range(0, len(src_paths), FETCH_LFS_BATCH_SIZE): + src_repo_files = hf_api.get_paths_info( + repo_id=repo_id, + paths=src_paths[offset : offset + FETCH_LFS_BATCH_SIZE], + revision=src_revision or revision, + repo_type=repo_type, + ) + + for src_repo_file in src_repo_files: + if isinstance(src_repo_file, RepoFolder): + raise NotImplementedError("Copying a folder is not implemented.") + oid_info[(src_repo_file.path, src_revision)] = src_repo_file.blob_id + # If it's an LFS file, store the RepoFile object. Otherwise, download raw bytes. + if src_repo_file.lfs: + files_to_copy[(src_repo_file.path, src_revision)] = src_repo_file + else: + # TODO: (optimization) download regular files to copy concurrently + url = hf_hub_url( + endpoint=endpoint, + repo_type=repo_type, + repo_id=repo_id, + revision=src_revision or revision, + filename=src_repo_file.path, + ) + response = get_session().get(url, headers=headers) + hf_raise_for_status(response) + files_to_copy[(src_repo_file.path, src_revision)] = response.content + # 3. Ensure all operations found a corresponding file in the Hub + # and track src/dest OIDs for each operation. + for operation in operations: + if (operation.src_path_in_repo, src_revision) not in files_to_copy: + raise EntryNotFoundError( + f"Cannot copy {operation.src_path_in_repo} at revision " + f"{src_revision or revision}: file is missing on repo." + ) + operation._src_oid = oid_info.get((operation.src_path_in_repo, operation.src_revision)) + operation._dest_oid = oid_info.get((operation.path_in_repo, revision)) + return files_to_copy + + +def _prepare_commit_payload( + operations: Iterable[CommitOperation], + files_to_copy: Dict[Tuple[str, Optional[str]], Union["RepoFile", bytes]], + commit_message: str, + commit_description: Optional[str] = None, + parent_commit: Optional[str] = None, +) -> Iterable[Dict[str, Any]]: + """ + Builds the payload to POST to the `/commit` API of the Hub. + + Payload is returned as an iterator so that it can be streamed as a ndjson in the + POST request. + + For more information, see: + - https://github.com/huggingface/huggingface_hub/issues/1085#issuecomment-1265208073 + - http://ndjson.org/ + """ + commit_description = commit_description if commit_description is not None else "" + + # 1. Send a header item with the commit metadata + header_value = {"summary": commit_message, "description": commit_description} + if parent_commit is not None: + header_value["parentCommit"] = parent_commit + yield {"key": "header", "value": header_value} + + nb_ignored_files = 0 + + # 2. Send operations, one per line + for operation in operations: + # Skip ignored files + if isinstance(operation, CommitOperationAdd) and operation._should_ignore: + logger.debug(f"Skipping file '{operation.path_in_repo}' in commit (ignored by gitignore file).") + nb_ignored_files += 1 + continue + + # 2.a. Case adding a regular file + if isinstance(operation, CommitOperationAdd) and operation._upload_mode == "regular": + yield { + "key": "file", + "value": { + "content": operation.b64content().decode(), + "path": operation.path_in_repo, + "encoding": "base64", + }, + } + # 2.b. Case adding an LFS file + elif isinstance(operation, CommitOperationAdd) and operation._upload_mode == "lfs": + yield { + "key": "lfsFile", + "value": { + "path": operation.path_in_repo, + "algo": "sha256", + "oid": operation.upload_info.sha256.hex(), + "size": operation.upload_info.size, + }, + } + # 2.c. Case deleting a file or folder + elif isinstance(operation, CommitOperationDelete): + yield { + "key": "deletedFolder" if operation.is_folder else "deletedFile", + "value": {"path": operation.path_in_repo}, + } + # 2.d. Case copying a file or folder + elif isinstance(operation, CommitOperationCopy): + file_to_copy = files_to_copy[(operation.src_path_in_repo, operation.src_revision)] + if isinstance(file_to_copy, bytes): + yield { + "key": "file", + "value": { + "content": base64.b64encode(file_to_copy).decode(), + "path": operation.path_in_repo, + "encoding": "base64", + }, + } + elif file_to_copy.lfs: + yield { + "key": "lfsFile", + "value": { + "path": operation.path_in_repo, + "algo": "sha256", + "oid": file_to_copy.lfs.sha256, + }, + } + else: + raise ValueError( + "Malformed files_to_copy (should be raw file content as bytes or RepoFile objects with LFS info." + ) + # 2.e. Never expected to happen + else: + raise ValueError( + f"Unknown operation to commit. Operation: {operation}. Upload mode:" + f" {getattr(operation, '_upload_mode', None)}" + ) + + if nb_ignored_files > 0: + logger.info(f"Skipped {nb_ignored_files} file(s) in commit (ignored by gitignore file).") diff --git a/.venv/lib/python3.12/site-packages/huggingface_hub/_commit_scheduler.py b/.venv/lib/python3.12/site-packages/huggingface_hub/_commit_scheduler.py new file mode 100644 index 00000000..f1f20339 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/huggingface_hub/_commit_scheduler.py @@ -0,0 +1,353 @@ +import atexit +import logging +import os +import time +from concurrent.futures import Future +from dataclasses import dataclass +from io import SEEK_END, SEEK_SET, BytesIO +from pathlib import Path +from threading import Lock, Thread +from typing import Dict, List, Optional, Union + +from .hf_api import DEFAULT_IGNORE_PATTERNS, CommitInfo, CommitOperationAdd, HfApi +from .utils import filter_repo_objects + + +logger = logging.getLogger(__name__) + + +@dataclass(frozen=True) +class _FileToUpload: + """Temporary dataclass to store info about files to upload. Not meant to be used directly.""" + + local_path: Path + path_in_repo: str + size_limit: int + last_modified: float + + +class CommitScheduler: + """ + Scheduler to upload a local folder to the Hub at regular intervals (e.g. push to hub every 5 minutes). + + The recommended way to use the scheduler is to use it as a context manager. This ensures that the scheduler is + properly stopped and the last commit is triggered when the script ends. The scheduler can also be stopped manually + with the `stop` method. Checkout the [upload guide](https://huggingface.co/docs/huggingface_hub/guides/upload#scheduled-uploads) + to learn more about how to use it. + + Args: + repo_id (`str`): + The id of the repo to commit to. + folder_path (`str` or `Path`): + Path to the local folder to upload regularly. + every (`int` or `float`, *optional*): + The number of minutes between each commit. Defaults to 5 minutes. + path_in_repo (`str`, *optional*): + Relative path of the directory in the repo, for example: `"checkpoints/"`. Defaults to the root folder + of the repository. + repo_type (`str`, *optional*): + The type of the repo to commit to. Defaults to `model`. + revision (`str`, *optional*): + The revision of the repo to commit to. Defaults to `main`. + private (`bool`, *optional*): + Whether to make the repo private. If `None` (default), the repo will be public unless the organization's default is private. This value is ignored if the repo already exists. + token (`str`, *optional*): + The token to use to commit to the repo. Defaults to the token saved on the machine. + allow_patterns (`List[str]` or `str`, *optional*): + If provided, only files matching at least one pattern are uploaded. + ignore_patterns (`List[str]` or `str`, *optional*): + If provided, files matching any of the patterns are not uploaded. + squash_history (`bool`, *optional*): + Whether to squash the history of the repo after each commit. Defaults to `False`. Squashing commits is + useful to avoid degraded performances on the repo when it grows too large. + hf_api (`HfApi`, *optional*): + The [`HfApi`] client to use to commit to the Hub. Can be set with custom settings (user agent, token,...). + + Example: + ```py + >>> from pathlib import Path + >>> from huggingface_hub import CommitScheduler + + # Scheduler uploads every 10 minutes + >>> csv_path = Path("watched_folder/data.csv") + >>> CommitScheduler(repo_id="test_scheduler", repo_type="dataset", folder_path=csv_path.parent, every=10) + + >>> with csv_path.open("a") as f: + ... f.write("first line") + + # Some time later (...) + >>> with csv_path.open("a") as f: + ... f.write("second line") + ``` + + Example using a context manager: + ```py + >>> from pathlib import Path + >>> from huggingface_hub import CommitScheduler + + >>> with CommitScheduler(repo_id="test_scheduler", repo_type="dataset", folder_path="watched_folder", every=10) as scheduler: + ... csv_path = Path("watched_folder/data.csv") + ... with csv_path.open("a") as f: + ... f.write("first line") + ... (...) + ... with csv_path.open("a") as f: + ... f.write("second line") + + # Scheduler is now stopped and last commit have been triggered + ``` + """ + + def __init__( + self, + *, + repo_id: str, + folder_path: Union[str, Path], + every: Union[int, float] = 5, + path_in_repo: Optional[str] = None, + repo_type: Optional[str] = None, + revision: Optional[str] = None, + private: Optional[bool] = None, + token: Optional[str] = None, + allow_patterns: Optional[Union[List[str], str]] = None, + ignore_patterns: Optional[Union[List[str], str]] = None, + squash_history: bool = False, + hf_api: Optional["HfApi"] = None, + ) -> None: + self.api = hf_api or HfApi(token=token) + + # Folder + self.folder_path = Path(folder_path).expanduser().resolve() + self.path_in_repo = path_in_repo or "" + self.allow_patterns = allow_patterns + + if ignore_patterns is None: + ignore_patterns = [] + elif isinstance(ignore_patterns, str): + ignore_patterns = [ignore_patterns] + self.ignore_patterns = ignore_patterns + DEFAULT_IGNORE_PATTERNS + + if self.folder_path.is_file(): + raise ValueError(f"'folder_path' must be a directory, not a file: '{self.folder_path}'.") + self.folder_path.mkdir(parents=True, exist_ok=True) + + # Repository + repo_url = self.api.create_repo(repo_id=repo_id, private=private, repo_type=repo_type, exist_ok=True) + self.repo_id = repo_url.repo_id + self.repo_type = repo_type + self.revision = revision + self.token = token + + # Keep track of already uploaded files + self.last_uploaded: Dict[Path, float] = {} # key is local path, value is timestamp + + # Scheduler + if not every > 0: + raise ValueError(f"'every' must be a positive integer, not '{every}'.") + self.lock = Lock() + self.every = every + self.squash_history = squash_history + + logger.info(f"Scheduled job to push '{self.folder_path}' to '{self.repo_id}' every {self.every} minutes.") + self._scheduler_thread = Thread(target=self._run_scheduler, daemon=True) + self._scheduler_thread.start() + atexit.register(self._push_to_hub) + + self.__stopped = False + + def stop(self) -> None: + """Stop the scheduler. + + A stopped scheduler cannot be restarted. Mostly for tests purposes. + """ + self.__stopped = True + + def __enter__(self) -> "CommitScheduler": + return self + + def __exit__(self, exc_type, exc_value, traceback) -> None: + # Upload last changes before exiting + self.trigger().result() + self.stop() + return + + def _run_scheduler(self) -> None: + """Dumb thread waiting between each scheduled push to Hub.""" + while True: + self.last_future = self.trigger() + time.sleep(self.every * 60) + if self.__stopped: + break + + def trigger(self) -> Future: + """Trigger a `push_to_hub` and return a future. + + This method is automatically called every `every` minutes. You can also call it manually to trigger a commit + immediately, without waiting for the next scheduled commit. + """ + return self.api.run_as_future(self._push_to_hub) + + def _push_to_hub(self) -> Optional[CommitInfo]: + if self.__stopped: # If stopped, already scheduled commits are ignored + return None + + logger.info("(Background) scheduled commit triggered.") + try: + value = self.push_to_hub() + if self.squash_history: + logger.info("(Background) squashing repo history.") + self.api.super_squash_history(repo_id=self.repo_id, repo_type=self.repo_type, branch=self.revision) + return value + except Exception as e: + logger.error(f"Error while pushing to Hub: {e}") # Depending on the setup, error might be silenced + raise + + def push_to_hub(self) -> Optional[CommitInfo]: + """ + Push folder to the Hub and return the commit info. + + <Tip warning={true}> + + This method is not meant to be called directly. It is run in the background by the scheduler, respecting a + queue mechanism to avoid concurrent commits. Making a direct call to the method might lead to concurrency + issues. + + </Tip> + + The default behavior of `push_to_hub` is to assume an append-only folder. It lists all files in the folder and + uploads only changed files. If no changes are found, the method returns without committing anything. If you want + to change this behavior, you can inherit from [`CommitScheduler`] and override this method. This can be useful + for example to compress data together in a single file before committing. For more details and examples, check + out our [integration guide](https://huggingface.co/docs/huggingface_hub/main/en/guides/upload#scheduled-uploads). + """ + # Check files to upload (with lock) + with self.lock: + logger.debug("Listing files to upload for scheduled commit.") + + # List files from folder (taken from `_prepare_upload_folder_additions`) + relpath_to_abspath = { + path.relative_to(self.folder_path).as_posix(): path + for path in sorted(self.folder_path.glob("**/*")) # sorted to be deterministic + if path.is_file() + } + prefix = f"{self.path_in_repo.strip('/')}/" if self.path_in_repo else "" + + # Filter with pattern + filter out unchanged files + retrieve current file size + files_to_upload: List[_FileToUpload] = [] + for relpath in filter_repo_objects( + relpath_to_abspath.keys(), allow_patterns=self.allow_patterns, ignore_patterns=self.ignore_patterns + ): + local_path = relpath_to_abspath[relpath] + stat = local_path.stat() + if self.last_uploaded.get(local_path) is None or self.last_uploaded[local_path] != stat.st_mtime: + files_to_upload.append( + _FileToUpload( + local_path=local_path, + path_in_repo=prefix + relpath, + size_limit=stat.st_size, + last_modified=stat.st_mtime, + ) + ) + + # Return if nothing to upload + if len(files_to_upload) == 0: + logger.debug("Dropping schedule commit: no changed file to upload.") + return None + + # Convert `_FileToUpload` as `CommitOperationAdd` (=> compute file shas + limit to file size) + logger.debug("Removing unchanged files since previous scheduled commit.") + add_operations = [ + CommitOperationAdd( + # Cap the file to its current size, even if the user append data to it while a scheduled commit is happening + path_or_fileobj=PartialFileIO(file_to_upload.local_path, size_limit=file_to_upload.size_limit), + path_in_repo=file_to_upload.path_in_repo, + ) + for file_to_upload in files_to_upload + ] + + # Upload files (append mode expected - no need for lock) + logger.debug("Uploading files for scheduled commit.") + commit_info = self.api.create_commit( + repo_id=self.repo_id, + repo_type=self.repo_type, + operations=add_operations, + commit_message="Scheduled Commit", + revision=self.revision, + ) + + # Successful commit: keep track of the latest "last_modified" for each file + for file in files_to_upload: + self.last_uploaded[file.local_path] = file.last_modified + return commit_info + + +class PartialFileIO(BytesIO): + """A file-like object that reads only the first part of a file. + + Useful to upload a file to the Hub when the user might still be appending data to it. Only the first part of the + file is uploaded (i.e. the part that was available when the filesystem was first scanned). + + In practice, only used internally by the CommitScheduler to regularly push a folder to the Hub with minimal + disturbance for the user. The object is passed to `CommitOperationAdd`. + + Only supports `read`, `tell` and `seek` methods. + + Args: + file_path (`str` or `Path`): + Path to the file to read. + size_limit (`int`): + The maximum number of bytes to read from the file. If the file is larger than this, only the first part + will be read (and uploaded). + """ + + def __init__(self, file_path: Union[str, Path], size_limit: int) -> None: + self._file_path = Path(file_path) + self._file = self._file_path.open("rb") + self._size_limit = min(size_limit, os.fstat(self._file.fileno()).st_size) + + def __del__(self) -> None: + self._file.close() + return super().__del__() + + def __repr__(self) -> str: + return f"<PartialFileIO file_path={self._file_path} size_limit={self._size_limit}>" + + def __len__(self) -> int: + return self._size_limit + + def __getattribute__(self, name: str): + if name.startswith("_") or name in ("read", "tell", "seek"): # only 3 public methods supported + return super().__getattribute__(name) + raise NotImplementedError(f"PartialFileIO does not support '{name}'.") + + def tell(self) -> int: + """Return the current file position.""" + return self._file.tell() + + def seek(self, __offset: int, __whence: int = SEEK_SET) -> int: + """Change the stream position to the given offset. + + Behavior is the same as a regular file, except that the position is capped to the size limit. + """ + if __whence == SEEK_END: + # SEEK_END => set from the truncated end + __offset = len(self) + __offset + __whence = SEEK_SET + + pos = self._file.seek(__offset, __whence) + if pos > self._size_limit: + return self._file.seek(self._size_limit) + return pos + + def read(self, __size: Optional[int] = -1) -> bytes: + """Read at most `__size` bytes from the file. + + Behavior is the same as a regular file, except that it is capped to the size limit. + """ + current = self._file.tell() + if __size is None or __size < 0: + # Read until file limit + truncated_size = self._size_limit - current + else: + # Read until file limit or __size + truncated_size = min(__size, self._size_limit - current) + return self._file.read(truncated_size) diff --git a/.venv/lib/python3.12/site-packages/huggingface_hub/_inference_endpoints.py b/.venv/lib/python3.12/site-packages/huggingface_hub/_inference_endpoints.py new file mode 100644 index 00000000..37733fef --- /dev/null +++ b/.venv/lib/python3.12/site-packages/huggingface_hub/_inference_endpoints.py @@ -0,0 +1,407 @@ +import time +from dataclasses import dataclass, field +from datetime import datetime +from enum import Enum +from typing import TYPE_CHECKING, Dict, Optional, Union + +from huggingface_hub.errors import InferenceEndpointError, InferenceEndpointTimeoutError + +from .inference._client import InferenceClient +from .inference._generated._async_client import AsyncInferenceClient +from .utils import get_session, logging, parse_datetime + + +if TYPE_CHECKING: + from .hf_api import HfApi + + +logger = logging.get_logger(__name__) + + +class InferenceEndpointStatus(str, Enum): + PENDING = "pending" + INITIALIZING = "initializing" + UPDATING = "updating" + UPDATE_FAILED = "updateFailed" + RUNNING = "running" + PAUSED = "paused" + FAILED = "failed" + SCALED_TO_ZERO = "scaledToZero" + + +class InferenceEndpointType(str, Enum): + PUBlIC = "public" + PROTECTED = "protected" + PRIVATE = "private" + + +@dataclass +class InferenceEndpoint: + """ + Contains information about a deployed Inference Endpoint. + + Args: + name (`str`): + The unique name of the Inference Endpoint. + namespace (`str`): + The namespace where the Inference Endpoint is located. + repository (`str`): + The name of the model repository deployed on this Inference Endpoint. + status ([`InferenceEndpointStatus`]): + The current status of the Inference Endpoint. + url (`str`, *optional*): + The URL of the Inference Endpoint, if available. Only a deployed Inference Endpoint will have a URL. + framework (`str`): + The machine learning framework used for the model. + revision (`str`): + The specific model revision deployed on the Inference Endpoint. + task (`str`): + The task associated with the deployed model. + created_at (`datetime.datetime`): + The timestamp when the Inference Endpoint was created. + updated_at (`datetime.datetime`): + The timestamp of the last update of the Inference Endpoint. + type ([`InferenceEndpointType`]): + The type of the Inference Endpoint (public, protected, private). + raw (`Dict`): + The raw dictionary data returned from the API. + token (`str` or `bool`, *optional*): + Authentication token for the Inference Endpoint, if set when requesting the API. Will default to the + locally saved token if not provided. Pass `token=False` if you don't want to send your token to the server. + + Example: + ```python + >>> from huggingface_hub import get_inference_endpoint + >>> endpoint = get_inference_endpoint("my-text-to-image") + >>> endpoint + InferenceEndpoint(name='my-text-to-image', ...) + + # Get status + >>> endpoint.status + 'running' + >>> endpoint.url + 'https://my-text-to-image.region.vendor.endpoints.huggingface.cloud' + + # Run inference + >>> endpoint.client.text_to_image(...) + + # Pause endpoint to save $$$ + >>> endpoint.pause() + + # ... + # Resume and wait for deployment + >>> endpoint.resume() + >>> endpoint.wait() + >>> endpoint.client.text_to_image(...) + ``` + """ + + # Field in __repr__ + name: str = field(init=False) + namespace: str + repository: str = field(init=False) + status: InferenceEndpointStatus = field(init=False) + url: Optional[str] = field(init=False) + + # Other fields + framework: str = field(repr=False, init=False) + revision: str = field(repr=False, init=False) + task: str = field(repr=False, init=False) + created_at: datetime = field(repr=False, init=False) + updated_at: datetime = field(repr=False, init=False) + type: InferenceEndpointType = field(repr=False, init=False) + + # Raw dict from the API + raw: Dict = field(repr=False) + + # Internal fields + _token: Union[str, bool, None] = field(repr=False, compare=False) + _api: "HfApi" = field(repr=False, compare=False) + + @classmethod + def from_raw( + cls, raw: Dict, namespace: str, token: Union[str, bool, None] = None, api: Optional["HfApi"] = None + ) -> "InferenceEndpoint": + """Initialize object from raw dictionary.""" + if api is None: + from .hf_api import HfApi + + api = HfApi() + if token is None: + token = api.token + + # All other fields are populated in __post_init__ + return cls(raw=raw, namespace=namespace, _token=token, _api=api) + + def __post_init__(self) -> None: + """Populate fields from raw dictionary.""" + self._populate_from_raw() + + @property + def client(self) -> InferenceClient: + """Returns a client to make predictions on this Inference Endpoint. + + Returns: + [`InferenceClient`]: an inference client pointing to the deployed endpoint. + + Raises: + [`InferenceEndpointError`]: If the Inference Endpoint is not yet deployed. + """ + if self.url is None: + raise InferenceEndpointError( + "Cannot create a client for this Inference Endpoint as it is not yet deployed. " + "Please wait for the Inference Endpoint to be deployed using `endpoint.wait()` and try again." + ) + return InferenceClient( + model=self.url, + token=self._token, # type: ignore[arg-type] # boolean token shouldn't be possible. In practice it's ok. + ) + + @property + def async_client(self) -> AsyncInferenceClient: + """Returns a client to make predictions on this Inference Endpoint. + + Returns: + [`AsyncInferenceClient`]: an asyncio-compatible inference client pointing to the deployed endpoint. + + Raises: + [`InferenceEndpointError`]: If the Inference Endpoint is not yet deployed. + """ + if self.url is None: + raise InferenceEndpointError( + "Cannot create a client for this Inference Endpoint as it is not yet deployed. " + "Please wait for the Inference Endpoint to be deployed using `endpoint.wait()` and try again." + ) + return AsyncInferenceClient( + model=self.url, + token=self._token, # type: ignore[arg-type] # boolean token shouldn't be possible. In practice it's ok. + ) + + def wait(self, timeout: Optional[int] = None, refresh_every: int = 5) -> "InferenceEndpoint": + """Wait for the Inference Endpoint to be deployed. + + Information from the server will be fetched every 1s. If the Inference Endpoint is not deployed after `timeout` + seconds, a [`InferenceEndpointTimeoutError`] will be raised. The [`InferenceEndpoint`] will be mutated in place with the latest + data. + + Args: + timeout (`int`, *optional*): + The maximum time to wait for the Inference Endpoint to be deployed, in seconds. If `None`, will wait + indefinitely. + refresh_every (`int`, *optional*): + The time to wait between each fetch of the Inference Endpoint status, in seconds. Defaults to 5s. + + Returns: + [`InferenceEndpoint`]: the same Inference Endpoint, mutated in place with the latest data. + + Raises: + [`InferenceEndpointError`] + If the Inference Endpoint ended up in a failed state. + [`InferenceEndpointTimeoutError`] + If the Inference Endpoint is not deployed after `timeout` seconds. + """ + if timeout is not None and timeout < 0: + raise ValueError("`timeout` cannot be negative.") + if refresh_every <= 0: + raise ValueError("`refresh_every` must be positive.") + + start = time.time() + while True: + if self.status == InferenceEndpointStatus.FAILED: + raise InferenceEndpointError( + f"Inference Endpoint {self.name} failed to deploy. Please check the logs for more information." + ) + if self.status == InferenceEndpointStatus.UPDATE_FAILED: + raise InferenceEndpointError( + f"Inference Endpoint {self.name} failed to update. Please check the logs for more information." + ) + if self.status == InferenceEndpointStatus.RUNNING and self.url is not None: + # Verify the endpoint is actually reachable + response = get_session().get(self.url, headers=self._api._build_hf_headers(token=self._token)) + if response.status_code == 200: + logger.info("Inference Endpoint is ready to be used.") + return self + + if timeout is not None: + if time.time() - start > timeout: + raise InferenceEndpointTimeoutError("Timeout while waiting for Inference Endpoint to be deployed.") + logger.info(f"Inference Endpoint is not deployed yet ({self.status}). Waiting {refresh_every}s...") + time.sleep(refresh_every) + self.fetch() + + def fetch(self) -> "InferenceEndpoint": + """Fetch latest information about the Inference Endpoint. + + Returns: + [`InferenceEndpoint`]: the same Inference Endpoint, mutated in place with the latest data. + """ + obj = self._api.get_inference_endpoint(name=self.name, namespace=self.namespace, token=self._token) # type: ignore [arg-type] + self.raw = obj.raw + self._populate_from_raw() + return self + + def update( + self, + *, + # Compute update + accelerator: Optional[str] = None, + instance_size: Optional[str] = None, + instance_type: Optional[str] = None, + min_replica: Optional[int] = None, + max_replica: Optional[int] = None, + scale_to_zero_timeout: Optional[int] = None, + # Model update + repository: Optional[str] = None, + framework: Optional[str] = None, + revision: Optional[str] = None, + task: Optional[str] = None, + custom_image: Optional[Dict] = None, + secrets: Optional[Dict[str, str]] = None, + ) -> "InferenceEndpoint": + """Update the Inference Endpoint. + + This method allows the update of either the compute configuration, the deployed model, or both. All arguments are + optional but at least one must be provided. + + This is an alias for [`HfApi.update_inference_endpoint`]. The current object is mutated in place with the + latest data from the server. + + Args: + accelerator (`str`, *optional*): + The hardware accelerator to be used for inference (e.g. `"cpu"`). + instance_size (`str`, *optional*): + The size or type of the instance to be used for hosting the model (e.g. `"x4"`). + instance_type (`str`, *optional*): + The cloud instance type where the Inference Endpoint will be deployed (e.g. `"intel-icl"`). + min_replica (`int`, *optional*): + The minimum number of replicas (instances) to keep running for the Inference Endpoint. + max_replica (`int`, *optional*): + The maximum number of replicas (instances) to scale to for the Inference Endpoint. + scale_to_zero_timeout (`int`, *optional*): + The duration in minutes before an inactive endpoint is scaled to zero. + + repository (`str`, *optional*): + The name of the model repository associated with the Inference Endpoint (e.g. `"gpt2"`). + framework (`str`, *optional*): + The machine learning framework used for the model (e.g. `"custom"`). + revision (`str`, *optional*): + The specific model revision to deploy on the Inference Endpoint (e.g. `"6c0e6080953db56375760c0471a8c5f2929baf11"`). + task (`str`, *optional*): + The task on which to deploy the model (e.g. `"text-classification"`). + custom_image (`Dict`, *optional*): + A custom Docker image to use for the Inference Endpoint. This is useful if you want to deploy an + Inference Endpoint running on the `text-generation-inference` (TGI) framework (see examples). + secrets (`Dict[str, str]`, *optional*): + Secret values to inject in the container environment. + Returns: + [`InferenceEndpoint`]: the same Inference Endpoint, mutated in place with the latest data. + """ + # Make API call + obj = self._api.update_inference_endpoint( + name=self.name, + namespace=self.namespace, + accelerator=accelerator, + instance_size=instance_size, + instance_type=instance_type, + min_replica=min_replica, + max_replica=max_replica, + scale_to_zero_timeout=scale_to_zero_timeout, + repository=repository, + framework=framework, + revision=revision, + task=task, + custom_image=custom_image, + secrets=secrets, + token=self._token, # type: ignore [arg-type] + ) + + # Mutate current object + self.raw = obj.raw + self._populate_from_raw() + return self + + def pause(self) -> "InferenceEndpoint": + """Pause the Inference Endpoint. + + A paused Inference Endpoint will not be charged. It can be resumed at any time using [`InferenceEndpoint.resume`]. + This is different than scaling the Inference Endpoint to zero with [`InferenceEndpoint.scale_to_zero`], which + would be automatically restarted when a request is made to it. + + This is an alias for [`HfApi.pause_inference_endpoint`]. The current object is mutated in place with the + latest data from the server. + + Returns: + [`InferenceEndpoint`]: the same Inference Endpoint, mutated in place with the latest data. + """ + obj = self._api.pause_inference_endpoint(name=self.name, namespace=self.namespace, token=self._token) # type: ignore [arg-type] + self.raw = obj.raw + self._populate_from_raw() + return self + + def resume(self, running_ok: bool = True) -> "InferenceEndpoint": + """Resume the Inference Endpoint. + + This is an alias for [`HfApi.resume_inference_endpoint`]. The current object is mutated in place with the + latest data from the server. + + Args: + running_ok (`bool`, *optional*): + If `True`, the method will not raise an error if the Inference Endpoint is already running. Defaults to + `True`. + + Returns: + [`InferenceEndpoint`]: the same Inference Endpoint, mutated in place with the latest data. + """ + obj = self._api.resume_inference_endpoint( + name=self.name, namespace=self.namespace, running_ok=running_ok, token=self._token + ) # type: ignore [arg-type] + self.raw = obj.raw + self._populate_from_raw() + return self + + def scale_to_zero(self) -> "InferenceEndpoint": + """Scale Inference Endpoint to zero. + + An Inference Endpoint scaled to zero will not be charged. It will be resume on the next request to it, with a + cold start delay. This is different than pausing the Inference Endpoint with [`InferenceEndpoint.pause`], which + would require a manual resume with [`InferenceEndpoint.resume`]. + + This is an alias for [`HfApi.scale_to_zero_inference_endpoint`]. The current object is mutated in place with the + latest data from the server. + + Returns: + [`InferenceEndpoint`]: the same Inference Endpoint, mutated in place with the latest data. + """ + obj = self._api.scale_to_zero_inference_endpoint(name=self.name, namespace=self.namespace, token=self._token) # type: ignore [arg-type] + self.raw = obj.raw + self._populate_from_raw() + return self + + def delete(self) -> None: + """Delete the Inference Endpoint. + + This operation is not reversible. If you don't want to be charged for an Inference Endpoint, it is preferable + to pause it with [`InferenceEndpoint.pause`] or scale it to zero with [`InferenceEndpoint.scale_to_zero`]. + + This is an alias for [`HfApi.delete_inference_endpoint`]. + """ + self._api.delete_inference_endpoint(name=self.name, namespace=self.namespace, token=self._token) # type: ignore [arg-type] + + def _populate_from_raw(self) -> None: + """Populate fields from raw dictionary. + + Called in __post_init__ + each time the Inference Endpoint is updated. + """ + # Repr fields + self.name = self.raw["name"] + self.repository = self.raw["model"]["repository"] + self.status = self.raw["status"]["state"] + self.url = self.raw["status"].get("url") + + # Other fields + self.framework = self.raw["model"]["framework"] + self.revision = self.raw["model"]["revision"] + self.task = self.raw["model"]["task"] + self.created_at = parse_datetime(self.raw["status"]["createdAt"]) + self.updated_at = parse_datetime(self.raw["status"]["updatedAt"]) + self.type = self.raw["type"] diff --git a/.venv/lib/python3.12/site-packages/huggingface_hub/_local_folder.py b/.venv/lib/python3.12/site-packages/huggingface_hub/_local_folder.py new file mode 100644 index 00000000..264d51c5 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/huggingface_hub/_local_folder.py @@ -0,0 +1,432 @@ +# coding=utf-8 +# Copyright 2024-present, the HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Contains utilities to handle the `../.cache/huggingface` folder in local directories. + +First discussed in https://github.com/huggingface/huggingface_hub/issues/1738 to store +download metadata when downloading files from the hub to a local directory (without +using the cache). + +./.cache/huggingface folder structure: +[4.0K] data +├── [4.0K] .cache +│ └── [4.0K] huggingface +│ └── [4.0K] download +│ ├── [ 16] file.parquet.metadata +│ ├── [ 16] file.txt.metadata +│ └── [4.0K] folder +│ └── [ 16] file.parquet.metadata +│ +├── [6.5G] file.parquet +├── [1.5K] file.txt +└── [4.0K] folder + └── [ 16] file.parquet + + +Download metadata file structure: +``` +# file.txt.metadata +11c5a3d5811f50298f278a704980280950aedb10 +a16a55fda99d2f2e7b69cce5cf93ff4ad3049930 +1712656091.123 + +# file.parquet.metadata +11c5a3d5811f50298f278a704980280950aedb10 +7c5d3f4b8b76583b422fcb9189ad6c89d5d97a094541ce8932dce3ecabde1421 +1712656091.123 +} +``` +""" + +import base64 +import hashlib +import logging +import os +import time +from dataclasses import dataclass +from pathlib import Path +from typing import Optional + +from .utils import WeakFileLock + + +logger = logging.getLogger(__name__) + + +@dataclass +class LocalDownloadFilePaths: + """ + Paths to the files related to a download process in a local dir. + + Returned by [`get_local_download_paths`]. + + Attributes: + file_path (`Path`): + Path where the file will be saved. + lock_path (`Path`): + Path to the lock file used to ensure atomicity when reading/writing metadata. + metadata_path (`Path`): + Path to the metadata file. + """ + + file_path: Path + lock_path: Path + metadata_path: Path + + def incomplete_path(self, etag: str) -> Path: + """Return the path where a file will be temporarily downloaded before being moved to `file_path`.""" + return self.metadata_path.parent / f"{_short_hash(self.metadata_path.name)}.{etag}.incomplete" + + +@dataclass(frozen=True) +class LocalUploadFilePaths: + """ + Paths to the files related to an upload process in a local dir. + + Returned by [`get_local_upload_paths`]. + + Attributes: + path_in_repo (`str`): + Path of the file in the repo. + file_path (`Path`): + Path where the file will be saved. + lock_path (`Path`): + Path to the lock file used to ensure atomicity when reading/writing metadata. + metadata_path (`Path`): + Path to the metadata file. + """ + + path_in_repo: str + file_path: Path + lock_path: Path + metadata_path: Path + + +@dataclass +class LocalDownloadFileMetadata: + """ + Metadata about a file in the local directory related to a download process. + + Attributes: + filename (`str`): + Path of the file in the repo. + commit_hash (`str`): + Commit hash of the file in the repo. + etag (`str`): + ETag of the file in the repo. Used to check if the file has changed. + For LFS files, this is the sha256 of the file. For regular files, it corresponds to the git hash. + timestamp (`int`): + Unix timestamp of when the metadata was saved i.e. when the metadata was accurate. + """ + + filename: str + commit_hash: str + etag: str + timestamp: float + + +@dataclass +class LocalUploadFileMetadata: + """ + Metadata about a file in the local directory related to an upload process. + """ + + size: int + + # Default values correspond to "we don't know yet" + timestamp: Optional[float] = None + should_ignore: Optional[bool] = None + sha256: Optional[str] = None + upload_mode: Optional[str] = None + is_uploaded: bool = False + is_committed: bool = False + + def save(self, paths: LocalUploadFilePaths) -> None: + """Save the metadata to disk.""" + with WeakFileLock(paths.lock_path): + with paths.metadata_path.open("w") as f: + new_timestamp = time.time() + f.write(str(new_timestamp) + "\n") + + f.write(str(self.size)) # never None + f.write("\n") + + if self.should_ignore is not None: + f.write(str(int(self.should_ignore))) + f.write("\n") + + if self.sha256 is not None: + f.write(self.sha256) + f.write("\n") + + if self.upload_mode is not None: + f.write(self.upload_mode) + f.write("\n") + + f.write(str(int(self.is_uploaded)) + "\n") + f.write(str(int(self.is_committed)) + "\n") + + self.timestamp = new_timestamp + + +def get_local_download_paths(local_dir: Path, filename: str) -> LocalDownloadFilePaths: + """Compute paths to the files related to a download process. + + Folders containing the paths are all guaranteed to exist. + + Args: + local_dir (`Path`): + Path to the local directory in which files are downloaded. + filename (`str`): + Path of the file in the repo. + + Return: + [`LocalDownloadFilePaths`]: the paths to the files (file_path, lock_path, metadata_path, incomplete_path). + """ + # filename is the path in the Hub repository (separated by '/') + # make sure to have a cross platform transcription + sanitized_filename = os.path.join(*filename.split("/")) + if os.name == "nt": + if sanitized_filename.startswith("..\\") or "\\..\\" in sanitized_filename: + raise ValueError( + f"Invalid filename: cannot handle filename '{sanitized_filename}' on Windows. Please ask the repository" + " owner to rename this file." + ) + file_path = local_dir / sanitized_filename + metadata_path = _huggingface_dir(local_dir) / "download" / f"{sanitized_filename}.metadata" + lock_path = metadata_path.with_suffix(".lock") + + # Some Windows versions do not allow for paths longer than 255 characters. + # In this case, we must specify it as an extended path by using the "\\?\" prefix + if os.name == "nt": + if not str(local_dir).startswith("\\\\?\\") and len(os.path.abspath(lock_path)) > 255: + file_path = Path("\\\\?\\" + os.path.abspath(file_path)) + lock_path = Path("\\\\?\\" + os.path.abspath(lock_path)) + metadata_path = Path("\\\\?\\" + os.path.abspath(metadata_path)) + + file_path.parent.mkdir(parents=True, exist_ok=True) + metadata_path.parent.mkdir(parents=True, exist_ok=True) + return LocalDownloadFilePaths(file_path=file_path, lock_path=lock_path, metadata_path=metadata_path) + + +def get_local_upload_paths(local_dir: Path, filename: str) -> LocalUploadFilePaths: + """Compute paths to the files related to an upload process. + + Folders containing the paths are all guaranteed to exist. + + Args: + local_dir (`Path`): + Path to the local directory that is uploaded. + filename (`str`): + Path of the file in the repo. + + Return: + [`LocalUploadFilePaths`]: the paths to the files (file_path, lock_path, metadata_path). + """ + # filename is the path in the Hub repository (separated by '/') + # make sure to have a cross platform transcription + sanitized_filename = os.path.join(*filename.split("/")) + if os.name == "nt": + if sanitized_filename.startswith("..\\") or "\\..\\" in sanitized_filename: + raise ValueError( + f"Invalid filename: cannot handle filename '{sanitized_filename}' on Windows. Please ask the repository" + " owner to rename this file." + ) + file_path = local_dir / sanitized_filename + metadata_path = _huggingface_dir(local_dir) / "upload" / f"{sanitized_filename}.metadata" + lock_path = metadata_path.with_suffix(".lock") + + # Some Windows versions do not allow for paths longer than 255 characters. + # In this case, we must specify it as an extended path by using the "\\?\" prefix + if os.name == "nt": + if not str(local_dir).startswith("\\\\?\\") and len(os.path.abspath(lock_path)) > 255: + file_path = Path("\\\\?\\" + os.path.abspath(file_path)) + lock_path = Path("\\\\?\\" + os.path.abspath(lock_path)) + metadata_path = Path("\\\\?\\" + os.path.abspath(metadata_path)) + + file_path.parent.mkdir(parents=True, exist_ok=True) + metadata_path.parent.mkdir(parents=True, exist_ok=True) + return LocalUploadFilePaths( + path_in_repo=filename, file_path=file_path, lock_path=lock_path, metadata_path=metadata_path + ) + + +def read_download_metadata(local_dir: Path, filename: str) -> Optional[LocalDownloadFileMetadata]: + """Read metadata about a file in the local directory related to a download process. + + Args: + local_dir (`Path`): + Path to the local directory in which files are downloaded. + filename (`str`): + Path of the file in the repo. + + Return: + `[LocalDownloadFileMetadata]` or `None`: the metadata if it exists, `None` otherwise. + """ + paths = get_local_download_paths(local_dir, filename) + with WeakFileLock(paths.lock_path): + if paths.metadata_path.exists(): + try: + with paths.metadata_path.open() as f: + commit_hash = f.readline().strip() + etag = f.readline().strip() + timestamp = float(f.readline().strip()) + metadata = LocalDownloadFileMetadata( + filename=filename, + commit_hash=commit_hash, + etag=etag, + timestamp=timestamp, + ) + except Exception as e: + # remove the metadata file if it is corrupted / not the right format + logger.warning( + f"Invalid metadata file {paths.metadata_path}: {e}. Removing it from disk and continue." + ) + try: + paths.metadata_path.unlink() + except Exception as e: + logger.warning(f"Could not remove corrupted metadata file {paths.metadata_path}: {e}") + + try: + # check if the file exists and hasn't been modified since the metadata was saved + stat = paths.file_path.stat() + if ( + stat.st_mtime - 1 <= metadata.timestamp + ): # allow 1s difference as stat.st_mtime might not be precise + return metadata + logger.info(f"Ignored metadata for '{filename}' (outdated). Will re-compute hash.") + except FileNotFoundError: + # file does not exist => metadata is outdated + return None + return None + + +def read_upload_metadata(local_dir: Path, filename: str) -> LocalUploadFileMetadata: + """Read metadata about a file in the local directory related to an upload process. + + TODO: factorize logic with `read_download_metadata`. + + Args: + local_dir (`Path`): + Path to the local directory in which files are downloaded. + filename (`str`): + Path of the file in the repo. + + Return: + `[LocalUploadFileMetadata]` or `None`: the metadata if it exists, `None` otherwise. + """ + paths = get_local_upload_paths(local_dir, filename) + with WeakFileLock(paths.lock_path): + if paths.metadata_path.exists(): + try: + with paths.metadata_path.open() as f: + timestamp = float(f.readline().strip()) + + size = int(f.readline().strip()) # never None + + _should_ignore = f.readline().strip() + should_ignore = None if _should_ignore == "" else bool(int(_should_ignore)) + + _sha256 = f.readline().strip() + sha256 = None if _sha256 == "" else _sha256 + + _upload_mode = f.readline().strip() + upload_mode = None if _upload_mode == "" else _upload_mode + if upload_mode not in (None, "regular", "lfs"): + raise ValueError(f"Invalid upload mode in metadata {paths.path_in_repo}: {upload_mode}") + + is_uploaded = bool(int(f.readline().strip())) + is_committed = bool(int(f.readline().strip())) + + metadata = LocalUploadFileMetadata( + timestamp=timestamp, + size=size, + should_ignore=should_ignore, + sha256=sha256, + upload_mode=upload_mode, + is_uploaded=is_uploaded, + is_committed=is_committed, + ) + except Exception as e: + # remove the metadata file if it is corrupted / not the right format + logger.warning( + f"Invalid metadata file {paths.metadata_path}: {e}. Removing it from disk and continue." + ) + try: + paths.metadata_path.unlink() + except Exception as e: + logger.warning(f"Could not remove corrupted metadata file {paths.metadata_path}: {e}") + + # TODO: can we do better? + if ( + metadata.timestamp is not None + and metadata.is_uploaded # file was uploaded + and not metadata.is_committed # but not committed + and time.time() - metadata.timestamp > 20 * 3600 # and it's been more than 20 hours + ): # => we consider it as garbage-collected by S3 + metadata.is_uploaded = False + + # check if the file exists and hasn't been modified since the metadata was saved + try: + if metadata.timestamp is not None and paths.file_path.stat().st_mtime <= metadata.timestamp: + return metadata + logger.info(f"Ignored metadata for '{filename}' (outdated). Will re-compute hash.") + except FileNotFoundError: + # file does not exist => metadata is outdated + pass + + # empty metadata => we don't know anything expect its size + return LocalUploadFileMetadata(size=paths.file_path.stat().st_size) + + +def write_download_metadata(local_dir: Path, filename: str, commit_hash: str, etag: str) -> None: + """Write metadata about a file in the local directory related to a download process. + + Args: + local_dir (`Path`): + Path to the local directory in which files are downloaded. + """ + paths = get_local_download_paths(local_dir, filename) + with WeakFileLock(paths.lock_path): + with paths.metadata_path.open("w") as f: + f.write(f"{commit_hash}\n{etag}\n{time.time()}\n") + + +def _huggingface_dir(local_dir: Path) -> Path: + """Return the path to the `.cache/huggingface` directory in a local directory.""" + # Wrap in lru_cache to avoid overwriting the .gitignore file if called multiple times + path = local_dir / ".cache" / "huggingface" + path.mkdir(exist_ok=True, parents=True) + + # Create a .gitignore file in the .cache/huggingface directory if it doesn't exist + # Should be thread-safe enough like this. + gitignore = path / ".gitignore" + gitignore_lock = path / ".gitignore.lock" + if not gitignore.exists(): + try: + with WeakFileLock(gitignore_lock, timeout=0.1): + gitignore.write_text("*") + except IndexError: + pass + except OSError: # TimeoutError, FileNotFoundError, PermissionError, etc. + pass + try: + gitignore_lock.unlink() + except OSError: + pass + return path + + +def _short_hash(filename: str) -> str: + return base64.urlsafe_b64encode(hashlib.sha1(filename.encode()).digest()).decode() diff --git a/.venv/lib/python3.12/site-packages/huggingface_hub/_login.py b/.venv/lib/python3.12/site-packages/huggingface_hub/_login.py new file mode 100644 index 00000000..b1470220 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/huggingface_hub/_login.py @@ -0,0 +1,520 @@ +# Copyright 2020 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Contains methods to log in to the Hub.""" + +import os +import subprocess +from getpass import getpass +from pathlib import Path +from typing import Optional + +from . import constants +from .commands._cli_utils import ANSI +from .utils import ( + capture_output, + get_token, + is_google_colab, + is_notebook, + list_credential_helpers, + logging, + run_subprocess, + set_git_credential, + unset_git_credential, +) +from .utils._auth import ( + _get_token_by_name, + _get_token_from_environment, + _get_token_from_file, + _get_token_from_google_colab, + _save_stored_tokens, + _save_token, + get_stored_tokens, +) +from .utils._deprecation import _deprecate_arguments, _deprecate_positional_args + + +logger = logging.get_logger(__name__) + +_HF_LOGO_ASCII = """ + _| _| _| _| _|_|_| _|_|_| _|_|_| _| _| _|_|_| _|_|_|_| _|_| _|_|_| _|_|_|_| + _| _| _| _| _| _| _| _|_| _| _| _| _| _| _| _| + _|_|_|_| _| _| _| _|_| _| _|_| _| _| _| _| _| _|_| _|_|_| _|_|_|_| _| _|_|_| + _| _| _| _| _| _| _| _| _| _| _|_| _| _| _| _| _| _| _| + _| _| _|_| _|_|_| _|_|_| _|_|_| _| _| _|_|_| _| _| _| _|_|_| _|_|_|_| +""" + + +@_deprecate_arguments( + version="1.0", + deprecated_args="write_permission", + custom_message="Fine-grained tokens added complexity to the permissions, making it irrelevant to check if a token has 'write' access.", +) +@_deprecate_positional_args(version="1.0") +def login( + token: Optional[str] = None, + *, + add_to_git_credential: bool = False, + new_session: bool = True, + write_permission: bool = False, +) -> None: + """Login the machine to access the Hub. + + The `token` is persisted in cache and set as a git credential. Once done, the machine + is logged in and the access token will be available across all `huggingface_hub` + components. If `token` is not provided, it will be prompted to the user either with + a widget (in a notebook) or via the terminal. + + To log in from outside of a script, one can also use `huggingface-cli login` which is + a cli command that wraps [`login`]. + + <Tip> + + [`login`] is a drop-in replacement method for [`notebook_login`] as it wraps and + extends its capabilities. + + </Tip> + + <Tip> + + When the token is not passed, [`login`] will automatically detect if the script runs + in a notebook or not. However, this detection might not be accurate due to the + variety of notebooks that exists nowadays. If that is the case, you can always force + the UI by using [`notebook_login`] or [`interpreter_login`]. + + </Tip> + + Args: + token (`str`, *optional*): + User access token to generate from https://huggingface.co/settings/token. + add_to_git_credential (`bool`, defaults to `False`): + If `True`, token will be set as git credential. If no git credential helper + is configured, a warning will be displayed to the user. If `token` is `None`, + the value of `add_to_git_credential` is ignored and will be prompted again + to the end user. + new_session (`bool`, defaults to `True`): + If `True`, will request a token even if one is already saved on the machine. + write_permission (`bool`): + Ignored and deprecated argument. + Raises: + [`ValueError`](https://docs.python.org/3/library/exceptions.html#ValueError) + If an organization token is passed. Only personal account tokens are valid + to log in. + [`ValueError`](https://docs.python.org/3/library/exceptions.html#ValueError) + If token is invalid. + [`ImportError`](https://docs.python.org/3/library/exceptions.html#ImportError) + If running in a notebook but `ipywidgets` is not installed. + """ + if token is not None: + if not add_to_git_credential: + logger.info( + "The token has not been saved to the git credentials helper. Pass " + "`add_to_git_credential=True` in this function directly or " + "`--add-to-git-credential` if using via `huggingface-cli` if " + "you want to set the git credential as well." + ) + _login(token, add_to_git_credential=add_to_git_credential) + elif is_notebook(): + notebook_login(new_session=new_session) + else: + interpreter_login(new_session=new_session) + + +def logout(token_name: Optional[str] = None) -> None: + """Logout the machine from the Hub. + + Token is deleted from the machine and removed from git credential. + + Args: + token_name (`str`, *optional*): + Name of the access token to logout from. If `None`, will logout from all saved access tokens. + Raises: + [`ValueError`](https://docs.python.org/3/library/exceptions.html#ValueError): + If the access token name is not found. + """ + if get_token() is None and not get_stored_tokens(): # No active token and no saved access tokens + logger.warning("Not logged in!") + return + if not token_name: + # Delete all saved access tokens and token + for file_path in (constants.HF_TOKEN_PATH, constants.HF_STORED_TOKENS_PATH): + try: + Path(file_path).unlink() + except FileNotFoundError: + pass + logger.info("Successfully logged out from all access tokens.") + else: + _logout_from_token(token_name) + logger.info(f"Successfully logged out from access token: {token_name}.") + + unset_git_credential() + + # Check if still logged in + if _get_token_from_google_colab() is not None: + raise EnvironmentError( + "You are automatically logged in using a Google Colab secret.\n" + "To log out, you must unset the `HF_TOKEN` secret in your Colab settings." + ) + if _get_token_from_environment() is not None: + raise EnvironmentError( + "Token has been deleted from your machine but you are still logged in.\n" + "To log out, you must clear out both `HF_TOKEN` and `HUGGING_FACE_HUB_TOKEN` environment variables." + ) + + +def auth_switch(token_name: str, add_to_git_credential: bool = False) -> None: + """Switch to a different access token. + + Args: + token_name (`str`): + Name of the access token to switch to. + add_to_git_credential (`bool`, defaults to `False`): + If `True`, token will be set as git credential. If no git credential helper + is configured, a warning will be displayed to the user. If `token` is `None`, + the value of `add_to_git_credential` is ignored and will be prompted again + to the end user. + + Raises: + [`ValueError`](https://docs.python.org/3/library/exceptions.html#ValueError): + If the access token name is not found. + """ + token = _get_token_by_name(token_name) + if not token: + raise ValueError(f"Access token {token_name} not found in {constants.HF_STORED_TOKENS_PATH}") + # Write token to HF_TOKEN_PATH + _set_active_token(token_name, add_to_git_credential) + logger.info(f"The current active token is: {token_name}") + token_from_environment = _get_token_from_environment() + if token_from_environment is not None and token_from_environment != token: + logger.warning( + "The environment variable `HF_TOKEN` is set and will override the access token you've just switched to." + ) + + +def auth_list() -> None: + """List all stored access tokens.""" + tokens = get_stored_tokens() + + if not tokens: + logger.info("No access tokens found.") + return + # Find current token + current_token = get_token() + current_token_name = None + for token_name in tokens: + if tokens.get(token_name) == current_token: + current_token_name = token_name + # Print header + max_offset = max(len("token"), max(len(token) for token in tokens)) + 2 + print(f" {{:<{max_offset}}}| {{:<15}}".format("name", "token")) + print("-" * (max_offset + 2) + "|" + "-" * 15) + + # Print saved access tokens + for token_name in tokens: + token = tokens.get(token_name, "<not set>") + masked_token = f"{token[:3]}****{token[-4:]}" if token != "<not set>" else token + is_current = "*" if token == current_token else " " + + print(f"{is_current} {{:<{max_offset}}}| {{:<15}}".format(token_name, masked_token)) + + if _get_token_from_environment(): + logger.warning( + "\nNote: Environment variable `HF_TOKEN` is set and is the current active token independently from the stored tokens listed above." + ) + elif current_token_name is None: + logger.warning( + "\nNote: No active token is set and no environment variable `HF_TOKEN` is found. Use `huggingface-cli login` to log in." + ) + + +### +# Interpreter-based login (text) +### + + +@_deprecate_arguments( + version="1.0", + deprecated_args="write_permission", + custom_message="Fine-grained tokens added complexity to the permissions, making it irrelevant to check if a token has 'write' access.", +) +@_deprecate_positional_args(version="1.0") +def interpreter_login(*, new_session: bool = True, write_permission: bool = False) -> None: + """ + Displays a prompt to log in to the HF website and store the token. + + This is equivalent to [`login`] without passing a token when not run in a notebook. + [`interpreter_login`] is useful if you want to force the use of the terminal prompt + instead of a notebook widget. + + For more details, see [`login`]. + + Args: + new_session (`bool`, defaults to `True`): + If `True`, will request a token even if one is already saved on the machine. + write_permission (`bool`): + Ignored and deprecated argument. + """ + if not new_session and get_token() is not None: + logger.info("User is already logged in.") + return + + from .commands.delete_cache import _ask_for_confirmation_no_tui + + print(_HF_LOGO_ASCII) + if get_token() is not None: + logger.info( + " A token is already saved on your machine. Run `huggingface-cli" + " whoami` to get more information or `huggingface-cli logout` if you want" + " to log out." + ) + logger.info(" Setting a new token will erase the existing one.") + + logger.info( + " To log in, `huggingface_hub` requires a token generated from https://huggingface.co/settings/tokens ." + ) + if os.name == "nt": + logger.info("Token can be pasted using 'Right-Click'.") + token = getpass("Enter your token (input will not be visible): ") + add_to_git_credential = _ask_for_confirmation_no_tui("Add token as git credential?") + + _login(token=token, add_to_git_credential=add_to_git_credential) + + +### +# Notebook-based login (widget) +### + +NOTEBOOK_LOGIN_PASSWORD_HTML = """<center> <img +src=https://huggingface.co/front/assets/huggingface_logo-noborder.svg +alt='Hugging Face'> <br> Immediately click login after typing your password or +it might be stored in plain text in this notebook file. </center>""" + + +NOTEBOOK_LOGIN_TOKEN_HTML_START = """<center> <img +src=https://huggingface.co/front/assets/huggingface_logo-noborder.svg +alt='Hugging Face'> <br> Copy a token from <a +href="https://huggingface.co/settings/tokens" target="_blank">your Hugging Face +tokens page</a> and paste it below. <br> Immediately click login after copying +your token or it might be stored in plain text in this notebook file. </center>""" + + +NOTEBOOK_LOGIN_TOKEN_HTML_END = """ +<b>Pro Tip:</b> If you don't already have one, you can create a dedicated +'notebooks' token with 'write' access, that you can then easily reuse for all +notebooks. </center>""" + + +@_deprecate_arguments( + version="1.0", + deprecated_args="write_permission", + custom_message="Fine-grained tokens added complexity to the permissions, making it irrelevant to check if a token has 'write' access.", +) +@_deprecate_positional_args(version="1.0") +def notebook_login(*, new_session: bool = True, write_permission: bool = False) -> None: + """ + Displays a widget to log in to the HF website and store the token. + + This is equivalent to [`login`] without passing a token when run in a notebook. + [`notebook_login`] is useful if you want to force the use of the notebook widget + instead of a prompt in the terminal. + + For more details, see [`login`]. + + Args: + new_session (`bool`, defaults to `True`): + If `True`, will request a token even if one is already saved on the machine. + write_permission (`bool`): + Ignored and deprecated argument. + """ + try: + import ipywidgets.widgets as widgets # type: ignore + from IPython.display import display # type: ignore + except ImportError: + raise ImportError( + "The `notebook_login` function can only be used in a notebook (Jupyter or" + " Colab) and you need the `ipywidgets` module: `pip install ipywidgets`." + ) + if not new_session and get_token() is not None: + logger.info("User is already logged in.") + return + + box_layout = widgets.Layout(display="flex", flex_flow="column", align_items="center", width="50%") + + token_widget = widgets.Password(description="Token:") + git_checkbox_widget = widgets.Checkbox(value=True, description="Add token as git credential?") + token_finish_button = widgets.Button(description="Login") + + login_token_widget = widgets.VBox( + [ + widgets.HTML(NOTEBOOK_LOGIN_TOKEN_HTML_START), + token_widget, + git_checkbox_widget, + token_finish_button, + widgets.HTML(NOTEBOOK_LOGIN_TOKEN_HTML_END), + ], + layout=box_layout, + ) + display(login_token_widget) + + # On click events + def login_token_event(t): + """Event handler for the login button.""" + token = token_widget.value + add_to_git_credential = git_checkbox_widget.value + # Erase token and clear value to make sure it's not saved in the notebook. + token_widget.value = "" + # Hide inputs + login_token_widget.children = [widgets.Label("Connecting...")] + try: + with capture_output() as captured: + _login(token, add_to_git_credential=add_to_git_credential) + message = captured.getvalue() + except Exception as error: + message = str(error) + # Print result (success message or error) + login_token_widget.children = [widgets.Label(line) for line in message.split("\n") if line.strip()] + + token_finish_button.on_click(login_token_event) + + +### +# Login private helpers +### + + +def _login( + token: str, + add_to_git_credential: bool, +) -> None: + from .hf_api import whoami # avoid circular import + + if token.startswith("api_org"): + raise ValueError("You must use your personal account token, not an organization token.") + + token_info = whoami(token) + permission = token_info["auth"]["accessToken"]["role"] + logger.info(f"Token is valid (permission: {permission}).") + + token_name = token_info["auth"]["accessToken"]["displayName"] + # Store token locally + _save_token(token=token, token_name=token_name) + # Set active token + _set_active_token(token_name=token_name, add_to_git_credential=add_to_git_credential) + logger.info("Login successful.") + if _get_token_from_environment(): + logger.warning( + "Note: Environment variable`HF_TOKEN` is set and is the current active token independently from the token you've just configured." + ) + else: + logger.info(f"The current active token is: `{token_name}`") + + +def _logout_from_token(token_name: str) -> None: + """Logout from a specific access token. + + Args: + token_name (`str`): + The name of the access token to logout from. + Raises: + [`ValueError`](https://docs.python.org/3/library/exceptions.html#ValueError): + If the access token name is not found. + """ + stored_tokens = get_stored_tokens() + # If there is no access tokens saved or the access token name is not found, do nothing + if not stored_tokens or token_name not in stored_tokens: + return + + token = stored_tokens.pop(token_name) + _save_stored_tokens(stored_tokens) + + if token == _get_token_from_file(): + logger.warning(f"Active token '{token_name}' has been deleted.") + Path(constants.HF_TOKEN_PATH).unlink(missing_ok=True) + + +def _set_active_token( + token_name: str, + add_to_git_credential: bool, +) -> None: + """Set the active access token. + + Args: + token_name (`str`): + The name of the token to set as active. + """ + token = _get_token_by_name(token_name) + if not token: + raise ValueError(f"Token {token_name} not found in {constants.HF_STORED_TOKENS_PATH}") + if add_to_git_credential: + if _is_git_credential_helper_configured(): + set_git_credential(token) + logger.info( + "Your token has been saved in your configured git credential helpers" + + f" ({','.join(list_credential_helpers())})." + ) + else: + logger.warning("Token has not been saved to git credential helper.") + # Write token to HF_TOKEN_PATH + path = Path(constants.HF_TOKEN_PATH) + path.parent.mkdir(parents=True, exist_ok=True) + path.write_text(token) + logger.info(f"Your token has been saved to {constants.HF_TOKEN_PATH}") + + +def _is_git_credential_helper_configured() -> bool: + """Check if a git credential helper is configured. + + Warns user if not the case (except for Google Colab where "store" is set by default + by `huggingface_hub`). + """ + helpers = list_credential_helpers() + if len(helpers) > 0: + return True # Do not warn: at least 1 helper is set + + # Only in Google Colab to avoid the warning message + # See https://github.com/huggingface/huggingface_hub/issues/1043#issuecomment-1247010710 + if is_google_colab(): + _set_store_as_git_credential_helper_globally() + return True # Do not warn: "store" is used by default in Google Colab + + # Otherwise, warn user + print( + ANSI.red( + "Cannot authenticate through git-credential as no helper is defined on your" + " machine.\nYou might have to re-authenticate when pushing to the Hugging" + " Face Hub.\nRun the following command in your terminal in case you want to" + " set the 'store' credential helper as default.\n\ngit config --global" + " credential.helper store\n\nRead" + " https://git-scm.com/book/en/v2/Git-Tools-Credential-Storage for more" + " details." + ) + ) + return False + + +def _set_store_as_git_credential_helper_globally() -> None: + """Set globally the credential.helper to `store`. + + To be used only in Google Colab as we assume the user doesn't care about the git + credential config. It is the only particular case where we don't want to display the + warning message in [`notebook_login()`]. + + Related: + - https://github.com/huggingface/huggingface_hub/issues/1043 + - https://github.com/huggingface/huggingface_hub/issues/1051 + - https://git-scm.com/docs/git-credential-store + """ + try: + run_subprocess("git config --global credential.helper store") + except subprocess.CalledProcessError as exc: + raise EnvironmentError(exc.stderr) diff --git a/.venv/lib/python3.12/site-packages/huggingface_hub/_snapshot_download.py b/.venv/lib/python3.12/site-packages/huggingface_hub/_snapshot_download.py new file mode 100644 index 00000000..b928dd34 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/huggingface_hub/_snapshot_download.py @@ -0,0 +1,307 @@ +import os +from pathlib import Path +from typing import Dict, List, Literal, Optional, Union + +import requests +from tqdm.auto import tqdm as base_tqdm +from tqdm.contrib.concurrent import thread_map + +from . import constants +from .errors import GatedRepoError, LocalEntryNotFoundError, RepositoryNotFoundError, RevisionNotFoundError +from .file_download import REGEX_COMMIT_HASH, hf_hub_download, repo_folder_name +from .hf_api import DatasetInfo, HfApi, ModelInfo, SpaceInfo +from .utils import OfflineModeIsEnabled, filter_repo_objects, logging, validate_hf_hub_args +from .utils import tqdm as hf_tqdm + + +logger = logging.get_logger(__name__) + + +@validate_hf_hub_args +def snapshot_download( + repo_id: str, + *, + repo_type: Optional[str] = None, + revision: Optional[str] = None, + cache_dir: Union[str, Path, None] = None, + local_dir: Union[str, Path, None] = None, + library_name: Optional[str] = None, + library_version: Optional[str] = None, + user_agent: Optional[Union[Dict, str]] = None, + proxies: Optional[Dict] = None, + etag_timeout: float = constants.DEFAULT_ETAG_TIMEOUT, + force_download: bool = False, + token: Optional[Union[bool, str]] = None, + local_files_only: bool = False, + allow_patterns: Optional[Union[List[str], str]] = None, + ignore_patterns: Optional[Union[List[str], str]] = None, + max_workers: int = 8, + tqdm_class: Optional[base_tqdm] = None, + headers: Optional[Dict[str, str]] = None, + endpoint: Optional[str] = None, + # Deprecated args + local_dir_use_symlinks: Union[bool, Literal["auto"]] = "auto", + resume_download: Optional[bool] = None, +) -> str: + """Download repo files. + + Download a whole snapshot of a repo's files at the specified revision. This is useful when you want all files from + a repo, because you don't know which ones you will need a priori. All files are nested inside a folder in order + to keep their actual filename relative to that folder. You can also filter which files to download using + `allow_patterns` and `ignore_patterns`. + + If `local_dir` is provided, the file structure from the repo will be replicated in this location. When using this + option, the `cache_dir` will not be used and a `.cache/huggingface/` folder will be created at the root of `local_dir` + to store some metadata related to the downloaded files. While this mechanism is not as robust as the main + cache-system, it's optimized for regularly pulling the latest version of a repository. + + An alternative would be to clone the repo but this requires git and git-lfs to be installed and properly + configured. It is also not possible to filter which files to download when cloning a repository using git. + + Args: + repo_id (`str`): + A user or an organization name and a repo name separated by a `/`. + repo_type (`str`, *optional*): + Set to `"dataset"` or `"space"` if downloading from a dataset or space, + `None` or `"model"` if downloading from a model. Default is `None`. + revision (`str`, *optional*): + An optional Git revision id which can be a branch name, a tag, or a + commit hash. + cache_dir (`str`, `Path`, *optional*): + Path to the folder where cached files are stored. + local_dir (`str` or `Path`, *optional*): + If provided, the downloaded files will be placed under this directory. + library_name (`str`, *optional*): + The name of the library to which the object corresponds. + library_version (`str`, *optional*): + The version of the library. + user_agent (`str`, `dict`, *optional*): + The user-agent info in the form of a dictionary or a string. + proxies (`dict`, *optional*): + Dictionary mapping protocol to the URL of the proxy passed to + `requests.request`. + etag_timeout (`float`, *optional*, defaults to `10`): + When fetching ETag, how many seconds to wait for the server to send + data before giving up which is passed to `requests.request`. + force_download (`bool`, *optional*, defaults to `False`): + Whether the file should be downloaded even if it already exists in the local cache. + token (`str`, `bool`, *optional*): + A token to be used for the download. + - If `True`, the token is read from the HuggingFace config + folder. + - If a string, it's used as the authentication token. + headers (`dict`, *optional*): + Additional headers to include in the request. Those headers take precedence over the others. + local_files_only (`bool`, *optional*, defaults to `False`): + If `True`, avoid downloading the file and return the path to the + local cached file if it exists. + allow_patterns (`List[str]` or `str`, *optional*): + If provided, only files matching at least one pattern are downloaded. + ignore_patterns (`List[str]` or `str`, *optional*): + If provided, files matching any of the patterns are not downloaded. + max_workers (`int`, *optional*): + Number of concurrent threads to download files (1 thread = 1 file download). + Defaults to 8. + tqdm_class (`tqdm`, *optional*): + If provided, overwrites the default behavior for the progress bar. Passed + argument must inherit from `tqdm.auto.tqdm` or at least mimic its behavior. + Note that the `tqdm_class` is not passed to each individual download. + Defaults to the custom HF progress bar that can be disabled by setting + `HF_HUB_DISABLE_PROGRESS_BARS` environment variable. + + Returns: + `str`: folder path of the repo snapshot. + + Raises: + [`~utils.RepositoryNotFoundError`] + If the repository to download from cannot be found. This may be because it doesn't exist, + or because it is set to `private` and you do not have access. + [`~utils.RevisionNotFoundError`] + If the revision to download from cannot be found. + [`EnvironmentError`](https://docs.python.org/3/library/exceptions.html#EnvironmentError) + If `token=True` and the token cannot be found. + [`OSError`](https://docs.python.org/3/library/exceptions.html#OSError) if + ETag cannot be determined. + [`ValueError`](https://docs.python.org/3/library/exceptions.html#ValueError) + if some parameter value is invalid. + """ + if cache_dir is None: + cache_dir = constants.HF_HUB_CACHE + if revision is None: + revision = constants.DEFAULT_REVISION + if isinstance(cache_dir, Path): + cache_dir = str(cache_dir) + + if repo_type is None: + repo_type = "model" + if repo_type not in constants.REPO_TYPES: + raise ValueError(f"Invalid repo type: {repo_type}. Accepted repo types are: {str(constants.REPO_TYPES)}") + + storage_folder = os.path.join(cache_dir, repo_folder_name(repo_id=repo_id, repo_type=repo_type)) + + repo_info: Union[ModelInfo, DatasetInfo, SpaceInfo, None] = None + api_call_error: Optional[Exception] = None + if not local_files_only: + # try/except logic to handle different errors => taken from `hf_hub_download` + try: + # if we have internet connection we want to list files to download + api = HfApi( + library_name=library_name, + library_version=library_version, + user_agent=user_agent, + endpoint=endpoint, + headers=headers, + ) + repo_info = api.repo_info(repo_id=repo_id, repo_type=repo_type, revision=revision, token=token) + except (requests.exceptions.SSLError, requests.exceptions.ProxyError): + # Actually raise for those subclasses of ConnectionError + raise + except ( + requests.exceptions.ConnectionError, + requests.exceptions.Timeout, + OfflineModeIsEnabled, + ) as error: + # Internet connection is down + # => will try to use local files only + api_call_error = error + pass + except RevisionNotFoundError: + # The repo was found but the revision doesn't exist on the Hub (never existed or got deleted) + raise + except requests.HTTPError as error: + # Multiple reasons for an http error: + # - Repository is private and invalid/missing token sent + # - Repository is gated and invalid/missing token sent + # - Hub is down (error 500 or 504) + # => let's switch to 'local_files_only=True' to check if the files are already cached. + # (if it's not the case, the error will be re-raised) + api_call_error = error + pass + + # At this stage, if `repo_info` is None it means either: + # - internet connection is down + # - internet connection is deactivated (local_files_only=True or HF_HUB_OFFLINE=True) + # - repo is private/gated and invalid/missing token sent + # - Hub is down + # => let's look if we can find the appropriate folder in the cache: + # - if the specified revision is a commit hash, look inside "snapshots". + # - f the specified revision is a branch or tag, look inside "refs". + # => if local_dir is not None, we will return the path to the local folder if it exists. + if repo_info is None: + # Try to get which commit hash corresponds to the specified revision + commit_hash = None + if REGEX_COMMIT_HASH.match(revision): + commit_hash = revision + else: + ref_path = os.path.join(storage_folder, "refs", revision) + if os.path.exists(ref_path): + # retrieve commit_hash from refs file + with open(ref_path) as f: + commit_hash = f.read() + + # Try to locate snapshot folder for this commit hash + if commit_hash is not None: + snapshot_folder = os.path.join(storage_folder, "snapshots", commit_hash) + if os.path.exists(snapshot_folder): + # Snapshot folder exists => let's return it + # (but we can't check if all the files are actually there) + return snapshot_folder + # If local_dir is not None, return it if it exists and is not empty + if local_dir is not None: + local_dir = Path(local_dir) + if local_dir.is_dir() and any(local_dir.iterdir()): + logger.warning( + f"Returning existing local_dir `{local_dir}` as remote repo cannot be accessed in `snapshot_download` ({api_call_error})." + ) + return str(local_dir.resolve()) + # If we couldn't find the appropriate folder on disk, raise an error. + if local_files_only: + raise LocalEntryNotFoundError( + "Cannot find an appropriate cached snapshot folder for the specified revision on the local disk and " + "outgoing traffic has been disabled. To enable repo look-ups and downloads online, pass " + "'local_files_only=False' as input." + ) + elif isinstance(api_call_error, OfflineModeIsEnabled): + raise LocalEntryNotFoundError( + "Cannot find an appropriate cached snapshot folder for the specified revision on the local disk and " + "outgoing traffic has been disabled. To enable repo look-ups and downloads online, set " + "'HF_HUB_OFFLINE=0' as environment variable." + ) from api_call_error + elif isinstance(api_call_error, RepositoryNotFoundError) or isinstance(api_call_error, GatedRepoError): + # Repo not found => let's raise the actual error + raise api_call_error + else: + # Otherwise: most likely a connection issue or Hub downtime => let's warn the user + raise LocalEntryNotFoundError( + "An error happened while trying to locate the files on the Hub and we cannot find the appropriate" + " snapshot folder for the specified revision on the local disk. Please check your internet connection" + " and try again." + ) from api_call_error + + # At this stage, internet connection is up and running + # => let's download the files! + assert repo_info.sha is not None, "Repo info returned from server must have a revision sha." + assert repo_info.siblings is not None, "Repo info returned from server must have a siblings list." + filtered_repo_files = list( + filter_repo_objects( + items=[f.rfilename for f in repo_info.siblings], + allow_patterns=allow_patterns, + ignore_patterns=ignore_patterns, + ) + ) + commit_hash = repo_info.sha + snapshot_folder = os.path.join(storage_folder, "snapshots", commit_hash) + # if passed revision is not identical to commit_hash + # then revision has to be a branch name or tag name. + # In that case store a ref. + if revision != commit_hash: + ref_path = os.path.join(storage_folder, "refs", revision) + try: + os.makedirs(os.path.dirname(ref_path), exist_ok=True) + with open(ref_path, "w") as f: + f.write(commit_hash) + except OSError as e: + logger.warning(f"Ignored error while writing commit hash to {ref_path}: {e}.") + + # we pass the commit_hash to hf_hub_download + # so no network call happens if we already + # have the file locally. + def _inner_hf_hub_download(repo_file: str): + return hf_hub_download( + repo_id, + filename=repo_file, + repo_type=repo_type, + revision=commit_hash, + endpoint=endpoint, + cache_dir=cache_dir, + local_dir=local_dir, + local_dir_use_symlinks=local_dir_use_symlinks, + library_name=library_name, + library_version=library_version, + user_agent=user_agent, + proxies=proxies, + etag_timeout=etag_timeout, + resume_download=resume_download, + force_download=force_download, + token=token, + headers=headers, + ) + + if constants.HF_HUB_ENABLE_HF_TRANSFER: + # when using hf_transfer we don't want extra parallelism + # from the one hf_transfer provides + for file in filtered_repo_files: + _inner_hf_hub_download(file) + else: + thread_map( + _inner_hf_hub_download, + filtered_repo_files, + desc=f"Fetching {len(filtered_repo_files)} files", + max_workers=max_workers, + # User can use its own tqdm class or the default one from `huggingface_hub.utils` + tqdm_class=tqdm_class or hf_tqdm, + ) + + if local_dir is not None: + return str(os.path.realpath(local_dir)) + return snapshot_folder diff --git a/.venv/lib/python3.12/site-packages/huggingface_hub/_space_api.py b/.venv/lib/python3.12/site-packages/huggingface_hub/_space_api.py new file mode 100644 index 00000000..51d14b1f --- /dev/null +++ b/.venv/lib/python3.12/site-packages/huggingface_hub/_space_api.py @@ -0,0 +1,160 @@ +# coding=utf-8 +# Copyright 2019-present, the HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +from dataclasses import dataclass +from datetime import datetime +from enum import Enum +from typing import Dict, Optional + +from huggingface_hub.utils import parse_datetime + + +class SpaceStage(str, Enum): + """ + Enumeration of possible stage of a Space on the Hub. + + Value can be compared to a string: + ```py + assert SpaceStage.BUILDING == "BUILDING" + ``` + + Taken from https://github.com/huggingface/moon-landing/blob/main/server/repo_types/SpaceInfo.ts#L61 (private url). + """ + + # Copied from moon-landing > server > repo_types > SpaceInfo.ts (private repo) + NO_APP_FILE = "NO_APP_FILE" + CONFIG_ERROR = "CONFIG_ERROR" + BUILDING = "BUILDING" + BUILD_ERROR = "BUILD_ERROR" + RUNNING = "RUNNING" + RUNNING_BUILDING = "RUNNING_BUILDING" + RUNTIME_ERROR = "RUNTIME_ERROR" + DELETING = "DELETING" + STOPPED = "STOPPED" + PAUSED = "PAUSED" + + +class SpaceHardware(str, Enum): + """ + Enumeration of hardwares available to run your Space on the Hub. + + Value can be compared to a string: + ```py + assert SpaceHardware.CPU_BASIC == "cpu-basic" + ``` + + Taken from https://github.com/huggingface/moon-landing/blob/main/server/repo_types/SpaceInfo.ts#L73 (private url). + """ + + CPU_BASIC = "cpu-basic" + CPU_UPGRADE = "cpu-upgrade" + T4_SMALL = "t4-small" + T4_MEDIUM = "t4-medium" + L4X1 = "l4x1" + L4X4 = "l4x4" + ZERO_A10G = "zero-a10g" + A10G_SMALL = "a10g-small" + A10G_LARGE = "a10g-large" + A10G_LARGEX2 = "a10g-largex2" + A10G_LARGEX4 = "a10g-largex4" + A100_LARGE = "a100-large" + V5E_1X1 = "v5e-1x1" + V5E_2X2 = "v5e-2x2" + V5E_2X4 = "v5e-2x4" + + +class SpaceStorage(str, Enum): + """ + Enumeration of persistent storage available for your Space on the Hub. + + Value can be compared to a string: + ```py + assert SpaceStorage.SMALL == "small" + ``` + + Taken from https://github.com/huggingface/moon-landing/blob/main/server/repo_types/SpaceHardwareFlavor.ts#L24 (private url). + """ + + SMALL = "small" + MEDIUM = "medium" + LARGE = "large" + + +@dataclass +class SpaceRuntime: + """ + Contains information about the current runtime of a Space. + + Args: + stage (`str`): + Current stage of the space. Example: RUNNING. + hardware (`str` or `None`): + Current hardware of the space. Example: "cpu-basic". Can be `None` if Space + is `BUILDING` for the first time. + requested_hardware (`str` or `None`): + Requested hardware. Can be different than `hardware` especially if the request + has just been made. Example: "t4-medium". Can be `None` if no hardware has + been requested yet. + sleep_time (`int` or `None`): + Number of seconds the Space will be kept alive after the last request. By default (if value is `None`), the + Space will never go to sleep if it's running on an upgraded hardware, while it will go to sleep after 48 + hours on a free 'cpu-basic' hardware. For more details, see https://huggingface.co/docs/hub/spaces-gpus#sleep-time. + raw (`dict`): + Raw response from the server. Contains more information about the Space + runtime like number of replicas, number of cpu, memory size,... + """ + + stage: SpaceStage + hardware: Optional[SpaceHardware] + requested_hardware: Optional[SpaceHardware] + sleep_time: Optional[int] + storage: Optional[SpaceStorage] + raw: Dict + + def __init__(self, data: Dict) -> None: + self.stage = data["stage"] + self.hardware = data.get("hardware", {}).get("current") + self.requested_hardware = data.get("hardware", {}).get("requested") + self.sleep_time = data.get("gcTimeout") + self.storage = data.get("storage") + self.raw = data + + +@dataclass +class SpaceVariable: + """ + Contains information about the current variables of a Space. + + Args: + key (`str`): + Variable key. Example: `"MODEL_REPO_ID"` + value (`str`): + Variable value. Example: `"the_model_repo_id"`. + description (`str` or None): + Description of the variable. Example: `"Model Repo ID of the implemented model"`. + updatedAt (`datetime` or None): + datetime of the last update of the variable (if the variable has been updated at least once). + """ + + key: str + value: str + description: Optional[str] + updated_at: Optional[datetime] + + def __init__(self, key: str, values: Dict) -> None: + self.key = key + self.value = values["value"] + self.description = values.get("description") + updated_at = values.get("updatedAt") + self.updated_at = parse_datetime(updated_at) if updated_at is not None else None diff --git a/.venv/lib/python3.12/site-packages/huggingface_hub/_tensorboard_logger.py b/.venv/lib/python3.12/site-packages/huggingface_hub/_tensorboard_logger.py new file mode 100644 index 00000000..5e910972 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/huggingface_hub/_tensorboard_logger.py @@ -0,0 +1,194 @@ +# Copyright 2023 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Contains a logger to push training logs to the Hub, using Tensorboard.""" + +from pathlib import Path +from typing import TYPE_CHECKING, List, Optional, Union + +from ._commit_scheduler import CommitScheduler +from .errors import EntryNotFoundError +from .repocard import ModelCard +from .utils import experimental + + +# Depending on user's setup, SummaryWriter can come either from 'tensorboardX' +# or from 'torch.utils.tensorboard'. Both are compatible so let's try to load +# from either of them. +try: + from tensorboardX import SummaryWriter + + is_summary_writer_available = True + +except ImportError: + try: + from torch.utils.tensorboard import SummaryWriter + + is_summary_writer_available = False + except ImportError: + # Dummy class to avoid failing at import. Will raise on instance creation. + SummaryWriter = object + is_summary_writer_available = False + +if TYPE_CHECKING: + from tensorboardX import SummaryWriter + + +class HFSummaryWriter(SummaryWriter): + """ + Wrapper around the tensorboard's `SummaryWriter` to push training logs to the Hub. + + Data is logged locally and then pushed to the Hub asynchronously. Pushing data to the Hub is done in a separate + thread to avoid blocking the training script. In particular, if the upload fails for any reason (e.g. a connection + issue), the main script will not be interrupted. Data is automatically pushed to the Hub every `commit_every` + minutes (default to every 5 minutes). + + <Tip warning={true}> + + `HFSummaryWriter` is experimental. Its API is subject to change in the future without prior notice. + + </Tip> + + Args: + repo_id (`str`): + The id of the repo to which the logs will be pushed. + logdir (`str`, *optional*): + The directory where the logs will be written. If not specified, a local directory will be created by the + underlying `SummaryWriter` object. + commit_every (`int` or `float`, *optional*): + The frequency (in minutes) at which the logs will be pushed to the Hub. Defaults to 5 minutes. + squash_history (`bool`, *optional*): + Whether to squash the history of the repo after each commit. Defaults to `False`. Squashing commits is + useful to avoid degraded performances on the repo when it grows too large. + repo_type (`str`, *optional*): + The type of the repo to which the logs will be pushed. Defaults to "model". + repo_revision (`str`, *optional*): + The revision of the repo to which the logs will be pushed. Defaults to "main". + repo_private (`bool`, *optional*): + Whether to make the repo private. If `None` (default), the repo will be public unless the organization's default is private. This value is ignored if the repo already exists. + path_in_repo (`str`, *optional*): + The path to the folder in the repo where the logs will be pushed. Defaults to "tensorboard/". + repo_allow_patterns (`List[str]` or `str`, *optional*): + A list of patterns to include in the upload. Defaults to `"*.tfevents.*"`. Check out the + [upload guide](https://huggingface.co/docs/huggingface_hub/guides/upload#upload-a-folder) for more details. + repo_ignore_patterns (`List[str]` or `str`, *optional*): + A list of patterns to exclude in the upload. Check out the + [upload guide](https://huggingface.co/docs/huggingface_hub/guides/upload#upload-a-folder) for more details. + token (`str`, *optional*): + Authentication token. Will default to the stored token. See https://huggingface.co/settings/token for more + details + kwargs: + Additional keyword arguments passed to `SummaryWriter`. + + Examples: + ```diff + # Taken from https://pytorch.org/docs/stable/tensorboard.html + - from torch.utils.tensorboard import SummaryWriter + + from huggingface_hub import HFSummaryWriter + + import numpy as np + + - writer = SummaryWriter() + + writer = HFSummaryWriter(repo_id="username/my-trained-model") + + for n_iter in range(100): + writer.add_scalar('Loss/train', np.random.random(), n_iter) + writer.add_scalar('Loss/test', np.random.random(), n_iter) + writer.add_scalar('Accuracy/train', np.random.random(), n_iter) + writer.add_scalar('Accuracy/test', np.random.random(), n_iter) + ``` + + ```py + >>> from huggingface_hub import HFSummaryWriter + + # Logs are automatically pushed every 15 minutes (5 by default) + when exiting the context manager + >>> with HFSummaryWriter(repo_id="test_hf_logger", commit_every=15) as logger: + ... logger.add_scalar("a", 1) + ... logger.add_scalar("b", 2) + ``` + """ + + @experimental + def __new__(cls, *args, **kwargs) -> "HFSummaryWriter": + if not is_summary_writer_available: + raise ImportError( + "You must have `tensorboard` installed to use `HFSummaryWriter`. Please run `pip install --upgrade" + " tensorboardX` first." + ) + return super().__new__(cls) + + def __init__( + self, + repo_id: str, + *, + logdir: Optional[str] = None, + commit_every: Union[int, float] = 5, + squash_history: bool = False, + repo_type: Optional[str] = None, + repo_revision: Optional[str] = None, + repo_private: Optional[bool] = None, + path_in_repo: Optional[str] = "tensorboard", + repo_allow_patterns: Optional[Union[List[str], str]] = "*.tfevents.*", + repo_ignore_patterns: Optional[Union[List[str], str]] = None, + token: Optional[str] = None, + **kwargs, + ): + # Initialize SummaryWriter + super().__init__(logdir=logdir, **kwargs) + + # Check logdir has been correctly initialized and fail early otherwise. In practice, SummaryWriter takes care of it. + if not isinstance(self.logdir, str): + raise ValueError(f"`self.logdir` must be a string. Got '{self.logdir}' of type {type(self.logdir)}.") + + # Append logdir name to `path_in_repo` + if path_in_repo is None or path_in_repo == "": + path_in_repo = Path(self.logdir).name + else: + path_in_repo = path_in_repo.strip("/") + "/" + Path(self.logdir).name + + # Initialize scheduler + self.scheduler = CommitScheduler( + folder_path=self.logdir, + path_in_repo=path_in_repo, + repo_id=repo_id, + repo_type=repo_type, + revision=repo_revision, + private=repo_private, + token=token, + allow_patterns=repo_allow_patterns, + ignore_patterns=repo_ignore_patterns, + every=commit_every, + squash_history=squash_history, + ) + + # Exposing some high-level info at root level + self.repo_id = self.scheduler.repo_id + self.repo_type = self.scheduler.repo_type + self.repo_revision = self.scheduler.revision + + # Add `hf-summary-writer` tag to the model card metadata + try: + card = ModelCard.load(repo_id_or_path=self.repo_id, repo_type=self.repo_type) + except EntryNotFoundError: + card = ModelCard("") + tags = card.data.get("tags", []) + if "hf-summary-writer" not in tags: + tags.append("hf-summary-writer") + card.data["tags"] = tags + card.push_to_hub(repo_id=self.repo_id, repo_type=self.repo_type) + + def __exit__(self, exc_type, exc_val, exc_tb): + """Push to hub in a non-blocking way when exiting the logger's context manager.""" + super().__exit__(exc_type, exc_val, exc_tb) + future = self.scheduler.trigger() + future.result() diff --git a/.venv/lib/python3.12/site-packages/huggingface_hub/_upload_large_folder.py b/.venv/lib/python3.12/site-packages/huggingface_hub/_upload_large_folder.py new file mode 100644 index 00000000..c925a31f --- /dev/null +++ b/.venv/lib/python3.12/site-packages/huggingface_hub/_upload_large_folder.py @@ -0,0 +1,622 @@ +# coding=utf-8 +# Copyright 2024-present, the HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +import enum +import logging +import os +import queue +import shutil +import sys +import threading +import time +import traceback +from datetime import datetime +from pathlib import Path +from threading import Lock +from typing import TYPE_CHECKING, List, Optional, Tuple, Union +from urllib.parse import quote + +from . import constants +from ._commit_api import CommitOperationAdd, UploadInfo, _fetch_upload_modes +from ._local_folder import LocalUploadFileMetadata, LocalUploadFilePaths, get_local_upload_paths, read_upload_metadata +from .constants import DEFAULT_REVISION, REPO_TYPES +from .utils import DEFAULT_IGNORE_PATTERNS, filter_repo_objects, tqdm +from .utils._cache_manager import _format_size +from .utils.sha import sha_fileobj + + +if TYPE_CHECKING: + from .hf_api import HfApi + +logger = logging.getLogger(__name__) + +WAITING_TIME_IF_NO_TASKS = 10 # seconds +MAX_NB_REGULAR_FILES_PER_COMMIT = 75 +MAX_NB_LFS_FILES_PER_COMMIT = 150 + + +def upload_large_folder_internal( + api: "HfApi", + repo_id: str, + folder_path: Union[str, Path], + *, + repo_type: str, # Repo type is required! + revision: Optional[str] = None, + private: Optional[bool] = None, + allow_patterns: Optional[Union[List[str], str]] = None, + ignore_patterns: Optional[Union[List[str], str]] = None, + num_workers: Optional[int] = None, + print_report: bool = True, + print_report_every: int = 60, +): + """Upload a large folder to the Hub in the most resilient way possible. + + See [`HfApi.upload_large_folder`] for the full documentation. + """ + # 1. Check args and setup + if repo_type is None: + raise ValueError( + "For large uploads, `repo_type` is explicitly required. Please set it to `model`, `dataset` or `space`." + " If you are using the CLI, pass it as `--repo-type=model`." + ) + if repo_type not in REPO_TYPES: + raise ValueError(f"Invalid repo type, must be one of {REPO_TYPES}") + if revision is None: + revision = DEFAULT_REVISION + + folder_path = Path(folder_path).expanduser().resolve() + if not folder_path.is_dir(): + raise ValueError(f"Provided path: '{folder_path}' is not a directory") + + if ignore_patterns is None: + ignore_patterns = [] + elif isinstance(ignore_patterns, str): + ignore_patterns = [ignore_patterns] + ignore_patterns += DEFAULT_IGNORE_PATTERNS + + if num_workers is None: + nb_cores = os.cpu_count() or 1 + num_workers = max(nb_cores - 2, 2) # Use all but 2 cores, or at least 2 cores + + # 2. Create repo if missing + repo_url = api.create_repo(repo_id=repo_id, repo_type=repo_type, private=private, exist_ok=True) + logger.info(f"Repo created: {repo_url}") + repo_id = repo_url.repo_id + + # 3. List files to upload + filtered_paths_list = filter_repo_objects( + (path.relative_to(folder_path).as_posix() for path in folder_path.glob("**/*") if path.is_file()), + allow_patterns=allow_patterns, + ignore_patterns=ignore_patterns, + ) + paths_list = [get_local_upload_paths(folder_path, relpath) for relpath in filtered_paths_list] + logger.info(f"Found {len(paths_list)} candidate files to upload") + + # Read metadata for each file + items = [ + (paths, read_upload_metadata(folder_path, paths.path_in_repo)) + for paths in tqdm(paths_list, desc="Recovering from metadata files") + ] + + # 4. Start workers + status = LargeUploadStatus(items) + threads = [ + threading.Thread( + target=_worker_job, + kwargs={ + "status": status, + "api": api, + "repo_id": repo_id, + "repo_type": repo_type, + "revision": revision, + }, + ) + for _ in range(num_workers) + ] + + for thread in threads: + thread.start() + + # 5. Print regular reports + if print_report: + print("\n\n" + status.current_report()) + last_report_ts = time.time() + while True: + time.sleep(1) + if time.time() - last_report_ts >= print_report_every: + if print_report: + _print_overwrite(status.current_report()) + last_report_ts = time.time() + if status.is_done(): + logging.info("Is done: exiting main loop") + break + + for thread in threads: + thread.join() + + logger.info(status.current_report()) + logging.info("Upload is complete!") + + +#################### +# Logic to manage workers and synchronize tasks +#################### + + +class WorkerJob(enum.Enum): + SHA256 = enum.auto() + GET_UPLOAD_MODE = enum.auto() + PREUPLOAD_LFS = enum.auto() + COMMIT = enum.auto() + WAIT = enum.auto() # if no tasks are available but we don't want to exit + + +JOB_ITEM_T = Tuple[LocalUploadFilePaths, LocalUploadFileMetadata] + + +class LargeUploadStatus: + """Contains information, queues and tasks for a large upload process.""" + + def __init__(self, items: List[JOB_ITEM_T]): + self.items = items + self.queue_sha256: "queue.Queue[JOB_ITEM_T]" = queue.Queue() + self.queue_get_upload_mode: "queue.Queue[JOB_ITEM_T]" = queue.Queue() + self.queue_preupload_lfs: "queue.Queue[JOB_ITEM_T]" = queue.Queue() + self.queue_commit: "queue.Queue[JOB_ITEM_T]" = queue.Queue() + self.lock = Lock() + + self.nb_workers_sha256: int = 0 + self.nb_workers_get_upload_mode: int = 0 + self.nb_workers_preupload_lfs: int = 0 + self.nb_workers_commit: int = 0 + self.nb_workers_waiting: int = 0 + self.last_commit_attempt: Optional[float] = None + + self._started_at = datetime.now() + + # Setup queues + for item in self.items: + paths, metadata = item + if metadata.sha256 is None: + self.queue_sha256.put(item) + elif metadata.upload_mode is None: + self.queue_get_upload_mode.put(item) + elif metadata.upload_mode == "lfs" and not metadata.is_uploaded: + self.queue_preupload_lfs.put(item) + elif not metadata.is_committed: + self.queue_commit.put(item) + else: + logger.debug(f"Skipping file {paths.path_in_repo} (already uploaded and committed)") + + def current_report(self) -> str: + """Generate a report of the current status of the large upload.""" + nb_hashed = 0 + size_hashed = 0 + nb_preuploaded = 0 + nb_lfs = 0 + nb_lfs_unsure = 0 + size_preuploaded = 0 + nb_committed = 0 + size_committed = 0 + total_size = 0 + ignored_files = 0 + total_files = 0 + + with self.lock: + for _, metadata in self.items: + if metadata.should_ignore: + ignored_files += 1 + continue + total_size += metadata.size + total_files += 1 + if metadata.sha256 is not None: + nb_hashed += 1 + size_hashed += metadata.size + if metadata.upload_mode == "lfs": + nb_lfs += 1 + if metadata.upload_mode is None: + nb_lfs_unsure += 1 + if metadata.is_uploaded: + nb_preuploaded += 1 + size_preuploaded += metadata.size + if metadata.is_committed: + nb_committed += 1 + size_committed += metadata.size + total_size_str = _format_size(total_size) + + now = datetime.now() + now_str = now.strftime("%Y-%m-%d %H:%M:%S") + elapsed = now - self._started_at + elapsed_str = str(elapsed).split(".")[0] # remove milliseconds + + message = "\n" + "-" * 10 + message += f" {now_str} ({elapsed_str}) " + message += "-" * 10 + "\n" + + message += "Files: " + message += f"hashed {nb_hashed}/{total_files} ({_format_size(size_hashed)}/{total_size_str}) | " + message += f"pre-uploaded: {nb_preuploaded}/{nb_lfs} ({_format_size(size_preuploaded)}/{total_size_str})" + if nb_lfs_unsure > 0: + message += f" (+{nb_lfs_unsure} unsure)" + message += f" | committed: {nb_committed}/{total_files} ({_format_size(size_committed)}/{total_size_str})" + message += f" | ignored: {ignored_files}\n" + + message += "Workers: " + message += f"hashing: {self.nb_workers_sha256} | " + message += f"get upload mode: {self.nb_workers_get_upload_mode} | " + message += f"pre-uploading: {self.nb_workers_preupload_lfs} | " + message += f"committing: {self.nb_workers_commit} | " + message += f"waiting: {self.nb_workers_waiting}\n" + message += "-" * 51 + + return message + + def is_done(self) -> bool: + with self.lock: + return all(metadata.is_committed or metadata.should_ignore for _, metadata in self.items) + + +def _worker_job( + status: LargeUploadStatus, + api: "HfApi", + repo_id: str, + repo_type: str, + revision: str, +): + """ + Main process for a worker. The worker will perform tasks based on the priority list until all files are uploaded + and committed. If no tasks are available, the worker will wait for 10 seconds before checking again. + + If a task fails for any reason, the item(s) are put back in the queue for another worker to pick up. + + Read `upload_large_folder` docstring for more information on how tasks are prioritized. + """ + while True: + next_job: Optional[Tuple[WorkerJob, List[JOB_ITEM_T]]] = None + + # Determine next task + next_job = _determine_next_job(status) + if next_job is None: + return + job, items = next_job + + # Perform task + if job == WorkerJob.SHA256: + item = items[0] # single item + try: + _compute_sha256(item) + status.queue_get_upload_mode.put(item) + except KeyboardInterrupt: + raise + except Exception as e: + logger.error(f"Failed to compute sha256: {e}") + traceback.format_exc() + status.queue_sha256.put(item) + + with status.lock: + status.nb_workers_sha256 -= 1 + + elif job == WorkerJob.GET_UPLOAD_MODE: + try: + _get_upload_mode(items, api=api, repo_id=repo_id, repo_type=repo_type, revision=revision) + except KeyboardInterrupt: + raise + except Exception as e: + logger.error(f"Failed to get upload mode: {e}") + traceback.format_exc() + + # Items are either: + # - dropped (if should_ignore) + # - put in LFS queue (if LFS) + # - put in commit queue (if regular) + # - or put back (if error occurred). + for item in items: + _, metadata = item + if metadata.should_ignore: + continue + if metadata.upload_mode == "lfs": + status.queue_preupload_lfs.put(item) + elif metadata.upload_mode == "regular": + status.queue_commit.put(item) + else: + status.queue_get_upload_mode.put(item) + + with status.lock: + status.nb_workers_get_upload_mode -= 1 + + elif job == WorkerJob.PREUPLOAD_LFS: + item = items[0] # single item + try: + _preupload_lfs(item, api=api, repo_id=repo_id, repo_type=repo_type, revision=revision) + status.queue_commit.put(item) + except KeyboardInterrupt: + raise + except Exception as e: + logger.error(f"Failed to preupload LFS: {e}") + traceback.format_exc() + status.queue_preupload_lfs.put(item) + + with status.lock: + status.nb_workers_preupload_lfs -= 1 + + elif job == WorkerJob.COMMIT: + try: + _commit(items, api=api, repo_id=repo_id, repo_type=repo_type, revision=revision) + except KeyboardInterrupt: + raise + except Exception as e: + logger.error(f"Failed to commit: {e}") + traceback.format_exc() + for item in items: + status.queue_commit.put(item) + with status.lock: + status.last_commit_attempt = time.time() + status.nb_workers_commit -= 1 + + elif job == WorkerJob.WAIT: + time.sleep(WAITING_TIME_IF_NO_TASKS) + with status.lock: + status.nb_workers_waiting -= 1 + + +def _determine_next_job(status: LargeUploadStatus) -> Optional[Tuple[WorkerJob, List[JOB_ITEM_T]]]: + with status.lock: + # 1. Commit if more than 5 minutes since last commit attempt (and at least 1 file) + if ( + status.nb_workers_commit == 0 + and status.queue_commit.qsize() > 0 + and status.last_commit_attempt is not None + and time.time() - status.last_commit_attempt > 5 * 60 + ): + status.nb_workers_commit += 1 + logger.debug("Job: commit (more than 5 minutes since last commit attempt)") + return (WorkerJob.COMMIT, _get_items_to_commit(status.queue_commit)) + + # 2. Commit if at least 100 files are ready to commit + elif status.nb_workers_commit == 0 and status.queue_commit.qsize() >= 150: + status.nb_workers_commit += 1 + logger.debug("Job: commit (>100 files ready)") + return (WorkerJob.COMMIT, _get_items_to_commit(status.queue_commit)) + + # 3. Get upload mode if at least 10 files + elif status.queue_get_upload_mode.qsize() >= 10: + status.nb_workers_get_upload_mode += 1 + logger.debug("Job: get upload mode (>10 files ready)") + return (WorkerJob.GET_UPLOAD_MODE, _get_n(status.queue_get_upload_mode, 50)) + + # 4. Preupload LFS file if at least 1 file and no worker is preuploading LFS + elif status.queue_preupload_lfs.qsize() > 0 and status.nb_workers_preupload_lfs == 0: + status.nb_workers_preupload_lfs += 1 + logger.debug("Job: preupload LFS (no other worker preuploading LFS)") + return (WorkerJob.PREUPLOAD_LFS, _get_one(status.queue_preupload_lfs)) + + # 5. Compute sha256 if at least 1 file and no worker is computing sha256 + elif status.queue_sha256.qsize() > 0 and status.nb_workers_sha256 == 0: + status.nb_workers_sha256 += 1 + logger.debug("Job: sha256 (no other worker computing sha256)") + return (WorkerJob.SHA256, _get_one(status.queue_sha256)) + + # 6. Get upload mode if at least 1 file and no worker is getting upload mode + elif status.queue_get_upload_mode.qsize() > 0 and status.nb_workers_get_upload_mode == 0: + status.nb_workers_get_upload_mode += 1 + logger.debug("Job: get upload mode (no other worker getting upload mode)") + return (WorkerJob.GET_UPLOAD_MODE, _get_n(status.queue_get_upload_mode, 50)) + + # 7. Preupload LFS file if at least 1 file + # Skip if hf_transfer is enabled and there is already a worker preuploading LFS + elif status.queue_preupload_lfs.qsize() > 0 and ( + status.nb_workers_preupload_lfs == 0 or not constants.HF_HUB_ENABLE_HF_TRANSFER + ): + status.nb_workers_preupload_lfs += 1 + logger.debug("Job: preupload LFS") + return (WorkerJob.PREUPLOAD_LFS, _get_one(status.queue_preupload_lfs)) + + # 8. Compute sha256 if at least 1 file + elif status.queue_sha256.qsize() > 0: + status.nb_workers_sha256 += 1 + logger.debug("Job: sha256") + return (WorkerJob.SHA256, _get_one(status.queue_sha256)) + + # 9. Get upload mode if at least 1 file + elif status.queue_get_upload_mode.qsize() > 0: + status.nb_workers_get_upload_mode += 1 + logger.debug("Job: get upload mode") + return (WorkerJob.GET_UPLOAD_MODE, _get_n(status.queue_get_upload_mode, 50)) + + # 10. Commit if at least 1 file and 1 min since last commit attempt + elif ( + status.nb_workers_commit == 0 + and status.queue_commit.qsize() > 0 + and status.last_commit_attempt is not None + and time.time() - status.last_commit_attempt > 1 * 60 + ): + status.nb_workers_commit += 1 + logger.debug("Job: commit (1 min since last commit attempt)") + return (WorkerJob.COMMIT, _get_items_to_commit(status.queue_commit)) + + # 11. Commit if at least 1 file all other queues are empty and all workers are waiting + # e.g. when it's the last commit + elif ( + status.nb_workers_commit == 0 + and status.queue_commit.qsize() > 0 + and status.queue_sha256.qsize() == 0 + and status.queue_get_upload_mode.qsize() == 0 + and status.queue_preupload_lfs.qsize() == 0 + and status.nb_workers_sha256 == 0 + and status.nb_workers_get_upload_mode == 0 + and status.nb_workers_preupload_lfs == 0 + ): + status.nb_workers_commit += 1 + logger.debug("Job: commit") + return (WorkerJob.COMMIT, _get_items_to_commit(status.queue_commit)) + + # 12. If all queues are empty, exit + elif all(metadata.is_committed or metadata.should_ignore for _, metadata in status.items): + logger.info("All files have been processed! Exiting worker.") + return None + + # 13. If no task is available, wait + else: + status.nb_workers_waiting += 1 + logger.debug(f"No task available, waiting... ({WAITING_TIME_IF_NO_TASKS}s)") + return (WorkerJob.WAIT, []) + + +#################### +# Atomic jobs (sha256, get_upload_mode, preupload_lfs, commit) +#################### + + +def _compute_sha256(item: JOB_ITEM_T) -> None: + """Compute sha256 of a file and save it in metadata.""" + paths, metadata = item + if metadata.sha256 is None: + with paths.file_path.open("rb") as f: + metadata.sha256 = sha_fileobj(f).hex() + metadata.save(paths) + + +def _get_upload_mode(items: List[JOB_ITEM_T], api: "HfApi", repo_id: str, repo_type: str, revision: str) -> None: + """Get upload mode for each file and update metadata. + + Also receive info if the file should be ignored. + """ + additions = [_build_hacky_operation(item) for item in items] + _fetch_upload_modes( + additions=additions, + repo_type=repo_type, + repo_id=repo_id, + headers=api._build_hf_headers(), + revision=quote(revision, safe=""), + ) + for item, addition in zip(items, additions): + paths, metadata = item + metadata.upload_mode = addition._upload_mode + metadata.should_ignore = addition._should_ignore + metadata.save(paths) + + +def _preupload_lfs(item: JOB_ITEM_T, api: "HfApi", repo_id: str, repo_type: str, revision: str) -> None: + """Preupload LFS file and update metadata.""" + paths, metadata = item + addition = _build_hacky_operation(item) + api.preupload_lfs_files( + repo_id=repo_id, + repo_type=repo_type, + revision=revision, + additions=[addition], + ) + + metadata.is_uploaded = True + metadata.save(paths) + + +def _commit(items: List[JOB_ITEM_T], api: "HfApi", repo_id: str, repo_type: str, revision: str) -> None: + """Commit files to the repo.""" + additions = [_build_hacky_operation(item) for item in items] + api.create_commit( + repo_id=repo_id, + repo_type=repo_type, + revision=revision, + operations=additions, + commit_message="Add files using upload-large-folder tool", + ) + for paths, metadata in items: + metadata.is_committed = True + metadata.save(paths) + + +#################### +# Hacks with CommitOperationAdd to bypass checks/sha256 calculation +#################### + + +class HackyCommitOperationAdd(CommitOperationAdd): + def __post_init__(self) -> None: + if isinstance(self.path_or_fileobj, Path): + self.path_or_fileobj = str(self.path_or_fileobj) + + +def _build_hacky_operation(item: JOB_ITEM_T) -> HackyCommitOperationAdd: + paths, metadata = item + operation = HackyCommitOperationAdd(path_in_repo=paths.path_in_repo, path_or_fileobj=paths.file_path) + with paths.file_path.open("rb") as file: + sample = file.peek(512)[:512] + if metadata.sha256 is None: + raise ValueError("sha256 must have been computed by now!") + operation.upload_info = UploadInfo(sha256=bytes.fromhex(metadata.sha256), size=metadata.size, sample=sample) + return operation + + +#################### +# Misc helpers +#################### + + +def _get_one(queue: "queue.Queue[JOB_ITEM_T]") -> List[JOB_ITEM_T]: + return [queue.get()] + + +def _get_n(queue: "queue.Queue[JOB_ITEM_T]", n: int) -> List[JOB_ITEM_T]: + return [queue.get() for _ in range(min(queue.qsize(), n))] + + +def _get_items_to_commit(queue: "queue.Queue[JOB_ITEM_T]") -> List[JOB_ITEM_T]: + """Special case for commit job: the number of items to commit depends on the type of files.""" + # Can take at most 50 regular files and/or 100 LFS files in a single commit + items: List[JOB_ITEM_T] = [] + nb_lfs, nb_regular = 0, 0 + while True: + # If empty queue => commit everything + if queue.qsize() == 0: + return items + + # If we have enough items => commit them + if nb_lfs >= MAX_NB_LFS_FILES_PER_COMMIT or nb_regular >= MAX_NB_REGULAR_FILES_PER_COMMIT: + return items + + # Else, get a new item and increase counter + item = queue.get() + items.append(item) + _, metadata = item + if metadata.upload_mode == "lfs": + nb_lfs += 1 + else: + nb_regular += 1 + + +def _print_overwrite(report: str) -> None: + """Print a report, overwriting the previous lines. + + Since tqdm in using `sys.stderr` to (re-)write progress bars, we need to use `sys.stdout` + to print the report. + + Note: works well only if no other process is writing to `sys.stdout`! + """ + report += "\n" + # Get terminal width + terminal_width = shutil.get_terminal_size().columns + + # Count number of lines that should be cleared + nb_lines = sum(len(line) // terminal_width + 1 for line in report.splitlines()) + + # Clear previous lines based on the number of lines in the report + for _ in range(nb_lines): + sys.stdout.write("\r\033[K") # Clear line + sys.stdout.write("\033[F") # Move cursor up one line + + # Print the new report, filling remaining space with whitespace + sys.stdout.write(report) + sys.stdout.write(" " * (terminal_width - len(report.splitlines()[-1]))) + sys.stdout.flush() diff --git a/.venv/lib/python3.12/site-packages/huggingface_hub/_webhooks_payload.py b/.venv/lib/python3.12/site-packages/huggingface_hub/_webhooks_payload.py new file mode 100644 index 00000000..288f4b08 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/huggingface_hub/_webhooks_payload.py @@ -0,0 +1,137 @@ +# coding=utf-8 +# Copyright 2023-present, the HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Contains data structures to parse the webhooks payload.""" + +from typing import List, Literal, Optional + +from .utils import is_pydantic_available + + +if is_pydantic_available(): + from pydantic import BaseModel +else: + # Define a dummy BaseModel to avoid import errors when pydantic is not installed + # Import error will be raised when trying to use the class + + class BaseModel: # type: ignore [no-redef] + def __init__(self, *args, **kwargs) -> None: + raise ImportError( + "You must have `pydantic` installed to use `WebhookPayload`. This is an optional dependency that" + " should be installed separately. Please run `pip install --upgrade pydantic` and retry." + ) + + +# This is an adaptation of the ReportV3 interface implemented in moon-landing. V0, V1 and V2 have been ignored as they +# are not in used anymore. To keep in sync when format is updated in +# https://github.com/huggingface/moon-landing/blob/main/server/lib/HFWebhooks.ts (internal link). + + +WebhookEvent_T = Literal[ + "create", + "delete", + "move", + "update", +] +RepoChangeEvent_T = Literal[ + "add", + "move", + "remove", + "update", +] +RepoType_T = Literal[ + "dataset", + "model", + "space", +] +DiscussionStatus_T = Literal[ + "closed", + "draft", + "open", + "merged", +] +SupportedWebhookVersion = Literal[3] + + +class ObjectId(BaseModel): + id: str + + +class WebhookPayloadUrl(BaseModel): + web: str + api: Optional[str] = None + + +class WebhookPayloadMovedTo(BaseModel): + name: str + owner: ObjectId + + +class WebhookPayloadWebhook(ObjectId): + version: SupportedWebhookVersion + + +class WebhookPayloadEvent(BaseModel): + action: WebhookEvent_T + scope: str + + +class WebhookPayloadDiscussionChanges(BaseModel): + base: str + mergeCommitId: Optional[str] = None + + +class WebhookPayloadComment(ObjectId): + author: ObjectId + hidden: bool + content: Optional[str] = None + url: WebhookPayloadUrl + + +class WebhookPayloadDiscussion(ObjectId): + num: int + author: ObjectId + url: WebhookPayloadUrl + title: str + isPullRequest: bool + status: DiscussionStatus_T + changes: Optional[WebhookPayloadDiscussionChanges] = None + pinned: Optional[bool] = None + + +class WebhookPayloadRepo(ObjectId): + owner: ObjectId + head_sha: Optional[str] = None + name: str + private: bool + subdomain: Optional[str] = None + tags: Optional[List[str]] = None + type: Literal["dataset", "model", "space"] + url: WebhookPayloadUrl + + +class WebhookPayloadUpdatedRef(BaseModel): + ref: str + oldSha: Optional[str] = None + newSha: Optional[str] = None + + +class WebhookPayload(BaseModel): + event: WebhookPayloadEvent + repo: WebhookPayloadRepo + discussion: Optional[WebhookPayloadDiscussion] = None + comment: Optional[WebhookPayloadComment] = None + webhook: WebhookPayloadWebhook + movedTo: Optional[WebhookPayloadMovedTo] = None + updatedRefs: Optional[List[WebhookPayloadUpdatedRef]] = None diff --git a/.venv/lib/python3.12/site-packages/huggingface_hub/_webhooks_server.py b/.venv/lib/python3.12/site-packages/huggingface_hub/_webhooks_server.py new file mode 100644 index 00000000..c0c08e00 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/huggingface_hub/_webhooks_server.py @@ -0,0 +1,386 @@ +# coding=utf-8 +# Copyright 2023-present, the HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Contains `WebhooksServer` and `webhook_endpoint` to create a webhook server easily.""" + +import atexit +import inspect +import os +from functools import wraps +from typing import TYPE_CHECKING, Any, Callable, Dict, Optional + +from .utils import experimental, is_fastapi_available, is_gradio_available + + +if TYPE_CHECKING: + import gradio as gr + from fastapi import Request + +if is_fastapi_available(): + from fastapi import FastAPI, Request + from fastapi.responses import JSONResponse +else: + # Will fail at runtime if FastAPI is not available + FastAPI = Request = JSONResponse = None # type: ignore [misc, assignment] + + +_global_app: Optional["WebhooksServer"] = None +_is_local = os.environ.get("SPACE_ID") is None + + +@experimental +class WebhooksServer: + """ + The [`WebhooksServer`] class lets you create an instance of a Gradio app that can receive Huggingface webhooks. + These webhooks can be registered using the [`~WebhooksServer.add_webhook`] decorator. Webhook endpoints are added to + the app as a POST endpoint to the FastAPI router. Once all the webhooks are registered, the `launch` method has to be + called to start the app. + + It is recommended to accept [`WebhookPayload`] as the first argument of the webhook function. It is a Pydantic + model that contains all the information about the webhook event. The data will be parsed automatically for you. + + Check out the [webhooks guide](../guides/webhooks_server) for a step-by-step tutorial on how to setup your + WebhooksServer and deploy it on a Space. + + <Tip warning={true}> + + `WebhooksServer` is experimental. Its API is subject to change in the future. + + </Tip> + + <Tip warning={true}> + + You must have `gradio` installed to use `WebhooksServer` (`pip install --upgrade gradio`). + + </Tip> + + Args: + ui (`gradio.Blocks`, optional): + A Gradio UI instance to be used as the Space landing page. If `None`, a UI displaying instructions + about the configured webhooks is created. + webhook_secret (`str`, optional): + A secret key to verify incoming webhook requests. You can set this value to any secret you want as long as + you also configure it in your [webhooks settings panel](https://huggingface.co/settings/webhooks). You + can also set this value as the `WEBHOOK_SECRET` environment variable. If no secret is provided, the + webhook endpoints are opened without any security. + + Example: + + ```python + import gradio as gr + from huggingface_hub import WebhooksServer, WebhookPayload + + with gr.Blocks() as ui: + ... + + app = WebhooksServer(ui=ui, webhook_secret="my_secret_key") + + @app.add_webhook("/say_hello") + async def hello(payload: WebhookPayload): + return {"message": "hello"} + + app.launch() + ``` + """ + + def __new__(cls, *args, **kwargs) -> "WebhooksServer": + if not is_gradio_available(): + raise ImportError( + "You must have `gradio` installed to use `WebhooksServer`. Please run `pip install --upgrade gradio`" + " first." + ) + if not is_fastapi_available(): + raise ImportError( + "You must have `fastapi` installed to use `WebhooksServer`. Please run `pip install --upgrade fastapi`" + " first." + ) + return super().__new__(cls) + + def __init__( + self, + ui: Optional["gr.Blocks"] = None, + webhook_secret: Optional[str] = None, + ) -> None: + self._ui = ui + + self.webhook_secret = webhook_secret or os.getenv("WEBHOOK_SECRET") + self.registered_webhooks: Dict[str, Callable] = {} + _warn_on_empty_secret(self.webhook_secret) + + def add_webhook(self, path: Optional[str] = None) -> Callable: + """ + Decorator to add a webhook to the [`WebhooksServer`] server. + + Args: + path (`str`, optional): + The URL path to register the webhook function. If not provided, the function name will be used as the + path. In any case, all webhooks are registered under `/webhooks`. + + Raises: + ValueError: If the provided path is already registered as a webhook. + + Example: + ```python + from huggingface_hub import WebhooksServer, WebhookPayload + + app = WebhooksServer() + + @app.add_webhook + async def trigger_training(payload: WebhookPayload): + if payload.repo.type == "dataset" and payload.event.action == "update": + # Trigger a training job if a dataset is updated + ... + + app.launch() + ``` + """ + # Usage: directly as decorator. Example: `@app.add_webhook` + if callable(path): + # If path is a function, it means it was used as a decorator without arguments + return self.add_webhook()(path) + + # Usage: provide a path. Example: `@app.add_webhook(...)` + @wraps(FastAPI.post) + def _inner_post(*args, **kwargs): + func = args[0] + abs_path = f"/webhooks/{(path or func.__name__).strip('/')}" + if abs_path in self.registered_webhooks: + raise ValueError(f"Webhook {abs_path} already exists.") + self.registered_webhooks[abs_path] = func + + return _inner_post + + def launch(self, prevent_thread_lock: bool = False, **launch_kwargs: Any) -> None: + """Launch the Gradio app and register webhooks to the underlying FastAPI server. + + Input parameters are forwarded to Gradio when launching the app. + """ + ui = self._ui or self._get_default_ui() + + # Start Gradio App + # - as non-blocking so that webhooks can be added afterwards + # - as shared if launch locally (to debug webhooks) + launch_kwargs.setdefault("share", _is_local) + self.fastapi_app, _, _ = ui.launch(prevent_thread_lock=True, **launch_kwargs) + + # Register webhooks to FastAPI app + for path, func in self.registered_webhooks.items(): + # Add secret check if required + if self.webhook_secret is not None: + func = _wrap_webhook_to_check_secret(func, webhook_secret=self.webhook_secret) + + # Add route to FastAPI app + self.fastapi_app.post(path)(func) + + # Print instructions and block main thread + space_host = os.environ.get("SPACE_HOST") + url = "https://" + space_host if space_host is not None else (ui.share_url or ui.local_url) + url = url.strip("/") + message = "\nWebhooks are correctly setup and ready to use:" + message += "\n" + "\n".join(f" - POST {url}{webhook}" for webhook in self.registered_webhooks) + message += "\nGo to https://huggingface.co/settings/webhooks to setup your webhooks." + print(message) + + if not prevent_thread_lock: + ui.block_thread() + + def _get_default_ui(self) -> "gr.Blocks": + """Default UI if not provided (lists webhooks and provides basic instructions).""" + import gradio as gr + + with gr.Blocks() as ui: + gr.Markdown("# This is an app to process 🤗 Webhooks") + gr.Markdown( + "Webhooks are a foundation for MLOps-related features. They allow you to listen for new changes on" + " specific repos or to all repos belonging to particular set of users/organizations (not just your" + " repos, but any repo). Check out this [guide](https://huggingface.co/docs/hub/webhooks) to get to" + " know more about webhooks on the Huggingface Hub." + ) + gr.Markdown( + f"{len(self.registered_webhooks)} webhook(s) are registered:" + + "\n\n" + + "\n ".join( + f"- [{webhook_path}]({_get_webhook_doc_url(webhook.__name__, webhook_path)})" + for webhook_path, webhook in self.registered_webhooks.items() + ) + ) + gr.Markdown( + "Go to https://huggingface.co/settings/webhooks to setup your webhooks." + + "\nYou app is running locally. Please look at the logs to check the full URL you need to set." + if _is_local + else ( + "\nThis app is running on a Space. You can find the corresponding URL in the options menu" + " (top-right) > 'Embed the Space'. The URL looks like 'https://{username}-{repo_name}.hf.space'." + ) + ) + return ui + + +@experimental +def webhook_endpoint(path: Optional[str] = None) -> Callable: + """Decorator to start a [`WebhooksServer`] and register the decorated function as a webhook endpoint. + + This is a helper to get started quickly. If you need more flexibility (custom landing page or webhook secret), + you can use [`WebhooksServer`] directly. You can register multiple webhook endpoints (to the same server) by using + this decorator multiple times. + + Check out the [webhooks guide](../guides/webhooks_server) for a step-by-step tutorial on how to setup your + server and deploy it on a Space. + + <Tip warning={true}> + + `webhook_endpoint` is experimental. Its API is subject to change in the future. + + </Tip> + + <Tip warning={true}> + + You must have `gradio` installed to use `webhook_endpoint` (`pip install --upgrade gradio`). + + </Tip> + + Args: + path (`str`, optional): + The URL path to register the webhook function. If not provided, the function name will be used as the path. + In any case, all webhooks are registered under `/webhooks`. + + Examples: + The default usage is to register a function as a webhook endpoint. The function name will be used as the path. + The server will be started automatically at exit (i.e. at the end of the script). + + ```python + from huggingface_hub import webhook_endpoint, WebhookPayload + + @webhook_endpoint + async def trigger_training(payload: WebhookPayload): + if payload.repo.type == "dataset" and payload.event.action == "update": + # Trigger a training job if a dataset is updated + ... + + # Server is automatically started at the end of the script. + ``` + + Advanced usage: register a function as a webhook endpoint and start the server manually. This is useful if you + are running it in a notebook. + + ```python + from huggingface_hub import webhook_endpoint, WebhookPayload + + @webhook_endpoint + async def trigger_training(payload: WebhookPayload): + if payload.repo.type == "dataset" and payload.event.action == "update": + # Trigger a training job if a dataset is updated + ... + + # Start the server manually + trigger_training.launch() + ``` + """ + if callable(path): + # If path is a function, it means it was used as a decorator without arguments + return webhook_endpoint()(path) + + @wraps(WebhooksServer.add_webhook) + def _inner(func: Callable) -> Callable: + app = _get_global_app() + app.add_webhook(path)(func) + if len(app.registered_webhooks) == 1: + # Register `app.launch` to run at exit (only once) + atexit.register(app.launch) + + @wraps(app.launch) + def _launch_now(): + # Run the app directly (without waiting atexit) + atexit.unregister(app.launch) + app.launch() + + func.launch = _launch_now # type: ignore + return func + + return _inner + + +def _get_global_app() -> WebhooksServer: + global _global_app + if _global_app is None: + _global_app = WebhooksServer() + return _global_app + + +def _warn_on_empty_secret(webhook_secret: Optional[str]) -> None: + if webhook_secret is None: + print("Webhook secret is not defined. This means your webhook endpoints will be open to everyone.") + print( + "To add a secret, set `WEBHOOK_SECRET` as environment variable or pass it at initialization: " + "\n\t`app = WebhooksServer(webhook_secret='my_secret', ...)`" + ) + print( + "For more details about webhook secrets, please refer to" + " https://huggingface.co/docs/hub/webhooks#webhook-secret." + ) + else: + print("Webhook secret is correctly defined.") + + +def _get_webhook_doc_url(webhook_name: str, webhook_path: str) -> str: + """Returns the anchor to a given webhook in the docs (experimental)""" + return "/docs#/default/" + webhook_name + webhook_path.replace("/", "_") + "_post" + + +def _wrap_webhook_to_check_secret(func: Callable, webhook_secret: str) -> Callable: + """Wraps a webhook function to check the webhook secret before calling the function. + + This is a hacky way to add the `request` parameter to the function signature. Since FastAPI based itself on route + parameters to inject the values to the function, we need to hack the function signature to retrieve the `Request` + object (and hence the headers). A far cleaner solution would be to use a middleware. However, since + `fastapi==0.90.1`, a middleware cannot be added once the app has started. And since the FastAPI app is started by + Gradio internals (and not by us), we cannot add a middleware. + + This method is called only when a secret has been defined by the user. If a request is sent without the + "x-webhook-secret", the function will return a 401 error (unauthorized). If the header is sent but is incorrect, + the function will return a 403 error (forbidden). + + Inspired by https://stackoverflow.com/a/33112180. + """ + initial_sig = inspect.signature(func) + + @wraps(func) + async def _protected_func(request: Request, **kwargs): + request_secret = request.headers.get("x-webhook-secret") + if request_secret is None: + return JSONResponse({"error": "x-webhook-secret header not set."}, status_code=401) + if request_secret != webhook_secret: + return JSONResponse({"error": "Invalid webhook secret."}, status_code=403) + + # Inject `request` in kwargs if required + if "request" in initial_sig.parameters: + kwargs["request"] = request + + # Handle both sync and async routes + if inspect.iscoroutinefunction(func): + return await func(**kwargs) + else: + return func(**kwargs) + + # Update signature to include request + if "request" not in initial_sig.parameters: + _protected_func.__signature__ = initial_sig.replace( # type: ignore + parameters=( + inspect.Parameter(name="request", kind=inspect.Parameter.POSITIONAL_OR_KEYWORD, annotation=Request), + ) + + tuple(initial_sig.parameters.values()) + ) + + # Return protected route + return _protected_func diff --git a/.venv/lib/python3.12/site-packages/huggingface_hub/commands/__init__.py b/.venv/lib/python3.12/site-packages/huggingface_hub/commands/__init__.py new file mode 100644 index 00000000..49d08821 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/huggingface_hub/commands/__init__.py @@ -0,0 +1,27 @@ +# Copyright 2020 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from abc import ABC, abstractmethod +from argparse import _SubParsersAction + + +class BaseHuggingfaceCLICommand(ABC): + @staticmethod + @abstractmethod + def register_subcommand(parser: _SubParsersAction): + raise NotImplementedError() + + @abstractmethod + def run(self): + raise NotImplementedError() diff --git a/.venv/lib/python3.12/site-packages/huggingface_hub/commands/_cli_utils.py b/.venv/lib/python3.12/site-packages/huggingface_hub/commands/_cli_utils.py new file mode 100644 index 00000000..bd56ad68 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/huggingface_hub/commands/_cli_utils.py @@ -0,0 +1,69 @@ +# Copyright 2022 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Contains a utility for good-looking prints.""" + +import os +from typing import List, Union + + +class ANSI: + """ + Helper for en.wikipedia.org/wiki/ANSI_escape_code + """ + + _bold = "\u001b[1m" + _gray = "\u001b[90m" + _red = "\u001b[31m" + _reset = "\u001b[0m" + _yellow = "\u001b[33m" + + @classmethod + def bold(cls, s: str) -> str: + return cls._format(s, cls._bold) + + @classmethod + def gray(cls, s: str) -> str: + return cls._format(s, cls._gray) + + @classmethod + def red(cls, s: str) -> str: + return cls._format(s, cls._bold + cls._red) + + @classmethod + def yellow(cls, s: str) -> str: + return cls._format(s, cls._yellow) + + @classmethod + def _format(cls, s: str, code: str) -> str: + if os.environ.get("NO_COLOR"): + # See https://no-color.org/ + return s + return f"{code}{s}{cls._reset}" + + +def tabulate(rows: List[List[Union[str, int]]], headers: List[str]) -> str: + """ + Inspired by: + + - stackoverflow.com/a/8356620/593036 + - stackoverflow.com/questions/9535954/printing-lists-as-tabular-data + """ + col_widths = [max(len(str(x)) for x in col) for col in zip(*rows, headers)] + row_format = ("{{:{}}} " * len(headers)).format(*col_widths) + lines = [] + lines.append(row_format.format(*headers)) + lines.append(row_format.format(*["-" * w for w in col_widths])) + for row in rows: + lines.append(row_format.format(*row)) + return "\n".join(lines) diff --git a/.venv/lib/python3.12/site-packages/huggingface_hub/commands/delete_cache.py b/.venv/lib/python3.12/site-packages/huggingface_hub/commands/delete_cache.py new file mode 100644 index 00000000..b2fc44d3 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/huggingface_hub/commands/delete_cache.py @@ -0,0 +1,428 @@ +# coding=utf-8 +# Copyright 2022-present, the HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Contains command to delete some revisions from the HF cache directory. + +Usage: + huggingface-cli delete-cache + huggingface-cli delete-cache --disable-tui + huggingface-cli delete-cache --dir ~/.cache/huggingface/hub + +NOTE: + This command is based on `InquirerPy` to build the multiselect menu in the terminal. + This dependency has to be installed with `pip install huggingface_hub[cli]`. Since + we want to avoid as much as possible cross-platform issues, I chose a library that + is built on top of `python-prompt-toolkit` which seems to be a reference in terminal + GUI (actively maintained on both Unix and Windows, 7.9k stars). + + For the moment, the TUI feature is in beta. + + See: + - https://github.com/kazhala/InquirerPy + - https://inquirerpy.readthedocs.io/en/latest/ + - https://github.com/prompt-toolkit/python-prompt-toolkit + + Other solutions could have been: + - `simple_term_menu`: would be good as well for our use case but some issues suggest + that Windows is less supported. + See: https://github.com/IngoMeyer441/simple-term-menu + - `PyInquirer`: very similar to `InquirerPy` but older and not maintained anymore. + In particular, no support of Python3.10. + See: https://github.com/CITGuru/PyInquirer + - `pick` (or `pickpack`): easy to use and flexible but built on top of Python's + standard library `curses` that is specific to Unix (not implemented on Windows). + See https://github.com/wong2/pick and https://github.com/anafvana/pickpack. + - `inquirer`: lot of traction (700 stars) but explicitly states "experimental + support of Windows". Not built on top of `python-prompt-toolkit`. + See https://github.com/magmax/python-inquirer + +TODO: add support for `huggingface-cli delete-cache aaaaaa bbbbbb cccccc (...)` ? +TODO: add "--keep-last" arg to delete revisions that are not on `main` ref +TODO: add "--filter" arg to filter repositories by name ? +TODO: add "--sort" arg to sort by size ? +TODO: add "--limit" arg to limit to X repos ? +TODO: add "-y" arg for immediate deletion ? +See discussions in https://github.com/huggingface/huggingface_hub/issues/1025. +""" + +import os +from argparse import Namespace, _SubParsersAction +from functools import wraps +from tempfile import mkstemp +from typing import Any, Callable, Iterable, List, Optional, Union + +from ..utils import CachedRepoInfo, CachedRevisionInfo, HFCacheInfo, scan_cache_dir +from . import BaseHuggingfaceCLICommand +from ._cli_utils import ANSI + + +try: + from InquirerPy import inquirer + from InquirerPy.base.control import Choice + from InquirerPy.separator import Separator + + _inquirer_py_available = True +except ImportError: + _inquirer_py_available = False + + +def require_inquirer_py(fn: Callable) -> Callable: + """Decorator to flag methods that require `InquirerPy`.""" + + # TODO: refactor this + imports in a unified pattern across codebase + @wraps(fn) + def _inner(*args, **kwargs): + if not _inquirer_py_available: + raise ImportError( + "The `delete-cache` command requires extra dependencies to work with" + " the TUI.\nPlease run `pip install huggingface_hub[cli]` to install" + " them.\nOtherwise, disable TUI using the `--disable-tui` flag." + ) + + return fn(*args, **kwargs) + + return _inner + + +# Possibility for the user to cancel deletion +_CANCEL_DELETION_STR = "CANCEL_DELETION" + + +class DeleteCacheCommand(BaseHuggingfaceCLICommand): + @staticmethod + def register_subcommand(parser: _SubParsersAction): + delete_cache_parser = parser.add_parser("delete-cache", help="Delete revisions from the cache directory.") + + delete_cache_parser.add_argument( + "--dir", + type=str, + default=None, + help="cache directory (optional). Default to the default HuggingFace cache.", + ) + + delete_cache_parser.add_argument( + "--disable-tui", + action="store_true", + help=( + "Disable Terminal User Interface (TUI) mode. Useful if your" + " platform/terminal doesn't support the multiselect menu." + ), + ) + + delete_cache_parser.set_defaults(func=DeleteCacheCommand) + + def __init__(self, args: Namespace) -> None: + self.cache_dir: Optional[str] = args.dir + self.disable_tui: bool = args.disable_tui + + def run(self): + """Run `delete-cache` command with or without TUI.""" + # Scan cache directory + hf_cache_info = scan_cache_dir(self.cache_dir) + + # Manual review from the user + if self.disable_tui: + selected_hashes = _manual_review_no_tui(hf_cache_info, preselected=[]) + else: + selected_hashes = _manual_review_tui(hf_cache_info, preselected=[]) + + # If deletion is not cancelled + if len(selected_hashes) > 0 and _CANCEL_DELETION_STR not in selected_hashes: + confirm_message = _get_expectations_str(hf_cache_info, selected_hashes) + " Confirm deletion ?" + + # Confirm deletion + if self.disable_tui: + confirmed = _ask_for_confirmation_no_tui(confirm_message) + else: + confirmed = _ask_for_confirmation_tui(confirm_message) + + # Deletion is confirmed + if confirmed: + strategy = hf_cache_info.delete_revisions(*selected_hashes) + print("Start deletion.") + strategy.execute() + print( + f"Done. Deleted {len(strategy.repos)} repo(s) and" + f" {len(strategy.snapshots)} revision(s) for a total of" + f" {strategy.expected_freed_size_str}." + ) + return + + # Deletion is cancelled + print("Deletion is cancelled. Do nothing.") + + +@require_inquirer_py +def _manual_review_tui(hf_cache_info: HFCacheInfo, preselected: List[str]) -> List[str]: + """Ask the user for a manual review of the revisions to delete. + + Displays a multi-select menu in the terminal (TUI). + """ + # Define multiselect list + choices = _get_tui_choices_from_scan(repos=hf_cache_info.repos, preselected=preselected) + checkbox = inquirer.checkbox( + message="Select revisions to delete:", + choices=choices, # List of revisions with some pre-selection + cycle=False, # No loop between top and bottom + height=100, # Large list if possible + # We use the instruction to display to the user the expected effect of the + # deletion. + instruction=_get_expectations_str( + hf_cache_info, + selected_hashes=[c.value for c in choices if isinstance(c, Choice) and c.enabled], + ), + # We use the long instruction to should keybindings instructions to the user + long_instruction="Press <space> to select, <enter> to validate and <ctrl+c> to quit without modification.", + # Message that is displayed once the user validates its selection. + transformer=lambda result: f"{len(result)} revision(s) selected.", + ) + + # Add a callback to update the information line when a revision is + # selected/unselected + def _update_expectations(_) -> None: + # Hacky way to dynamically set an instruction message to the checkbox when + # a revision hash is selected/unselected. + checkbox._instruction = _get_expectations_str( + hf_cache_info, + selected_hashes=[choice["value"] for choice in checkbox.content_control.choices if choice["enabled"]], + ) + + checkbox.kb_func_lookup["toggle"].append({"func": _update_expectations}) + + # Finally display the form to the user. + try: + return checkbox.execute() + except KeyboardInterrupt: + return [] # Quit without deletion + + +@require_inquirer_py +def _ask_for_confirmation_tui(message: str, default: bool = True) -> bool: + """Ask for confirmation using Inquirer.""" + return inquirer.confirm(message, default=default).execute() + + +def _get_tui_choices_from_scan(repos: Iterable[CachedRepoInfo], preselected: List[str]) -> List: + """Build a list of choices from the scanned repos. + + Args: + repos (*Iterable[`CachedRepoInfo`]*): + List of scanned repos on which we want to delete revisions. + preselected (*List[`str`]*): + List of revision hashes that will be preselected. + + Return: + The list of choices to pass to `inquirer.checkbox`. + """ + choices: List[Union[Choice, Separator]] = [] + + # First choice is to cancel the deletion. If selected, nothing will be deleted, + # no matter the other selected items. + choices.append( + Choice( + _CANCEL_DELETION_STR, + name="None of the following (if selected, nothing will be deleted).", + enabled=False, + ) + ) + + # Display a separator per repo and a Choice for each revisions of the repo + for repo in sorted(repos, key=_repo_sorting_order): + # Repo as separator + choices.append( + Separator( + f"\n{repo.repo_type.capitalize()} {repo.repo_id} ({repo.size_on_disk_str}," + f" used {repo.last_accessed_str})" + ) + ) + for revision in sorted(repo.revisions, key=_revision_sorting_order): + # Revision as choice + choices.append( + Choice( + revision.commit_hash, + name=( + f"{revision.commit_hash[:8]}:" + f" {', '.join(sorted(revision.refs)) or '(detached)'} #" + f" modified {revision.last_modified_str}" + ), + enabled=revision.commit_hash in preselected, + ) + ) + + # Return choices + return choices + + +def _manual_review_no_tui(hf_cache_info: HFCacheInfo, preselected: List[str]) -> List[str]: + """Ask the user for a manual review of the revisions to delete. + + Used when TUI is disabled. Manual review happens in a separate tmp file that the + user can manually edit. + """ + # 1. Generate temporary file with delete commands. + fd, tmp_path = mkstemp(suffix=".txt") # suffix to make it easier to find by editors + os.close(fd) + + lines = [] + for repo in sorted(hf_cache_info.repos, key=_repo_sorting_order): + lines.append( + f"\n# {repo.repo_type.capitalize()} {repo.repo_id} ({repo.size_on_disk_str}," + f" used {repo.last_accessed_str})" + ) + for revision in sorted(repo.revisions, key=_revision_sorting_order): + lines.append( + # Deselect by prepending a '#' + f"{'' if revision.commit_hash in preselected else '#'} " + f" {revision.commit_hash} # Refs:" + # Print `refs` as comment on same line + f" {', '.join(sorted(revision.refs)) or '(detached)'} # modified" + # Print `last_modified` as comment on same line + f" {revision.last_modified_str}" + ) + + with open(tmp_path, "w") as f: + f.write(_MANUAL_REVIEW_NO_TUI_INSTRUCTIONS) + f.write("\n".join(lines)) + + # 2. Prompt instructions to user. + instructions = f""" + TUI is disabled. In order to select which revisions you want to delete, please edit + the following file using the text editor of your choice. Instructions for manual + editing are located at the beginning of the file. Edit the file, save it and confirm + to continue. + File to edit: {ANSI.bold(tmp_path)} + """ + print("\n".join(line.strip() for line in instructions.strip().split("\n"))) + + # 3. Wait for user confirmation. + while True: + selected_hashes = _read_manual_review_tmp_file(tmp_path) + if _ask_for_confirmation_no_tui( + _get_expectations_str(hf_cache_info, selected_hashes) + " Continue ?", + default=False, + ): + break + + # 4. Return selected_hashes + os.remove(tmp_path) + return selected_hashes + + +def _ask_for_confirmation_no_tui(message: str, default: bool = True) -> bool: + """Ask for confirmation using pure-python.""" + YES = ("y", "yes", "1") + NO = ("n", "no", "0") + DEFAULT = "" + ALL = YES + NO + (DEFAULT,) + full_message = message + (" (Y/n) " if default else " (y/N) ") + while True: + answer = input(full_message).lower() + if answer == DEFAULT: + return default + if answer in YES: + return True + if answer in NO: + return False + print(f"Invalid input. Must be one of {ALL}") + + +def _get_expectations_str(hf_cache_info: HFCacheInfo, selected_hashes: List[str]) -> str: + """Format a string to display to the user how much space would be saved. + + Example: + ``` + >>> _get_expectations_str(hf_cache_info, selected_hashes) + '7 revisions selected counting for 4.3G.' + ``` + """ + if _CANCEL_DELETION_STR in selected_hashes: + return "Nothing will be deleted." + strategy = hf_cache_info.delete_revisions(*selected_hashes) + return f"{len(selected_hashes)} revisions selected counting for {strategy.expected_freed_size_str}." + + +def _read_manual_review_tmp_file(tmp_path: str) -> List[str]: + """Read the manually reviewed instruction file and return a list of revision hash. + + Example: + ```txt + # This is the tmp file content + ### + + # Commented out line + 123456789 # revision hash + + # Something else + # a_newer_hash # 2 days ago + an_older_hash # 3 days ago + ``` + + ```py + >>> _read_manual_review_tmp_file(tmp_path) + ['123456789', 'an_older_hash'] + ``` + """ + with open(tmp_path) as f: + content = f.read() + + # Split lines + lines = [line.strip() for line in content.split("\n")] + + # Filter commented lines + selected_lines = [line for line in lines if not line.startswith("#")] + + # Select only before comment + selected_hashes = [line.split("#")[0].strip() for line in selected_lines] + + # Return revision hashes + return [hash for hash in selected_hashes if len(hash) > 0] + + +_MANUAL_REVIEW_NO_TUI_INSTRUCTIONS = f""" +# INSTRUCTIONS +# ------------ +# This is a temporary file created by running `huggingface-cli delete-cache` with the +# `--disable-tui` option. It contains a set of revisions that can be deleted from your +# local cache directory. +# +# Please manually review the revisions you want to delete: +# - Revision hashes can be commented out with '#'. +# - Only non-commented revisions in this file will be deleted. +# - Revision hashes that are removed from this file are ignored as well. +# - If `{_CANCEL_DELETION_STR}` line is uncommented, the all cache deletion is cancelled and +# no changes will be applied. +# +# Once you've manually reviewed this file, please confirm deletion in the terminal. This +# file will be automatically removed once done. +# ------------ + +# KILL SWITCH +# ------------ +# Un-comment following line to completely cancel the deletion process +# {_CANCEL_DELETION_STR} +# ------------ + +# REVISIONS +# ------------ +""".strip() + + +def _repo_sorting_order(repo: CachedRepoInfo) -> Any: + # First split by Dataset/Model, then sort by last accessed (oldest first) + return (repo.repo_type, repo.last_accessed) + + +def _revision_sorting_order(revision: CachedRevisionInfo) -> Any: + # Sort by last modified (oldest first) + return revision.last_modified diff --git a/.venv/lib/python3.12/site-packages/huggingface_hub/commands/download.py b/.venv/lib/python3.12/site-packages/huggingface_hub/commands/download.py new file mode 100644 index 00000000..10e22c3d --- /dev/null +++ b/.venv/lib/python3.12/site-packages/huggingface_hub/commands/download.py @@ -0,0 +1,200 @@ +# coding=utf-8 +# Copyright 2023-present, the HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Contains command to download files from the Hub with the CLI. + +Usage: + huggingface-cli download --help + + # Download file + huggingface-cli download gpt2 config.json + + # Download entire repo + huggingface-cli download fffiloni/zeroscope --repo-type=space --revision=refs/pr/78 + + # Download repo with filters + huggingface-cli download gpt2 --include="*.safetensors" + + # Download with token + huggingface-cli download Wauplin/private-model --token=hf_*** + + # Download quietly (no progress bar, no warnings, only the returned path) + huggingface-cli download gpt2 config.json --quiet + + # Download to local dir + huggingface-cli download gpt2 --local-dir=./models/gpt2 +""" + +import warnings +from argparse import Namespace, _SubParsersAction +from typing import List, Optional + +from huggingface_hub import logging +from huggingface_hub._snapshot_download import snapshot_download +from huggingface_hub.commands import BaseHuggingfaceCLICommand +from huggingface_hub.file_download import hf_hub_download +from huggingface_hub.utils import disable_progress_bars, enable_progress_bars + + +logger = logging.get_logger(__name__) + + +class DownloadCommand(BaseHuggingfaceCLICommand): + @staticmethod + def register_subcommand(parser: _SubParsersAction): + download_parser = parser.add_parser("download", help="Download files from the Hub") + download_parser.add_argument( + "repo_id", type=str, help="ID of the repo to download from (e.g. `username/repo-name`)." + ) + download_parser.add_argument( + "filenames", type=str, nargs="*", help="Files to download (e.g. `config.json`, `data/metadata.jsonl`)." + ) + download_parser.add_argument( + "--repo-type", + choices=["model", "dataset", "space"], + default="model", + help="Type of repo to download from (defaults to 'model').", + ) + download_parser.add_argument( + "--revision", + type=str, + help="An optional Git revision id which can be a branch name, a tag, or a commit hash.", + ) + download_parser.add_argument( + "--include", nargs="*", type=str, help="Glob patterns to match files to download." + ) + download_parser.add_argument( + "--exclude", nargs="*", type=str, help="Glob patterns to exclude from files to download." + ) + download_parser.add_argument( + "--cache-dir", type=str, help="Path to the directory where to save the downloaded files." + ) + download_parser.add_argument( + "--local-dir", + type=str, + help=( + "If set, the downloaded file will be placed under this directory. Check out" + " https://huggingface.co/docs/huggingface_hub/guides/download#download-files-to-local-folder for more" + " details." + ), + ) + download_parser.add_argument( + "--local-dir-use-symlinks", + choices=["auto", "True", "False"], + help=("Deprecated and ignored. Downloading to a local directory does not use symlinks anymore."), + ) + download_parser.add_argument( + "--force-download", + action="store_true", + help="If True, the files will be downloaded even if they are already cached.", + ) + download_parser.add_argument( + "--resume-download", + action="store_true", + help="Deprecated and ignored. Downloading a file to local dir always attempts to resume previously interrupted downloads (unless hf-transfer is enabled).", + ) + download_parser.add_argument( + "--token", type=str, help="A User Access Token generated from https://huggingface.co/settings/tokens" + ) + download_parser.add_argument( + "--quiet", + action="store_true", + help="If True, progress bars are disabled and only the path to the download files is printed.", + ) + download_parser.add_argument( + "--max-workers", + type=int, + default=8, + help="Maximum number of workers to use for downloading files. Default is 8.", + ) + download_parser.set_defaults(func=DownloadCommand) + + def __init__(self, args: Namespace) -> None: + self.token = args.token + self.repo_id: str = args.repo_id + self.filenames: List[str] = args.filenames + self.repo_type: str = args.repo_type + self.revision: Optional[str] = args.revision + self.include: Optional[List[str]] = args.include + self.exclude: Optional[List[str]] = args.exclude + self.cache_dir: Optional[str] = args.cache_dir + self.local_dir: Optional[str] = args.local_dir + self.force_download: bool = args.force_download + self.resume_download: Optional[bool] = args.resume_download or None + self.quiet: bool = args.quiet + self.max_workers: int = args.max_workers + + if args.local_dir_use_symlinks is not None: + warnings.warn( + "Ignoring --local-dir-use-symlinks. Downloading to a local directory does not use symlinks anymore.", + FutureWarning, + ) + + def run(self) -> None: + if self.quiet: + disable_progress_bars() + with warnings.catch_warnings(): + warnings.simplefilter("ignore") + print(self._download()) # Print path to downloaded files + enable_progress_bars() + else: + logging.set_verbosity_info() + print(self._download()) # Print path to downloaded files + logging.set_verbosity_warning() + + def _download(self) -> str: + # Warn user if patterns are ignored + if len(self.filenames) > 0: + if self.include is not None and len(self.include) > 0: + warnings.warn("Ignoring `--include` since filenames have being explicitly set.") + if self.exclude is not None and len(self.exclude) > 0: + warnings.warn("Ignoring `--exclude` since filenames have being explicitly set.") + + # Single file to download: use `hf_hub_download` + if len(self.filenames) == 1: + return hf_hub_download( + repo_id=self.repo_id, + repo_type=self.repo_type, + revision=self.revision, + filename=self.filenames[0], + cache_dir=self.cache_dir, + resume_download=self.resume_download, + force_download=self.force_download, + token=self.token, + local_dir=self.local_dir, + library_name="huggingface-cli", + ) + + # Otherwise: use `snapshot_download` to ensure all files comes from same revision + elif len(self.filenames) == 0: + allow_patterns = self.include + ignore_patterns = self.exclude + else: + allow_patterns = self.filenames + ignore_patterns = None + + return snapshot_download( + repo_id=self.repo_id, + repo_type=self.repo_type, + revision=self.revision, + allow_patterns=allow_patterns, + ignore_patterns=ignore_patterns, + resume_download=self.resume_download, + force_download=self.force_download, + cache_dir=self.cache_dir, + token=self.token, + local_dir=self.local_dir, + library_name="huggingface-cli", + max_workers=self.max_workers, + ) diff --git a/.venv/lib/python3.12/site-packages/huggingface_hub/commands/env.py b/.venv/lib/python3.12/site-packages/huggingface_hub/commands/env.py new file mode 100644 index 00000000..23f2828b --- /dev/null +++ b/.venv/lib/python3.12/site-packages/huggingface_hub/commands/env.py @@ -0,0 +1,36 @@ +# Copyright 2022 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Contains command to print information about the environment. + +Usage: + huggingface-cli env +""" + +from argparse import _SubParsersAction + +from ..utils import dump_environment_info +from . import BaseHuggingfaceCLICommand + + +class EnvironmentCommand(BaseHuggingfaceCLICommand): + def __init__(self, args): + self.args = args + + @staticmethod + def register_subcommand(parser: _SubParsersAction): + env_parser = parser.add_parser("env", help="Print information about the environment.") + env_parser.set_defaults(func=EnvironmentCommand) + + def run(self) -> None: + dump_environment_info() diff --git a/.venv/lib/python3.12/site-packages/huggingface_hub/commands/huggingface_cli.py b/.venv/lib/python3.12/site-packages/huggingface_hub/commands/huggingface_cli.py new file mode 100644 index 00000000..1e790b5e --- /dev/null +++ b/.venv/lib/python3.12/site-packages/huggingface_hub/commands/huggingface_cli.py @@ -0,0 +1,61 @@ +# Copyright 2020 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from argparse import ArgumentParser + +from huggingface_hub.commands.delete_cache import DeleteCacheCommand +from huggingface_hub.commands.download import DownloadCommand +from huggingface_hub.commands.env import EnvironmentCommand +from huggingface_hub.commands.lfs import LfsCommands +from huggingface_hub.commands.repo_files import RepoFilesCommand +from huggingface_hub.commands.scan_cache import ScanCacheCommand +from huggingface_hub.commands.tag import TagCommands +from huggingface_hub.commands.upload import UploadCommand +from huggingface_hub.commands.upload_large_folder import UploadLargeFolderCommand +from huggingface_hub.commands.user import UserCommands +from huggingface_hub.commands.version import VersionCommand + + +def main(): + parser = ArgumentParser("huggingface-cli", usage="huggingface-cli <command> [<args>]") + commands_parser = parser.add_subparsers(help="huggingface-cli command helpers") + + # Register commands + DownloadCommand.register_subcommand(commands_parser) + UploadCommand.register_subcommand(commands_parser) + RepoFilesCommand.register_subcommand(commands_parser) + EnvironmentCommand.register_subcommand(commands_parser) + UserCommands.register_subcommand(commands_parser) + LfsCommands.register_subcommand(commands_parser) + ScanCacheCommand.register_subcommand(commands_parser) + DeleteCacheCommand.register_subcommand(commands_parser) + TagCommands.register_subcommand(commands_parser) + VersionCommand.register_subcommand(commands_parser) + + # Experimental + UploadLargeFolderCommand.register_subcommand(commands_parser) + + # Let's go + args = parser.parse_args() + if not hasattr(args, "func"): + parser.print_help() + exit(1) + + # Run + service = args.func(args) + service.run() + + +if __name__ == "__main__": + main() diff --git a/.venv/lib/python3.12/site-packages/huggingface_hub/commands/lfs.py b/.venv/lib/python3.12/site-packages/huggingface_hub/commands/lfs.py new file mode 100644 index 00000000..e510e345 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/huggingface_hub/commands/lfs.py @@ -0,0 +1,200 @@ +""" +Implementation of a custom transfer agent for the transfer type "multipart" for +git-lfs. + +Inspired by: +github.com/cbartz/git-lfs-swift-transfer-agent/blob/master/git_lfs_swift_transfer.py + +Spec is: github.com/git-lfs/git-lfs/blob/master/docs/custom-transfers.md + + +To launch debugger while developing: + +``` [lfs "customtransfer.multipart"] +path = /path/to/huggingface_hub/.env/bin/python args = -m debugpy --listen 5678 +--wait-for-client +/path/to/huggingface_hub/src/huggingface_hub/commands/huggingface_cli.py +lfs-multipart-upload ```""" + +import json +import os +import subprocess +import sys +from argparse import _SubParsersAction +from typing import Dict, List, Optional + +from huggingface_hub.commands import BaseHuggingfaceCLICommand +from huggingface_hub.lfs import LFS_MULTIPART_UPLOAD_COMMAND + +from ..utils import get_session, hf_raise_for_status, logging +from ..utils._lfs import SliceFileObj + + +logger = logging.get_logger(__name__) + + +class LfsCommands(BaseHuggingfaceCLICommand): + """ + Implementation of a custom transfer agent for the transfer type "multipart" + for git-lfs. This lets users upload large files >5GB 🔥. Spec for LFS custom + transfer agent is: + https://github.com/git-lfs/git-lfs/blob/master/docs/custom-transfers.md + + This introduces two commands to the CLI: + + 1. $ huggingface-cli lfs-enable-largefiles + + This should be executed once for each model repo that contains a model file + >5GB. It's documented in the error message you get if you just try to git + push a 5GB file without having enabled it before. + + 2. $ huggingface-cli lfs-multipart-upload + + This command is called by lfs directly and is not meant to be called by the + user. + """ + + @staticmethod + def register_subcommand(parser: _SubParsersAction): + enable_parser = parser.add_parser( + "lfs-enable-largefiles", help="Configure your repository to enable upload of files > 5GB." + ) + enable_parser.add_argument("path", type=str, help="Local path to repository you want to configure.") + enable_parser.set_defaults(func=lambda args: LfsEnableCommand(args)) + + # Command will get called by git-lfs, do not call it directly. + upload_parser = parser.add_parser(LFS_MULTIPART_UPLOAD_COMMAND, add_help=False) + upload_parser.set_defaults(func=lambda args: LfsUploadCommand(args)) + + +class LfsEnableCommand: + def __init__(self, args): + self.args = args + + def run(self): + local_path = os.path.abspath(self.args.path) + if not os.path.isdir(local_path): + print("This does not look like a valid git repo.") + exit(1) + subprocess.run( + "git config lfs.customtransfer.multipart.path huggingface-cli".split(), + check=True, + cwd=local_path, + ) + subprocess.run( + f"git config lfs.customtransfer.multipart.args {LFS_MULTIPART_UPLOAD_COMMAND}".split(), + check=True, + cwd=local_path, + ) + print("Local repo set up for largefiles") + + +def write_msg(msg: Dict): + """Write out the message in Line delimited JSON.""" + msg_str = json.dumps(msg) + "\n" + sys.stdout.write(msg_str) + sys.stdout.flush() + + +def read_msg() -> Optional[Dict]: + """Read Line delimited JSON from stdin.""" + msg = json.loads(sys.stdin.readline().strip()) + + if "terminate" in (msg.get("type"), msg.get("event")): + # terminate message received + return None + + if msg.get("event") not in ("download", "upload"): + logger.critical("Received unexpected message") + sys.exit(1) + + return msg + + +class LfsUploadCommand: + def __init__(self, args) -> None: + self.args = args + + def run(self) -> None: + # Immediately after invoking a custom transfer process, git-lfs + # sends initiation data to the process over stdin. + # This tells the process useful information about the configuration. + init_msg = json.loads(sys.stdin.readline().strip()) + if not (init_msg.get("event") == "init" and init_msg.get("operation") == "upload"): + write_msg({"error": {"code": 32, "message": "Wrong lfs init operation"}}) + sys.exit(1) + + # The transfer process should use the information it needs from the + # initiation structure, and also perform any one-off setup tasks it + # needs to do. It should then respond on stdout with a simple empty + # confirmation structure, as follows: + write_msg({}) + + # After the initiation exchange, git-lfs will send any number of + # transfer requests to the stdin of the transfer process, in a serial sequence. + while True: + msg = read_msg() + if msg is None: + # When all transfers have been processed, git-lfs will send + # a terminate event to the stdin of the transfer process. + # On receiving this message the transfer process should + # clean up and terminate. No response is expected. + sys.exit(0) + + oid = msg["oid"] + filepath = msg["path"] + completion_url = msg["action"]["href"] + header = msg["action"]["header"] + chunk_size = int(header.pop("chunk_size")) + presigned_urls: List[str] = list(header.values()) + + # Send a "started" progress event to allow other workers to start. + # Otherwise they're delayed until first "progress" event is reported, + # i.e. after the first 5GB by default (!) + write_msg( + { + "event": "progress", + "oid": oid, + "bytesSoFar": 1, + "bytesSinceLast": 0, + } + ) + + parts = [] + with open(filepath, "rb") as file: + for i, presigned_url in enumerate(presigned_urls): + with SliceFileObj( + file, + seek_from=i * chunk_size, + read_limit=chunk_size, + ) as data: + r = get_session().put(presigned_url, data=data) + hf_raise_for_status(r) + parts.append( + { + "etag": r.headers.get("etag"), + "partNumber": i + 1, + } + ) + # In order to support progress reporting while data is uploading / downloading, + # the transfer process should post messages to stdout + write_msg( + { + "event": "progress", + "oid": oid, + "bytesSoFar": (i + 1) * chunk_size, + "bytesSinceLast": chunk_size, + } + ) + # Not precise but that's ok. + + r = get_session().post( + completion_url, + json={ + "oid": oid, + "parts": parts, + }, + ) + hf_raise_for_status(r) + + write_msg({"event": "complete", "oid": oid}) diff --git a/.venv/lib/python3.12/site-packages/huggingface_hub/commands/repo_files.py b/.venv/lib/python3.12/site-packages/huggingface_hub/commands/repo_files.py new file mode 100644 index 00000000..f15bbed0 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/huggingface_hub/commands/repo_files.py @@ -0,0 +1,128 @@ +# coding=utf-8 +# Copyright 2023-present, the HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Contains command to update or delete files in a repository using the CLI. + +Usage: + # delete all + huggingface-cli repo-files <repo_id> delete "*" + + # delete single file + huggingface-cli repo-files <repo_id> delete file.txt + + # delete single folder + huggingface-cli repo-files <repo_id> delete folder/ + + # delete multiple + huggingface-cli repo-files <repo_id> delete file.txt folder/ file2.txt + + # delete multiple patterns + huggingface-cli repo-files <repo_id> delete file.txt "*.json" "folder/*.parquet" + + # delete from different revision / repo-type + huggingface-cli repo-files <repo_id> delete file.txt --revision=refs/pr/1 --repo-type=dataset +""" + +from argparse import _SubParsersAction +from typing import List, Optional + +from huggingface_hub import logging +from huggingface_hub.commands import BaseHuggingfaceCLICommand +from huggingface_hub.hf_api import HfApi + + +logger = logging.get_logger(__name__) + + +class DeleteFilesSubCommand: + def __init__(self, args) -> None: + self.args = args + self.repo_id: str = args.repo_id + self.repo_type: Optional[str] = args.repo_type + self.revision: Optional[str] = args.revision + self.api: HfApi = HfApi(token=args.token, library_name="huggingface-cli") + self.patterns: List[str] = args.patterns + self.commit_message: Optional[str] = args.commit_message + self.commit_description: Optional[str] = args.commit_description + self.create_pr: bool = args.create_pr + self.token: Optional[str] = args.token + + def run(self) -> None: + logging.set_verbosity_info() + url = self.api.delete_files( + delete_patterns=self.patterns, + repo_id=self.repo_id, + repo_type=self.repo_type, + revision=self.revision, + commit_message=self.commit_message, + commit_description=self.commit_description, + create_pr=self.create_pr, + ) + print(f"Files correctly deleted from repo. Commit: {url}.") + logging.set_verbosity_warning() + + +class RepoFilesCommand(BaseHuggingfaceCLICommand): + @staticmethod + def register_subcommand(parser: _SubParsersAction): + repo_files_parser = parser.add_parser("repo-files", help="Manage files in a repo on the Hub") + repo_files_parser.add_argument( + "repo_id", type=str, help="The ID of the repo to manage (e.g. `username/repo-name`)." + ) + repo_files_subparsers = repo_files_parser.add_subparsers( + help="Action to execute against the files.", + required=True, + ) + delete_subparser = repo_files_subparsers.add_parser( + "delete", + help="Delete files from a repo on the Hub", + ) + delete_subparser.set_defaults(func=lambda args: DeleteFilesSubCommand(args)) + delete_subparser.add_argument( + "patterns", + nargs="+", + type=str, + help="Glob patterns to match files to delete.", + ) + delete_subparser.add_argument( + "--repo-type", + choices=["model", "dataset", "space"], + default="model", + help="Type of the repo to upload to (e.g. `dataset`).", + ) + delete_subparser.add_argument( + "--revision", + type=str, + help=( + "An optional Git revision to push to. It can be a branch name " + "or a PR reference. If revision does not" + " exist and `--create-pr` is not set, a branch will be automatically created." + ), + ) + delete_subparser.add_argument( + "--commit-message", type=str, help="The summary / title / first line of the generated commit." + ) + delete_subparser.add_argument( + "--commit-description", type=str, help="The description of the generated commit." + ) + delete_subparser.add_argument( + "--create-pr", action="store_true", help="Whether to create a new Pull Request for these changes." + ) + repo_files_parser.add_argument( + "--token", + type=str, + help="A User Access Token generated from https://huggingface.co/settings/tokens", + ) + + repo_files_parser.set_defaults(func=RepoFilesCommand) diff --git a/.venv/lib/python3.12/site-packages/huggingface_hub/commands/scan_cache.py b/.venv/lib/python3.12/site-packages/huggingface_hub/commands/scan_cache.py new file mode 100644 index 00000000..799b9ba5 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/huggingface_hub/commands/scan_cache.py @@ -0,0 +1,181 @@ +# coding=utf-8 +# Copyright 2022-present, the HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Contains command to scan the HF cache directory. + +Usage: + huggingface-cli scan-cache + huggingface-cli scan-cache -v + huggingface-cli scan-cache -vvv + huggingface-cli scan-cache --dir ~/.cache/huggingface/hub +""" + +import time +from argparse import Namespace, _SubParsersAction +from typing import Optional + +from ..utils import CacheNotFound, HFCacheInfo, scan_cache_dir +from . import BaseHuggingfaceCLICommand +from ._cli_utils import ANSI, tabulate + + +class ScanCacheCommand(BaseHuggingfaceCLICommand): + @staticmethod + def register_subcommand(parser: _SubParsersAction): + scan_cache_parser = parser.add_parser("scan-cache", help="Scan cache directory.") + + scan_cache_parser.add_argument( + "--dir", + type=str, + default=None, + help="cache directory to scan (optional). Default to the default HuggingFace cache.", + ) + scan_cache_parser.add_argument( + "-v", + "--verbose", + action="count", + default=0, + help="show a more verbose output", + ) + scan_cache_parser.set_defaults(func=ScanCacheCommand) + + def __init__(self, args: Namespace) -> None: + self.verbosity: int = args.verbose + self.cache_dir: Optional[str] = args.dir + + def run(self): + try: + t0 = time.time() + hf_cache_info = scan_cache_dir(self.cache_dir) + t1 = time.time() + except CacheNotFound as exc: + cache_dir = exc.cache_dir + print(f"Cache directory not found: {cache_dir}") + return + + self._print_hf_cache_info_as_table(hf_cache_info) + + print( + f"\nDone in {round(t1 - t0, 1)}s. Scanned {len(hf_cache_info.repos)} repo(s)" + f" for a total of {ANSI.red(hf_cache_info.size_on_disk_str)}." + ) + if len(hf_cache_info.warnings) > 0: + message = f"Got {len(hf_cache_info.warnings)} warning(s) while scanning." + if self.verbosity >= 3: + print(ANSI.gray(message)) + for warning in hf_cache_info.warnings: + print(ANSI.gray(warning)) + else: + print(ANSI.gray(message + " Use -vvv to print details.")) + + def _print_hf_cache_info_as_table(self, hf_cache_info: HFCacheInfo) -> None: + print(get_table(hf_cache_info, verbosity=self.verbosity)) + + +def get_table(hf_cache_info: HFCacheInfo, *, verbosity: int = 0) -> str: + """Generate a table from the [`HFCacheInfo`] object. + + Pass `verbosity=0` to get a table with a single row per repo, with columns + "repo_id", "repo_type", "size_on_disk", "nb_files", "last_accessed", "last_modified", "refs", "local_path". + + Pass `verbosity=1` to get a table with a row per repo and revision (thus multiple rows can appear for a single repo), with columns + "repo_id", "repo_type", "revision", "size_on_disk", "nb_files", "last_modified", "refs", "local_path". + + Example: + ```py + >>> from huggingface_hub.utils import scan_cache_dir + >>> from huggingface_hub.commands.scan_cache import get_table + + >>> hf_cache_info = scan_cache_dir() + HFCacheInfo(...) + + >>> print(get_table(hf_cache_info, verbosity=0)) + REPO ID REPO TYPE SIZE ON DISK NB FILES LAST_ACCESSED LAST_MODIFIED REFS LOCAL PATH + --------------------------------------------------- --------- ------------ -------- ------------- ------------- ---- -------------------------------------------------------------------------------------------------- + roberta-base model 2.7M 5 1 day ago 1 week ago main C:\\Users\\admin\\.cache\\huggingface\\hub\\models--roberta-base + suno/bark model 8.8K 1 1 week ago 1 week ago main C:\\Users\\admin\\.cache\\huggingface\\hub\\models--suno--bark + t5-base model 893.8M 4 4 days ago 7 months ago main C:\\Users\\admin\\.cache\\huggingface\\hub\\models--t5-base + t5-large model 3.0G 4 5 weeks ago 5 months ago main C:\\Users\\admin\\.cache\\huggingface\\hub\\models--t5-large + + >>> print(get_table(hf_cache_info, verbosity=1)) + REPO ID REPO TYPE REVISION SIZE ON DISK NB FILES LAST_MODIFIED REFS LOCAL PATH + --------------------------------------------------- --------- ---------------------------------------- ------------ -------- ------------- ---- ----------------------------------------------------------------------------------------------------------------------------------------------------- + roberta-base model e2da8e2f811d1448a5b465c236feacd80ffbac7b 2.7M 5 1 week ago main C:\\Users\\admin\\.cache\\huggingface\\hub\\models--roberta-base\\snapshots\\e2da8e2f811d1448a5b465c236feacd80ffbac7b + suno/bark model 70a8a7d34168586dc5d028fa9666aceade177992 8.8K 1 1 week ago main C:\\Users\\admin\\.cache\\huggingface\\hub\\models--suno--bark\\snapshots\\70a8a7d34168586dc5d028fa9666aceade177992 + t5-base model a9723ea7f1b39c1eae772870f3b547bf6ef7e6c1 893.8M 4 7 months ago main C:\\Users\\admin\\.cache\\huggingface\\hub\\models--t5-base\\snapshots\\a9723ea7f1b39c1eae772870f3b547bf6ef7e6c1 + t5-large model 150ebc2c4b72291e770f58e6057481c8d2ed331a 3.0G 4 5 months ago main C:\\Users\\admin\\.cache\\huggingface\\hub\\models--t5-large\\snapshots\\150ebc2c4b72291e770f58e6057481c8d2ed331a ``` + ``` + + Args: + hf_cache_info ([`HFCacheInfo`]): + The HFCacheInfo object to print. + verbosity (`int`, *optional*): + The verbosity level. Defaults to 0. + + Returns: + `str`: The table as a string. + """ + if verbosity == 0: + return tabulate( + rows=[ + [ + repo.repo_id, + repo.repo_type, + "{:>12}".format(repo.size_on_disk_str), + repo.nb_files, + repo.last_accessed_str, + repo.last_modified_str, + ", ".join(sorted(repo.refs)), + str(repo.repo_path), + ] + for repo in sorted(hf_cache_info.repos, key=lambda repo: repo.repo_path) + ], + headers=[ + "REPO ID", + "REPO TYPE", + "SIZE ON DISK", + "NB FILES", + "LAST_ACCESSED", + "LAST_MODIFIED", + "REFS", + "LOCAL PATH", + ], + ) + else: + return tabulate( + rows=[ + [ + repo.repo_id, + repo.repo_type, + revision.commit_hash, + "{:>12}".format(revision.size_on_disk_str), + revision.nb_files, + revision.last_modified_str, + ", ".join(sorted(revision.refs)), + str(revision.snapshot_path), + ] + for repo in sorted(hf_cache_info.repos, key=lambda repo: repo.repo_path) + for revision in sorted(repo.revisions, key=lambda revision: revision.commit_hash) + ], + headers=[ + "REPO ID", + "REPO TYPE", + "REVISION", + "SIZE ON DISK", + "NB FILES", + "LAST_MODIFIED", + "REFS", + "LOCAL PATH", + ], + ) diff --git a/.venv/lib/python3.12/site-packages/huggingface_hub/commands/tag.py b/.venv/lib/python3.12/site-packages/huggingface_hub/commands/tag.py new file mode 100644 index 00000000..c3beab90 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/huggingface_hub/commands/tag.py @@ -0,0 +1,159 @@ +# coding=utf-8 +# Copyright 2024-present, the HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +"""Contains commands to perform tag management with the CLI. + +Usage Examples: + - Create a tag: + $ huggingface-cli tag user/my-model 1.0 --message "First release" + $ huggingface-cli tag user/my-model 1.0 -m "First release" --revision develop + $ huggingface-cli tag user/my-dataset 1.0 -m "First release" --repo-type dataset + $ huggingface-cli tag user/my-space 1.0 + - List all tags: + $ huggingface-cli tag -l user/my-model + $ huggingface-cli tag --list user/my-dataset --repo-type dataset + - Delete a tag: + $ huggingface-cli tag -d user/my-model 1.0 + $ huggingface-cli tag --delete user/my-dataset 1.0 --repo-type dataset + $ huggingface-cli tag -d user/my-space 1.0 -y +""" + +from argparse import Namespace, _SubParsersAction + +from requests.exceptions import HTTPError + +from huggingface_hub.commands import BaseHuggingfaceCLICommand +from huggingface_hub.constants import ( + REPO_TYPES, +) +from huggingface_hub.hf_api import HfApi + +from ..errors import HfHubHTTPError, RepositoryNotFoundError, RevisionNotFoundError +from ._cli_utils import ANSI + + +class TagCommands(BaseHuggingfaceCLICommand): + @staticmethod + def register_subcommand(parser: _SubParsersAction): + tag_parser = parser.add_parser("tag", help="(create, list, delete) tags for a repo in the hub") + + tag_parser.add_argument("repo_id", type=str, help="The ID of the repo to tag (e.g. `username/repo-name`).") + tag_parser.add_argument("tag", nargs="?", type=str, help="The name of the tag for creation or deletion.") + tag_parser.add_argument("-m", "--message", type=str, help="The description of the tag to create.") + tag_parser.add_argument("--revision", type=str, help="The git revision to tag.") + tag_parser.add_argument( + "--token", type=str, help="A User Access Token generated from https://huggingface.co/settings/tokens." + ) + tag_parser.add_argument( + "--repo-type", + choices=["model", "dataset", "space"], + default="model", + help="Set the type of repository (model, dataset, or space).", + ) + tag_parser.add_argument("-y", "--yes", action="store_true", help="Answer Yes to prompts automatically.") + + tag_parser.add_argument("-l", "--list", action="store_true", help="List tags for a repository.") + tag_parser.add_argument("-d", "--delete", action="store_true", help="Delete a tag for a repository.") + + tag_parser.set_defaults(func=lambda args: handle_commands(args)) + + +def handle_commands(args: Namespace): + if args.list: + return TagListCommand(args) + elif args.delete: + return TagDeleteCommand(args) + else: + return TagCreateCommand(args) + + +class TagCommand: + def __init__(self, args: Namespace): + self.args = args + self.api = HfApi(token=self.args.token) + self.repo_id = self.args.repo_id + self.repo_type = self.args.repo_type + if self.repo_type not in REPO_TYPES: + print("Invalid repo --repo-type") + exit(1) + + +class TagCreateCommand(TagCommand): + def run(self): + print(f"You are about to create tag {ANSI.bold(self.args.tag)} on {self.repo_type} {ANSI.bold(self.repo_id)}") + + try: + self.api.create_tag( + repo_id=self.repo_id, + tag=self.args.tag, + tag_message=self.args.message, + revision=self.args.revision, + repo_type=self.repo_type, + ) + except RepositoryNotFoundError: + print(f"{self.repo_type.capitalize()} {ANSI.bold(self.repo_id)} not found.") + exit(1) + except RevisionNotFoundError: + print(f"Revision {ANSI.bold(self.args.revision)} not found.") + exit(1) + except HfHubHTTPError as e: + if e.response.status_code == 409: + print(f"Tag {ANSI.bold(self.args.tag)} already exists on {ANSI.bold(self.repo_id)}") + exit(1) + raise e + + print(f"Tag {ANSI.bold(self.args.tag)} created on {ANSI.bold(self.repo_id)}") + + +class TagListCommand(TagCommand): + def run(self): + try: + refs = self.api.list_repo_refs( + repo_id=self.repo_id, + repo_type=self.repo_type, + ) + except RepositoryNotFoundError: + print(f"{self.repo_type.capitalize()} {ANSI.bold(self.repo_id)} not found.") + exit(1) + except HTTPError as e: + print(e) + print(ANSI.red(e.response.text)) + exit(1) + if len(refs.tags) == 0: + print("No tags found") + exit(0) + print(f"Tags for {self.repo_type} {ANSI.bold(self.repo_id)}:") + for tag in refs.tags: + print(tag.name) + + +class TagDeleteCommand(TagCommand): + def run(self): + print(f"You are about to delete tag {ANSI.bold(self.args.tag)} on {self.repo_type} {ANSI.bold(self.repo_id)}") + + if not self.args.yes: + choice = input("Proceed? [Y/n] ").lower() + if choice not in ("", "y", "yes"): + print("Abort") + exit() + try: + self.api.delete_tag(repo_id=self.repo_id, tag=self.args.tag, repo_type=self.repo_type) + except RepositoryNotFoundError: + print(f"{self.repo_type.capitalize()} {ANSI.bold(self.repo_id)} not found.") + exit(1) + except RevisionNotFoundError: + print(f"Tag {ANSI.bold(self.args.tag)} not found on {ANSI.bold(self.repo_id)}") + exit(1) + print(f"Tag {ANSI.bold(self.args.tag)} deleted on {ANSI.bold(self.repo_id)}") diff --git a/.venv/lib/python3.12/site-packages/huggingface_hub/commands/upload.py b/.venv/lib/python3.12/site-packages/huggingface_hub/commands/upload.py new file mode 100644 index 00000000..c5db1118 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/huggingface_hub/commands/upload.py @@ -0,0 +1,299 @@ +# coding=utf-8 +# Copyright 2023-present, the HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Contains command to upload a repo or file with the CLI. + +Usage: + # Upload file (implicit) + huggingface-cli upload my-cool-model ./my-cool-model.safetensors + + # Upload file (explicit) + huggingface-cli upload my-cool-model ./my-cool-model.safetensors model.safetensors + + # Upload directory (implicit). If `my-cool-model/` is a directory it will be uploaded, otherwise an exception is raised. + huggingface-cli upload my-cool-model + + # Upload directory (explicit) + huggingface-cli upload my-cool-model ./models/my-cool-model . + + # Upload filtered directory (example: tensorboard logs except for the last run) + huggingface-cli upload my-cool-model ./model/training /logs --include "*.tfevents.*" --exclude "*20230905*" + + # Upload private dataset + huggingface-cli upload Wauplin/my-cool-dataset ./data . --repo-type=dataset --private + + # Upload with token + huggingface-cli upload Wauplin/my-cool-model --token=hf_**** + + # Sync local Space with Hub (upload new files, delete removed files) + huggingface-cli upload Wauplin/space-example --repo-type=space --exclude="/logs/*" --delete="*" --commit-message="Sync local Space with Hub" + + # Schedule commits every 30 minutes + huggingface-cli upload Wauplin/my-cool-model --every=30 +""" + +import os +import time +import warnings +from argparse import Namespace, _SubParsersAction +from typing import List, Optional + +from huggingface_hub import logging +from huggingface_hub._commit_scheduler import CommitScheduler +from huggingface_hub.commands import BaseHuggingfaceCLICommand +from huggingface_hub.constants import HF_HUB_ENABLE_HF_TRANSFER +from huggingface_hub.errors import RevisionNotFoundError +from huggingface_hub.hf_api import HfApi +from huggingface_hub.utils import disable_progress_bars, enable_progress_bars + + +logger = logging.get_logger(__name__) + + +class UploadCommand(BaseHuggingfaceCLICommand): + @staticmethod + def register_subcommand(parser: _SubParsersAction): + upload_parser = parser.add_parser("upload", help="Upload a file or a folder to a repo on the Hub") + upload_parser.add_argument( + "repo_id", type=str, help="The ID of the repo to upload to (e.g. `username/repo-name`)." + ) + upload_parser.add_argument( + "local_path", nargs="?", help="Local path to the file or folder to upload. Defaults to current directory." + ) + upload_parser.add_argument( + "path_in_repo", + nargs="?", + help="Path of the file or folder in the repo. Defaults to the relative path of the file or folder.", + ) + upload_parser.add_argument( + "--repo-type", + choices=["model", "dataset", "space"], + default="model", + help="Type of the repo to upload to (e.g. `dataset`).", + ) + upload_parser.add_argument( + "--revision", + type=str, + help=( + "An optional Git revision to push to. It can be a branch name or a PR reference. If revision does not" + " exist and `--create-pr` is not set, a branch will be automatically created." + ), + ) + upload_parser.add_argument( + "--private", + action="store_true", + help=( + "Whether to create a private repo if repo doesn't exist on the Hub. Ignored if the repo already" + " exists." + ), + ) + upload_parser.add_argument("--include", nargs="*", type=str, help="Glob patterns to match files to upload.") + upload_parser.add_argument( + "--exclude", nargs="*", type=str, help="Glob patterns to exclude from files to upload." + ) + upload_parser.add_argument( + "--delete", + nargs="*", + type=str, + help="Glob patterns for file to be deleted from the repo while committing.", + ) + upload_parser.add_argument( + "--commit-message", type=str, help="The summary / title / first line of the generated commit." + ) + upload_parser.add_argument("--commit-description", type=str, help="The description of the generated commit.") + upload_parser.add_argument( + "--create-pr", action="store_true", help="Whether to upload content as a new Pull Request." + ) + upload_parser.add_argument( + "--every", + type=float, + help="If set, a background job is scheduled to create commits every `every` minutes.", + ) + upload_parser.add_argument( + "--token", type=str, help="A User Access Token generated from https://huggingface.co/settings/tokens" + ) + upload_parser.add_argument( + "--quiet", + action="store_true", + help="If True, progress bars are disabled and only the path to the uploaded files is printed.", + ) + upload_parser.set_defaults(func=UploadCommand) + + def __init__(self, args: Namespace) -> None: + self.repo_id: str = args.repo_id + self.repo_type: Optional[str] = args.repo_type + self.revision: Optional[str] = args.revision + self.private: bool = args.private + + self.include: Optional[List[str]] = args.include + self.exclude: Optional[List[str]] = args.exclude + self.delete: Optional[List[str]] = args.delete + + self.commit_message: Optional[str] = args.commit_message + self.commit_description: Optional[str] = args.commit_description + self.create_pr: bool = args.create_pr + self.api: HfApi = HfApi(token=args.token, library_name="huggingface-cli") + self.quiet: bool = args.quiet # disable warnings and progress bars + + # Check `--every` is valid + if args.every is not None and args.every <= 0: + raise ValueError(f"`every` must be a positive value (got '{args.every}')") + self.every: Optional[float] = args.every + + # Resolve `local_path` and `path_in_repo` + repo_name: str = args.repo_id.split("/")[-1] # e.g. "Wauplin/my-cool-model" => "my-cool-model" + self.local_path: str + self.path_in_repo: str + if args.local_path is None and os.path.isfile(repo_name): + # Implicit case 1: user provided only a repo_id which happen to be a local file as well => upload it with same name + self.local_path = repo_name + self.path_in_repo = repo_name + elif args.local_path is None and os.path.isdir(repo_name): + # Implicit case 2: user provided only a repo_id which happen to be a local folder as well => upload it at root + self.local_path = repo_name + self.path_in_repo = "." + elif args.local_path is None: + # Implicit case 3: user provided only a repo_id that does not match a local file or folder + # => the user must explicitly provide a local_path => raise exception + raise ValueError(f"'{repo_name}' is not a local file or folder. Please set `local_path` explicitly.") + elif args.path_in_repo is None and os.path.isfile(args.local_path): + # Explicit local path to file, no path in repo => upload it at root with same name + self.local_path = args.local_path + self.path_in_repo = os.path.basename(args.local_path) + elif args.path_in_repo is None: + # Explicit local path to folder, no path in repo => upload at root + self.local_path = args.local_path + self.path_in_repo = "." + else: + # Finally, if both paths are explicit + self.local_path = args.local_path + self.path_in_repo = args.path_in_repo + + def run(self) -> None: + if self.quiet: + disable_progress_bars() + with warnings.catch_warnings(): + warnings.simplefilter("ignore") + print(self._upload()) + enable_progress_bars() + else: + logging.set_verbosity_info() + print(self._upload()) + logging.set_verbosity_warning() + + def _upload(self) -> str: + if os.path.isfile(self.local_path): + if self.include is not None and len(self.include) > 0: + warnings.warn("Ignoring `--include` since a single file is uploaded.") + if self.exclude is not None and len(self.exclude) > 0: + warnings.warn("Ignoring `--exclude` since a single file is uploaded.") + if self.delete is not None and len(self.delete) > 0: + warnings.warn("Ignoring `--delete` since a single file is uploaded.") + + if not HF_HUB_ENABLE_HF_TRANSFER: + logger.info( + "Consider using `hf_transfer` for faster uploads. This solution comes with some limitations. See" + " https://huggingface.co/docs/huggingface_hub/hf_transfer for more details." + ) + + # Schedule commits if `every` is set + if self.every is not None: + if os.path.isfile(self.local_path): + # If file => watch entire folder + use allow_patterns + folder_path = os.path.dirname(self.local_path) + path_in_repo = ( + self.path_in_repo[: -len(self.local_path)] # remove filename from path_in_repo + if self.path_in_repo.endswith(self.local_path) + else self.path_in_repo + ) + allow_patterns = [self.local_path] + ignore_patterns = [] + else: + folder_path = self.local_path + path_in_repo = self.path_in_repo + allow_patterns = self.include or [] + ignore_patterns = self.exclude or [] + if self.delete is not None and len(self.delete) > 0: + warnings.warn("Ignoring `--delete` when uploading with scheduled commits.") + + scheduler = CommitScheduler( + folder_path=folder_path, + repo_id=self.repo_id, + repo_type=self.repo_type, + revision=self.revision, + allow_patterns=allow_patterns, + ignore_patterns=ignore_patterns, + path_in_repo=path_in_repo, + private=self.private, + every=self.every, + hf_api=self.api, + ) + print(f"Scheduling commits every {self.every} minutes to {scheduler.repo_id}.") + try: # Block main thread until KeyboardInterrupt + while True: + time.sleep(100) + except KeyboardInterrupt: + scheduler.stop() + return "Stopped scheduled commits." + + # Otherwise, create repo and proceed with the upload + if not os.path.isfile(self.local_path) and not os.path.isdir(self.local_path): + raise FileNotFoundError(f"No such file or directory: '{self.local_path}'.") + repo_id = self.api.create_repo( + repo_id=self.repo_id, + repo_type=self.repo_type, + exist_ok=True, + private=self.private, + space_sdk="gradio" if self.repo_type == "space" else None, + # ^ We don't want it to fail when uploading to a Space => let's set Gradio by default. + # ^ I'd rather not add CLI args to set it explicitly as we already have `huggingface-cli repo create` for that. + ).repo_id + + # Check if branch already exists and if not, create it + if self.revision is not None and not self.create_pr: + try: + self.api.repo_info(repo_id=repo_id, repo_type=self.repo_type, revision=self.revision) + except RevisionNotFoundError: + logger.info(f"Branch '{self.revision}' not found. Creating it...") + self.api.create_branch(repo_id=repo_id, repo_type=self.repo_type, branch=self.revision, exist_ok=True) + # ^ `exist_ok=True` to avoid race concurrency issues + + # File-based upload + if os.path.isfile(self.local_path): + return self.api.upload_file( + path_or_fileobj=self.local_path, + path_in_repo=self.path_in_repo, + repo_id=repo_id, + repo_type=self.repo_type, + revision=self.revision, + commit_message=self.commit_message, + commit_description=self.commit_description, + create_pr=self.create_pr, + ) + + # Folder-based upload + else: + return self.api.upload_folder( + folder_path=self.local_path, + path_in_repo=self.path_in_repo, + repo_id=repo_id, + repo_type=self.repo_type, + revision=self.revision, + commit_message=self.commit_message, + commit_description=self.commit_description, + create_pr=self.create_pr, + allow_patterns=self.include, + ignore_patterns=self.exclude, + delete_patterns=self.delete, + ) diff --git a/.venv/lib/python3.12/site-packages/huggingface_hub/commands/upload_large_folder.py b/.venv/lib/python3.12/site-packages/huggingface_hub/commands/upload_large_folder.py new file mode 100644 index 00000000..61c12a9f --- /dev/null +++ b/.venv/lib/python3.12/site-packages/huggingface_hub/commands/upload_large_folder.py @@ -0,0 +1,129 @@ +# coding=utf-8 +# Copyright 2023-present, the HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Contains command to upload a large folder with the CLI.""" + +import os +from argparse import Namespace, _SubParsersAction +from typing import List, Optional + +from huggingface_hub import logging +from huggingface_hub.commands import BaseHuggingfaceCLICommand +from huggingface_hub.hf_api import HfApi +from huggingface_hub.utils import disable_progress_bars + +from ._cli_utils import ANSI + + +logger = logging.get_logger(__name__) + + +class UploadLargeFolderCommand(BaseHuggingfaceCLICommand): + @staticmethod + def register_subcommand(parser: _SubParsersAction): + subparser = parser.add_parser("upload-large-folder", help="Upload a large folder to a repo on the Hub") + subparser.add_argument( + "repo_id", type=str, help="The ID of the repo to upload to (e.g. `username/repo-name`)." + ) + subparser.add_argument("local_path", type=str, help="Local path to the file or folder to upload.") + subparser.add_argument( + "--repo-type", + choices=["model", "dataset", "space"], + help="Type of the repo to upload to (e.g. `dataset`).", + ) + subparser.add_argument( + "--revision", + type=str, + help=("An optional Git revision to push to. It can be a branch name or a PR reference."), + ) + subparser.add_argument( + "--private", + action="store_true", + help=( + "Whether to create a private repo if repo doesn't exist on the Hub. Ignored if the repo already exists." + ), + ) + subparser.add_argument("--include", nargs="*", type=str, help="Glob patterns to match files to upload.") + subparser.add_argument("--exclude", nargs="*", type=str, help="Glob patterns to exclude from files to upload.") + subparser.add_argument( + "--token", type=str, help="A User Access Token generated from https://huggingface.co/settings/tokens" + ) + subparser.add_argument( + "--num-workers", type=int, help="Number of workers to use to hash, upload and commit files." + ) + subparser.add_argument("--no-report", action="store_true", help="Whether to disable regular status report.") + subparser.add_argument("--no-bars", action="store_true", help="Whether to disable progress bars.") + subparser.set_defaults(func=UploadLargeFolderCommand) + + def __init__(self, args: Namespace) -> None: + self.repo_id: str = args.repo_id + self.local_path: str = args.local_path + self.repo_type: str = args.repo_type + self.revision: Optional[str] = args.revision + self.private: bool = args.private + + self.include: Optional[List[str]] = args.include + self.exclude: Optional[List[str]] = args.exclude + + self.api: HfApi = HfApi(token=args.token, library_name="huggingface-cli") + + self.num_workers: Optional[int] = args.num_workers + self.no_report: bool = args.no_report + self.no_bars: bool = args.no_bars + + if not os.path.isdir(self.local_path): + raise ValueError("Large upload is only supported for folders.") + + def run(self) -> None: + logging.set_verbosity_info() + + print( + ANSI.yellow( + "You are about to upload a large folder to the Hub using `huggingface-cli upload-large-folder`. " + "This is a new feature so feedback is very welcome!\n" + "\n" + "A few things to keep in mind:\n" + " - Repository limits still apply: https://huggingface.co/docs/hub/repositories-recommendations\n" + " - Do not start several processes in parallel.\n" + " - You can interrupt and resume the process at any time. " + "The script will pick up where it left off except for partially uploaded files that would have to be entirely reuploaded.\n" + " - Do not upload the same folder to several repositories. If you need to do so, you must delete the `./.cache/huggingface/` folder first.\n" + "\n" + f"Some temporary metadata will be stored under `{self.local_path}/.cache/huggingface`.\n" + " - You must not modify those files manually.\n" + " - You must not delete the `./.cache/huggingface/` folder while a process is running.\n" + " - You can delete the `./.cache/huggingface/` folder to reinitialize the upload state when process is not running. Files will have to be hashed and preuploaded again, except for already committed files.\n" + "\n" + "If the process output is too verbose, you can disable the progress bars with `--no-bars`. " + "You can also entirely disable the status report with `--no-report`.\n" + "\n" + "For more details, run `huggingface-cli upload-large-folder --help` or check the documentation at " + "https://huggingface.co/docs/huggingface_hub/guides/upload#upload-a-large-folder." + ) + ) + + if self.no_bars: + disable_progress_bars() + + self.api.upload_large_folder( + repo_id=self.repo_id, + folder_path=self.local_path, + repo_type=self.repo_type, + revision=self.revision, + private=self.private, + allow_patterns=self.include, + ignore_patterns=self.exclude, + num_workers=self.num_workers, + print_report=not self.no_report, + ) diff --git a/.venv/lib/python3.12/site-packages/huggingface_hub/commands/user.py b/.venv/lib/python3.12/site-packages/huggingface_hub/commands/user.py new file mode 100644 index 00000000..9741a219 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/huggingface_hub/commands/user.py @@ -0,0 +1,304 @@ +# Copyright 2020 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Contains commands to authenticate to the Hugging Face Hub and interact with your repositories. + +Usage: + # login and save token locally. + huggingface-cli login --token=hf_*** --add-to-git-credential + + # switch between tokens + huggingface-cli auth switch + + # list all tokens + huggingface-cli auth list + + # logout from a specific token, if no token-name is provided, all tokens will be deleted from your machine. + huggingface-cli logout --token-name=your_token_name + + # find out which huggingface.co account you are logged in as + huggingface-cli whoami + + # create a new dataset repo on the Hub + huggingface-cli repo create mydataset --type=dataset + +""" + +import subprocess +from argparse import _SubParsersAction +from typing import List, Optional + +from requests.exceptions import HTTPError + +from huggingface_hub.commands import BaseHuggingfaceCLICommand +from huggingface_hub.constants import ENDPOINT, REPO_TYPES, REPO_TYPES_URL_PREFIXES, SPACES_SDK_TYPES +from huggingface_hub.hf_api import HfApi + +from .._login import ( # noqa: F401 # for backward compatibility # noqa: F401 # for backward compatibility + NOTEBOOK_LOGIN_PASSWORD_HTML, + NOTEBOOK_LOGIN_TOKEN_HTML_END, + NOTEBOOK_LOGIN_TOKEN_HTML_START, + auth_list, + auth_switch, + login, + logout, + notebook_login, +) +from ..utils import get_stored_tokens, get_token, logging +from ._cli_utils import ANSI + + +logger = logging.get_logger(__name__) + +try: + from InquirerPy import inquirer + from InquirerPy.base.control import Choice + + _inquirer_py_available = True +except ImportError: + _inquirer_py_available = False + + +class UserCommands(BaseHuggingfaceCLICommand): + @staticmethod + def register_subcommand(parser: _SubParsersAction): + login_parser = parser.add_parser("login", help="Log in using a token from huggingface.co/settings/tokens") + login_parser.add_argument( + "--token", + type=str, + help="Token generated from https://huggingface.co/settings/tokens", + ) + login_parser.add_argument( + "--add-to-git-credential", + action="store_true", + help="Optional: Save token to git credential helper.", + ) + login_parser.set_defaults(func=lambda args: LoginCommand(args)) + whoami_parser = parser.add_parser("whoami", help="Find out which huggingface.co account you are logged in as.") + whoami_parser.set_defaults(func=lambda args: WhoamiCommand(args)) + + logout_parser = parser.add_parser("logout", help="Log out") + logout_parser.add_argument( + "--token-name", + type=str, + help="Optional: Name of the access token to log out from.", + ) + logout_parser.set_defaults(func=lambda args: LogoutCommand(args)) + + auth_parser = parser.add_parser("auth", help="Other authentication related commands") + auth_subparsers = auth_parser.add_subparsers(help="Authentication subcommands") + auth_switch_parser = auth_subparsers.add_parser("switch", help="Switch between access tokens") + auth_switch_parser.add_argument( + "--token-name", + type=str, + help="Optional: Name of the access token to switch to.", + ) + auth_switch_parser.add_argument( + "--add-to-git-credential", + action="store_true", + help="Optional: Save token to git credential helper.", + ) + auth_switch_parser.set_defaults(func=lambda args: AuthSwitchCommand(args)) + auth_list_parser = auth_subparsers.add_parser("list", help="List all stored access tokens") + auth_list_parser.set_defaults(func=lambda args: AuthListCommand(args)) + # new system: git-based repo system + repo_parser = parser.add_parser("repo", help="{create} Commands to interact with your huggingface.co repos.") + repo_subparsers = repo_parser.add_subparsers(help="huggingface.co repos related commands") + repo_create_parser = repo_subparsers.add_parser("create", help="Create a new repo on huggingface.co") + repo_create_parser.add_argument( + "name", + type=str, + help="Name for your repo. Will be namespaced under your username to build the repo id.", + ) + repo_create_parser.add_argument( + "--type", + type=str, + help='Optional: repo_type: set to "dataset" or "space" if creating a dataset or space, default is model.', + ) + repo_create_parser.add_argument("--organization", type=str, help="Optional: organization namespace.") + repo_create_parser.add_argument( + "--space_sdk", + type=str, + help='Optional: Hugging Face Spaces SDK type. Required when --type is set to "space".', + choices=SPACES_SDK_TYPES, + ) + repo_create_parser.add_argument( + "-y", + "--yes", + action="store_true", + help="Optional: answer Yes to the prompt", + ) + repo_create_parser.set_defaults(func=lambda args: RepoCreateCommand(args)) + + +class BaseUserCommand: + def __init__(self, args): + self.args = args + self._api = HfApi() + + +class LoginCommand(BaseUserCommand): + def run(self): + logging.set_verbosity_info() + login( + token=self.args.token, + add_to_git_credential=self.args.add_to_git_credential, + ) + + +class LogoutCommand(BaseUserCommand): + def run(self): + logging.set_verbosity_info() + logout(token_name=self.args.token_name) + + +class AuthSwitchCommand(BaseUserCommand): + def run(self): + logging.set_verbosity_info() + token_name = self.args.token_name + if token_name is None: + token_name = self._select_token_name() + + if token_name is None: + print("No token name provided. Aborting.") + exit() + auth_switch(token_name, add_to_git_credential=self.args.add_to_git_credential) + + def _select_token_name(self) -> Optional[str]: + token_names = list(get_stored_tokens().keys()) + + if not token_names: + logger.error("No stored tokens found. Please login first.") + return None + + if _inquirer_py_available: + return self._select_token_name_tui(token_names) + # if inquirer is not available, use a simpler terminal UI + print("Available stored tokens:") + for i, token_name in enumerate(token_names, 1): + print(f"{i}. {token_name}") + while True: + try: + choice = input("Enter the number of the token to switch to (or 'q' to quit): ") + if choice.lower() == "q": + return None + index = int(choice) - 1 + if 0 <= index < len(token_names): + return token_names[index] + else: + print("Invalid selection. Please try again.") + except ValueError: + print("Invalid input. Please enter a number or 'q' to quit.") + + def _select_token_name_tui(self, token_names: List[str]) -> Optional[str]: + choices = [Choice(token_name, name=token_name) for token_name in token_names] + try: + return inquirer.select( + message="Select a token to switch to:", + choices=choices, + default=None, + ).execute() + except KeyboardInterrupt: + logger.info("Token selection cancelled.") + return None + + +class AuthListCommand(BaseUserCommand): + def run(self): + logging.set_verbosity_info() + auth_list() + + +class WhoamiCommand(BaseUserCommand): + def run(self): + token = get_token() + if token is None: + print("Not logged in") + exit() + try: + info = self._api.whoami(token) + print(info["name"]) + orgs = [org["name"] for org in info["orgs"]] + if orgs: + print(ANSI.bold("orgs: "), ",".join(orgs)) + + if ENDPOINT != "https://huggingface.co": + print(f"Authenticated through private endpoint: {ENDPOINT}") + except HTTPError as e: + print(e) + print(ANSI.red(e.response.text)) + exit(1) + + +class RepoCreateCommand(BaseUserCommand): + def run(self): + token = get_token() + if token is None: + print("Not logged in") + exit(1) + try: + stdout = subprocess.check_output(["git", "--version"]).decode("utf-8") + print(ANSI.gray(stdout.strip())) + except FileNotFoundError: + print("Looks like you do not have git installed, please install.") + + try: + stdout = subprocess.check_output(["git-lfs", "--version"]).decode("utf-8") + print(ANSI.gray(stdout.strip())) + except FileNotFoundError: + print( + ANSI.red( + "Looks like you do not have git-lfs installed, please install." + " You can install from https://git-lfs.github.com/." + " Then run `git lfs install` (you only have to do this once)." + ) + ) + print("") + + user = self._api.whoami(token)["name"] + namespace = self.args.organization if self.args.organization is not None else user + + repo_id = f"{namespace}/{self.args.name}" + + if self.args.type not in REPO_TYPES: + print("Invalid repo --type") + exit(1) + + if self.args.type in REPO_TYPES_URL_PREFIXES: + prefixed_repo_id = REPO_TYPES_URL_PREFIXES[self.args.type] + repo_id + else: + prefixed_repo_id = repo_id + + print(f"You are about to create {ANSI.bold(prefixed_repo_id)}") + + if not self.args.yes: + choice = input("Proceed? [Y/n] ").lower() + if not (choice == "" or choice == "y" or choice == "yes"): + print("Abort") + exit() + try: + url = self._api.create_repo( + repo_id=repo_id, + token=token, + repo_type=self.args.type, + space_sdk=self.args.space_sdk, + ) + except HTTPError as e: + print(e) + print(ANSI.red(e.response.text)) + exit(1) + print("\nYour repo now lives at:") + print(f" {ANSI.bold(url)}") + print("\nYou can clone it locally with the command below, and commit/push as usual.") + print(f"\n git clone {url}") + print("") diff --git a/.venv/lib/python3.12/site-packages/huggingface_hub/commands/version.py b/.venv/lib/python3.12/site-packages/huggingface_hub/commands/version.py new file mode 100644 index 00000000..f7e866b7 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/huggingface_hub/commands/version.py @@ -0,0 +1,37 @@ +# Copyright 2022 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Contains command to print information about the version. + +Usage: + huggingface-cli version +""" + +from argparse import _SubParsersAction + +from huggingface_hub import __version__ + +from . import BaseHuggingfaceCLICommand + + +class VersionCommand(BaseHuggingfaceCLICommand): + def __init__(self, args): + self.args = args + + @staticmethod + def register_subcommand(parser: _SubParsersAction): + version_parser = parser.add_parser("version", help="Print information about the huggingface-cli version.") + version_parser.set_defaults(func=VersionCommand) + + def run(self) -> None: + print(f"huggingface_hub version: {__version__}") diff --git a/.venv/lib/python3.12/site-packages/huggingface_hub/community.py b/.venv/lib/python3.12/site-packages/huggingface_hub/community.py new file mode 100644 index 00000000..16f2f024 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/huggingface_hub/community.py @@ -0,0 +1,355 @@ +""" +Data structures to interact with Discussions and Pull Requests on the Hub. + +See [the Discussions and Pull Requests guide](https://huggingface.co/docs/hub/repositories-pull-requests-discussions) +for more information on Pull Requests, Discussions, and the community tab. +""" + +from dataclasses import dataclass +from datetime import datetime +from typing import List, Literal, Optional, Union + +from . import constants +from .utils import parse_datetime + + +DiscussionStatus = Literal["open", "closed", "merged", "draft"] + + +@dataclass +class Discussion: + """ + A Discussion or Pull Request on the Hub. + + This dataclass is not intended to be instantiated directly. + + Attributes: + title (`str`): + The title of the Discussion / Pull Request + status (`str`): + The status of the Discussion / Pull Request. + It must be one of: + * `"open"` + * `"closed"` + * `"merged"` (only for Pull Requests ) + * `"draft"` (only for Pull Requests ) + num (`int`): + The number of the Discussion / Pull Request. + repo_id (`str`): + The id (`"{namespace}/{repo_name}"`) of the repo on which + the Discussion / Pull Request was open. + repo_type (`str`): + The type of the repo on which the Discussion / Pull Request was open. + Possible values are: `"model"`, `"dataset"`, `"space"`. + author (`str`): + The username of the Discussion / Pull Request author. + Can be `"deleted"` if the user has been deleted since. + is_pull_request (`bool`): + Whether or not this is a Pull Request. + created_at (`datetime`): + The `datetime` of creation of the Discussion / Pull Request. + endpoint (`str`): + Endpoint of the Hub. Default is https://huggingface.co. + git_reference (`str`, *optional*): + (property) Git reference to which changes can be pushed if this is a Pull Request, `None` otherwise. + url (`str`): + (property) URL of the discussion on the Hub. + """ + + title: str + status: DiscussionStatus + num: int + repo_id: str + repo_type: str + author: str + is_pull_request: bool + created_at: datetime + endpoint: str + + @property + def git_reference(self) -> Optional[str]: + """ + If this is a Pull Request , returns the git reference to which changes can be pushed. + Returns `None` otherwise. + """ + if self.is_pull_request: + return f"refs/pr/{self.num}" + return None + + @property + def url(self) -> str: + """Returns the URL of the discussion on the Hub.""" + if self.repo_type is None or self.repo_type == constants.REPO_TYPE_MODEL: + return f"{self.endpoint}/{self.repo_id}/discussions/{self.num}" + return f"{self.endpoint}/{self.repo_type}s/{self.repo_id}/discussions/{self.num}" + + +@dataclass +class DiscussionWithDetails(Discussion): + """ + Subclass of [`Discussion`]. + + Attributes: + title (`str`): + The title of the Discussion / Pull Request + status (`str`): + The status of the Discussion / Pull Request. + It can be one of: + * `"open"` + * `"closed"` + * `"merged"` (only for Pull Requests ) + * `"draft"` (only for Pull Requests ) + num (`int`): + The number of the Discussion / Pull Request. + repo_id (`str`): + The id (`"{namespace}/{repo_name}"`) of the repo on which + the Discussion / Pull Request was open. + repo_type (`str`): + The type of the repo on which the Discussion / Pull Request was open. + Possible values are: `"model"`, `"dataset"`, `"space"`. + author (`str`): + The username of the Discussion / Pull Request author. + Can be `"deleted"` if the user has been deleted since. + is_pull_request (`bool`): + Whether or not this is a Pull Request. + created_at (`datetime`): + The `datetime` of creation of the Discussion / Pull Request. + events (`list` of [`DiscussionEvent`]) + The list of [`DiscussionEvents`] in this Discussion or Pull Request. + conflicting_files (`Union[List[str], bool, None]`, *optional*): + A list of conflicting files if this is a Pull Request. + `None` if `self.is_pull_request` is `False`. + `True` if there are conflicting files but the list can't be retrieved. + target_branch (`str`, *optional*): + The branch into which changes are to be merged if this is a + Pull Request . `None` if `self.is_pull_request` is `False`. + merge_commit_oid (`str`, *optional*): + If this is a merged Pull Request , this is set to the OID / SHA of + the merge commit, `None` otherwise. + diff (`str`, *optional*): + The git diff if this is a Pull Request , `None` otherwise. + endpoint (`str`): + Endpoint of the Hub. Default is https://huggingface.co. + git_reference (`str`, *optional*): + (property) Git reference to which changes can be pushed if this is a Pull Request, `None` otherwise. + url (`str`): + (property) URL of the discussion on the Hub. + """ + + events: List["DiscussionEvent"] + conflicting_files: Union[List[str], bool, None] + target_branch: Optional[str] + merge_commit_oid: Optional[str] + diff: Optional[str] + + +@dataclass +class DiscussionEvent: + """ + An event in a Discussion or Pull Request. + + Use concrete classes: + * [`DiscussionComment`] + * [`DiscussionStatusChange`] + * [`DiscussionCommit`] + * [`DiscussionTitleChange`] + + Attributes: + id (`str`): + The ID of the event. An hexadecimal string. + type (`str`): + The type of the event. + created_at (`datetime`): + A [`datetime`](https://docs.python.org/3/library/datetime.html?highlight=datetime#datetime.datetime) + object holding the creation timestamp for the event. + author (`str`): + The username of the Discussion / Pull Request author. + Can be `"deleted"` if the user has been deleted since. + """ + + id: str + type: str + created_at: datetime + author: str + + _event: dict + """Stores the original event data, in case we need to access it later.""" + + +@dataclass +class DiscussionComment(DiscussionEvent): + """A comment in a Discussion / Pull Request. + + Subclass of [`DiscussionEvent`]. + + + Attributes: + id (`str`): + The ID of the event. An hexadecimal string. + type (`str`): + The type of the event. + created_at (`datetime`): + A [`datetime`](https://docs.python.org/3/library/datetime.html?highlight=datetime#datetime.datetime) + object holding the creation timestamp for the event. + author (`str`): + The username of the Discussion / Pull Request author. + Can be `"deleted"` if the user has been deleted since. + content (`str`): + The raw markdown content of the comment. Mentions, links and images are not rendered. + edited (`bool`): + Whether or not this comment has been edited. + hidden (`bool`): + Whether or not this comment has been hidden. + """ + + content: str + edited: bool + hidden: bool + + @property + def rendered(self) -> str: + """The rendered comment, as a HTML string""" + return self._event["data"]["latest"]["html"] + + @property + def last_edited_at(self) -> datetime: + """The last edit time, as a `datetime` object.""" + return parse_datetime(self._event["data"]["latest"]["updatedAt"]) + + @property + def last_edited_by(self) -> str: + """The last edit time, as a `datetime` object.""" + return self._event["data"]["latest"].get("author", {}).get("name", "deleted") + + @property + def edit_history(self) -> List[dict]: + """The edit history of the comment""" + return self._event["data"]["history"] + + @property + def number_of_edits(self) -> int: + return len(self.edit_history) + + +@dataclass +class DiscussionStatusChange(DiscussionEvent): + """A change of status in a Discussion / Pull Request. + + Subclass of [`DiscussionEvent`]. + + Attributes: + id (`str`): + The ID of the event. An hexadecimal string. + type (`str`): + The type of the event. + created_at (`datetime`): + A [`datetime`](https://docs.python.org/3/library/datetime.html?highlight=datetime#datetime.datetime) + object holding the creation timestamp for the event. + author (`str`): + The username of the Discussion / Pull Request author. + Can be `"deleted"` if the user has been deleted since. + new_status (`str`): + The status of the Discussion / Pull Request after the change. + It can be one of: + * `"open"` + * `"closed"` + * `"merged"` (only for Pull Requests ) + """ + + new_status: str + + +@dataclass +class DiscussionCommit(DiscussionEvent): + """A commit in a Pull Request. + + Subclass of [`DiscussionEvent`]. + + Attributes: + id (`str`): + The ID of the event. An hexadecimal string. + type (`str`): + The type of the event. + created_at (`datetime`): + A [`datetime`](https://docs.python.org/3/library/datetime.html?highlight=datetime#datetime.datetime) + object holding the creation timestamp for the event. + author (`str`): + The username of the Discussion / Pull Request author. + Can be `"deleted"` if the user has been deleted since. + summary (`str`): + The summary of the commit. + oid (`str`): + The OID / SHA of the commit, as a hexadecimal string. + """ + + summary: str + oid: str + + +@dataclass +class DiscussionTitleChange(DiscussionEvent): + """A rename event in a Discussion / Pull Request. + + Subclass of [`DiscussionEvent`]. + + Attributes: + id (`str`): + The ID of the event. An hexadecimal string. + type (`str`): + The type of the event. + created_at (`datetime`): + A [`datetime`](https://docs.python.org/3/library/datetime.html?highlight=datetime#datetime.datetime) + object holding the creation timestamp for the event. + author (`str`): + The username of the Discussion / Pull Request author. + Can be `"deleted"` if the user has been deleted since. + old_title (`str`): + The previous title for the Discussion / Pull Request. + new_title (`str`): + The new title. + """ + + old_title: str + new_title: str + + +def deserialize_event(event: dict) -> DiscussionEvent: + """Instantiates a [`DiscussionEvent`] from a dict""" + event_id: str = event["id"] + event_type: str = event["type"] + created_at = parse_datetime(event["createdAt"]) + + common_args = dict( + id=event_id, + type=event_type, + created_at=created_at, + author=event.get("author", {}).get("name", "deleted"), + _event=event, + ) + + if event_type == "comment": + return DiscussionComment( + **common_args, + edited=event["data"]["edited"], + hidden=event["data"]["hidden"], + content=event["data"]["latest"]["raw"], + ) + if event_type == "status-change": + return DiscussionStatusChange( + **common_args, + new_status=event["data"]["status"], + ) + if event_type == "commit": + return DiscussionCommit( + **common_args, + summary=event["data"]["subject"], + oid=event["data"]["oid"], + ) + if event_type == "title-change": + return DiscussionTitleChange( + **common_args, + old_title=event["data"]["from"], + new_title=event["data"]["to"], + ) + + return DiscussionEvent(**common_args) diff --git a/.venv/lib/python3.12/site-packages/huggingface_hub/constants.py b/.venv/lib/python3.12/site-packages/huggingface_hub/constants.py new file mode 100644 index 00000000..6add6a8e --- /dev/null +++ b/.venv/lib/python3.12/site-packages/huggingface_hub/constants.py @@ -0,0 +1,235 @@ +import os +import re +import typing +from typing import Literal, Optional, Tuple + + +# Possible values for env variables + + +ENV_VARS_TRUE_VALUES = {"1", "ON", "YES", "TRUE"} +ENV_VARS_TRUE_AND_AUTO_VALUES = ENV_VARS_TRUE_VALUES.union({"AUTO"}) + + +def _is_true(value: Optional[str]) -> bool: + if value is None: + return False + return value.upper() in ENV_VARS_TRUE_VALUES + + +def _as_int(value: Optional[str]) -> Optional[int]: + if value is None: + return None + return int(value) + + +# Constants for file downloads + +PYTORCH_WEIGHTS_NAME = "pytorch_model.bin" +TF2_WEIGHTS_NAME = "tf_model.h5" +TF_WEIGHTS_NAME = "model.ckpt" +FLAX_WEIGHTS_NAME = "flax_model.msgpack" +CONFIG_NAME = "config.json" +REPOCARD_NAME = "README.md" +DEFAULT_ETAG_TIMEOUT = 10 +DEFAULT_DOWNLOAD_TIMEOUT = 10 +DEFAULT_REQUEST_TIMEOUT = 10 +DOWNLOAD_CHUNK_SIZE = 10 * 1024 * 1024 +HF_TRANSFER_CONCURRENCY = 100 + +# Constants for serialization + +PYTORCH_WEIGHTS_FILE_PATTERN = "pytorch_model{suffix}.bin" # Unsafe pickle: use safetensors instead +SAFETENSORS_WEIGHTS_FILE_PATTERN = "model{suffix}.safetensors" +TF2_WEIGHTS_FILE_PATTERN = "tf_model{suffix}.h5" + +# Constants for safetensors repos + +SAFETENSORS_SINGLE_FILE = "model.safetensors" +SAFETENSORS_INDEX_FILE = "model.safetensors.index.json" +SAFETENSORS_MAX_HEADER_LENGTH = 25_000_000 + +# Timeout of aquiring file lock and logging the attempt +FILELOCK_LOG_EVERY_SECONDS = 10 + +# Git-related constants + +DEFAULT_REVISION = "main" +REGEX_COMMIT_OID = re.compile(r"[A-Fa-f0-9]{5,40}") + +HUGGINGFACE_CO_URL_HOME = "https://huggingface.co/" + +_staging_mode = _is_true(os.environ.get("HUGGINGFACE_CO_STAGING")) + +_HF_DEFAULT_ENDPOINT = "https://huggingface.co" +_HF_DEFAULT_STAGING_ENDPOINT = "https://hub-ci.huggingface.co" +ENDPOINT = os.getenv("HF_ENDPOINT", _HF_DEFAULT_ENDPOINT).rstrip("/") +HUGGINGFACE_CO_URL_TEMPLATE = ENDPOINT + "/{repo_id}/resolve/{revision}/{filename}" + +if _staging_mode: + ENDPOINT = _HF_DEFAULT_STAGING_ENDPOINT + HUGGINGFACE_CO_URL_TEMPLATE = _HF_DEFAULT_STAGING_ENDPOINT + "/{repo_id}/resolve/{revision}/{filename}" + +HUGGINGFACE_HEADER_X_REPO_COMMIT = "X-Repo-Commit" +HUGGINGFACE_HEADER_X_LINKED_ETAG = "X-Linked-Etag" +HUGGINGFACE_HEADER_X_LINKED_SIZE = "X-Linked-Size" + +INFERENCE_ENDPOINT = os.environ.get("HF_INFERENCE_ENDPOINT", "https://api-inference.huggingface.co") + +# See https://huggingface.co/docs/inference-endpoints/index +INFERENCE_ENDPOINTS_ENDPOINT = "https://api.endpoints.huggingface.cloud/v2" + +# Proxy for third-party providers +INFERENCE_PROXY_TEMPLATE = "https://router.huggingface.co/{provider}" + +REPO_ID_SEPARATOR = "--" +# ^ this substring is not allowed in repo_ids on hf.co +# and is the canonical one we use for serialization of repo ids elsewhere. + + +REPO_TYPE_DATASET = "dataset" +REPO_TYPE_SPACE = "space" +REPO_TYPE_MODEL = "model" +REPO_TYPES = [None, REPO_TYPE_MODEL, REPO_TYPE_DATASET, REPO_TYPE_SPACE] +SPACES_SDK_TYPES = ["gradio", "streamlit", "docker", "static"] + +REPO_TYPES_URL_PREFIXES = { + REPO_TYPE_DATASET: "datasets/", + REPO_TYPE_SPACE: "spaces/", +} +REPO_TYPES_MAPPING = { + "datasets": REPO_TYPE_DATASET, + "spaces": REPO_TYPE_SPACE, + "models": REPO_TYPE_MODEL, +} + +DiscussionTypeFilter = Literal["all", "discussion", "pull_request"] +DISCUSSION_TYPES: Tuple[DiscussionTypeFilter, ...] = typing.get_args(DiscussionTypeFilter) +DiscussionStatusFilter = Literal["all", "open", "closed"] +DISCUSSION_STATUS: Tuple[DiscussionTypeFilter, ...] = typing.get_args(DiscussionStatusFilter) + +# Webhook subscription types +WEBHOOK_DOMAIN_T = Literal["repo", "discussions"] + +# default cache +default_home = os.path.join(os.path.expanduser("~"), ".cache") +HF_HOME = os.path.expanduser( + os.getenv( + "HF_HOME", + os.path.join(os.getenv("XDG_CACHE_HOME", default_home), "huggingface"), + ) +) +hf_cache_home = HF_HOME # for backward compatibility. TODO: remove this in 1.0.0 + +default_cache_path = os.path.join(HF_HOME, "hub") +default_assets_cache_path = os.path.join(HF_HOME, "assets") + +# Legacy env variables +HUGGINGFACE_HUB_CACHE = os.getenv("HUGGINGFACE_HUB_CACHE", default_cache_path) +HUGGINGFACE_ASSETS_CACHE = os.getenv("HUGGINGFACE_ASSETS_CACHE", default_assets_cache_path) + +# New env variables +HF_HUB_CACHE = os.getenv("HF_HUB_CACHE", HUGGINGFACE_HUB_CACHE) +HF_ASSETS_CACHE = os.getenv("HF_ASSETS_CACHE", HUGGINGFACE_ASSETS_CACHE) + +HF_HUB_OFFLINE = _is_true(os.environ.get("HF_HUB_OFFLINE") or os.environ.get("TRANSFORMERS_OFFLINE")) + +# If set, log level will be set to DEBUG and all requests made to the Hub will be logged +# as curl commands for reproducibility. +HF_DEBUG = _is_true(os.environ.get("HF_DEBUG")) + +# Opt-out from telemetry requests +HF_HUB_DISABLE_TELEMETRY = ( + _is_true(os.environ.get("HF_HUB_DISABLE_TELEMETRY")) # HF-specific env variable + or _is_true(os.environ.get("DISABLE_TELEMETRY")) + or _is_true(os.environ.get("DO_NOT_TRACK")) # https://consoledonottrack.com/ +) + +HF_TOKEN_PATH = os.environ.get("HF_TOKEN_PATH", os.path.join(HF_HOME, "token")) +HF_STORED_TOKENS_PATH = os.path.join(os.path.dirname(HF_TOKEN_PATH), "stored_tokens") + +if _staging_mode: + # In staging mode, we use a different cache to ensure we don't mix up production and staging data or tokens + # In practice in `huggingface_hub` tests, we monkeypatch these values with temporary directories. The following + # lines are only used in third-party libraries tests (e.g. `transformers`, `diffusers`, etc.). + _staging_home = os.path.join(os.path.expanduser("~"), ".cache", "huggingface_staging") + HUGGINGFACE_HUB_CACHE = os.path.join(_staging_home, "hub") + HF_TOKEN_PATH = os.path.join(_staging_home, "token") + +# Here, `True` will disable progress bars globally without possibility of enabling it +# programmatically. `False` will enable them without possibility of disabling them. +# If environment variable is not set (None), then the user is free to enable/disable +# them programmatically. +# TL;DR: env variable has priority over code +__HF_HUB_DISABLE_PROGRESS_BARS = os.environ.get("HF_HUB_DISABLE_PROGRESS_BARS") +HF_HUB_DISABLE_PROGRESS_BARS: Optional[bool] = ( + _is_true(__HF_HUB_DISABLE_PROGRESS_BARS) if __HF_HUB_DISABLE_PROGRESS_BARS is not None else None +) + +# Disable warning on machines that do not support symlinks (e.g. Windows non-developer) +HF_HUB_DISABLE_SYMLINKS_WARNING: bool = _is_true(os.environ.get("HF_HUB_DISABLE_SYMLINKS_WARNING")) + +# Disable warning when using experimental features +HF_HUB_DISABLE_EXPERIMENTAL_WARNING: bool = _is_true(os.environ.get("HF_HUB_DISABLE_EXPERIMENTAL_WARNING")) + +# Disable sending the cached token by default is all HTTP requests to the Hub +HF_HUB_DISABLE_IMPLICIT_TOKEN: bool = _is_true(os.environ.get("HF_HUB_DISABLE_IMPLICIT_TOKEN")) + +# Enable fast-download using external dependency "hf_transfer" +# See: +# - https://pypi.org/project/hf-transfer/ +# - https://github.com/huggingface/hf_transfer (private) +HF_HUB_ENABLE_HF_TRANSFER: bool = _is_true(os.environ.get("HF_HUB_ENABLE_HF_TRANSFER")) + + +# UNUSED +# We don't use symlinks in local dir anymore. +HF_HUB_LOCAL_DIR_AUTO_SYMLINK_THRESHOLD: int = ( + _as_int(os.environ.get("HF_HUB_LOCAL_DIR_AUTO_SYMLINK_THRESHOLD")) or 5 * 1024 * 1024 +) + +# Used to override the etag timeout on a system level +HF_HUB_ETAG_TIMEOUT: int = _as_int(os.environ.get("HF_HUB_ETAG_TIMEOUT")) or DEFAULT_ETAG_TIMEOUT + +# Used to override the get request timeout on a system level +HF_HUB_DOWNLOAD_TIMEOUT: int = _as_int(os.environ.get("HF_HUB_DOWNLOAD_TIMEOUT")) or DEFAULT_DOWNLOAD_TIMEOUT + +# Allows to add information about the requester in the user-agent (eg. partner name) +HF_HUB_USER_AGENT_ORIGIN: Optional[str] = os.environ.get("HF_HUB_USER_AGENT_ORIGIN") + +# List frameworks that are handled by the InferenceAPI service. Useful to scan endpoints and check which models are +# deployed and running. Since 95% of the models are using the top 4 frameworks listed below, we scan only those by +# default. We still keep the full list of supported frameworks in case we want to scan all of them. +MAIN_INFERENCE_API_FRAMEWORKS = [ + "diffusers", + "sentence-transformers", + "text-generation-inference", + "transformers", +] + +ALL_INFERENCE_API_FRAMEWORKS = MAIN_INFERENCE_API_FRAMEWORKS + [ + "adapter-transformers", + "allennlp", + "asteroid", + "bertopic", + "doctr", + "espnet", + "fairseq", + "fastai", + "fasttext", + "flair", + "k2", + "keras", + "mindspore", + "nemo", + "open_clip", + "paddlenlp", + "peft", + "pyannote-audio", + "sklearn", + "spacy", + "span-marker", + "speechbrain", + "stanza", + "timm", +] diff --git a/.venv/lib/python3.12/site-packages/huggingface_hub/errors.py b/.venv/lib/python3.12/site-packages/huggingface_hub/errors.py new file mode 100644 index 00000000..226c8bb4 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/huggingface_hub/errors.py @@ -0,0 +1,329 @@ +"""Contains all custom errors.""" + +from pathlib import Path +from typing import Optional, Union + +from requests import HTTPError, Response + + +# CACHE ERRORS + + +class CacheNotFound(Exception): + """Exception thrown when the Huggingface cache is not found.""" + + cache_dir: Union[str, Path] + + def __init__(self, msg: str, cache_dir: Union[str, Path], *args, **kwargs): + super().__init__(msg, *args, **kwargs) + self.cache_dir = cache_dir + + +class CorruptedCacheException(Exception): + """Exception for any unexpected structure in the Huggingface cache-system.""" + + +# HEADERS ERRORS + + +class LocalTokenNotFoundError(EnvironmentError): + """Raised if local token is required but not found.""" + + +# HTTP ERRORS + + +class OfflineModeIsEnabled(ConnectionError): + """Raised when a request is made but `HF_HUB_OFFLINE=1` is set as environment variable.""" + + +class HfHubHTTPError(HTTPError): + """ + HTTPError to inherit from for any custom HTTP Error raised in HF Hub. + + Any HTTPError is converted at least into a `HfHubHTTPError`. If some information is + sent back by the server, it will be added to the error message. + + Added details: + - Request id from "X-Request-Id" header if exists. If not, fallback to "X-Amzn-Trace-Id" header if exists. + - Server error message from the header "X-Error-Message". + - Server error message if we can found one in the response body. + + Example: + ```py + import requests + from huggingface_hub.utils import get_session, hf_raise_for_status, HfHubHTTPError + + response = get_session().post(...) + try: + hf_raise_for_status(response) + except HfHubHTTPError as e: + print(str(e)) # formatted message + e.request_id, e.server_message # details returned by server + + # Complete the error message with additional information once it's raised + e.append_to_message("\n`create_commit` expects the repository to exist.") + raise + ``` + """ + + def __init__(self, message: str, response: Optional[Response] = None, *, server_message: Optional[str] = None): + self.request_id = ( + response.headers.get("x-request-id") or response.headers.get("X-Amzn-Trace-Id") + if response is not None + else None + ) + self.server_message = server_message + + super().__init__( + message, + response=response, # type: ignore [arg-type] + request=response.request if response is not None else None, # type: ignore [arg-type] + ) + + def append_to_message(self, additional_message: str) -> None: + """Append additional information to the `HfHubHTTPError` initial message.""" + self.args = (self.args[0] + additional_message,) + self.args[1:] + + +# INFERENCE CLIENT ERRORS + + +class InferenceTimeoutError(HTTPError, TimeoutError): + """Error raised when a model is unavailable or the request times out.""" + + +# INFERENCE ENDPOINT ERRORS + + +class InferenceEndpointError(Exception): + """Generic exception when dealing with Inference Endpoints.""" + + +class InferenceEndpointTimeoutError(InferenceEndpointError, TimeoutError): + """Exception for timeouts while waiting for Inference Endpoint.""" + + +# SAFETENSORS ERRORS + + +class SafetensorsParsingError(Exception): + """Raised when failing to parse a safetensors file metadata. + + This can be the case if the file is not a safetensors file or does not respect the specification. + """ + + +class NotASafetensorsRepoError(Exception): + """Raised when a repo is not a Safetensors repo i.e. doesn't have either a `model.safetensors` or a + `model.safetensors.index.json` file. + """ + + +# TEXT GENERATION ERRORS + + +class TextGenerationError(HTTPError): + """Generic error raised if text-generation went wrong.""" + + +# Text Generation Inference Errors +class ValidationError(TextGenerationError): + """Server-side validation error.""" + + +class GenerationError(TextGenerationError): + pass + + +class OverloadedError(TextGenerationError): + pass + + +class IncompleteGenerationError(TextGenerationError): + pass + + +class UnknownError(TextGenerationError): + pass + + +# VALIDATION ERRORS + + +class HFValidationError(ValueError): + """Generic exception thrown by `huggingface_hub` validators. + + Inherits from [`ValueError`](https://docs.python.org/3/library/exceptions.html#ValueError). + """ + + +# FILE METADATA ERRORS + + +class FileMetadataError(OSError): + """Error triggered when the metadata of a file on the Hub cannot be retrieved (missing ETag or commit_hash). + + Inherits from `OSError` for backward compatibility. + """ + + +# REPOSITORY ERRORS + + +class RepositoryNotFoundError(HfHubHTTPError): + """ + Raised when trying to access a hf.co URL with an invalid repository name, or + with a private repo name the user does not have access to. + + Example: + + ```py + >>> from huggingface_hub import model_info + >>> model_info("<non_existent_repository>") + (...) + huggingface_hub.utils._errors.RepositoryNotFoundError: 401 Client Error. (Request ID: PvMw_VjBMjVdMz53WKIzP) + + Repository Not Found for url: https://huggingface.co/api/models/%3Cnon_existent_repository%3E. + Please make sure you specified the correct `repo_id` and `repo_type`. + If the repo is private, make sure you are authenticated. + Invalid username or password. + ``` + """ + + +class GatedRepoError(RepositoryNotFoundError): + """ + Raised when trying to access a gated repository for which the user is not on the + authorized list. + + Note: derives from `RepositoryNotFoundError` to ensure backward compatibility. + + Example: + + ```py + >>> from huggingface_hub import model_info + >>> model_info("<gated_repository>") + (...) + huggingface_hub.utils._errors.GatedRepoError: 403 Client Error. (Request ID: ViT1Bf7O_026LGSQuVqfa) + + Cannot access gated repo for url https://huggingface.co/api/models/ardent-figment/gated-model. + Access to model ardent-figment/gated-model is restricted and you are not in the authorized list. + Visit https://huggingface.co/ardent-figment/gated-model to ask for access. + ``` + """ + + +class DisabledRepoError(HfHubHTTPError): + """ + Raised when trying to access a repository that has been disabled by its author. + + Example: + + ```py + >>> from huggingface_hub import dataset_info + >>> dataset_info("laion/laion-art") + (...) + huggingface_hub.utils._errors.DisabledRepoError: 403 Client Error. (Request ID: Root=1-659fc3fa-3031673e0f92c71a2260dbe2;bc6f4dfb-b30a-4862-af0a-5cfe827610d8) + + Cannot access repository for url https://huggingface.co/api/datasets/laion/laion-art. + Access to this resource is disabled. + ``` + """ + + +# REVISION ERROR + + +class RevisionNotFoundError(HfHubHTTPError): + """ + Raised when trying to access a hf.co URL with a valid repository but an invalid + revision. + + Example: + + ```py + >>> from huggingface_hub import hf_hub_download + >>> hf_hub_download('bert-base-cased', 'config.json', revision='<non-existent-revision>') + (...) + huggingface_hub.utils._errors.RevisionNotFoundError: 404 Client Error. (Request ID: Mwhe_c3Kt650GcdKEFomX) + + Revision Not Found for url: https://huggingface.co/bert-base-cased/resolve/%3Cnon-existent-revision%3E/config.json. + ``` + """ + + +# ENTRY ERRORS +class EntryNotFoundError(HfHubHTTPError): + """ + Raised when trying to access a hf.co URL with a valid repository and revision + but an invalid filename. + + Example: + + ```py + >>> from huggingface_hub import hf_hub_download + >>> hf_hub_download('bert-base-cased', '<non-existent-file>') + (...) + huggingface_hub.utils._errors.EntryNotFoundError: 404 Client Error. (Request ID: 53pNl6M0MxsnG5Sw8JA6x) + + Entry Not Found for url: https://huggingface.co/bert-base-cased/resolve/main/%3Cnon-existent-file%3E. + ``` + """ + + +class LocalEntryNotFoundError(EntryNotFoundError, FileNotFoundError, ValueError): + """ + Raised when trying to access a file or snapshot that is not on the disk when network is + disabled or unavailable (connection issue). The entry may exist on the Hub. + + Note: `ValueError` type is to ensure backward compatibility. + Note: `LocalEntryNotFoundError` derives from `HTTPError` because of `EntryNotFoundError` + even when it is not a network issue. + + Example: + + ```py + >>> from huggingface_hub import hf_hub_download + >>> hf_hub_download('bert-base-cased', '<non-cached-file>', local_files_only=True) + (...) + huggingface_hub.utils._errors.LocalEntryNotFoundError: Cannot find the requested files in the disk cache and outgoing traffic has been disabled. To enable hf.co look-ups and downloads online, set 'local_files_only' to False. + ``` + """ + + def __init__(self, message: str): + super().__init__(message, response=None) + + +# REQUEST ERROR +class BadRequestError(HfHubHTTPError, ValueError): + """ + Raised by `hf_raise_for_status` when the server returns a HTTP 400 error. + + Example: + + ```py + >>> resp = requests.post("hf.co/api/check", ...) + >>> hf_raise_for_status(resp, endpoint_name="check") + huggingface_hub.utils._errors.BadRequestError: Bad request for check endpoint: {details} (Request ID: XXX) + ``` + """ + + +# DDUF file format ERROR + + +class DDUFError(Exception): + """Base exception for errors related to the DDUF format.""" + + +class DDUFCorruptedFileError(DDUFError): + """Exception thrown when the DDUF file is corrupted.""" + + +class DDUFExportError(DDUFError): + """Base exception for errors during DDUF export.""" + + +class DDUFInvalidEntryNameError(DDUFExportError): + """Exception thrown when the entry name is invalid.""" diff --git a/.venv/lib/python3.12/site-packages/huggingface_hub/fastai_utils.py b/.venv/lib/python3.12/site-packages/huggingface_hub/fastai_utils.py new file mode 100644 index 00000000..e75eba2a --- /dev/null +++ b/.venv/lib/python3.12/site-packages/huggingface_hub/fastai_utils.py @@ -0,0 +1,425 @@ +import json +import os +from pathlib import Path +from pickle import DEFAULT_PROTOCOL, PicklingError +from typing import Any, Dict, List, Optional, Union + +from packaging import version + +from huggingface_hub import constants, snapshot_download +from huggingface_hub.hf_api import HfApi +from huggingface_hub.utils import ( + SoftTemporaryDirectory, + get_fastai_version, + get_fastcore_version, + get_python_version, +) + +from .utils import logging, validate_hf_hub_args +from .utils._runtime import _PY_VERSION # noqa: F401 # for backward compatibility... + + +logger = logging.get_logger(__name__) + + +def _check_fastai_fastcore_versions( + fastai_min_version: str = "2.4", + fastcore_min_version: str = "1.3.27", +): + """ + Checks that the installed fastai and fastcore versions are compatible for pickle serialization. + + Args: + fastai_min_version (`str`, *optional*): + The minimum fastai version supported. + fastcore_min_version (`str`, *optional*): + The minimum fastcore version supported. + + <Tip> + Raises the following error: + + - [`ImportError`](https://docs.python.org/3/library/exceptions.html#ImportError) + if the fastai or fastcore libraries are not available or are of an invalid version. + + </Tip> + """ + + if (get_fastcore_version() or get_fastai_version()) == "N/A": + raise ImportError( + f"fastai>={fastai_min_version} and fastcore>={fastcore_min_version} are" + f" required. Currently using fastai=={get_fastai_version()} and" + f" fastcore=={get_fastcore_version()}." + ) + + current_fastai_version = version.Version(get_fastai_version()) + current_fastcore_version = version.Version(get_fastcore_version()) + + if current_fastai_version < version.Version(fastai_min_version): + raise ImportError( + "`push_to_hub_fastai` and `from_pretrained_fastai` require a" + f" fastai>={fastai_min_version} version, but you are using fastai version" + f" {get_fastai_version()} which is incompatible. Upgrade with `pip install" + " fastai==2.5.6`." + ) + + if current_fastcore_version < version.Version(fastcore_min_version): + raise ImportError( + "`push_to_hub_fastai` and `from_pretrained_fastai` require a" + f" fastcore>={fastcore_min_version} version, but you are using fastcore" + f" version {get_fastcore_version()} which is incompatible. Upgrade with" + " `pip install fastcore==1.3.27`." + ) + + +def _check_fastai_fastcore_pyproject_versions( + storage_folder: str, + fastai_min_version: str = "2.4", + fastcore_min_version: str = "1.3.27", +): + """ + Checks that the `pyproject.toml` file in the directory `storage_folder` has fastai and fastcore versions + that are compatible with `from_pretrained_fastai` and `push_to_hub_fastai`. If `pyproject.toml` does not exist + or does not contain versions for fastai and fastcore, then it logs a warning. + + Args: + storage_folder (`str`): + Folder to look for the `pyproject.toml` file. + fastai_min_version (`str`, *optional*): + The minimum fastai version supported. + fastcore_min_version (`str`, *optional*): + The minimum fastcore version supported. + + <Tip> + Raises the following errors: + + - [`ImportError`](https://docs.python.org/3/library/exceptions.html#ImportError) + if the `toml` module is not installed. + - [`ImportError`](https://docs.python.org/3/library/exceptions.html#ImportError) + if the `pyproject.toml` indicates a lower than minimum supported version of fastai or fastcore. + + </Tip> + """ + + try: + import toml + except ModuleNotFoundError: + raise ImportError( + "`push_to_hub_fastai` and `from_pretrained_fastai` require the toml module." + " Install it with `pip install toml`." + ) + + # Checks that a `pyproject.toml`, with `build-system` and `requires` sections, exists in the repository. If so, get a list of required packages. + if not os.path.isfile(f"{storage_folder}/pyproject.toml"): + logger.warning( + "There is no `pyproject.toml` in the repository that contains the fastai" + " `Learner`. The `pyproject.toml` would allow us to verify that your fastai" + " and fastcore versions are compatible with those of the model you want to" + " load." + ) + return + pyproject_toml = toml.load(f"{storage_folder}/pyproject.toml") + + if "build-system" not in pyproject_toml.keys(): + logger.warning( + "There is no `build-system` section in the pyproject.toml of the repository" + " that contains the fastai `Learner`. The `build-system` would allow us to" + " verify that your fastai and fastcore versions are compatible with those" + " of the model you want to load." + ) + return + build_system_toml = pyproject_toml["build-system"] + + if "requires" not in build_system_toml.keys(): + logger.warning( + "There is no `requires` section in the pyproject.toml of the repository" + " that contains the fastai `Learner`. The `requires` would allow us to" + " verify that your fastai and fastcore versions are compatible with those" + " of the model you want to load." + ) + return + package_versions = build_system_toml["requires"] + + # Extracts contains fastai and fastcore versions from `pyproject.toml` if available. + # If the package is specified but not the version (e.g. "fastai" instead of "fastai=2.4"), the default versions are the highest. + fastai_packages = [pck for pck in package_versions if pck.startswith("fastai")] + if len(fastai_packages) == 0: + logger.warning("The repository does not have a fastai version specified in the `pyproject.toml`.") + # fastai_version is an empty string if not specified + else: + fastai_version = str(fastai_packages[0]).partition("=")[2] + if fastai_version != "" and version.Version(fastai_version) < version.Version(fastai_min_version): + raise ImportError( + "`from_pretrained_fastai` requires" + f" fastai>={fastai_min_version} version but the model to load uses" + f" {fastai_version} which is incompatible." + ) + + fastcore_packages = [pck for pck in package_versions if pck.startswith("fastcore")] + if len(fastcore_packages) == 0: + logger.warning("The repository does not have a fastcore version specified in the `pyproject.toml`.") + # fastcore_version is an empty string if not specified + else: + fastcore_version = str(fastcore_packages[0]).partition("=")[2] + if fastcore_version != "" and version.Version(fastcore_version) < version.Version(fastcore_min_version): + raise ImportError( + "`from_pretrained_fastai` requires" + f" fastcore>={fastcore_min_version} version, but you are using fastcore" + f" version {fastcore_version} which is incompatible." + ) + + +README_TEMPLATE = """--- +tags: +- fastai +--- + +# Amazing! + +🥳 Congratulations on hosting your fastai model on the Hugging Face Hub! + +# Some next steps +1. Fill out this model card with more information (see the template below and the [documentation here](https://huggingface.co/docs/hub/model-repos))! + +2. Create a demo in Gradio or Streamlit using 🤗 Spaces ([documentation here](https://huggingface.co/docs/hub/spaces)). + +3. Join the fastai community on the [Fastai Discord](https://discord.com/invite/YKrxeNn)! + +Greetings fellow fastlearner 🤝! Don't forget to delete this content from your model card. + + +--- + + +# Model card + +## Model description +More information needed + +## Intended uses & limitations +More information needed + +## Training and evaluation data +More information needed +""" + +PYPROJECT_TEMPLATE = f"""[build-system] +requires = ["setuptools>=40.8.0", "wheel", "python={get_python_version()}", "fastai={get_fastai_version()}", "fastcore={get_fastcore_version()}"] +build-backend = "setuptools.build_meta:__legacy__" +""" + + +def _create_model_card(repo_dir: Path): + """ + Creates a model card for the repository. + + Args: + repo_dir (`Path`): + Directory where model card is created. + """ + readme_path = repo_dir / "README.md" + + if not readme_path.exists(): + with readme_path.open("w", encoding="utf-8") as f: + f.write(README_TEMPLATE) + + +def _create_model_pyproject(repo_dir: Path): + """ + Creates a `pyproject.toml` for the repository. + + Args: + repo_dir (`Path`): + Directory where `pyproject.toml` is created. + """ + pyproject_path = repo_dir / "pyproject.toml" + + if not pyproject_path.exists(): + with pyproject_path.open("w", encoding="utf-8") as f: + f.write(PYPROJECT_TEMPLATE) + + +def _save_pretrained_fastai( + learner, + save_directory: Union[str, Path], + config: Optional[Dict[str, Any]] = None, +): + """ + Saves a fastai learner to `save_directory` in pickle format using the default pickle protocol for the version of python used. + + Args: + learner (`Learner`): + The `fastai.Learner` you'd like to save. + save_directory (`str` or `Path`): + Specific directory in which you want to save the fastai learner. + config (`dict`, *optional*): + Configuration object. Will be uploaded as a .json file. Example: 'https://huggingface.co/espejelomar/fastai-pet-breeds-classification/blob/main/config.json'. + + <Tip> + + Raises the following error: + + - [`RuntimeError`](https://docs.python.org/3/library/exceptions.html#RuntimeError) + if the config file provided is not a dictionary. + + </Tip> + """ + _check_fastai_fastcore_versions() + + os.makedirs(save_directory, exist_ok=True) + + # if the user provides config then we update it with the fastai and fastcore versions in CONFIG_TEMPLATE. + if config is not None: + if not isinstance(config, dict): + raise RuntimeError(f"Provided config should be a dict. Got: '{type(config)}'") + path = os.path.join(save_directory, constants.CONFIG_NAME) + with open(path, "w") as f: + json.dump(config, f) + + _create_model_card(Path(save_directory)) + _create_model_pyproject(Path(save_directory)) + + # learner.export saves the model in `self.path`. + learner.path = Path(save_directory) + os.makedirs(save_directory, exist_ok=True) + try: + learner.export( + fname="model.pkl", + pickle_protocol=DEFAULT_PROTOCOL, + ) + except PicklingError: + raise PicklingError( + "You are using a lambda function, i.e., an anonymous function. `pickle`" + " cannot pickle function objects and requires that all functions have" + " names. One possible solution is to name the function." + ) + + +@validate_hf_hub_args +def from_pretrained_fastai( + repo_id: str, + revision: Optional[str] = None, +): + """ + Load pretrained fastai model from the Hub or from a local directory. + + Args: + repo_id (`str`): + The location where the pickled fastai.Learner is. It can be either of the two: + - Hosted on the Hugging Face Hub. E.g.: 'espejelomar/fatai-pet-breeds-classification' or 'distilgpt2'. + You can add a `revision` by appending `@` at the end of `repo_id`. E.g.: `dbmdz/bert-base-german-cased@main`. + Revision is the specific model version to use. Since we use a git-based system for storing models and other + artifacts on the Hugging Face Hub, it can be a branch name, a tag name, or a commit id. + - Hosted locally. `repo_id` would be a directory containing the pickle and a pyproject.toml + indicating the fastai and fastcore versions used to build the `fastai.Learner`. E.g.: `./my_model_directory/`. + revision (`str`, *optional*): + Revision at which the repo's files are downloaded. See documentation of `snapshot_download`. + + Returns: + The `fastai.Learner` model in the `repo_id` repo. + """ + _check_fastai_fastcore_versions() + + # Load the `repo_id` repo. + # `snapshot_download` returns the folder where the model was stored. + # `cache_dir` will be the default '/root/.cache/huggingface/hub' + if not os.path.isdir(repo_id): + storage_folder = snapshot_download( + repo_id=repo_id, + revision=revision, + library_name="fastai", + library_version=get_fastai_version(), + ) + else: + storage_folder = repo_id + + _check_fastai_fastcore_pyproject_versions(storage_folder) + + from fastai.learner import load_learner # type: ignore + + return load_learner(os.path.join(storage_folder, "model.pkl")) + + +@validate_hf_hub_args +def push_to_hub_fastai( + learner, + *, + repo_id: str, + commit_message: str = "Push FastAI model using huggingface_hub.", + private: Optional[bool] = None, + token: Optional[str] = None, + config: Optional[dict] = None, + branch: Optional[str] = None, + create_pr: Optional[bool] = None, + allow_patterns: Optional[Union[List[str], str]] = None, + ignore_patterns: Optional[Union[List[str], str]] = None, + delete_patterns: Optional[Union[List[str], str]] = None, + api_endpoint: Optional[str] = None, +): + """ + Upload learner checkpoint files to the Hub. + + Use `allow_patterns` and `ignore_patterns` to precisely filter which files should be pushed to the hub. Use + `delete_patterns` to delete existing remote files in the same commit. See [`upload_folder`] reference for more + details. + + Args: + learner (`Learner`): + The `fastai.Learner' you'd like to push to the Hub. + repo_id (`str`): + The repository id for your model in Hub in the format of "namespace/repo_name". The namespace can be your individual account or an organization to which you have write access (for example, 'stanfordnlp/stanza-de'). + commit_message (`str`, *optional*): + Message to commit while pushing. Will default to :obj:`"add model"`. + private (`bool`, *optional*): + Whether or not the repository created should be private. + If `None` (default), will default to been public except if the organization's default is private. + token (`str`, *optional*): + The Hugging Face account token to use as HTTP bearer authorization for remote files. If :obj:`None`, the token will be asked by a prompt. + config (`dict`, *optional*): + Configuration object to be saved alongside the model weights. + branch (`str`, *optional*): + The git branch on which to push the model. This defaults to + the default branch as specified in your repository, which + defaults to `"main"`. + create_pr (`boolean`, *optional*): + Whether or not to create a Pull Request from `branch` with that commit. + Defaults to `False`. + api_endpoint (`str`, *optional*): + The API endpoint to use when pushing the model to the hub. + allow_patterns (`List[str]` or `str`, *optional*): + If provided, only files matching at least one pattern are pushed. + ignore_patterns (`List[str]` or `str`, *optional*): + If provided, files matching any of the patterns are not pushed. + delete_patterns (`List[str]` or `str`, *optional*): + If provided, remote files matching any of the patterns will be deleted from the repo. + + Returns: + The url of the commit of your model in the given repository. + + <Tip> + + Raises the following error: + + - [`ValueError`](https://docs.python.org/3/library/exceptions.html#ValueError) + if the user is not log on to the Hugging Face Hub. + + </Tip> + """ + _check_fastai_fastcore_versions() + api = HfApi(endpoint=api_endpoint) + repo_id = api.create_repo(repo_id=repo_id, token=token, private=private, exist_ok=True).repo_id + + # Push the files to the repo in a single commit + with SoftTemporaryDirectory() as tmp: + saved_path = Path(tmp) / repo_id + _save_pretrained_fastai(learner, saved_path, config=config) + return api.upload_folder( + repo_id=repo_id, + token=token, + folder_path=saved_path, + commit_message=commit_message, + revision=branch, + create_pr=create_pr, + allow_patterns=allow_patterns, + ignore_patterns=ignore_patterns, + delete_patterns=delete_patterns, + ) diff --git a/.venv/lib/python3.12/site-packages/huggingface_hub/file_download.py b/.venv/lib/python3.12/site-packages/huggingface_hub/file_download.py new file mode 100644 index 00000000..e9f3d9fb --- /dev/null +++ b/.venv/lib/python3.12/site-packages/huggingface_hub/file_download.py @@ -0,0 +1,1625 @@ +import contextlib +import copy +import errno +import inspect +import os +import re +import shutil +import stat +import time +import uuid +import warnings +from dataclasses import dataclass +from pathlib import Path +from typing import Any, BinaryIO, Dict, Literal, NoReturn, Optional, Tuple, Union +from urllib.parse import quote, urlparse + +import requests + +from . import ( + __version__, # noqa: F401 # for backward compatibility + constants, +) +from ._local_folder import get_local_download_paths, read_download_metadata, write_download_metadata +from .constants import ( + HUGGINGFACE_CO_URL_TEMPLATE, # noqa: F401 # for backward compatibility + HUGGINGFACE_HUB_CACHE, # noqa: F401 # for backward compatibility +) +from .errors import ( + EntryNotFoundError, + FileMetadataError, + GatedRepoError, + HfHubHTTPError, + LocalEntryNotFoundError, + RepositoryNotFoundError, + RevisionNotFoundError, +) +from .utils import ( + OfflineModeIsEnabled, + SoftTemporaryDirectory, + WeakFileLock, + build_hf_headers, + get_fastai_version, # noqa: F401 # for backward compatibility + get_fastcore_version, # noqa: F401 # for backward compatibility + get_graphviz_version, # noqa: F401 # for backward compatibility + get_jinja_version, # noqa: F401 # for backward compatibility + get_pydot_version, # noqa: F401 # for backward compatibility + get_session, + get_tf_version, # noqa: F401 # for backward compatibility + get_torch_version, # noqa: F401 # for backward compatibility + hf_raise_for_status, + is_fastai_available, # noqa: F401 # for backward compatibility + is_fastcore_available, # noqa: F401 # for backward compatibility + is_graphviz_available, # noqa: F401 # for backward compatibility + is_jinja_available, # noqa: F401 # for backward compatibility + is_pydot_available, # noqa: F401 # for backward compatibility + is_tf_available, # noqa: F401 # for backward compatibility + is_torch_available, # noqa: F401 # for backward compatibility + logging, + reset_sessions, + tqdm, + validate_hf_hub_args, +) +from .utils._http import _adjust_range_header +from .utils._runtime import _PY_VERSION # noqa: F401 # for backward compatibility +from .utils._typing import HTTP_METHOD_T +from .utils.sha import sha_fileobj +from .utils.tqdm import is_tqdm_disabled + + +logger = logging.get_logger(__name__) + +# Return value when trying to load a file from cache but the file does not exist in the distant repo. +_CACHED_NO_EXIST = object() +_CACHED_NO_EXIST_T = Any + +# Regex to get filename from a "Content-Disposition" header for CDN-served files +HEADER_FILENAME_PATTERN = re.compile(r'filename="(?P<filename>.*?)";') + +# Regex to check if the revision IS directly a commit_hash +REGEX_COMMIT_HASH = re.compile(r"^[0-9a-f]{40}$") + +# Regex to check if the file etag IS a valid sha256 +REGEX_SHA256 = re.compile(r"^[0-9a-f]{64}$") + +_are_symlinks_supported_in_dir: Dict[str, bool] = {} + + +def are_symlinks_supported(cache_dir: Union[str, Path, None] = None) -> bool: + """Return whether the symlinks are supported on the machine. + + Since symlinks support can change depending on the mounted disk, we need to check + on the precise cache folder. By default, the default HF cache directory is checked. + + Args: + cache_dir (`str`, `Path`, *optional*): + Path to the folder where cached files are stored. + + Returns: [bool] Whether symlinks are supported in the directory. + """ + # Defaults to HF cache + if cache_dir is None: + cache_dir = constants.HF_HUB_CACHE + cache_dir = str(Path(cache_dir).expanduser().resolve()) # make it unique + + # Check symlink compatibility only once (per cache directory) at first time use + if cache_dir not in _are_symlinks_supported_in_dir: + _are_symlinks_supported_in_dir[cache_dir] = True + + os.makedirs(cache_dir, exist_ok=True) + with SoftTemporaryDirectory(dir=cache_dir) as tmpdir: + src_path = Path(tmpdir) / "dummy_file_src" + src_path.touch() + dst_path = Path(tmpdir) / "dummy_file_dst" + + # Relative source path as in `_create_symlink`` + relative_src = os.path.relpath(src_path, start=os.path.dirname(dst_path)) + try: + os.symlink(relative_src, dst_path) + except OSError: + # Likely running on Windows + _are_symlinks_supported_in_dir[cache_dir] = False + + if not constants.HF_HUB_DISABLE_SYMLINKS_WARNING: + message = ( + "`huggingface_hub` cache-system uses symlinks by default to" + " efficiently store duplicated files but your machine does not" + f" support them in {cache_dir}. Caching files will still work" + " but in a degraded version that might require more space on" + " your disk. This warning can be disabled by setting the" + " `HF_HUB_DISABLE_SYMLINKS_WARNING` environment variable. For" + " more details, see" + " https://huggingface.co/docs/huggingface_hub/how-to-cache#limitations." + ) + if os.name == "nt": + message += ( + "\nTo support symlinks on Windows, you either need to" + " activate Developer Mode or to run Python as an" + " administrator. In order to activate developer mode," + " see this article:" + " https://docs.microsoft.com/en-us/windows/apps/get-started/enable-your-device-for-development" + ) + warnings.warn(message) + + return _are_symlinks_supported_in_dir[cache_dir] + + +@dataclass(frozen=True) +class HfFileMetadata: + """Data structure containing information about a file versioned on the Hub. + + Returned by [`get_hf_file_metadata`] based on a URL. + + Args: + commit_hash (`str`, *optional*): + The commit_hash related to the file. + etag (`str`, *optional*): + Etag of the file on the server. + location (`str`): + Location where to download the file. Can be a Hub url or not (CDN). + size (`size`): + Size of the file. In case of an LFS file, contains the size of the actual + LFS file, not the pointer. + """ + + commit_hash: Optional[str] + etag: Optional[str] + location: str + size: Optional[int] + + +@validate_hf_hub_args +def hf_hub_url( + repo_id: str, + filename: str, + *, + subfolder: Optional[str] = None, + repo_type: Optional[str] = None, + revision: Optional[str] = None, + endpoint: Optional[str] = None, +) -> str: + """Construct the URL of a file from the given information. + + The resolved address can either be a huggingface.co-hosted url, or a link to + Cloudfront (a Content Delivery Network, or CDN) for large files which are + more than a few MBs. + + Args: + repo_id (`str`): + A namespace (user or an organization) name and a repo name separated + by a `/`. + filename (`str`): + The name of the file in the repo. + subfolder (`str`, *optional*): + An optional value corresponding to a folder inside the repo. + repo_type (`str`, *optional*): + Set to `"dataset"` or `"space"` if downloading from a dataset or space, + `None` or `"model"` if downloading from a model. Default is `None`. + revision (`str`, *optional*): + An optional Git revision id which can be a branch name, a tag, or a + commit hash. + + Example: + + ```python + >>> from huggingface_hub import hf_hub_url + + >>> hf_hub_url( + ... repo_id="julien-c/EsperBERTo-small", filename="pytorch_model.bin" + ... ) + 'https://huggingface.co/julien-c/EsperBERTo-small/resolve/main/pytorch_model.bin' + ``` + + <Tip> + + Notes: + + Cloudfront is replicated over the globe so downloads are way faster for + the end user (and it also lowers our bandwidth costs). + + Cloudfront aggressively caches files by default (default TTL is 24 + hours), however this is not an issue here because we implement a + git-based versioning system on huggingface.co, which means that we store + the files on S3/Cloudfront in a content-addressable way (i.e., the file + name is its hash). Using content-addressable filenames means cache can't + ever be stale. + + In terms of client-side caching from this library, we base our caching + on the objects' entity tag (`ETag`), which is an identifier of a + specific version of a resource [1]_. An object's ETag is: its git-sha1 + if stored in git, or its sha256 if stored in git-lfs. + + </Tip> + + References: + + - [1] https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/ETag + """ + if subfolder == "": + subfolder = None + if subfolder is not None: + filename = f"{subfolder}/{filename}" + + if repo_type not in constants.REPO_TYPES: + raise ValueError("Invalid repo type") + + if repo_type in constants.REPO_TYPES_URL_PREFIXES: + repo_id = constants.REPO_TYPES_URL_PREFIXES[repo_type] + repo_id + + if revision is None: + revision = constants.DEFAULT_REVISION + url = HUGGINGFACE_CO_URL_TEMPLATE.format( + repo_id=repo_id, revision=quote(revision, safe=""), filename=quote(filename) + ) + # Update endpoint if provided + if endpoint is not None and url.startswith(constants.ENDPOINT): + url = endpoint + url[len(constants.ENDPOINT) :] + return url + + +def _request_wrapper( + method: HTTP_METHOD_T, url: str, *, follow_relative_redirects: bool = False, **params +) -> requests.Response: + """Wrapper around requests methods to follow relative redirects if `follow_relative_redirects=True` even when + `allow_redirection=False`. + + Args: + method (`str`): + HTTP method, such as 'GET' or 'HEAD'. + url (`str`): + The URL of the resource to fetch. + follow_relative_redirects (`bool`, *optional*, defaults to `False`) + If True, relative redirection (redirection to the same site) will be resolved even when `allow_redirection` + kwarg is set to False. Useful when we want to follow a redirection to a renamed repository without + following redirection to a CDN. + **params (`dict`, *optional*): + Params to pass to `requests.request`. + """ + # Recursively follow relative redirects + if follow_relative_redirects: + response = _request_wrapper( + method=method, + url=url, + follow_relative_redirects=False, + **params, + ) + + # If redirection, we redirect only relative paths. + # This is useful in case of a renamed repository. + if 300 <= response.status_code <= 399: + parsed_target = urlparse(response.headers["Location"]) + if parsed_target.netloc == "": + # This means it is a relative 'location' headers, as allowed by RFC 7231. + # (e.g. '/path/to/resource' instead of 'http://domain.tld/path/to/resource') + # We want to follow this relative redirect ! + # + # Highly inspired by `resolve_redirects` from requests library. + # See https://github.com/psf/requests/blob/main/requests/sessions.py#L159 + next_url = urlparse(url)._replace(path=parsed_target.path).geturl() + return _request_wrapper(method=method, url=next_url, follow_relative_redirects=True, **params) + return response + + # Perform request and return if status_code is not in the retry list. + response = get_session().request(method=method, url=url, **params) + hf_raise_for_status(response) + return response + + +def http_get( + url: str, + temp_file: BinaryIO, + *, + proxies: Optional[Dict] = None, + resume_size: int = 0, + headers: Optional[Dict[str, Any]] = None, + expected_size: Optional[int] = None, + displayed_filename: Optional[str] = None, + _nb_retries: int = 5, + _tqdm_bar: Optional[tqdm] = None, +) -> None: + """ + Download a remote file. Do not gobble up errors, and will return errors tailored to the Hugging Face Hub. + + If ConnectionError (SSLError) or ReadTimeout happen while streaming data from the server, it is most likely a + transient error (network outage?). We log a warning message and try to resume the download a few times before + giving up. The method gives up after 5 attempts if no new data has being received from the server. + + Args: + url (`str`): + The URL of the file to download. + temp_file (`BinaryIO`): + The file-like object where to save the file. + proxies (`dict`, *optional*): + Dictionary mapping protocol to the URL of the proxy passed to `requests.request`. + resume_size (`int`, *optional*): + The number of bytes already downloaded. If set to 0 (default), the whole file is download. If set to a + positive number, the download will resume at the given position. + headers (`dict`, *optional*): + Dictionary of HTTP Headers to send with the request. + expected_size (`int`, *optional*): + The expected size of the file to download. If set, the download will raise an error if the size of the + received content is different from the expected one. + displayed_filename (`str`, *optional*): + The filename of the file that is being downloaded. Value is used only to display a nice progress bar. If + not set, the filename is guessed from the URL or the `Content-Disposition` header. + """ + if expected_size is not None and resume_size == expected_size: + # If the file is already fully downloaded, we don't need to download it again. + return + + hf_transfer = None + if constants.HF_HUB_ENABLE_HF_TRANSFER: + if resume_size != 0: + warnings.warn("'hf_transfer' does not support `resume_size`: falling back to regular download method") + elif proxies is not None: + warnings.warn("'hf_transfer' does not support `proxies`: falling back to regular download method") + else: + try: + import hf_transfer # type: ignore[no-redef] + except ImportError: + raise ValueError( + "Fast download using 'hf_transfer' is enabled" + " (HF_HUB_ENABLE_HF_TRANSFER=1) but 'hf_transfer' package is not" + " available in your environment. Try `pip install hf_transfer`." + ) + + initial_headers = headers + headers = copy.deepcopy(headers) or {} + if resume_size > 0: + headers["Range"] = _adjust_range_header(headers.get("Range"), resume_size) + + r = _request_wrapper( + method="GET", url=url, stream=True, proxies=proxies, headers=headers, timeout=constants.HF_HUB_DOWNLOAD_TIMEOUT + ) + hf_raise_for_status(r) + content_length = r.headers.get("Content-Length") + + # NOTE: 'total' is the total number of bytes to download, not the number of bytes in the file. + # If the file is compressed, the number of bytes in the saved file will be higher than 'total'. + total = resume_size + int(content_length) if content_length is not None else None + + if displayed_filename is None: + displayed_filename = url + content_disposition = r.headers.get("Content-Disposition") + if content_disposition is not None: + match = HEADER_FILENAME_PATTERN.search(content_disposition) + if match is not None: + # Means file is on CDN + displayed_filename = match.groupdict()["filename"] + + # Truncate filename if too long to display + if len(displayed_filename) > 40: + displayed_filename = f"(…){displayed_filename[-40:]}" + + consistency_error_message = ( + f"Consistency check failed: file should be of size {expected_size} but has size" + f" {{actual_size}} ({displayed_filename}).\nThis is usually due to network issues while downloading the file." + " Please retry with `force_download=True`." + ) + + # Stream file to buffer + progress_cm: tqdm = ( + tqdm( # type: ignore[assignment] + unit="B", + unit_scale=True, + total=total, + initial=resume_size, + desc=displayed_filename, + disable=is_tqdm_disabled(logger.getEffectiveLevel()), + name="huggingface_hub.http_get", + ) + if _tqdm_bar is None + else contextlib.nullcontext(_tqdm_bar) + # ^ `contextlib.nullcontext` mimics a context manager that does nothing + # Makes it easier to use the same code path for both cases but in the later + # case, the progress bar is not closed when exiting the context manager. + ) + + with progress_cm as progress: + if hf_transfer and total is not None and total > 5 * constants.DOWNLOAD_CHUNK_SIZE: + supports_callback = "callback" in inspect.signature(hf_transfer.download).parameters + if not supports_callback: + warnings.warn( + "You are using an outdated version of `hf_transfer`. " + "Consider upgrading to latest version to enable progress bars " + "using `pip install -U hf_transfer`." + ) + try: + hf_transfer.download( + url=url, + filename=temp_file.name, + max_files=constants.HF_TRANSFER_CONCURRENCY, + chunk_size=constants.DOWNLOAD_CHUNK_SIZE, + headers=headers, + parallel_failures=3, + max_retries=5, + **({"callback": progress.update} if supports_callback else {}), + ) + except Exception as e: + raise RuntimeError( + "An error occurred while downloading using `hf_transfer`. Consider" + " disabling HF_HUB_ENABLE_HF_TRANSFER for better error handling." + ) from e + if not supports_callback: + progress.update(total) + if expected_size is not None and expected_size != os.path.getsize(temp_file.name): + raise EnvironmentError( + consistency_error_message.format( + actual_size=os.path.getsize(temp_file.name), + ) + ) + return + new_resume_size = resume_size + try: + for chunk in r.iter_content(chunk_size=constants.DOWNLOAD_CHUNK_SIZE): + if chunk: # filter out keep-alive new chunks + progress.update(len(chunk)) + temp_file.write(chunk) + new_resume_size += len(chunk) + # Some data has been downloaded from the server so we reset the number of retries. + _nb_retries = 5 + except (requests.ConnectionError, requests.ReadTimeout) as e: + # If ConnectionError (SSLError) or ReadTimeout happen while streaming data from the server, it is most likely + # a transient error (network outage?). We log a warning message and try to resume the download a few times + # before giving up. Tre retry mechanism is basic but should be enough in most cases. + if _nb_retries <= 0: + logger.warning("Error while downloading from %s: %s\nMax retries exceeded.", url, str(e)) + raise + logger.warning("Error while downloading from %s: %s\nTrying to resume download...", url, str(e)) + time.sleep(1) + reset_sessions() # In case of SSLError it's best to reset the shared requests.Session objects + return http_get( + url=url, + temp_file=temp_file, + proxies=proxies, + resume_size=new_resume_size, + headers=initial_headers, + expected_size=expected_size, + _nb_retries=_nb_retries - 1, + _tqdm_bar=_tqdm_bar, + ) + + if expected_size is not None and expected_size != temp_file.tell(): + raise EnvironmentError( + consistency_error_message.format( + actual_size=temp_file.tell(), + ) + ) + + +def _normalize_etag(etag: Optional[str]) -> Optional[str]: + """Normalize ETag HTTP header, so it can be used to create nice filepaths. + + The HTTP spec allows two forms of ETag: + ETag: W/"<etag_value>" + ETag: "<etag_value>" + + For now, we only expect the second form from the server, but we want to be future-proof so we support both. For + more context, see `TestNormalizeEtag` tests and https://github.com/huggingface/huggingface_hub/pull/1428. + + Args: + etag (`str`, *optional*): HTTP header + + Returns: + `str` or `None`: string that can be used as a nice directory name. + Returns `None` if input is None. + """ + if etag is None: + return None + return etag.lstrip("W/").strip('"') + + +def _create_relative_symlink(src: str, dst: str, new_blob: bool = False) -> None: + """Alias method used in `transformers` conversion script.""" + return _create_symlink(src=src, dst=dst, new_blob=new_blob) + + +def _create_symlink(src: str, dst: str, new_blob: bool = False) -> None: + """Create a symbolic link named dst pointing to src. + + By default, it will try to create a symlink using a relative path. Relative paths have 2 advantages: + - If the cache_folder is moved (example: back-up on a shared drive), relative paths within the cache folder will + not break. + - Relative paths seems to be better handled on Windows. Issue was reported 3 times in less than a week when + changing from relative to absolute paths. See https://github.com/huggingface/huggingface_hub/issues/1398, + https://github.com/huggingface/diffusers/issues/2729 and https://github.com/huggingface/transformers/pull/22228. + NOTE: The issue with absolute paths doesn't happen on admin mode. + When creating a symlink from the cache to a local folder, it is possible that a relative path cannot be created. + This happens when paths are not on the same volume. In that case, we use absolute paths. + + + The result layout looks something like + └── [ 128] snapshots + ├── [ 128] 2439f60ef33a0d46d85da5001d52aeda5b00ce9f + │ ├── [ 52] README.md -> ../../../blobs/d7edf6bd2a681fb0175f7735299831ee1b22b812 + │ └── [ 76] pytorch_model.bin -> ../../../blobs/403450e234d65943a7dcf7e05a771ce3c92faa84dd07db4ac20f592037a1e4bd + + If symlinks cannot be created on this platform (most likely to be Windows), the workaround is to avoid symlinks by + having the actual file in `dst`. If it is a new file (`new_blob=True`), we move it to `dst`. If it is not a new file + (`new_blob=False`), we don't know if the blob file is already referenced elsewhere. To avoid breaking existing + cache, the file is duplicated on the disk. + + In case symlinks are not supported, a warning message is displayed to the user once when loading `huggingface_hub`. + The warning message can be disabled with the `DISABLE_SYMLINKS_WARNING` environment variable. + """ + try: + os.remove(dst) + except OSError: + pass + + abs_src = os.path.abspath(os.path.expanduser(src)) + abs_dst = os.path.abspath(os.path.expanduser(dst)) + abs_dst_folder = os.path.dirname(abs_dst) + + # Use relative_dst in priority + try: + relative_src = os.path.relpath(abs_src, abs_dst_folder) + except ValueError: + # Raised on Windows if src and dst are not on the same volume. This is the case when creating a symlink to a + # local_dir instead of within the cache directory. + # See https://docs.python.org/3/library/os.path.html#os.path.relpath + relative_src = None + + try: + commonpath = os.path.commonpath([abs_src, abs_dst]) + _support_symlinks = are_symlinks_supported(commonpath) + except ValueError: + # Raised if src and dst are not on the same volume. Symlinks will still work on Linux/Macos. + # See https://docs.python.org/3/library/os.path.html#os.path.commonpath + _support_symlinks = os.name != "nt" + except PermissionError: + # Permission error means src and dst are not in the same volume (e.g. destination path has been provided + # by the user via `local_dir`. Let's test symlink support there) + _support_symlinks = are_symlinks_supported(abs_dst_folder) + except OSError as e: + # OS error (errno=30) means that the commonpath is readonly on Linux/MacOS. + if e.errno == errno.EROFS: + _support_symlinks = are_symlinks_supported(abs_dst_folder) + else: + raise + + # Symlinks are supported => let's create a symlink. + if _support_symlinks: + src_rel_or_abs = relative_src or abs_src + logger.debug(f"Creating pointer from {src_rel_or_abs} to {abs_dst}") + try: + os.symlink(src_rel_or_abs, abs_dst) + return + except FileExistsError: + if os.path.islink(abs_dst) and os.path.realpath(abs_dst) == os.path.realpath(abs_src): + # `abs_dst` already exists and is a symlink to the `abs_src` blob. It is most likely that the file has + # been cached twice concurrently (exactly between `os.remove` and `os.symlink`). Do nothing. + return + else: + # Very unlikely to happen. Means a file `dst` has been created exactly between `os.remove` and + # `os.symlink` and is not a symlink to the `abs_src` blob file. Raise exception. + raise + except PermissionError: + # Permission error means src and dst are not in the same volume (e.g. download to local dir) and symlink + # is supported on both volumes but not between them. Let's just make a hard copy in that case. + pass + + # Symlinks are not supported => let's move or copy the file. + if new_blob: + logger.info(f"Symlink not supported. Moving file from {abs_src} to {abs_dst}") + shutil.move(abs_src, abs_dst, copy_function=_copy_no_matter_what) + else: + logger.info(f"Symlink not supported. Copying file from {abs_src} to {abs_dst}") + shutil.copyfile(abs_src, abs_dst) + + +def _cache_commit_hash_for_specific_revision(storage_folder: str, revision: str, commit_hash: str) -> None: + """Cache reference between a revision (tag, branch or truncated commit hash) and the corresponding commit hash. + + Does nothing if `revision` is already a proper `commit_hash` or reference is already cached. + """ + if revision != commit_hash: + ref_path = Path(storage_folder) / "refs" / revision + ref_path.parent.mkdir(parents=True, exist_ok=True) + if not ref_path.exists() or commit_hash != ref_path.read_text(): + # Update ref only if has been updated. Could cause useless error in case + # repo is already cached and user doesn't have write access to cache folder. + # See https://github.com/huggingface/huggingface_hub/issues/1216. + ref_path.write_text(commit_hash) + + +@validate_hf_hub_args +def repo_folder_name(*, repo_id: str, repo_type: str) -> str: + """Return a serialized version of a hf.co repo name and type, safe for disk storage + as a single non-nested folder. + + Example: models--julien-c--EsperBERTo-small + """ + # remove all `/` occurrences to correctly convert repo to directory name + parts = [f"{repo_type}s", *repo_id.split("/")] + return constants.REPO_ID_SEPARATOR.join(parts) + + +def _check_disk_space(expected_size: int, target_dir: Union[str, Path]) -> None: + """Check disk usage and log a warning if there is not enough disk space to download the file. + + Args: + expected_size (`int`): + The expected size of the file in bytes. + target_dir (`str`): + The directory where the file will be stored after downloading. + """ + + target_dir = Path(target_dir) # format as `Path` + for path in [target_dir] + list(target_dir.parents): # first check target_dir, then each parents one by one + try: + target_dir_free = shutil.disk_usage(path).free + if target_dir_free < expected_size: + warnings.warn( + "Not enough free disk space to download the file. " + f"The expected file size is: {expected_size / 1e6:.2f} MB. " + f"The target location {target_dir} only has {target_dir_free / 1e6:.2f} MB free disk space." + ) + return + except OSError: # raise on anything: file does not exist or space disk cannot be checked + pass + + +@validate_hf_hub_args +def hf_hub_download( + repo_id: str, + filename: str, + *, + subfolder: Optional[str] = None, + repo_type: Optional[str] = None, + revision: Optional[str] = None, + library_name: Optional[str] = None, + library_version: Optional[str] = None, + cache_dir: Union[str, Path, None] = None, + local_dir: Union[str, Path, None] = None, + user_agent: Union[Dict, str, None] = None, + force_download: bool = False, + proxies: Optional[Dict] = None, + etag_timeout: float = constants.DEFAULT_ETAG_TIMEOUT, + token: Union[bool, str, None] = None, + local_files_only: bool = False, + headers: Optional[Dict[str, str]] = None, + endpoint: Optional[str] = None, + resume_download: Optional[bool] = None, + force_filename: Optional[str] = None, + local_dir_use_symlinks: Union[bool, Literal["auto"]] = "auto", +) -> str: + """Download a given file if it's not already present in the local cache. + + The new cache file layout looks like this: + - The cache directory contains one subfolder per repo_id (namespaced by repo type) + - inside each repo folder: + - refs is a list of the latest known revision => commit_hash pairs + - blobs contains the actual file blobs (identified by their git-sha or sha256, depending on + whether they're LFS files or not) + - snapshots contains one subfolder per commit, each "commit" contains the subset of the files + that have been resolved at that particular commit. Each filename is a symlink to the blob + at that particular commit. + + ``` + [ 96] . + └── [ 160] models--julien-c--EsperBERTo-small + ├── [ 160] blobs + │ ├── [321M] 403450e234d65943a7dcf7e05a771ce3c92faa84dd07db4ac20f592037a1e4bd + │ ├── [ 398] 7cb18dc9bafbfcf74629a4b760af1b160957a83e + │ └── [1.4K] d7edf6bd2a681fb0175f7735299831ee1b22b812 + ├── [ 96] refs + │ └── [ 40] main + └── [ 128] snapshots + ├── [ 128] 2439f60ef33a0d46d85da5001d52aeda5b00ce9f + │ ├── [ 52] README.md -> ../../blobs/d7edf6bd2a681fb0175f7735299831ee1b22b812 + │ └── [ 76] pytorch_model.bin -> ../../blobs/403450e234d65943a7dcf7e05a771ce3c92faa84dd07db4ac20f592037a1e4bd + └── [ 128] bbc77c8132af1cc5cf678da3f1ddf2de43606d48 + ├── [ 52] README.md -> ../../blobs/7cb18dc9bafbfcf74629a4b760af1b160957a83e + └── [ 76] pytorch_model.bin -> ../../blobs/403450e234d65943a7dcf7e05a771ce3c92faa84dd07db4ac20f592037a1e4bd + ``` + + If `local_dir` is provided, the file structure from the repo will be replicated in this location. When using this + option, the `cache_dir` will not be used and a `.cache/huggingface/` folder will be created at the root of `local_dir` + to store some metadata related to the downloaded files. While this mechanism is not as robust as the main + cache-system, it's optimized for regularly pulling the latest version of a repository. + + Args: + repo_id (`str`): + A user or an organization name and a repo name separated by a `/`. + filename (`str`): + The name of the file in the repo. + subfolder (`str`, *optional*): + An optional value corresponding to a folder inside the model repo. + repo_type (`str`, *optional*): + Set to `"dataset"` or `"space"` if downloading from a dataset or space, + `None` or `"model"` if downloading from a model. Default is `None`. + revision (`str`, *optional*): + An optional Git revision id which can be a branch name, a tag, or a + commit hash. + library_name (`str`, *optional*): + The name of the library to which the object corresponds. + library_version (`str`, *optional*): + The version of the library. + cache_dir (`str`, `Path`, *optional*): + Path to the folder where cached files are stored. + local_dir (`str` or `Path`, *optional*): + If provided, the downloaded file will be placed under this directory. + user_agent (`dict`, `str`, *optional*): + The user-agent info in the form of a dictionary or a string. + force_download (`bool`, *optional*, defaults to `False`): + Whether the file should be downloaded even if it already exists in + the local cache. + proxies (`dict`, *optional*): + Dictionary mapping protocol to the URL of the proxy passed to + `requests.request`. + etag_timeout (`float`, *optional*, defaults to `10`): + When fetching ETag, how many seconds to wait for the server to send + data before giving up which is passed to `requests.request`. + token (`str`, `bool`, *optional*): + A token to be used for the download. + - If `True`, the token is read from the HuggingFace config + folder. + - If a string, it's used as the authentication token. + local_files_only (`bool`, *optional*, defaults to `False`): + If `True`, avoid downloading the file and return the path to the + local cached file if it exists. + headers (`dict`, *optional*): + Additional headers to be sent with the request. + + Returns: + `str`: Local path of file or if networking is off, last version of file cached on disk. + + Raises: + [`~utils.RepositoryNotFoundError`] + If the repository to download from cannot be found. This may be because it doesn't exist, + or because it is set to `private` and you do not have access. + [`~utils.RevisionNotFoundError`] + If the revision to download from cannot be found. + [`~utils.EntryNotFoundError`] + If the file to download cannot be found. + [`~utils.LocalEntryNotFoundError`] + If network is disabled or unavailable and file is not found in cache. + [`EnvironmentError`](https://docs.python.org/3/library/exceptions.html#EnvironmentError) + If `token=True` but the token cannot be found. + [`OSError`](https://docs.python.org/3/library/exceptions.html#OSError) + If ETag cannot be determined. + [`ValueError`](https://docs.python.org/3/library/exceptions.html#ValueError) + If some parameter value is invalid. + + """ + if constants.HF_HUB_ETAG_TIMEOUT != constants.DEFAULT_ETAG_TIMEOUT: + # Respect environment variable above user value + etag_timeout = constants.HF_HUB_ETAG_TIMEOUT + + if force_filename is not None: + warnings.warn( + "The `force_filename` parameter is deprecated as a new caching system, " + "which keeps the filenames as they are on the Hub, is now in place.", + FutureWarning, + ) + if resume_download is not None: + warnings.warn( + "`resume_download` is deprecated and will be removed in version 1.0.0. " + "Downloads always resume when possible. " + "If you want to force a new download, use `force_download=True`.", + FutureWarning, + ) + + if cache_dir is None: + cache_dir = constants.HF_HUB_CACHE + if revision is None: + revision = constants.DEFAULT_REVISION + if isinstance(cache_dir, Path): + cache_dir = str(cache_dir) + if isinstance(local_dir, Path): + local_dir = str(local_dir) + + if subfolder == "": + subfolder = None + if subfolder is not None: + # This is used to create a URL, and not a local path, hence the forward slash. + filename = f"{subfolder}/{filename}" + + if repo_type is None: + repo_type = "model" + if repo_type not in constants.REPO_TYPES: + raise ValueError(f"Invalid repo type: {repo_type}. Accepted repo types are: {str(constants.REPO_TYPES)}") + + hf_headers = build_hf_headers( + token=token, + library_name=library_name, + library_version=library_version, + user_agent=user_agent, + headers=headers, + ) + + if local_dir is not None: + if local_dir_use_symlinks != "auto": + warnings.warn( + "`local_dir_use_symlinks` parameter is deprecated and will be ignored. " + "The process to download files to a local folder has been updated and do " + "not rely on symlinks anymore. You only need to pass a destination folder " + "as`local_dir`.\n" + "For more details, check out https://huggingface.co/docs/huggingface_hub/main/en/guides/download#download-files-to-local-folder." + ) + + return _hf_hub_download_to_local_dir( + # Destination + local_dir=local_dir, + # File info + repo_id=repo_id, + repo_type=repo_type, + filename=filename, + revision=revision, + # HTTP info + endpoint=endpoint, + etag_timeout=etag_timeout, + headers=hf_headers, + proxies=proxies, + token=token, + # Additional options + cache_dir=cache_dir, + force_download=force_download, + local_files_only=local_files_only, + ) + else: + return _hf_hub_download_to_cache_dir( + # Destination + cache_dir=cache_dir, + # File info + repo_id=repo_id, + filename=filename, + repo_type=repo_type, + revision=revision, + # HTTP info + endpoint=endpoint, + etag_timeout=etag_timeout, + headers=hf_headers, + proxies=proxies, + token=token, + # Additional options + local_files_only=local_files_only, + force_download=force_download, + ) + + +def _hf_hub_download_to_cache_dir( + *, + # Destination + cache_dir: str, + # File info + repo_id: str, + filename: str, + repo_type: str, + revision: str, + # HTTP info + endpoint: Optional[str], + etag_timeout: float, + headers: Dict[str, str], + proxies: Optional[Dict], + token: Optional[Union[bool, str]], + # Additional options + local_files_only: bool, + force_download: bool, +) -> str: + """Download a given file to a cache folder, if not already present. + + Method should not be called directly. Please use `hf_hub_download` instead. + """ + locks_dir = os.path.join(cache_dir, ".locks") + storage_folder = os.path.join(cache_dir, repo_folder_name(repo_id=repo_id, repo_type=repo_type)) + + # cross platform transcription of filename, to be used as a local file path. + relative_filename = os.path.join(*filename.split("/")) + if os.name == "nt": + if relative_filename.startswith("..\\") or "\\..\\" in relative_filename: + raise ValueError( + f"Invalid filename: cannot handle filename '{relative_filename}' on Windows. Please ask the repository" + " owner to rename this file." + ) + + # if user provides a commit_hash and they already have the file on disk, shortcut everything. + if REGEX_COMMIT_HASH.match(revision): + pointer_path = _get_pointer_path(storage_folder, revision, relative_filename) + if os.path.exists(pointer_path) and not force_download: + return pointer_path + + # Try to get metadata (etag, commit_hash, url, size) from the server. + # If we can't, a HEAD request error is returned. + (url_to_download, etag, commit_hash, expected_size, head_call_error) = _get_metadata_or_catch_error( + repo_id=repo_id, + filename=filename, + repo_type=repo_type, + revision=revision, + endpoint=endpoint, + proxies=proxies, + etag_timeout=etag_timeout, + headers=headers, + token=token, + local_files_only=local_files_only, + storage_folder=storage_folder, + relative_filename=relative_filename, + ) + + # etag can be None for several reasons: + # 1. we passed local_files_only. + # 2. we don't have a connection + # 3. Hub is down (HTTP 500, 503, 504) + # 4. repo is not found -for example private or gated- and invalid/missing token sent + # 5. Hub is blocked by a firewall or proxy is not set correctly. + # => Try to get the last downloaded one from the specified revision. + # + # If the specified revision is a commit hash, look inside "snapshots". + # If the specified revision is a branch or tag, look inside "refs". + if head_call_error is not None: + # Couldn't make a HEAD call => let's try to find a local file + if not force_download: + commit_hash = None + if REGEX_COMMIT_HASH.match(revision): + commit_hash = revision + else: + ref_path = os.path.join(storage_folder, "refs", revision) + if os.path.isfile(ref_path): + with open(ref_path) as f: + commit_hash = f.read() + + # Return pointer file if exists + if commit_hash is not None: + pointer_path = _get_pointer_path(storage_folder, commit_hash, relative_filename) + if os.path.exists(pointer_path) and not force_download: + return pointer_path + + # Otherwise, raise appropriate error + _raise_on_head_call_error(head_call_error, force_download, local_files_only) + + # From now on, etag, commit_hash, url and size are not None. + assert etag is not None, "etag must have been retrieved from server" + assert commit_hash is not None, "commit_hash must have been retrieved from server" + assert url_to_download is not None, "file location must have been retrieved from server" + assert expected_size is not None, "expected_size must have been retrieved from server" + blob_path = os.path.join(storage_folder, "blobs", etag) + pointer_path = _get_pointer_path(storage_folder, commit_hash, relative_filename) + + os.makedirs(os.path.dirname(blob_path), exist_ok=True) + os.makedirs(os.path.dirname(pointer_path), exist_ok=True) + + # if passed revision is not identical to commit_hash + # then revision has to be a branch name or tag name. + # In that case store a ref. + _cache_commit_hash_for_specific_revision(storage_folder, revision, commit_hash) + + # If file already exists, return it (except if force_download=True) + if not force_download: + if os.path.exists(pointer_path): + return pointer_path + + if os.path.exists(blob_path): + # we have the blob already, but not the pointer + _create_symlink(blob_path, pointer_path, new_blob=False) + return pointer_path + + # Prevent parallel downloads of the same file with a lock. + # etag could be duplicated across repos, + lock_path = os.path.join(locks_dir, repo_folder_name(repo_id=repo_id, repo_type=repo_type), f"{etag}.lock") + + # Some Windows versions do not allow for paths longer than 255 characters. + # In this case, we must specify it as an extended path by using the "\\?\" prefix. + if os.name == "nt" and len(os.path.abspath(lock_path)) > 255: + lock_path = "\\\\?\\" + os.path.abspath(lock_path) + + if os.name == "nt" and len(os.path.abspath(blob_path)) > 255: + blob_path = "\\\\?\\" + os.path.abspath(blob_path) + + Path(lock_path).parent.mkdir(parents=True, exist_ok=True) + with WeakFileLock(lock_path): + _download_to_tmp_and_move( + incomplete_path=Path(blob_path + ".incomplete"), + destination_path=Path(blob_path), + url_to_download=url_to_download, + proxies=proxies, + headers=headers, + expected_size=expected_size, + filename=filename, + force_download=force_download, + ) + if not os.path.exists(pointer_path): + _create_symlink(blob_path, pointer_path, new_blob=True) + + return pointer_path + + +def _hf_hub_download_to_local_dir( + *, + # Destination + local_dir: Union[str, Path], + # File info + repo_id: str, + repo_type: str, + filename: str, + revision: str, + # HTTP info + endpoint: Optional[str], + etag_timeout: float, + headers: Dict[str, str], + proxies: Optional[Dict], + token: Union[bool, str, None], + # Additional options + cache_dir: str, + force_download: bool, + local_files_only: bool, +) -> str: + """Download a given file to a local folder, if not already present. + + Method should not be called directly. Please use `hf_hub_download` instead. + """ + # Some Windows versions do not allow for paths longer than 255 characters. + # In this case, we must specify it as an extended path by using the "\\?\" prefix. + if os.name == "nt" and len(os.path.abspath(local_dir)) > 255: + local_dir = "\\\\?\\" + os.path.abspath(local_dir) + local_dir = Path(local_dir) + paths = get_local_download_paths(local_dir=local_dir, filename=filename) + local_metadata = read_download_metadata(local_dir=local_dir, filename=filename) + + # Local file exists + metadata exists + commit_hash matches => return file + if ( + not force_download + and REGEX_COMMIT_HASH.match(revision) + and paths.file_path.is_file() + and local_metadata is not None + and local_metadata.commit_hash == revision + ): + return str(paths.file_path) + + # Local file doesn't exist or commit_hash doesn't match => we need the etag + (url_to_download, etag, commit_hash, expected_size, head_call_error) = _get_metadata_or_catch_error( + repo_id=repo_id, + filename=filename, + repo_type=repo_type, + revision=revision, + endpoint=endpoint, + proxies=proxies, + etag_timeout=etag_timeout, + headers=headers, + token=token, + local_files_only=local_files_only, + ) + + if head_call_error is not None: + # No HEAD call but local file exists => default to local file + if not force_download and paths.file_path.is_file(): + logger.warning( + f"Couldn't access the Hub to check for update but local file already exists. Defaulting to existing file. (error: {head_call_error})" + ) + return str(paths.file_path) + # Otherwise => raise + _raise_on_head_call_error(head_call_error, force_download, local_files_only) + + # From now on, etag, commit_hash, url and size are not None. + assert etag is not None, "etag must have been retrieved from server" + assert commit_hash is not None, "commit_hash must have been retrieved from server" + assert url_to_download is not None, "file location must have been retrieved from server" + assert expected_size is not None, "expected_size must have been retrieved from server" + + # Local file exists => check if it's up-to-date + if not force_download and paths.file_path.is_file(): + # etag matches => update metadata and return file + if local_metadata is not None and local_metadata.etag == etag: + write_download_metadata(local_dir=local_dir, filename=filename, commit_hash=commit_hash, etag=etag) + return str(paths.file_path) + + # metadata is outdated + etag is a sha256 + # => means it's an LFS file (large) + # => let's compute local hash and compare + # => if match, update metadata and return file + if local_metadata is None and REGEX_SHA256.match(etag) is not None: + with open(paths.file_path, "rb") as f: + file_hash = sha_fileobj(f).hex() + if file_hash == etag: + write_download_metadata(local_dir=local_dir, filename=filename, commit_hash=commit_hash, etag=etag) + return str(paths.file_path) + + # Local file doesn't exist or etag isn't a match => retrieve file from remote (or cache) + + # If we are lucky enough, the file is already in the cache => copy it + if not force_download: + cached_path = try_to_load_from_cache( + repo_id=repo_id, + filename=filename, + cache_dir=cache_dir, + revision=commit_hash, + repo_type=repo_type, + ) + if isinstance(cached_path, str): + with WeakFileLock(paths.lock_path): + paths.file_path.parent.mkdir(parents=True, exist_ok=True) + shutil.copyfile(cached_path, paths.file_path) + write_download_metadata(local_dir=local_dir, filename=filename, commit_hash=commit_hash, etag=etag) + return str(paths.file_path) + + # Otherwise, let's download the file! + with WeakFileLock(paths.lock_path): + paths.file_path.unlink(missing_ok=True) # delete outdated file first + _download_to_tmp_and_move( + incomplete_path=paths.incomplete_path(etag), + destination_path=paths.file_path, + url_to_download=url_to_download, + proxies=proxies, + headers=headers, + expected_size=expected_size, + filename=filename, + force_download=force_download, + ) + + write_download_metadata(local_dir=local_dir, filename=filename, commit_hash=commit_hash, etag=etag) + return str(paths.file_path) + + +@validate_hf_hub_args +def try_to_load_from_cache( + repo_id: str, + filename: str, + cache_dir: Union[str, Path, None] = None, + revision: Optional[str] = None, + repo_type: Optional[str] = None, +) -> Union[str, _CACHED_NO_EXIST_T, None]: + """ + Explores the cache to return the latest cached file for a given revision if found. + + This function will not raise any exception if the file in not cached. + + Args: + cache_dir (`str` or `os.PathLike`): + The folder where the cached files lie. + repo_id (`str`): + The ID of the repo on huggingface.co. + filename (`str`): + The filename to look for inside `repo_id`. + revision (`str`, *optional*): + The specific model version to use. Will default to `"main"` if it's not provided and no `commit_hash` is + provided either. + repo_type (`str`, *optional*): + The type of the repository. Will default to `"model"`. + + Returns: + `Optional[str]` or `_CACHED_NO_EXIST`: + Will return `None` if the file was not cached. Otherwise: + - The exact path to the cached file if it's found in the cache + - A special value `_CACHED_NO_EXIST` if the file does not exist at the given commit hash and this fact was + cached. + + Example: + + ```python + from huggingface_hub import try_to_load_from_cache, _CACHED_NO_EXIST + + filepath = try_to_load_from_cache() + if isinstance(filepath, str): + # file exists and is cached + ... + elif filepath is _CACHED_NO_EXIST: + # non-existence of file is cached + ... + else: + # file is not cached + ... + ``` + """ + if revision is None: + revision = "main" + if repo_type is None: + repo_type = "model" + if repo_type not in constants.REPO_TYPES: + raise ValueError(f"Invalid repo type: {repo_type}. Accepted repo types are: {str(constants.REPO_TYPES)}") + if cache_dir is None: + cache_dir = constants.HF_HUB_CACHE + + object_id = repo_id.replace("/", "--") + repo_cache = os.path.join(cache_dir, f"{repo_type}s--{object_id}") + if not os.path.isdir(repo_cache): + # No cache for this model + return None + + refs_dir = os.path.join(repo_cache, "refs") + snapshots_dir = os.path.join(repo_cache, "snapshots") + no_exist_dir = os.path.join(repo_cache, ".no_exist") + + # Resolve refs (for instance to convert main to the associated commit sha) + if os.path.isdir(refs_dir): + revision_file = os.path.join(refs_dir, revision) + if os.path.isfile(revision_file): + with open(revision_file) as f: + revision = f.read() + + # Check if file is cached as "no_exist" + if os.path.isfile(os.path.join(no_exist_dir, revision, filename)): + return _CACHED_NO_EXIST + + # Check if revision folder exists + if not os.path.exists(snapshots_dir): + return None + cached_shas = os.listdir(snapshots_dir) + if revision not in cached_shas: + # No cache for this revision and we won't try to return a random revision + return None + + # Check if file exists in cache + cached_file = os.path.join(snapshots_dir, revision, filename) + return cached_file if os.path.isfile(cached_file) else None + + +@validate_hf_hub_args +def get_hf_file_metadata( + url: str, + token: Union[bool, str, None] = None, + proxies: Optional[Dict] = None, + timeout: Optional[float] = constants.DEFAULT_REQUEST_TIMEOUT, + library_name: Optional[str] = None, + library_version: Optional[str] = None, + user_agent: Union[Dict, str, None] = None, + headers: Optional[Dict[str, str]] = None, +) -> HfFileMetadata: + """Fetch metadata of a file versioned on the Hub for a given url. + + Args: + url (`str`): + File url, for example returned by [`hf_hub_url`]. + token (`str` or `bool`, *optional*): + A token to be used for the download. + - If `True`, the token is read from the HuggingFace config + folder. + - If `False` or `None`, no token is provided. + - If a string, it's used as the authentication token. + proxies (`dict`, *optional*): + Dictionary mapping protocol to the URL of the proxy passed to + `requests.request`. + timeout (`float`, *optional*, defaults to 10): + How many seconds to wait for the server to send metadata before giving up. + library_name (`str`, *optional*): + The name of the library to which the object corresponds. + library_version (`str`, *optional*): + The version of the library. + user_agent (`dict`, `str`, *optional*): + The user-agent info in the form of a dictionary or a string. + headers (`dict`, *optional*): + Additional headers to be sent with the request. + + Returns: + A [`HfFileMetadata`] object containing metadata such as location, etag, size and + commit_hash. + """ + hf_headers = build_hf_headers( + token=token, + library_name=library_name, + library_version=library_version, + user_agent=user_agent, + headers=headers, + ) + hf_headers["Accept-Encoding"] = "identity" # prevent any compression => we want to know the real size of the file + + # Retrieve metadata + r = _request_wrapper( + method="HEAD", + url=url, + headers=hf_headers, + allow_redirects=False, + follow_relative_redirects=True, + proxies=proxies, + timeout=timeout, + ) + hf_raise_for_status(r) + + # Return + return HfFileMetadata( + commit_hash=r.headers.get(constants.HUGGINGFACE_HEADER_X_REPO_COMMIT), + # We favor a custom header indicating the etag of the linked resource, and + # we fallback to the regular etag header. + etag=_normalize_etag(r.headers.get(constants.HUGGINGFACE_HEADER_X_LINKED_ETAG) or r.headers.get("ETag")), + # Either from response headers (if redirected) or defaults to request url + # Do not use directly `url`, as `_request_wrapper` might have followed relative + # redirects. + location=r.headers.get("Location") or r.request.url, # type: ignore + size=_int_or_none( + r.headers.get(constants.HUGGINGFACE_HEADER_X_LINKED_SIZE) or r.headers.get("Content-Length") + ), + ) + + +def _get_metadata_or_catch_error( + *, + repo_id: str, + filename: str, + repo_type: str, + revision: str, + endpoint: Optional[str], + proxies: Optional[Dict], + etag_timeout: Optional[float], + headers: Dict[str, str], # mutated inplace! + token: Union[bool, str, None], + local_files_only: bool, + relative_filename: Optional[str] = None, # only used to store `.no_exists` in cache + storage_folder: Optional[str] = None, # only used to store `.no_exists` in cache +) -> Union[ + # Either an exception is caught and returned + Tuple[None, None, None, None, Exception], + # Or the metadata is returned as + # `(url_to_download, etag, commit_hash, expected_size, None)` + Tuple[str, str, str, int, None], +]: + """Get metadata for a file on the Hub, safely handling network issues. + + Returns either the etag, commit_hash and expected size of the file, or the error + raised while fetching the metadata. + + NOTE: This function mutates `headers` inplace! It removes the `authorization` header + if the file is a LFS blob and the domain of the url is different from the + domain of the location (typically an S3 bucket). + """ + if local_files_only: + return ( + None, + None, + None, + None, + OfflineModeIsEnabled( + f"Cannot access file since 'local_files_only=True' as been set. (repo_id: {repo_id}, repo_type: {repo_type}, revision: {revision}, filename: {filename})" + ), + ) + + url = hf_hub_url(repo_id, filename, repo_type=repo_type, revision=revision, endpoint=endpoint) + url_to_download: str = url + etag: Optional[str] = None + commit_hash: Optional[str] = None + expected_size: Optional[int] = None + head_error_call: Optional[Exception] = None + + # Try to get metadata from the server. + # Do not raise yet if the file is not found or not accessible. + if not local_files_only: + try: + try: + metadata = get_hf_file_metadata( + url=url, proxies=proxies, timeout=etag_timeout, headers=headers, token=token + ) + except EntryNotFoundError as http_error: + if storage_folder is not None and relative_filename is not None: + # Cache the non-existence of the file + commit_hash = http_error.response.headers.get(constants.HUGGINGFACE_HEADER_X_REPO_COMMIT) + if commit_hash is not None: + no_exist_file_path = Path(storage_folder) / ".no_exist" / commit_hash / relative_filename + try: + no_exist_file_path.parent.mkdir(parents=True, exist_ok=True) + no_exist_file_path.touch() + except OSError as e: + logger.error( + f"Could not cache non-existence of file. Will ignore error and continue. Error: {e}" + ) + _cache_commit_hash_for_specific_revision(storage_folder, revision, commit_hash) + raise + + # Commit hash must exist + commit_hash = metadata.commit_hash + if commit_hash is None: + raise FileMetadataError( + "Distant resource does not seem to be on huggingface.co. It is possible that a configuration issue" + " prevents you from downloading resources from https://huggingface.co. Please check your firewall" + " and proxy settings and make sure your SSL certificates are updated." + ) + + # Etag must exist + # If we don't have any of those, raise an error. + etag = metadata.etag + if etag is None: + raise FileMetadataError( + "Distant resource does not have an ETag, we won't be able to reliably ensure reproducibility." + ) + + # Size must exist + expected_size = metadata.size + if expected_size is None: + raise FileMetadataError("Distant resource does not have a Content-Length.") + + # In case of a redirect, save an extra redirect on the request.get call, + # and ensure we download the exact atomic version even if it changed + # between the HEAD and the GET (unlikely, but hey). + # + # If url domain is different => we are downloading from a CDN => url is signed => don't send auth + # If url domain is the same => redirect due to repo rename AND downloading a regular file => keep auth + if url != metadata.location: + url_to_download = metadata.location + if urlparse(url).netloc != urlparse(metadata.location).netloc: + # Remove authorization header when downloading a LFS blob + headers.pop("authorization", None) + except (requests.exceptions.SSLError, requests.exceptions.ProxyError): + # Actually raise for those subclasses of ConnectionError + raise + except ( + requests.exceptions.ConnectionError, + requests.exceptions.Timeout, + OfflineModeIsEnabled, + ) as error: + # Otherwise, our Internet connection is down. + # etag is None + head_error_call = error + except (RevisionNotFoundError, EntryNotFoundError): + # The repo was found but the revision or entry doesn't exist on the Hub (never existed or got deleted) + raise + except requests.HTTPError as error: + # Multiple reasons for an http error: + # - Repository is private and invalid/missing token sent + # - Repository is gated and invalid/missing token sent + # - Hub is down (error 500 or 504) + # => let's switch to 'local_files_only=True' to check if the files are already cached. + # (if it's not the case, the error will be re-raised) + head_error_call = error + except FileMetadataError as error: + # Multiple reasons for a FileMetadataError: + # - Wrong network configuration (proxy, firewall, SSL certificates) + # - Inconsistency on the Hub + # => let's switch to 'local_files_only=True' to check if the files are already cached. + # (if it's not the case, the error will be re-raised) + head_error_call = error + + if not (local_files_only or etag is not None or head_error_call is not None): + raise RuntimeError("etag is empty due to uncovered problems") + + return (url_to_download, etag, commit_hash, expected_size, head_error_call) # type: ignore [return-value] + + +def _raise_on_head_call_error(head_call_error: Exception, force_download: bool, local_files_only: bool) -> NoReturn: + """Raise an appropriate error when the HEAD call failed and we cannot locate a local file.""" + # No head call => we cannot force download. + if force_download: + if local_files_only: + raise ValueError("Cannot pass 'force_download=True' and 'local_files_only=True' at the same time.") + elif isinstance(head_call_error, OfflineModeIsEnabled): + raise ValueError("Cannot pass 'force_download=True' when offline mode is enabled.") from head_call_error + else: + raise ValueError("Force download failed due to the above error.") from head_call_error + + # No head call + couldn't find an appropriate file on disk => raise an error. + if local_files_only: + raise LocalEntryNotFoundError( + "Cannot find the requested files in the disk cache and outgoing traffic has been disabled. To enable" + " hf.co look-ups and downloads online, set 'local_files_only' to False." + ) + elif isinstance(head_call_error, (RepositoryNotFoundError, GatedRepoError)) or ( + isinstance(head_call_error, HfHubHTTPError) and head_call_error.response.status_code == 401 + ): + # Repo not found or gated => let's raise the actual error + # Unauthorized => likely a token issue => let's raise the actual error + raise head_call_error + else: + # Otherwise: most likely a connection issue or Hub downtime => let's warn the user + raise LocalEntryNotFoundError( + "An error happened while trying to locate the file on the Hub and we cannot find the requested files" + " in the local cache. Please check your connection and try again or make sure your Internet connection" + " is on." + ) from head_call_error + + +def _download_to_tmp_and_move( + incomplete_path: Path, + destination_path: Path, + url_to_download: str, + proxies: Optional[Dict], + headers: Dict[str, str], + expected_size: Optional[int], + filename: str, + force_download: bool, +) -> None: + """Download content from a URL to a destination path. + + Internal logic: + - return early if file is already downloaded + - resume download if possible (from incomplete file) + - do not resume download if `force_download=True` or `HF_HUB_ENABLE_HF_TRANSFER=True` + - check disk space before downloading + - download content to a temporary file + - set correct permissions on temporary file + - move the temporary file to the destination path + + Both `incomplete_path` and `destination_path` must be on the same volume to avoid a local copy. + """ + if destination_path.exists() and not force_download: + # Do nothing if already exists (except if force_download=True) + return + + if incomplete_path.exists() and (force_download or (constants.HF_HUB_ENABLE_HF_TRANSFER and not proxies)): + # By default, we will try to resume the download if possible. + # However, if the user has set `force_download=True` or if `hf_transfer` is enabled, then we should + # not resume the download => delete the incomplete file. + message = f"Removing incomplete file '{incomplete_path}'" + if force_download: + message += " (force_download=True)" + elif constants.HF_HUB_ENABLE_HF_TRANSFER and not proxies: + message += " (hf_transfer=True)" + logger.info(message) + incomplete_path.unlink(missing_ok=True) + + with incomplete_path.open("ab") as f: + resume_size = f.tell() + message = f"Downloading '{filename}' to '{incomplete_path}'" + if resume_size > 0 and expected_size is not None: + message += f" (resume from {resume_size}/{expected_size})" + logger.info(message) + + if expected_size is not None: # might be None if HTTP header not set correctly + # Check disk space in both tmp and destination path + _check_disk_space(expected_size, incomplete_path.parent) + _check_disk_space(expected_size, destination_path.parent) + + http_get( + url_to_download, + f, + proxies=proxies, + resume_size=resume_size, + headers=headers, + expected_size=expected_size, + ) + + logger.info(f"Download complete. Moving file to {destination_path}") + _chmod_and_move(incomplete_path, destination_path) + + +def _int_or_none(value: Optional[str]) -> Optional[int]: + try: + return int(value) # type: ignore + except (TypeError, ValueError): + return None + + +def _chmod_and_move(src: Path, dst: Path) -> None: + """Set correct permission before moving a blob from tmp directory to cache dir. + + Do not take into account the `umask` from the process as there is no convenient way + to get it that is thread-safe. + + See: + - About umask: https://docs.python.org/3/library/os.html#os.umask + - Thread-safety: https://stackoverflow.com/a/70343066 + - About solution: https://github.com/huggingface/huggingface_hub/pull/1220#issuecomment-1326211591 + - Fix issue: https://github.com/huggingface/huggingface_hub/issues/1141 + - Fix issue: https://github.com/huggingface/huggingface_hub/issues/1215 + """ + # Get umask by creating a temporary file in the cached repo folder. + tmp_file = dst.parent.parent / f"tmp_{uuid.uuid4()}" + try: + tmp_file.touch() + cache_dir_mode = Path(tmp_file).stat().st_mode + os.chmod(str(src), stat.S_IMODE(cache_dir_mode)) + except OSError as e: + logger.warning( + f"Could not set the permissions on the file '{src}'. Error: {e}.\nContinuing without setting permissions." + ) + finally: + try: + tmp_file.unlink() + except OSError: + # fails if `tmp_file.touch()` failed => do nothing + # See https://github.com/huggingface/huggingface_hub/issues/2359 + pass + + shutil.move(str(src), str(dst), copy_function=_copy_no_matter_what) + + +def _copy_no_matter_what(src: str, dst: str) -> None: + """Copy file from src to dst. + + If `shutil.copy2` fails, fallback to `shutil.copyfile`. + """ + try: + # Copy file with metadata and permission + # Can fail e.g. if dst is an S3 mount + shutil.copy2(src, dst) + except OSError: + # Copy only file content + shutil.copyfile(src, dst) + + +def _get_pointer_path(storage_folder: str, revision: str, relative_filename: str) -> str: + # Using `os.path.abspath` instead of `Path.resolve()` to avoid resolving symlinks + snapshot_path = os.path.join(storage_folder, "snapshots") + pointer_path = os.path.join(snapshot_path, revision, relative_filename) + if Path(os.path.abspath(snapshot_path)) not in Path(os.path.abspath(pointer_path)).parents: + raise ValueError( + "Invalid pointer path: cannot create pointer path in snapshot folder if" + f" `storage_folder='{storage_folder}'`, `revision='{revision}'` and" + f" `relative_filename='{relative_filename}'`." + ) + return pointer_path diff --git a/.venv/lib/python3.12/site-packages/huggingface_hub/hf_api.py b/.venv/lib/python3.12/site-packages/huggingface_hub/hf_api.py new file mode 100644 index 00000000..49aa8161 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/huggingface_hub/hf_api.py @@ -0,0 +1,9645 @@ +# coding=utf-8 +# Copyright 2019-present, the HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +from __future__ import annotations + +import inspect +import json +import re +import struct +import warnings +from collections import defaultdict +from concurrent.futures import Future, ThreadPoolExecutor +from dataclasses import asdict, dataclass, field +from datetime import datetime +from functools import wraps +from itertools import islice +from pathlib import Path +from typing import ( + Any, + BinaryIO, + Callable, + Dict, + Iterable, + Iterator, + List, + Literal, + Optional, + Tuple, + TypeVar, + Union, + overload, +) +from urllib.parse import quote + +import requests +from requests.exceptions import HTTPError +from tqdm.auto import tqdm as base_tqdm +from tqdm.contrib.concurrent import thread_map + +from . import constants +from ._commit_api import ( + CommitOperation, + CommitOperationAdd, + CommitOperationCopy, + CommitOperationDelete, + _fetch_files_to_copy, + _fetch_upload_modes, + _prepare_commit_payload, + _upload_lfs_files, + _warn_on_overwriting_operations, +) +from ._inference_endpoints import InferenceEndpoint, InferenceEndpointType +from ._space_api import SpaceHardware, SpaceRuntime, SpaceStorage, SpaceVariable +from ._upload_large_folder import upload_large_folder_internal +from .community import ( + Discussion, + DiscussionComment, + DiscussionStatusChange, + DiscussionTitleChange, + DiscussionWithDetails, + deserialize_event, +) +from .constants import ( + DEFAULT_ETAG_TIMEOUT, # noqa: F401 # kept for backward compatibility + DEFAULT_REQUEST_TIMEOUT, # noqa: F401 # kept for backward compatibility + DEFAULT_REVISION, # noqa: F401 # kept for backward compatibility + DISCUSSION_STATUS, # noqa: F401 # kept for backward compatibility + DISCUSSION_TYPES, # noqa: F401 # kept for backward compatibility + ENDPOINT, # noqa: F401 # kept for backward compatibility + INFERENCE_ENDPOINTS_ENDPOINT, # noqa: F401 # kept for backward compatibility + REGEX_COMMIT_OID, # noqa: F401 # kept for backward compatibility + REPO_TYPE_MODEL, # noqa: F401 # kept for backward compatibility + REPO_TYPES, # noqa: F401 # kept for backward compatibility + REPO_TYPES_MAPPING, # noqa: F401 # kept for backward compatibility + REPO_TYPES_URL_PREFIXES, # noqa: F401 # kept for backward compatibility + SAFETENSORS_INDEX_FILE, # noqa: F401 # kept for backward compatibility + SAFETENSORS_MAX_HEADER_LENGTH, # noqa: F401 # kept for backward compatibility + SAFETENSORS_SINGLE_FILE, # noqa: F401 # kept for backward compatibility + SPACES_SDK_TYPES, # noqa: F401 # kept for backward compatibility + WEBHOOK_DOMAIN_T, # noqa: F401 # kept for backward compatibility + DiscussionStatusFilter, # noqa: F401 # kept for backward compatibility + DiscussionTypeFilter, # noqa: F401 # kept for backward compatibility +) +from .errors import ( + BadRequestError, + EntryNotFoundError, + GatedRepoError, + HfHubHTTPError, + RepositoryNotFoundError, + RevisionNotFoundError, +) +from .file_download import HfFileMetadata, get_hf_file_metadata, hf_hub_url +from .repocard_data import DatasetCardData, ModelCardData, SpaceCardData +from .utils import ( + DEFAULT_IGNORE_PATTERNS, + HfFolder, # noqa: F401 # kept for backward compatibility + LocalTokenNotFoundError, + NotASafetensorsRepoError, + SafetensorsFileMetadata, + SafetensorsParsingError, + SafetensorsRepoMetadata, + TensorInfo, + build_hf_headers, + filter_repo_objects, + fix_hf_endpoint_in_url, + get_session, + get_token, + hf_raise_for_status, + logging, + paginate, + parse_datetime, + validate_hf_hub_args, +) +from .utils import tqdm as hf_tqdm +from .utils._auth import _get_token_from_environment, _get_token_from_file, _get_token_from_google_colab +from .utils._deprecation import _deprecate_method +from .utils._typing import CallableT +from .utils.endpoint_helpers import _is_emission_within_threshold + + +R = TypeVar("R") # Return type +CollectionItemType_T = Literal["model", "dataset", "space", "paper"] + +ExpandModelProperty_T = Literal[ + "author", + "baseModels", + "cardData", + "childrenModelCount", + "config", + "createdAt", + "disabled", + "downloads", + "downloadsAllTime", + "gated", + "gguf", + "inference", + "inferenceProviderMapping", + "lastModified", + "library_name", + "likes", + "mask_token", + "model-index", + "pipeline_tag", + "private", + "resourceGroup", + "safetensors", + "sha", + "siblings", + "spaces", + "tags", + "transformersInfo", + "trendingScore", + "usedStorage", + "widgetData", +] + +ExpandDatasetProperty_T = Literal[ + "author", + "cardData", + "citation", + "createdAt", + "description", + "disabled", + "downloads", + "downloadsAllTime", + "gated", + "lastModified", + "likes", + "paperswithcode_id", + "private", + "resourceGroup", + "sha", + "siblings", + "tags", + "trendingScore", + "usedStorage", +] + +ExpandSpaceProperty_T = Literal[ + "author", + "cardData", + "createdAt", + "datasets", + "disabled", + "lastModified", + "likes", + "models", + "private", + "resourceGroup", + "runtime", + "sdk", + "sha", + "siblings", + "subdomain", + "tags", + "trendingScore", + "usedStorage", +] + +USERNAME_PLACEHOLDER = "hf_user" +_REGEX_DISCUSSION_URL = re.compile(r".*/discussions/(\d+)$") + +_CREATE_COMMIT_NO_REPO_ERROR_MESSAGE = ( + "\nNote: Creating a commit assumes that the repo already exists on the" + " Huggingface Hub. Please use `create_repo` if it's not the case." +) +_AUTH_CHECK_NO_REPO_ERROR_MESSAGE = ( + "\nNote: The repository either does not exist or you do not have access rights." + " Please check the repository ID and your access permissions." + " If this is a private repository, ensure that your token is correct." +) +logger = logging.get_logger(__name__) + + +def repo_type_and_id_from_hf_id(hf_id: str, hub_url: Optional[str] = None) -> Tuple[Optional[str], Optional[str], str]: + """ + Returns the repo type and ID from a huggingface.co URL linking to a + repository + + Args: + hf_id (`str`): + An URL or ID of a repository on the HF hub. Accepted values are: + + - https://huggingface.co/<repo_type>/<namespace>/<repo_id> + - https://huggingface.co/<namespace>/<repo_id> + - hf://<repo_type>/<namespace>/<repo_id> + - hf://<namespace>/<repo_id> + - <repo_type>/<namespace>/<repo_id> + - <namespace>/<repo_id> + - <repo_id> + hub_url (`str`, *optional*): + The URL of the HuggingFace Hub, defaults to https://huggingface.co + + Returns: + A tuple with three items: repo_type (`str` or `None`), namespace (`str` or + `None`) and repo_id (`str`). + + Raises: + [`ValueError`](https://docs.python.org/3/library/exceptions.html#ValueError) + If URL cannot be parsed. + [`ValueError`](https://docs.python.org/3/library/exceptions.html#ValueError) + If `repo_type` is unknown. + """ + input_hf_id = hf_id + + hub_url = re.sub(r"https?://", "", hub_url if hub_url is not None else constants.ENDPOINT) + is_hf_url = hub_url in hf_id and "@" not in hf_id + + HFFS_PREFIX = "hf://" + if hf_id.startswith(HFFS_PREFIX): # Remove "hf://" prefix if exists + hf_id = hf_id[len(HFFS_PREFIX) :] + + url_segments = hf_id.split("/") + is_hf_id = len(url_segments) <= 3 + + namespace: Optional[str] + if is_hf_url: + namespace, repo_id = url_segments[-2:] + if namespace == hub_url: + namespace = None + if len(url_segments) > 2 and hub_url not in url_segments[-3]: + repo_type = url_segments[-3] + elif namespace in constants.REPO_TYPES_MAPPING: + # Mean canonical dataset or model + repo_type = constants.REPO_TYPES_MAPPING[namespace] + namespace = None + else: + repo_type = None + elif is_hf_id: + if len(url_segments) == 3: + # Passed <repo_type>/<user>/<model_id> or <repo_type>/<org>/<model_id> + repo_type, namespace, repo_id = url_segments[-3:] + elif len(url_segments) == 2: + if url_segments[0] in constants.REPO_TYPES_MAPPING: + # Passed '<model_id>' or 'datasets/<dataset_id>' for a canonical model or dataset + repo_type = constants.REPO_TYPES_MAPPING[url_segments[0]] + namespace = None + repo_id = hf_id.split("/")[-1] + else: + # Passed <user>/<model_id> or <org>/<model_id> + namespace, repo_id = hf_id.split("/")[-2:] + repo_type = None + else: + # Passed <model_id> + repo_id = url_segments[0] + namespace, repo_type = None, None + else: + raise ValueError(f"Unable to retrieve user and repo ID from the passed HF ID: {hf_id}") + + # Check if repo type is known (mapping "spaces" => "space" + empty value => `None`) + if repo_type in constants.REPO_TYPES_MAPPING: + repo_type = constants.REPO_TYPES_MAPPING[repo_type] + if repo_type == "": + repo_type = None + if repo_type not in constants.REPO_TYPES: + raise ValueError(f"Unknown `repo_type`: '{repo_type}' ('{input_hf_id}')") + + return repo_type, namespace, repo_id + + +@dataclass +class LastCommitInfo(dict): + oid: str + title: str + date: datetime + + def __post_init__(self): # hack to make LastCommitInfo backward compatible + self.update(asdict(self)) + + +@dataclass +class BlobLfsInfo(dict): + size: int + sha256: str + pointer_size: int + + def __post_init__(self): # hack to make BlobLfsInfo backward compatible + self.update(asdict(self)) + + +@dataclass +class BlobSecurityInfo(dict): + safe: bool # duplicate information with "status" field, keeping it for backward compatibility + status: str + av_scan: Optional[Dict] + pickle_import_scan: Optional[Dict] + + def __post_init__(self): # hack to make BlogSecurityInfo backward compatible + self.update(asdict(self)) + + +@dataclass +class TransformersInfo(dict): + auto_model: str + custom_class: Optional[str] = None + # possible `pipeline_tag` values: https://github.com/huggingface/huggingface.js/blob/3ee32554b8620644a6287e786b2a83bf5caf559c/packages/tasks/src/pipelines.ts#L72 + pipeline_tag: Optional[str] = None + processor: Optional[str] = None + + def __post_init__(self): # hack to make TransformersInfo backward compatible + self.update(asdict(self)) + + +@dataclass +class SafeTensorsInfo(dict): + parameters: Dict[str, int] + total: int + + def __post_init__(self): # hack to make SafeTensorsInfo backward compatible + self.update(asdict(self)) + + +@dataclass +class CommitInfo(str): + """Data structure containing information about a newly created commit. + + Returned by any method that creates a commit on the Hub: [`create_commit`], [`upload_file`], [`upload_folder`], + [`delete_file`], [`delete_folder`]. It inherits from `str` for backward compatibility but using methods specific + to `str` is deprecated. + + Attributes: + commit_url (`str`): + Url where to find the commit. + + commit_message (`str`): + The summary (first line) of the commit that has been created. + + commit_description (`str`): + Description of the commit that has been created. Can be empty. + + oid (`str`): + Commit hash id. Example: `"91c54ad1727ee830252e457677f467be0bfd8a57"`. + + pr_url (`str`, *optional*): + Url to the PR that has been created, if any. Populated when `create_pr=True` + is passed. + + pr_revision (`str`, *optional*): + Revision of the PR that has been created, if any. Populated when + `create_pr=True` is passed. Example: `"refs/pr/1"`. + + pr_num (`int`, *optional*): + Number of the PR discussion that has been created, if any. Populated when + `create_pr=True` is passed. Can be passed as `discussion_num` in + [`get_discussion_details`]. Example: `1`. + + repo_url (`RepoUrl`): + Repo URL of the commit containing info like repo_id, repo_type, etc. + + _url (`str`, *optional*): + Legacy url for `str` compatibility. Can be the url to the uploaded file on the Hub (if returned by + [`upload_file`]), to the uploaded folder on the Hub (if returned by [`upload_folder`]) or to the commit on + the Hub (if returned by [`create_commit`]). Defaults to `commit_url`. It is deprecated to use this + attribute. Please use `commit_url` instead. + """ + + commit_url: str + commit_message: str + commit_description: str + oid: str + pr_url: Optional[str] = None + + # Computed from `commit_url` in `__post_init__` + repo_url: RepoUrl = field(init=False) + + # Computed from `pr_url` in `__post_init__` + pr_revision: Optional[str] = field(init=False) + pr_num: Optional[str] = field(init=False) + + # legacy url for `str` compatibility (ex: url to uploaded file, url to uploaded folder, url to PR, etc.) + _url: str = field(repr=False, default=None) # type: ignore # defaults to `commit_url` + + def __new__(cls, *args, commit_url: str, _url: Optional[str] = None, **kwargs): + return str.__new__(cls, _url or commit_url) + + def __post_init__(self): + """Populate pr-related fields after initialization. + + See https://docs.python.org/3.10/library/dataclasses.html#post-init-processing. + """ + # Repo info + self.repo_url = RepoUrl(self.commit_url.split("/commit/")[0]) + + # PR info + if self.pr_url is not None: + self.pr_revision = _parse_revision_from_pr_url(self.pr_url) + self.pr_num = int(self.pr_revision.split("/")[-1]) + else: + self.pr_revision = None + self.pr_num = None + + +@dataclass +class AccessRequest: + """Data structure containing information about a user access request. + + Attributes: + username (`str`): + Username of the user who requested access. + fullname (`str`): + Fullname of the user who requested access. + email (`Optional[str]`): + Email of the user who requested access. + Can only be `None` in the /accepted list if the user was granted access manually. + timestamp (`datetime`): + Timestamp of the request. + status (`Literal["pending", "accepted", "rejected"]`): + Status of the request. Can be one of `["pending", "accepted", "rejected"]`. + fields (`Dict[str, Any]`, *optional*): + Additional fields filled by the user in the gate form. + """ + + username: str + fullname: str + email: Optional[str] + timestamp: datetime + status: Literal["pending", "accepted", "rejected"] + + # Additional fields filled by the user in the gate form + fields: Optional[Dict[str, Any]] = None + + +@dataclass +class WebhookWatchedItem: + """Data structure containing information about the items watched by a webhook. + + Attributes: + type (`Literal["dataset", "model", "org", "space", "user"]`): + Type of the item to be watched. Can be one of `["dataset", "model", "org", "space", "user"]`. + name (`str`): + Name of the item to be watched. Can be the username, organization name, model name, dataset name or space name. + """ + + type: Literal["dataset", "model", "org", "space", "user"] + name: str + + +@dataclass +class WebhookInfo: + """Data structure containing information about a webhook. + + Attributes: + id (`str`): + ID of the webhook. + url (`str`): + URL of the webhook. + watched (`List[WebhookWatchedItem]`): + List of items watched by the webhook, see [`WebhookWatchedItem`]. + domains (`List[WEBHOOK_DOMAIN_T]`): + List of domains the webhook is watching. Can be one of `["repo", "discussions"]`. + secret (`str`, *optional*): + Secret of the webhook. + disabled (`bool`): + Whether the webhook is disabled or not. + """ + + id: str + url: str + watched: List[WebhookWatchedItem] + domains: List[constants.WEBHOOK_DOMAIN_T] + secret: Optional[str] + disabled: bool + + +class RepoUrl(str): + """Subclass of `str` describing a repo URL on the Hub. + + `RepoUrl` is returned by `HfApi.create_repo`. It inherits from `str` for backward + compatibility. At initialization, the URL is parsed to populate properties: + - endpoint (`str`) + - namespace (`Optional[str]`) + - repo_name (`str`) + - repo_id (`str`) + - repo_type (`Literal["model", "dataset", "space"]`) + - url (`str`) + + Args: + url (`Any`): + String value of the repo url. + endpoint (`str`, *optional*): + Endpoint of the Hub. Defaults to <https://huggingface.co>. + + Example: + ```py + >>> RepoUrl('https://huggingface.co/gpt2') + RepoUrl('https://huggingface.co/gpt2', endpoint='https://huggingface.co', repo_type='model', repo_id='gpt2') + + >>> RepoUrl('https://hub-ci.huggingface.co/datasets/dummy_user/dummy_dataset', endpoint='https://hub-ci.huggingface.co') + RepoUrl('https://hub-ci.huggingface.co/datasets/dummy_user/dummy_dataset', endpoint='https://hub-ci.huggingface.co', repo_type='dataset', repo_id='dummy_user/dummy_dataset') + + >>> RepoUrl('hf://datasets/my-user/my-dataset') + RepoUrl('hf://datasets/my-user/my-dataset', endpoint='https://huggingface.co', repo_type='dataset', repo_id='user/dataset') + + >>> HfApi.create_repo("dummy_model") + RepoUrl('https://huggingface.co/Wauplin/dummy_model', endpoint='https://huggingface.co', repo_type='model', repo_id='Wauplin/dummy_model') + ``` + + Raises: + [`ValueError`](https://docs.python.org/3/library/exceptions.html#ValueError) + If URL cannot be parsed. + [`ValueError`](https://docs.python.org/3/library/exceptions.html#ValueError) + If `repo_type` is unknown. + """ + + def __new__(cls, url: Any, endpoint: Optional[str] = None): + url = fix_hf_endpoint_in_url(url, endpoint=endpoint) + return super(RepoUrl, cls).__new__(cls, url) + + def __init__(self, url: Any, endpoint: Optional[str] = None) -> None: + super().__init__() + # Parse URL + self.endpoint = endpoint or constants.ENDPOINT + repo_type, namespace, repo_name = repo_type_and_id_from_hf_id(self, hub_url=self.endpoint) + + # Populate fields + self.namespace = namespace + self.repo_name = repo_name + self.repo_id = repo_name if namespace is None else f"{namespace}/{repo_name}" + self.repo_type = repo_type or constants.REPO_TYPE_MODEL + self.url = str(self) # just in case it's needed + + def __repr__(self) -> str: + return f"RepoUrl('{self}', endpoint='{self.endpoint}', repo_type='{self.repo_type}', repo_id='{self.repo_id}')" + + +@dataclass +class RepoSibling: + """ + Contains basic information about a repo file inside a repo on the Hub. + + <Tip> + + All attributes of this class are optional except `rfilename`. This is because only the file names are returned when + listing repositories on the Hub (with [`list_models`], [`list_datasets`] or [`list_spaces`]). If you need more + information like file size, blob id or lfs details, you must request them specifically from one repo at a time + (using [`model_info`], [`dataset_info`] or [`space_info`]) as it adds more constraints on the backend server to + retrieve these. + + </Tip> + + Attributes: + rfilename (str): + file name, relative to the repo root. + size (`int`, *optional*): + The file's size, in bytes. This attribute is defined when `files_metadata` argument of [`repo_info`] is set + to `True`. It's `None` otherwise. + blob_id (`str`, *optional*): + The file's git OID. This attribute is defined when `files_metadata` argument of [`repo_info`] is set to + `True`. It's `None` otherwise. + lfs (`BlobLfsInfo`, *optional*): + The file's LFS metadata. This attribute is defined when`files_metadata` argument of [`repo_info`] is set to + `True` and the file is stored with Git LFS. It's `None` otherwise. + """ + + rfilename: str + size: Optional[int] = None + blob_id: Optional[str] = None + lfs: Optional[BlobLfsInfo] = None + + +@dataclass +class RepoFile: + """ + Contains information about a file on the Hub. + + Attributes: + path (str): + file path relative to the repo root. + size (`int`): + The file's size, in bytes. + blob_id (`str`): + The file's git OID. + lfs (`BlobLfsInfo`): + The file's LFS metadata. + last_commit (`LastCommitInfo`, *optional*): + The file's last commit metadata. Only defined if [`list_repo_tree`] and [`get_paths_info`] + are called with `expand=True`. + security (`BlobSecurityInfo`, *optional*): + The file's security scan metadata. Only defined if [`list_repo_tree`] and [`get_paths_info`] + are called with `expand=True`. + """ + + path: str + size: int + blob_id: str + lfs: Optional[BlobLfsInfo] = None + last_commit: Optional[LastCommitInfo] = None + security: Optional[BlobSecurityInfo] = None + + def __init__(self, **kwargs): + self.path = kwargs.pop("path") + self.size = kwargs.pop("size") + self.blob_id = kwargs.pop("oid") + lfs = kwargs.pop("lfs", None) + if lfs is not None: + lfs = BlobLfsInfo(size=lfs["size"], sha256=lfs["oid"], pointer_size=lfs["pointerSize"]) + self.lfs = lfs + last_commit = kwargs.pop("lastCommit", None) or kwargs.pop("last_commit", None) + if last_commit is not None: + last_commit = LastCommitInfo( + oid=last_commit["id"], title=last_commit["title"], date=parse_datetime(last_commit["date"]) + ) + self.last_commit = last_commit + security = kwargs.pop("securityFileStatus", None) + if security is not None: + safe = security["status"] == "safe" + security = BlobSecurityInfo( + safe=safe, + status=security["status"], + av_scan=security["avScan"], + pickle_import_scan=security["pickleImportScan"], + ) + self.security = security + + # backwards compatibility + self.rfilename = self.path + self.lastCommit = self.last_commit + + +@dataclass +class RepoFolder: + """ + Contains information about a folder on the Hub. + + Attributes: + path (str): + folder path relative to the repo root. + tree_id (`str`): + The folder's git OID. + last_commit (`LastCommitInfo`, *optional*): + The folder's last commit metadata. Only defined if [`list_repo_tree`] and [`get_paths_info`] + are called with `expand=True`. + """ + + path: str + tree_id: str + last_commit: Optional[LastCommitInfo] = None + + def __init__(self, **kwargs): + self.path = kwargs.pop("path") + self.tree_id = kwargs.pop("oid") + last_commit = kwargs.pop("lastCommit", None) or kwargs.pop("last_commit", None) + if last_commit is not None: + last_commit = LastCommitInfo( + oid=last_commit["id"], title=last_commit["title"], date=parse_datetime(last_commit["date"]) + ) + self.last_commit = last_commit + + +@dataclass +class InferenceProviderMapping: + status: Literal["live", "staging"] + provider_id: str + task: str + + def __init__(self, **kwargs): + self.status = kwargs.pop("status") + self.provider_id = kwargs.pop("providerId") + self.task = kwargs.pop("task") + self.__dict__.update(**kwargs) + + +@dataclass +class ModelInfo: + """ + Contains information about a model on the Hub. + + <Tip> + + Most attributes of this class are optional. This is because the data returned by the Hub depends on the query made. + In general, the more specific the query, the more information is returned. On the contrary, when listing models + using [`list_models`] only a subset of the attributes are returned. + + </Tip> + + Attributes: + id (`str`): + ID of model. + author (`str`, *optional*): + Author of the model. + sha (`str`, *optional*): + Repo SHA at this particular revision. + created_at (`datetime`, *optional*): + Date of creation of the repo on the Hub. Note that the lowest value is `2022-03-02T23:29:04.000Z`, + corresponding to the date when we began to store creation dates. + last_modified (`datetime`, *optional*): + Date of last commit to the repo. + private (`bool`): + Is the repo private. + disabled (`bool`, *optional*): + Is the repo disabled. + downloads (`int`): + Number of downloads of the model over the last 30 days. + downloads_all_time (`int`): + Cumulated number of downloads of the model since its creation. + gated (`Literal["auto", "manual", False]`, *optional*): + Is the repo gated. + If so, whether there is manual or automatic approval. + gguf (`Dict`, *optional*): + GGUF information of the model. + inference (`Literal["cold", "frozen", "warm"]`, *optional*): + Status of the model on the inference API. + Warm models are available for immediate use. Cold models will be loaded on first inference call. + Frozen models are not available in Inference API. + inference_provider_mapping (`Dict`, *optional*): + Model's inference provider mapping. + likes (`int`): + Number of likes of the model. + library_name (`str`, *optional*): + Library associated with the model. + tags (`List[str]`): + List of tags of the model. Compared to `card_data.tags`, contains extra tags computed by the Hub + (e.g. supported libraries, model's arXiv). + pipeline_tag (`str`, *optional*): + Pipeline tag associated with the model. + mask_token (`str`, *optional*): + Mask token used by the model. + widget_data (`Any`, *optional*): + Widget data associated with the model. + model_index (`Dict`, *optional*): + Model index for evaluation. + config (`Dict`, *optional*): + Model configuration. + transformers_info (`TransformersInfo`, *optional*): + Transformers-specific info (auto class, processor, etc.) associated with the model. + trending_score (`int`, *optional*): + Trending score of the model. + card_data (`ModelCardData`, *optional*): + Model Card Metadata as a [`huggingface_hub.repocard_data.ModelCardData`] object. + siblings (`List[RepoSibling]`): + List of [`huggingface_hub.hf_api.RepoSibling`] objects that constitute the model. + spaces (`List[str]`, *optional*): + List of spaces using the model. + safetensors (`SafeTensorsInfo`, *optional*): + Model's safetensors information. + security_repo_status (`Dict`, *optional*): + Model's security scan status. + """ + + id: str + author: Optional[str] + sha: Optional[str] + created_at: Optional[datetime] + last_modified: Optional[datetime] + private: Optional[bool] + disabled: Optional[bool] + downloads: Optional[int] + downloads_all_time: Optional[int] + gated: Optional[Literal["auto", "manual", False]] + gguf: Optional[Dict] + inference: Optional[Literal["warm", "cold", "frozen"]] + inference_provider_mapping: Optional[Dict[str, InferenceProviderMapping]] + likes: Optional[int] + library_name: Optional[str] + tags: Optional[List[str]] + pipeline_tag: Optional[str] + mask_token: Optional[str] + card_data: Optional[ModelCardData] + widget_data: Optional[Any] + model_index: Optional[Dict] + config: Optional[Dict] + transformers_info: Optional[TransformersInfo] + trending_score: Optional[int] + siblings: Optional[List[RepoSibling]] + spaces: Optional[List[str]] + safetensors: Optional[SafeTensorsInfo] + security_repo_status: Optional[Dict] + + def __init__(self, **kwargs): + self.id = kwargs.pop("id") + self.author = kwargs.pop("author", None) + self.sha = kwargs.pop("sha", None) + last_modified = kwargs.pop("lastModified", None) or kwargs.pop("last_modified", None) + self.last_modified = parse_datetime(last_modified) if last_modified else None + created_at = kwargs.pop("createdAt", None) or kwargs.pop("created_at", None) + self.created_at = parse_datetime(created_at) if created_at else None + self.private = kwargs.pop("private", None) + self.gated = kwargs.pop("gated", None) + self.disabled = kwargs.pop("disabled", None) + self.downloads = kwargs.pop("downloads", None) + self.downloads_all_time = kwargs.pop("downloadsAllTime", None) + self.likes = kwargs.pop("likes", None) + self.library_name = kwargs.pop("library_name", None) + self.gguf = kwargs.pop("gguf", None) + + self.inference = kwargs.pop("inference", None) + self.inference_provider_mapping = kwargs.pop("inferenceProviderMapping", None) + if self.inference_provider_mapping: + self.inference_provider_mapping = { + provider: InferenceProviderMapping(**value) + for provider, value in self.inference_provider_mapping.items() + } + + self.tags = kwargs.pop("tags", None) + self.pipeline_tag = kwargs.pop("pipeline_tag", None) + self.mask_token = kwargs.pop("mask_token", None) + self.trending_score = kwargs.pop("trendingScore", None) + + card_data = kwargs.pop("cardData", None) or kwargs.pop("card_data", None) + self.card_data = ( + ModelCardData(**card_data, ignore_metadata_errors=True) if isinstance(card_data, dict) else card_data + ) + + self.widget_data = kwargs.pop("widgetData", None) + self.model_index = kwargs.pop("model-index", None) or kwargs.pop("model_index", None) + self.config = kwargs.pop("config", None) + transformers_info = kwargs.pop("transformersInfo", None) or kwargs.pop("transformers_info", None) + self.transformers_info = TransformersInfo(**transformers_info) if transformers_info else None + siblings = kwargs.pop("siblings", None) + self.siblings = ( + [ + RepoSibling( + rfilename=sibling["rfilename"], + size=sibling.get("size"), + blob_id=sibling.get("blobId"), + lfs=( + BlobLfsInfo( + size=sibling["lfs"]["size"], + sha256=sibling["lfs"]["sha256"], + pointer_size=sibling["lfs"]["pointerSize"], + ) + if sibling.get("lfs") + else None + ), + ) + for sibling in siblings + ] + if siblings is not None + else None + ) + self.spaces = kwargs.pop("spaces", None) + safetensors = kwargs.pop("safetensors", None) + self.safetensors = ( + SafeTensorsInfo( + parameters=safetensors["parameters"], + total=safetensors["total"], + ) + if safetensors + else None + ) + self.security_repo_status = kwargs.pop("securityRepoStatus", None) + # backwards compatibility + self.lastModified = self.last_modified + self.cardData = self.card_data + self.transformersInfo = self.transformers_info + self.__dict__.update(**kwargs) + + +@dataclass +class DatasetInfo: + """ + Contains information about a dataset on the Hub. + + <Tip> + + Most attributes of this class are optional. This is because the data returned by the Hub depends on the query made. + In general, the more specific the query, the more information is returned. On the contrary, when listing datasets + using [`list_datasets`] only a subset of the attributes are returned. + + </Tip> + + Attributes: + id (`str`): + ID of dataset. + author (`str`): + Author of the dataset. + sha (`str`): + Repo SHA at this particular revision. + created_at (`datetime`, *optional*): + Date of creation of the repo on the Hub. Note that the lowest value is `2022-03-02T23:29:04.000Z`, + corresponding to the date when we began to store creation dates. + last_modified (`datetime`, *optional*): + Date of last commit to the repo. + private (`bool`): + Is the repo private. + disabled (`bool`, *optional*): + Is the repo disabled. + gated (`Literal["auto", "manual", False]`, *optional*): + Is the repo gated. + If so, whether there is manual or automatic approval. + downloads (`int`): + Number of downloads of the dataset over the last 30 days. + downloads_all_time (`int`): + Cumulated number of downloads of the model since its creation. + likes (`int`): + Number of likes of the dataset. + tags (`List[str]`): + List of tags of the dataset. + card_data (`DatasetCardData`, *optional*): + Model Card Metadata as a [`huggingface_hub.repocard_data.DatasetCardData`] object. + siblings (`List[RepoSibling]`): + List of [`huggingface_hub.hf_api.RepoSibling`] objects that constitute the dataset. + paperswithcode_id (`str`, *optional*): + Papers with code ID of the dataset. + trending_score (`int`, *optional*): + Trending score of the dataset. + """ + + id: str + author: Optional[str] + sha: Optional[str] + created_at: Optional[datetime] + last_modified: Optional[datetime] + private: Optional[bool] + gated: Optional[Literal["auto", "manual", False]] + disabled: Optional[bool] + downloads: Optional[int] + downloads_all_time: Optional[int] + likes: Optional[int] + paperswithcode_id: Optional[str] + tags: Optional[List[str]] + trending_score: Optional[int] + card_data: Optional[DatasetCardData] + siblings: Optional[List[RepoSibling]] + + def __init__(self, **kwargs): + self.id = kwargs.pop("id") + self.author = kwargs.pop("author", None) + self.sha = kwargs.pop("sha", None) + created_at = kwargs.pop("createdAt", None) or kwargs.pop("created_at", None) + self.created_at = parse_datetime(created_at) if created_at else None + last_modified = kwargs.pop("lastModified", None) or kwargs.pop("last_modified", None) + self.last_modified = parse_datetime(last_modified) if last_modified else None + self.private = kwargs.pop("private", None) + self.gated = kwargs.pop("gated", None) + self.disabled = kwargs.pop("disabled", None) + self.downloads = kwargs.pop("downloads", None) + self.downloads_all_time = kwargs.pop("downloadsAllTime", None) + self.likes = kwargs.pop("likes", None) + self.paperswithcode_id = kwargs.pop("paperswithcode_id", None) + self.tags = kwargs.pop("tags", None) + self.trending_score = kwargs.pop("trendingScore", None) + + card_data = kwargs.pop("cardData", None) or kwargs.pop("card_data", None) + self.card_data = ( + DatasetCardData(**card_data, ignore_metadata_errors=True) if isinstance(card_data, dict) else card_data + ) + siblings = kwargs.pop("siblings", None) + self.siblings = ( + [ + RepoSibling( + rfilename=sibling["rfilename"], + size=sibling.get("size"), + blob_id=sibling.get("blobId"), + lfs=( + BlobLfsInfo( + size=sibling["lfs"]["size"], + sha256=sibling["lfs"]["sha256"], + pointer_size=sibling["lfs"]["pointerSize"], + ) + if sibling.get("lfs") + else None + ), + ) + for sibling in siblings + ] + if siblings is not None + else None + ) + + # backwards compatibility + self.lastModified = self.last_modified + self.cardData = self.card_data + self.__dict__.update(**kwargs) + + +@dataclass +class SpaceInfo: + """ + Contains information about a Space on the Hub. + + <Tip> + + Most attributes of this class are optional. This is because the data returned by the Hub depends on the query made. + In general, the more specific the query, the more information is returned. On the contrary, when listing spaces + using [`list_spaces`] only a subset of the attributes are returned. + + </Tip> + + Attributes: + id (`str`): + ID of the Space. + author (`str`, *optional*): + Author of the Space. + sha (`str`, *optional*): + Repo SHA at this particular revision. + created_at (`datetime`, *optional*): + Date of creation of the repo on the Hub. Note that the lowest value is `2022-03-02T23:29:04.000Z`, + corresponding to the date when we began to store creation dates. + last_modified (`datetime`, *optional*): + Date of last commit to the repo. + private (`bool`): + Is the repo private. + gated (`Literal["auto", "manual", False]`, *optional*): + Is the repo gated. + If so, whether there is manual or automatic approval. + disabled (`bool`, *optional*): + Is the Space disabled. + host (`str`, *optional*): + Host URL of the Space. + subdomain (`str`, *optional*): + Subdomain of the Space. + likes (`int`): + Number of likes of the Space. + tags (`List[str]`): + List of tags of the Space. + siblings (`List[RepoSibling]`): + List of [`huggingface_hub.hf_api.RepoSibling`] objects that constitute the Space. + card_data (`SpaceCardData`, *optional*): + Space Card Metadata as a [`huggingface_hub.repocard_data.SpaceCardData`] object. + runtime (`SpaceRuntime`, *optional*): + Space runtime information as a [`huggingface_hub.hf_api.SpaceRuntime`] object. + sdk (`str`, *optional*): + SDK used by the Space. + models (`List[str]`, *optional*): + List of models used by the Space. + datasets (`List[str]`, *optional*): + List of datasets used by the Space. + trending_score (`int`, *optional*): + Trending score of the Space. + """ + + id: str + author: Optional[str] + sha: Optional[str] + created_at: Optional[datetime] + last_modified: Optional[datetime] + private: Optional[bool] + gated: Optional[Literal["auto", "manual", False]] + disabled: Optional[bool] + host: Optional[str] + subdomain: Optional[str] + likes: Optional[int] + sdk: Optional[str] + tags: Optional[List[str]] + siblings: Optional[List[RepoSibling]] + trending_score: Optional[int] + card_data: Optional[SpaceCardData] + runtime: Optional[SpaceRuntime] + models: Optional[List[str]] + datasets: Optional[List[str]] + + def __init__(self, **kwargs): + self.id = kwargs.pop("id") + self.author = kwargs.pop("author", None) + self.sha = kwargs.pop("sha", None) + created_at = kwargs.pop("createdAt", None) or kwargs.pop("created_at", None) + self.created_at = parse_datetime(created_at) if created_at else None + last_modified = kwargs.pop("lastModified", None) or kwargs.pop("last_modified", None) + self.last_modified = parse_datetime(last_modified) if last_modified else None + self.private = kwargs.pop("private", None) + self.gated = kwargs.pop("gated", None) + self.disabled = kwargs.pop("disabled", None) + self.host = kwargs.pop("host", None) + self.subdomain = kwargs.pop("subdomain", None) + self.likes = kwargs.pop("likes", None) + self.sdk = kwargs.pop("sdk", None) + self.tags = kwargs.pop("tags", None) + self.trending_score = kwargs.pop("trendingScore", None) + card_data = kwargs.pop("cardData", None) or kwargs.pop("card_data", None) + self.card_data = ( + SpaceCardData(**card_data, ignore_metadata_errors=True) if isinstance(card_data, dict) else card_data + ) + siblings = kwargs.pop("siblings", None) + self.siblings = ( + [ + RepoSibling( + rfilename=sibling["rfilename"], + size=sibling.get("size"), + blob_id=sibling.get("blobId"), + lfs=( + BlobLfsInfo( + size=sibling["lfs"]["size"], + sha256=sibling["lfs"]["sha256"], + pointer_size=sibling["lfs"]["pointerSize"], + ) + if sibling.get("lfs") + else None + ), + ) + for sibling in siblings + ] + if siblings is not None + else None + ) + runtime = kwargs.pop("runtime", None) + self.runtime = SpaceRuntime(runtime) if runtime else None + self.models = kwargs.pop("models", None) + self.datasets = kwargs.pop("datasets", None) + + # backwards compatibility + self.lastModified = self.last_modified + self.cardData = self.card_data + self.__dict__.update(**kwargs) + + +@dataclass +class CollectionItem: + """ + Contains information about an item of a Collection (model, dataset, Space or paper). + + Attributes: + item_object_id (`str`): + Unique ID of the item in the collection. + item_id (`str`): + ID of the underlying object on the Hub. Can be either a repo_id or a paper id + e.g. `"jbilcke-hf/ai-comic-factory"`, `"2307.09288"`. + item_type (`str`): + Type of the underlying object. Can be one of `"model"`, `"dataset"`, `"space"` or `"paper"`. + position (`int`): + Position of the item in the collection. + note (`str`, *optional*): + Note associated with the item, as plain text. + """ + + item_object_id: str # id in database + item_id: str # repo_id or paper id + item_type: str + position: int + note: Optional[str] = None + + def __init__( + self, _id: str, id: str, type: CollectionItemType_T, position: int, note: Optional[Dict] = None, **kwargs + ) -> None: + self.item_object_id: str = _id # id in database + self.item_id: str = id # repo_id or paper id + self.item_type: CollectionItemType_T = type + self.position: int = position + self.note: str = note["text"] if note is not None else None + + +@dataclass +class Collection: + """ + Contains information about a Collection on the Hub. + + Attributes: + slug (`str`): + Slug of the collection. E.g. `"TheBloke/recent-models-64f9a55bb3115b4f513ec026"`. + title (`str`): + Title of the collection. E.g. `"Recent models"`. + owner (`str`): + Owner of the collection. E.g. `"TheBloke"`. + items (`List[CollectionItem]`): + List of items in the collection. + last_updated (`datetime`): + Date of the last update of the collection. + position (`int`): + Position of the collection in the list of collections of the owner. + private (`bool`): + Whether the collection is private or not. + theme (`str`): + Theme of the collection. E.g. `"green"`. + upvotes (`int`): + Number of upvotes of the collection. + description (`str`, *optional*): + Description of the collection, as plain text. + url (`str`): + (property) URL of the collection on the Hub. + """ + + slug: str + title: str + owner: str + items: List[CollectionItem] + last_updated: datetime + position: int + private: bool + theme: str + upvotes: int + description: Optional[str] = None + + def __init__(self, **kwargs) -> None: + self.slug = kwargs.pop("slug") + self.title = kwargs.pop("title") + self.owner = kwargs.pop("owner") + self.items = [CollectionItem(**item) for item in kwargs.pop("items")] + self.last_updated = parse_datetime(kwargs.pop("lastUpdated")) + self.position = kwargs.pop("position") + self.private = kwargs.pop("private") + self.theme = kwargs.pop("theme") + self.upvotes = kwargs.pop("upvotes") + self.description = kwargs.pop("description", None) + endpoint = kwargs.pop("endpoint", None) + if endpoint is None: + endpoint = constants.ENDPOINT + self._url = f"{endpoint}/collections/{self.slug}" + + @property + def url(self) -> str: + """Returns the URL of the collection on the Hub.""" + return self._url + + +@dataclass +class GitRefInfo: + """ + Contains information about a git reference for a repo on the Hub. + + Attributes: + name (`str`): + Name of the reference (e.g. tag name or branch name). + ref (`str`): + Full git ref on the Hub (e.g. `"refs/heads/main"` or `"refs/tags/v1.0"`). + target_commit (`str`): + OID of the target commit for the ref (e.g. `"e7da7f221d5bf496a48136c0cd264e630fe9fcc8"`) + """ + + name: str + ref: str + target_commit: str + + +@dataclass +class GitRefs: + """ + Contains information about all git references for a repo on the Hub. + + Object is returned by [`list_repo_refs`]. + + Attributes: + branches (`List[GitRefInfo]`): + A list of [`GitRefInfo`] containing information about branches on the repo. + converts (`List[GitRefInfo]`): + A list of [`GitRefInfo`] containing information about "convert" refs on the repo. + Converts are refs used (internally) to push preprocessed data in Dataset repos. + tags (`List[GitRefInfo]`): + A list of [`GitRefInfo`] containing information about tags on the repo. + pull_requests (`List[GitRefInfo]`, *optional*): + A list of [`GitRefInfo`] containing information about pull requests on the repo. + Only returned if `include_prs=True` is set. + """ + + branches: List[GitRefInfo] + converts: List[GitRefInfo] + tags: List[GitRefInfo] + pull_requests: Optional[List[GitRefInfo]] = None + + +@dataclass +class GitCommitInfo: + """ + Contains information about a git commit for a repo on the Hub. Check out [`list_repo_commits`] for more details. + + Attributes: + commit_id (`str`): + OID of the commit (e.g. `"e7da7f221d5bf496a48136c0cd264e630fe9fcc8"`) + authors (`List[str]`): + List of authors of the commit. + created_at (`datetime`): + Datetime when the commit was created. + title (`str`): + Title of the commit. This is a free-text value entered by the authors. + message (`str`): + Description of the commit. This is a free-text value entered by the authors. + formatted_title (`str`): + Title of the commit formatted as HTML. Only returned if `formatted=True` is set. + formatted_message (`str`): + Description of the commit formatted as HTML. Only returned if `formatted=True` is set. + """ + + commit_id: str + + authors: List[str] + created_at: datetime + title: str + message: str + + formatted_title: Optional[str] + formatted_message: Optional[str] + + +@dataclass +class UserLikes: + """ + Contains information about a user likes on the Hub. + + Attributes: + user (`str`): + Name of the user for which we fetched the likes. + total (`int`): + Total number of likes. + datasets (`List[str]`): + List of datasets liked by the user (as repo_ids). + models (`List[str]`): + List of models liked by the user (as repo_ids). + spaces (`List[str]`): + List of spaces liked by the user (as repo_ids). + """ + + # Metadata + user: str + total: int + + # User likes + datasets: List[str] + models: List[str] + spaces: List[str] + + +@dataclass +class Organization: + """ + Contains information about an organization on the Hub. + + Attributes: + avatar_url (`str`): + URL of the organization's avatar. + name (`str`): + Name of the organization on the Hub (unique). + fullname (`str`): + Organization's full name. + """ + + avatar_url: str + name: str + fullname: str + + def __init__(self, **kwargs) -> None: + self.avatar_url = kwargs.pop("avatarUrl", "") + self.name = kwargs.pop("name", "") + self.fullname = kwargs.pop("fullname", "") + + # forward compatibility + self.__dict__.update(**kwargs) + + +@dataclass +class User: + """ + Contains information about a user on the Hub. + + Attributes: + username (`str`): + Name of the user on the Hub (unique). + fullname (`str`): + User's full name. + avatar_url (`str`): + URL of the user's avatar. + details (`str`, *optional*): + User's details. + is_following (`bool`, *optional*): + Whether the authenticated user is following this user. + is_pro (`bool`, *optional*): + Whether the user is a pro user. + num_models (`int`, *optional*): + Number of models created by the user. + num_datasets (`int`, *optional*): + Number of datasets created by the user. + num_spaces (`int`, *optional*): + Number of spaces created by the user. + num_discussions (`int`, *optional*): + Number of discussions initiated by the user. + num_papers (`int`, *optional*): + Number of papers authored by the user. + num_upvotes (`int`, *optional*): + Number of upvotes received by the user. + num_likes (`int`, *optional*): + Number of likes given by the user. + num_following (`int`, *optional*): + Number of users this user is following. + num_followers (`int`, *optional*): + Number of users following this user. + orgs (list of [`Organization`]): + List of organizations the user is part of. + """ + + # Metadata + username: str + fullname: str + avatar_url: str + details: Optional[str] = None + is_following: Optional[bool] = None + is_pro: Optional[bool] = None + num_models: Optional[int] = None + num_datasets: Optional[int] = None + num_spaces: Optional[int] = None + num_discussions: Optional[int] = None + num_papers: Optional[int] = None + num_upvotes: Optional[int] = None + num_likes: Optional[int] = None + num_following: Optional[int] = None + num_followers: Optional[int] = None + orgs: List[Organization] = field(default_factory=list) + + def __init__(self, **kwargs) -> None: + self.username = kwargs.pop("user", "") + self.fullname = kwargs.pop("fullname", "") + self.avatar_url = kwargs.pop("avatarUrl", "") + self.is_following = kwargs.pop("isFollowing", None) + self.is_pro = kwargs.pop("isPro", None) + self.details = kwargs.pop("details", None) + self.num_models = kwargs.pop("numModels", None) + self.num_datasets = kwargs.pop("numDatasets", None) + self.num_spaces = kwargs.pop("numSpaces", None) + self.num_discussions = kwargs.pop("numDiscussions", None) + self.num_papers = kwargs.pop("numPapers", None) + self.num_upvotes = kwargs.pop("numUpvotes", None) + self.num_likes = kwargs.pop("numLikes", None) + self.num_following = kwargs.pop("numFollowing", None) + self.num_followers = kwargs.pop("numFollowers", None) + self.user_type = kwargs.pop("type", None) + self.orgs = [Organization(**org) for org in kwargs.pop("orgs", [])] + + # forward compatibility + self.__dict__.update(**kwargs) + + +@dataclass +class PaperInfo: + """ + Contains information about a paper on the Hub. + + Attributes: + id (`str`): + arXiv paper ID. + authors (`List[str]`, **optional**): + Names of paper authors + published_at (`datetime`, **optional**): + Date paper published. + title (`str`, **optional**): + Title of the paper. + summary (`str`, **optional**): + Summary of the paper. + upvotes (`int`, **optional**): + Number of upvotes for the paper on the Hub. + discussion_id (`str`, **optional**): + Discussion ID for the paper on the Hub. + source (`str`, **optional**): + Source of the paper. + comments (`int`, **optional**): + Number of comments for the paper on the Hub. + submitted_at (`datetime`, **optional**): + Date paper appeared in daily papers on the Hub. + submitted_by (`User`, **optional**): + Information about who submitted the daily paper. + """ + + id: str + authors: Optional[List[str]] + published_at: Optional[datetime] + title: Optional[str] + summary: Optional[str] + upvotes: Optional[int] + discussion_id: Optional[str] + source: Optional[str] + comments: Optional[int] + submitted_at: Optional[datetime] + submitted_by: Optional[User] + + def __init__(self, **kwargs) -> None: + paper = kwargs.pop("paper", {}) + self.id = kwargs.pop("id", None) or paper.pop("id", None) + authors = paper.pop("authors", None) or kwargs.pop("authors", None) + self.authors = [author.pop("name", None) for author in authors] if authors else None + published_at = paper.pop("publishedAt", None) or kwargs.pop("publishedAt", None) + self.published_at = parse_datetime(published_at) if published_at else None + self.title = kwargs.pop("title", None) + self.source = kwargs.pop("source", None) + self.summary = paper.pop("summary", None) or kwargs.pop("summary", None) + self.upvotes = paper.pop("upvotes", None) or kwargs.pop("upvotes", None) + self.discussion_id = paper.pop("discussionId", None) or kwargs.pop("discussionId", None) + self.comments = kwargs.pop("numComments", 0) + submitted_at = kwargs.pop("publishedAt", None) or kwargs.pop("submittedOnDailyAt", None) + self.submitted_at = parse_datetime(submitted_at) if submitted_at else None + submitted_by = kwargs.pop("submittedBy", None) or kwargs.pop("submittedOnDailyBy", None) + self.submitted_by = User(**submitted_by) if submitted_by else None + + # forward compatibility + self.__dict__.update(**kwargs) + + +def future_compatible(fn: CallableT) -> CallableT: + """Wrap a method of `HfApi` to handle `run_as_future=True`. + + A method flagged as "future_compatible" will be called in a thread if `run_as_future=True` and return a + `concurrent.futures.Future` instance. Otherwise, it will be called normally and return the result. + """ + sig = inspect.signature(fn) + args_params = list(sig.parameters)[1:] # remove "self" from list + + @wraps(fn) + def _inner(self, *args, **kwargs): + # Get `run_as_future` value if provided (default to False) + if "run_as_future" in kwargs: + run_as_future = kwargs["run_as_future"] + kwargs["run_as_future"] = False # avoid recursion error + else: + run_as_future = False + for param, value in zip(args_params, args): + if param == "run_as_future": + run_as_future = value + break + + # Call the function in a thread if `run_as_future=True` + if run_as_future: + return self.run_as_future(fn, self, *args, **kwargs) + + # Otherwise, call the function normally + return fn(self, *args, **kwargs) + + _inner.is_future_compatible = True # type: ignore + return _inner # type: ignore + + +class HfApi: + """ + Client to interact with the Hugging Face Hub via HTTP. + + The client is initialized with some high-level settings used in all requests + made to the Hub (HF endpoint, authentication, user agents...). Using the `HfApi` + client is preferred but not mandatory as all of its public methods are exposed + directly at the root of `huggingface_hub`. + + Args: + endpoint (`str`, *optional*): + Endpoint of the Hub. Defaults to <https://huggingface.co>. + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved + token, which is the recommended method for authentication (see + https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + library_name (`str`, *optional*): + The name of the library that is making the HTTP request. Will be added to + the user-agent header. Example: `"transformers"`. + library_version (`str`, *optional*): + The version of the library that is making the HTTP request. Will be added + to the user-agent header. Example: `"4.24.0"`. + user_agent (`str`, `dict`, *optional*): + The user agent info in the form of a dictionary or a single string. It will + be completed with information about the installed packages. + headers (`dict`, *optional*): + Additional headers to be sent with each request. Example: `{"X-My-Header": "value"}`. + Headers passed here are taking precedence over the default headers. + """ + + def __init__( + self, + endpoint: Optional[str] = None, + token: Union[str, bool, None] = None, + library_name: Optional[str] = None, + library_version: Optional[str] = None, + user_agent: Union[Dict, str, None] = None, + headers: Optional[Dict[str, str]] = None, + ) -> None: + self.endpoint = endpoint if endpoint is not None else constants.ENDPOINT + self.token = token + self.library_name = library_name + self.library_version = library_version + self.user_agent = user_agent + self.headers = headers + self._thread_pool: Optional[ThreadPoolExecutor] = None + + def run_as_future(self, fn: Callable[..., R], *args, **kwargs) -> Future[R]: + """ + Run a method in the background and return a Future instance. + + The main goal is to run methods without blocking the main thread (e.g. to push data during a training). + Background jobs are queued to preserve order but are not ran in parallel. If you need to speed-up your scripts + by parallelizing lots of call to the API, you must setup and use your own [ThreadPoolExecutor](https://docs.python.org/3/library/concurrent.futures.html#threadpoolexecutor). + + Note: Most-used methods like [`upload_file`], [`upload_folder`] and [`create_commit`] have a `run_as_future: bool` + argument to directly call them in the background. This is equivalent to calling `api.run_as_future(...)` on them + but less verbose. + + Args: + fn (`Callable`): + The method to run in the background. + *args, **kwargs: + Arguments with which the method will be called. + + Return: + `Future`: a [Future](https://docs.python.org/3/library/concurrent.futures.html#future-objects) instance to + get the result of the task. + + Example: + ```py + >>> from huggingface_hub import HfApi + >>> api = HfApi() + >>> future = api.run_as_future(api.whoami) # instant + >>> future.done() + False + >>> future.result() # wait until complete and return result + (...) + >>> future.done() + True + ``` + """ + if self._thread_pool is None: + self._thread_pool = ThreadPoolExecutor(max_workers=1) + self._thread_pool + return self._thread_pool.submit(fn, *args, **kwargs) + + @validate_hf_hub_args + def whoami(self, token: Union[bool, str, None] = None) -> Dict: + """ + Call HF API to know "whoami". + + Args: + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved + token, which is the recommended method for authentication (see + https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + """ + # Get the effective token using the helper function get_token + effective_token = token or self.token or get_token() or True + r = get_session().get( + f"{self.endpoint}/api/whoami-v2", + headers=self._build_hf_headers(token=effective_token), + ) + try: + hf_raise_for_status(r) + except HTTPError as e: + error_message = "Invalid user token." + # Check which token is the effective one and generate the error message accordingly + if effective_token == _get_token_from_google_colab(): + error_message += " The token from Google Colab vault is invalid. Please update it from the UI." + elif effective_token == _get_token_from_environment(): + error_message += ( + " The token from HF_TOKEN environment variable is invalid. " + "Note that HF_TOKEN takes precedence over `huggingface-cli login`." + ) + elif effective_token == _get_token_from_file(): + error_message += " The token stored is invalid. Please run `huggingface-cli login` to update it." + raise HTTPError(error_message, request=e.request, response=e.response) from e + return r.json() + + @_deprecate_method( + version="1.0", + message=( + "Permissions are more complex than when `get_token_permission` was first introduced. " + "OAuth and fine-grain tokens allows for more detailed permissions. " + "If you need to know the permissions associated with a token, please use `whoami` and check the `'auth'` key." + ), + ) + def get_token_permission( + self, token: Union[bool, str, None] = None + ) -> Literal["read", "write", "fineGrained", None]: + """ + Check if a given `token` is valid and return its permissions. + + <Tip warning={true}> + + This method is deprecated and will be removed in version 1.0. Permissions are more complex than when + `get_token_permission` was first introduced. OAuth and fine-grain tokens allows for more detailed permissions. + If you need to know the permissions associated with a token, please use `whoami` and check the `'auth'` key. + + </Tip> + + For more details about tokens, please refer to https://huggingface.co/docs/hub/security-tokens#what-are-user-access-tokens. + + Args: + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved + token, which is the recommended method for authentication (see + https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + + Returns: + `Literal["read", "write", "fineGrained", None]`: Permission granted by the token ("read" or "write"). Returns `None` if no + token passed, if token is invalid or if role is not returned by the server. This typically happens when the token is an OAuth token. + """ + try: + return self.whoami(token=token)["auth"]["accessToken"]["role"] + except (LocalTokenNotFoundError, HTTPError, KeyError): + return None + + def get_model_tags(self) -> Dict: + """ + List all valid model tags as a nested namespace object + """ + path = f"{self.endpoint}/api/models-tags-by-type" + r = get_session().get(path) + hf_raise_for_status(r) + return r.json() + + def get_dataset_tags(self) -> Dict: + """ + List all valid dataset tags as a nested namespace object. + """ + path = f"{self.endpoint}/api/datasets-tags-by-type" + r = get_session().get(path) + hf_raise_for_status(r) + return r.json() + + @validate_hf_hub_args + def list_models( + self, + *, + # Search-query parameter + filter: Union[str, Iterable[str], None] = None, + author: Optional[str] = None, + gated: Optional[bool] = None, + inference: Optional[Literal["cold", "frozen", "warm"]] = None, + library: Optional[Union[str, List[str]]] = None, + language: Optional[Union[str, List[str]]] = None, + model_name: Optional[str] = None, + task: Optional[Union[str, List[str]]] = None, + trained_dataset: Optional[Union[str, List[str]]] = None, + tags: Optional[Union[str, List[str]]] = None, + search: Optional[str] = None, + pipeline_tag: Optional[str] = None, + emissions_thresholds: Optional[Tuple[float, float]] = None, + # Sorting and pagination parameters + sort: Union[Literal["last_modified"], str, None] = None, + direction: Optional[Literal[-1]] = None, + limit: Optional[int] = None, + # Additional data to fetch + expand: Optional[List[ExpandModelProperty_T]] = None, + full: Optional[bool] = None, + cardData: bool = False, + fetch_config: bool = False, + token: Union[bool, str, None] = None, + ) -> Iterable[ModelInfo]: + """ + List models hosted on the Huggingface Hub, given some filters. + + Args: + filter (`str` or `Iterable[str]`, *optional*): + A string or list of string to filter models on the Hub. + author (`str`, *optional*): + A string which identify the author (user or organization) of the + returned models. + gated (`bool`, *optional*): + A boolean to filter models on the Hub that are gated or not. By default, all models are returned. + If `gated=True` is passed, only gated models are returned. + If `gated=False` is passed, only non-gated models are returned. + inference (`Literal["cold", "frozen", "warm"]`, *optional*): + A string to filter models on the Hub by their state on the Inference API. + Warm models are available for immediate use. Cold models will be loaded on first inference call. + Frozen models are not available in Inference API. + library (`str` or `List`, *optional*): + A string or list of strings of foundational libraries models were + originally trained from, such as pytorch, tensorflow, or allennlp. + language (`str` or `List`, *optional*): + A string or list of strings of languages, both by name and country + code, such as "en" or "English" + model_name (`str`, *optional*): + A string that contain complete or partial names for models on the + Hub, such as "bert" or "bert-base-cased" + task (`str` or `List`, *optional*): + A string or list of strings of tasks models were designed for, such + as: "fill-mask" or "automatic-speech-recognition" + trained_dataset (`str` or `List`, *optional*): + A string tag or a list of string tags of the trained dataset for a + model on the Hub. + tags (`str` or `List`, *optional*): + A string tag or a list of tags to filter models on the Hub by, such + as `text-generation` or `spacy`. + search (`str`, *optional*): + A string that will be contained in the returned model ids. + pipeline_tag (`str`, *optional*): + A string pipeline tag to filter models on the Hub by, such as `summarization`. + emissions_thresholds (`Tuple`, *optional*): + A tuple of two ints or floats representing a minimum and maximum + carbon footprint to filter the resulting models with in grams. + sort (`Literal["last_modified"]` or `str`, *optional*): + The key with which to sort the resulting models. Possible values are "last_modified", "trending_score", + "created_at", "downloads" and "likes". + direction (`Literal[-1]` or `int`, *optional*): + Direction in which to sort. The value `-1` sorts by descending + order while all other values sort by ascending order. + limit (`int`, *optional*): + The limit on the number of models fetched. Leaving this option + to `None` fetches all models. + expand (`List[ExpandModelProperty_T]`, *optional*): + List properties to return in the response. When used, only the properties in the list will be returned. + This parameter cannot be used if `full`, `cardData` or `fetch_config` are passed. + Possible values are `"author"`, `"baseModels"`, `"cardData"`, `"childrenModelCount"`, `"config"`, `"createdAt"`, `"disabled"`, `"downloads"`, `"downloadsAllTime"`, `"gated"`, `"gguf"`, `"inference"`, `"inferenceProviderMapping"`, `"lastModified"`, `"library_name"`, `"likes"`, `"mask_token"`, `"model-index"`, `"pipeline_tag"`, `"private"`, `"safetensors"`, `"sha"`, `"siblings"`, `"spaces"`, `"tags"`, `"transformersInfo"`, `"trendingScore"`, `"widgetData"`, `"usedStorage"` and `"resourceGroup"`. + full (`bool`, *optional*): + Whether to fetch all model data, including the `last_modified`, + the `sha`, the files and the `tags`. This is set to `True` by + default when using a filter. + cardData (`bool`, *optional*): + Whether to grab the metadata for the model as well. Can contain + useful information such as carbon emissions, metrics, and + datasets trained on. + fetch_config (`bool`, *optional*): + Whether to fetch the model configs as well. This is not included + in `full` due to its size. + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved + token, which is the recommended method for authentication (see + https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + + + Returns: + `Iterable[ModelInfo]`: an iterable of [`huggingface_hub.hf_api.ModelInfo`] objects. + + Example usage with the `filter` argument: + + ```python + >>> from huggingface_hub import HfApi + + >>> api = HfApi() + + # List all models + >>> api.list_models() + + # List only the text classification models + >>> api.list_models(filter="text-classification") + + # List only models from the AllenNLP library + >>> api.list_models(filter="allennlp") + ``` + + Example usage with the `search` argument: + + ```python + >>> from huggingface_hub import HfApi + + >>> api = HfApi() + + # List all models with "bert" in their name + >>> api.list_models(search="bert") + + # List all models with "bert" in their name made by google + >>> api.list_models(search="bert", author="google") + ``` + """ + if expand and (full or cardData or fetch_config): + raise ValueError("`expand` cannot be used if `full`, `cardData` or `fetch_config` are passed.") + + if emissions_thresholds is not None and cardData is None: + raise ValueError("`emissions_thresholds` were passed without setting `cardData=True`.") + + path = f"{self.endpoint}/api/models" + headers = self._build_hf_headers(token=token) + params: Dict[str, Any] = {} + + # Build the filter list + filter_list: List[str] = [] + if filter: + filter_list.extend([filter] if isinstance(filter, str) else filter) + if library: + filter_list.extend([library] if isinstance(library, str) else library) + if task: + filter_list.extend([task] if isinstance(task, str) else task) + if trained_dataset: + if isinstance(trained_dataset, str): + trained_dataset = [trained_dataset] + for dataset in trained_dataset: + if not dataset.startswith("dataset:"): + dataset = f"dataset:{dataset}" + filter_list.append(dataset) + if language: + filter_list.extend([language] if isinstance(language, str) else language) + if tags: + filter_list.extend([tags] if isinstance(tags, str) else tags) + if len(filter_list) > 0: + params["filter"] = filter_list + + # Handle other query params + if author: + params["author"] = author + if gated is not None: + params["gated"] = gated + if inference is not None: + params["inference"] = inference + if pipeline_tag: + params["pipeline_tag"] = pipeline_tag + search_list = [] + if model_name: + search_list.append(model_name) + if search: + search_list.append(search) + if len(search_list) > 0: + params["search"] = search_list + if sort is not None: + params["sort"] = ( + "lastModified" + if sort == "last_modified" + else "trendingScore" + if sort == "trending_score" + else "createdAt" + if sort == "created_at" + else sort + ) + if direction is not None: + params["direction"] = direction + if limit is not None: + params["limit"] = limit + + # Request additional data + if full: + params["full"] = True + if fetch_config: + params["config"] = True + if cardData: + params["cardData"] = True + if expand: + params["expand"] = expand + + # `items` is a generator + items = paginate(path, params=params, headers=headers) + if limit is not None: + items = islice(items, limit) # Do not iterate over all pages + for item in items: + if "siblings" not in item: + item["siblings"] = None + model_info = ModelInfo(**item) + if emissions_thresholds is None or _is_emission_within_threshold(model_info, *emissions_thresholds): + yield model_info + + @validate_hf_hub_args + def list_datasets( + self, + *, + # Search-query parameter + filter: Union[str, Iterable[str], None] = None, + author: Optional[str] = None, + benchmark: Optional[Union[str, List[str]]] = None, + dataset_name: Optional[str] = None, + gated: Optional[bool] = None, + language_creators: Optional[Union[str, List[str]]] = None, + language: Optional[Union[str, List[str]]] = None, + multilinguality: Optional[Union[str, List[str]]] = None, + size_categories: Optional[Union[str, List[str]]] = None, + tags: Optional[Union[str, List[str]]] = None, + task_categories: Optional[Union[str, List[str]]] = None, + task_ids: Optional[Union[str, List[str]]] = None, + search: Optional[str] = None, + # Sorting and pagination parameters + sort: Optional[Union[Literal["last_modified"], str]] = None, + direction: Optional[Literal[-1]] = None, + limit: Optional[int] = None, + # Additional data to fetch + expand: Optional[List[ExpandDatasetProperty_T]] = None, + full: Optional[bool] = None, + token: Union[bool, str, None] = None, + ) -> Iterable[DatasetInfo]: + """ + List datasets hosted on the Huggingface Hub, given some filters. + + Args: + filter (`str` or `Iterable[str]`, *optional*): + A string or list of string to filter datasets on the hub. + author (`str`, *optional*): + A string which identify the author of the returned datasets. + benchmark (`str` or `List`, *optional*): + A string or list of strings that can be used to identify datasets on + the Hub by their official benchmark. + dataset_name (`str`, *optional*): + A string or list of strings that can be used to identify datasets on + the Hub by its name, such as `SQAC` or `wikineural` + gated (`bool`, *optional*): + A boolean to filter datasets on the Hub that are gated or not. By default, all datasets are returned. + If `gated=True` is passed, only gated datasets are returned. + If `gated=False` is passed, only non-gated datasets are returned. + language_creators (`str` or `List`, *optional*): + A string or list of strings that can be used to identify datasets on + the Hub with how the data was curated, such as `crowdsourced` or + `machine_generated`. + language (`str` or `List`, *optional*): + A string or list of strings representing a two-character language to + filter datasets by on the Hub. + multilinguality (`str` or `List`, *optional*): + A string or list of strings representing a filter for datasets that + contain multiple languages. + size_categories (`str` or `List`, *optional*): + A string or list of strings that can be used to identify datasets on + the Hub by the size of the dataset such as `100K<n<1M` or + `1M<n<10M`. + tags (`str` or `List`, *optional*): + A string tag or a list of tags to filter datasets on the Hub. + task_categories (`str` or `List`, *optional*): + A string or list of strings that can be used to identify datasets on + the Hub by the designed task, such as `audio_classification` or + `named_entity_recognition`. + task_ids (`str` or `List`, *optional*): + A string or list of strings that can be used to identify datasets on + the Hub by the specific task such as `speech_emotion_recognition` or + `paraphrase`. + search (`str`, *optional*): + A string that will be contained in the returned datasets. + sort (`Literal["last_modified"]` or `str`, *optional*): + The key with which to sort the resulting models. Possible values are "last_modified", "trending_score", + "created_at", "downloads" and "likes". + direction (`Literal[-1]` or `int`, *optional*): + Direction in which to sort. The value `-1` sorts by descending + order while all other values sort by ascending order. + limit (`int`, *optional*): + The limit on the number of datasets fetched. Leaving this option + to `None` fetches all datasets. + expand (`List[ExpandDatasetProperty_T]`, *optional*): + List properties to return in the response. When used, only the properties in the list will be returned. + This parameter cannot be used if `full` is passed. + Possible values are `"author"`, `"cardData"`, `"citation"`, `"createdAt"`, `"disabled"`, `"description"`, `"downloads"`, `"downloadsAllTime"`, `"gated"`, `"lastModified"`, `"likes"`, `"paperswithcode_id"`, `"private"`, `"siblings"`, `"sha"`, `"tags"`, `"trendingScore"`, `"usedStorage"` and `"resourceGroup"`. + full (`bool`, *optional*): + Whether to fetch all dataset data, including the `last_modified`, + the `card_data` and the files. Can contain useful information such as the + PapersWithCode ID. + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved + token, which is the recommended method for authentication (see + https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + + Returns: + `Iterable[DatasetInfo]`: an iterable of [`huggingface_hub.hf_api.DatasetInfo`] objects. + + Example usage with the `filter` argument: + + ```python + >>> from huggingface_hub import HfApi + + >>> api = HfApi() + + # List all datasets + >>> api.list_datasets() + + + # List only the text classification datasets + >>> api.list_datasets(filter="task_categories:text-classification") + + + # List only the datasets in russian for language modeling + >>> api.list_datasets( + ... filter=("language:ru", "task_ids:language-modeling") + ... ) + + # List FiftyOne datasets (identified by the tag "fiftyone" in dataset card) + >>> api.list_datasets(tags="fiftyone") + ``` + + Example usage with the `search` argument: + + ```python + >>> from huggingface_hub import HfApi + + >>> api = HfApi() + + # List all datasets with "text" in their name + >>> api.list_datasets(search="text") + + # List all datasets with "text" in their name made by google + >>> api.list_datasets(search="text", author="google") + ``` + """ + if expand and full: + raise ValueError("`expand` cannot be used if `full` is passed.") + + path = f"{self.endpoint}/api/datasets" + headers = self._build_hf_headers(token=token) + params: Dict[str, Any] = {} + + # Build `filter` list + filter_list = [] + if filter is not None: + if isinstance(filter, str): + filter_list.append(filter) + else: + filter_list.extend(filter) + for key, value in ( + ("benchmark", benchmark), + ("language_creators", language_creators), + ("language", language), + ("multilinguality", multilinguality), + ("size_categories", size_categories), + ("task_categories", task_categories), + ("task_ids", task_ids), + ): + if value: + if isinstance(value, str): + value = [value] + for value_item in value: + if not value_item.startswith(f"{key}:"): + data = f"{key}:{value_item}" + filter_list.append(data) + if tags is not None: + filter_list.extend([tags] if isinstance(tags, str) else tags) + if len(filter_list) > 0: + params["filter"] = filter_list + + # Handle other query params + if author: + params["author"] = author + if gated is not None: + params["gated"] = gated + search_list = [] + if dataset_name: + search_list.append(dataset_name) + if search: + search_list.append(search) + if len(search_list) > 0: + params["search"] = search_list + if sort is not None: + params["sort"] = ( + "lastModified" + if sort == "last_modified" + else "trendingScore" + if sort == "trending_score" + else "createdAt" + if sort == "created_at" + else sort + ) + if direction is not None: + params["direction"] = direction + if limit is not None: + params["limit"] = limit + + # Request additional data + if expand: + params["expand"] = expand + if full: + params["full"] = True + + items = paginate(path, params=params, headers=headers) + if limit is not None: + items = islice(items, limit) # Do not iterate over all pages + for item in items: + if "siblings" not in item: + item["siblings"] = None + yield DatasetInfo(**item) + + @validate_hf_hub_args + def list_spaces( + self, + *, + # Search-query parameter + filter: Union[str, Iterable[str], None] = None, + author: Optional[str] = None, + search: Optional[str] = None, + datasets: Union[str, Iterable[str], None] = None, + models: Union[str, Iterable[str], None] = None, + linked: bool = False, + # Sorting and pagination parameters + sort: Union[Literal["last_modified"], str, None] = None, + direction: Optional[Literal[-1]] = None, + limit: Optional[int] = None, + # Additional data to fetch + expand: Optional[List[ExpandSpaceProperty_T]] = None, + full: Optional[bool] = None, + token: Union[bool, str, None] = None, + ) -> Iterable[SpaceInfo]: + """ + List spaces hosted on the Huggingface Hub, given some filters. + + Args: + filter (`str` or `Iterable`, *optional*): + A string tag or list of tags that can be used to identify Spaces on the Hub. + author (`str`, *optional*): + A string which identify the author of the returned Spaces. + search (`str`, *optional*): + A string that will be contained in the returned Spaces. + datasets (`str` or `Iterable`, *optional*): + Whether to return Spaces that make use of a dataset. + The name of a specific dataset can be passed as a string. + models (`str` or `Iterable`, *optional*): + Whether to return Spaces that make use of a model. + The name of a specific model can be passed as a string. + linked (`bool`, *optional*): + Whether to return Spaces that make use of either a model or a dataset. + sort (`Literal["last_modified"]` or `str`, *optional*): + The key with which to sort the resulting models. Possible values are "last_modified", "trending_score", + "created_at" and "likes". + direction (`Literal[-1]` or `int`, *optional*): + Direction in which to sort. The value `-1` sorts by descending + order while all other values sort by ascending order. + limit (`int`, *optional*): + The limit on the number of Spaces fetched. Leaving this option + to `None` fetches all Spaces. + expand (`List[ExpandSpaceProperty_T]`, *optional*): + List properties to return in the response. When used, only the properties in the list will be returned. + This parameter cannot be used if `full` is passed. + Possible values are `"author"`, `"cardData"`, `"datasets"`, `"disabled"`, `"lastModified"`, `"createdAt"`, `"likes"`, `"models"`, `"private"`, `"runtime"`, `"sdk"`, `"siblings"`, `"sha"`, `"subdomain"`, `"tags"`, `"trendingScore"`, `"usedStorage"` and `"resourceGroup"`. + full (`bool`, *optional*): + Whether to fetch all Spaces data, including the `last_modified`, `siblings` + and `card_data` fields. + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved + token, which is the recommended method for authentication (see + https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + + Returns: + `Iterable[SpaceInfo]`: an iterable of [`huggingface_hub.hf_api.SpaceInfo`] objects. + """ + if expand and full: + raise ValueError("`expand` cannot be used if `full` is passed.") + + path = f"{self.endpoint}/api/spaces" + headers = self._build_hf_headers(token=token) + params: Dict[str, Any] = {} + if filter is not None: + params["filter"] = filter + if author is not None: + params["author"] = author + if search is not None: + params["search"] = search + if sort is not None: + params["sort"] = ( + "lastModified" + if sort == "last_modified" + else "trendingScore" + if sort == "trending_score" + else "createdAt" + if sort == "created_at" + else sort + ) + if direction is not None: + params["direction"] = direction + if limit is not None: + params["limit"] = limit + if linked: + params["linked"] = True + if datasets is not None: + params["datasets"] = datasets + if models is not None: + params["models"] = models + + # Request additional data + if expand: + params["expand"] = expand + if full: + params["full"] = True + + items = paginate(path, params=params, headers=headers) + if limit is not None: + items = islice(items, limit) # Do not iterate over all pages + for item in items: + if "siblings" not in item: + item["siblings"] = None + yield SpaceInfo(**item) + + @validate_hf_hub_args + def unlike( + self, + repo_id: str, + *, + token: Union[bool, str, None] = None, + repo_type: Optional[str] = None, + ) -> None: + """ + Unlike a given repo on the Hub (e.g. remove from favorite list). + + To prevent spam usage, it is not possible to `like` a repository from a script. + + See also [`list_liked_repos`]. + + Args: + repo_id (`str`): + The repository to unlike. Example: `"user/my-cool-model"`. + + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved + token, which is the recommended method for authentication (see + https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + + repo_type (`str`, *optional*): + Set to `"dataset"` or `"space"` if unliking a dataset or space, `None` or + `"model"` if unliking a model. Default is `None`. + + Raises: + [`~utils.RepositoryNotFoundError`]: + If repository is not found (error 404): wrong repo_id/repo_type, private + but not authenticated or repo does not exist. + + Example: + ```python + >>> from huggingface_hub import list_liked_repos, unlike + >>> "gpt2" in list_liked_repos().models # we assume you have already liked gpt2 + True + >>> unlike("gpt2") + >>> "gpt2" in list_liked_repos().models + False + ``` + """ + if repo_type is None: + repo_type = constants.REPO_TYPE_MODEL + response = get_session().delete( + url=f"{self.endpoint}/api/{repo_type}s/{repo_id}/like", headers=self._build_hf_headers(token=token) + ) + hf_raise_for_status(response) + + @validate_hf_hub_args + def list_liked_repos( + self, + user: Optional[str] = None, + *, + token: Union[bool, str, None] = None, + ) -> UserLikes: + """ + List all public repos liked by a user on huggingface.co. + + This list is public so token is optional. If `user` is not passed, it defaults to + the logged in user. + + See also [`unlike`]. + + Args: + user (`str`, *optional*): + Name of the user for which you want to fetch the likes. + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved + token, which is the recommended method for authentication (see + https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + + Returns: + [`UserLikes`]: object containing the user name and 3 lists of repo ids (1 for + models, 1 for datasets and 1 for Spaces). + + Raises: + [`ValueError`](https://docs.python.org/3/library/exceptions.html#ValueError) + If `user` is not passed and no token found (either from argument or from machine). + + Example: + ```python + >>> from huggingface_hub import list_liked_repos + + >>> likes = list_liked_repos("julien-c") + + >>> likes.user + "julien-c" + + >>> likes.models + ["osanseviero/streamlit_1.15", "Xhaheen/ChatGPT_HF", ...] + ``` + """ + # User is either provided explicitly or retrieved from current token. + if user is None: + me = self.whoami(token=token) + if me["type"] == "user": + user = me["name"] + else: + raise ValueError( + "Cannot list liked repos. You must provide a 'user' as input or be logged in as a user." + ) + + path = f"{self.endpoint}/api/users/{user}/likes" + headers = self._build_hf_headers(token=token) + + likes = list(paginate(path, params={}, headers=headers)) + # Looping over a list of items similar to: + # { + # 'createdAt': '2021-09-09T21:53:27.000Z', + # 'repo': { + # 'name': 'PaddlePaddle/PaddleOCR', + # 'type': 'space' + # } + # } + # Let's loop 3 times over the received list. Less efficient but more straightforward to read. + return UserLikes( + user=user, + total=len(likes), + models=[like["repo"]["name"] for like in likes if like["repo"]["type"] == "model"], + datasets=[like["repo"]["name"] for like in likes if like["repo"]["type"] == "dataset"], + spaces=[like["repo"]["name"] for like in likes if like["repo"]["type"] == "space"], + ) + + @validate_hf_hub_args + def list_repo_likers( + self, + repo_id: str, + *, + repo_type: Optional[str] = None, + token: Union[bool, str, None] = None, + ) -> Iterable[User]: + """ + List all users who liked a given repo on the hugging Face Hub. + + See also [`list_liked_repos`]. + + Args: + repo_id (`str`): + The repository to retrieve . Example: `"user/my-cool-model"`. + + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved + token, which is the recommended method for authentication (see + https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + + repo_type (`str`, *optional*): + Set to `"dataset"` or `"space"` if uploading to a dataset or + space, `None` or `"model"` if uploading to a model. Default is + `None`. + + Returns: + `Iterable[User]`: an iterable of [`huggingface_hub.hf_api.User`] objects. + """ + + # Construct the API endpoint + if repo_type is None: + repo_type = constants.REPO_TYPE_MODEL + path = f"{self.endpoint}/api/{repo_type}s/{repo_id}/likers" + for liker in paginate(path, params={}, headers=self._build_hf_headers(token=token)): + yield User(username=liker["user"], fullname=liker["fullname"], avatar_url=liker["avatarUrl"]) + + @validate_hf_hub_args + def model_info( + self, + repo_id: str, + *, + revision: Optional[str] = None, + timeout: Optional[float] = None, + securityStatus: Optional[bool] = None, + files_metadata: bool = False, + expand: Optional[List[ExpandModelProperty_T]] = None, + token: Union[bool, str, None] = None, + ) -> ModelInfo: + """ + Get info on one specific model on huggingface.co + + Model can be private if you pass an acceptable token or are logged in. + + Args: + repo_id (`str`): + A namespace (user or an organization) and a repo name separated + by a `/`. + revision (`str`, *optional*): + The revision of the model repository from which to get the + information. + timeout (`float`, *optional*): + Whether to set a timeout for the request to the Hub. + securityStatus (`bool`, *optional*): + Whether to retrieve the security status from the model + repository as well. The security status will be returned in the `security_repo_status` field. + files_metadata (`bool`, *optional*): + Whether or not to retrieve metadata for files in the repository + (size, LFS metadata, etc). Defaults to `False`. + expand (`List[ExpandModelProperty_T]`, *optional*): + List properties to return in the response. When used, only the properties in the list will be returned. + This parameter cannot be used if `securityStatus` or `files_metadata` are passed. + Possible values are `"author"`, `"baseModels"`, `"cardData"`, `"childrenModelCount"`, `"config"`, `"createdAt"`, `"disabled"`, `"downloads"`, `"downloadsAllTime"`, `"gated"`, `"gguf"`, `"inference"`, `"inferenceProviderMapping"`, `"lastModified"`, `"library_name"`, `"likes"`, `"mask_token"`, `"model-index"`, `"pipeline_tag"`, `"private"`, `"safetensors"`, `"sha"`, `"siblings"`, `"spaces"`, `"tags"`, `"transformersInfo"`, `"trendingScore"`, `"widgetData"`, `"usedStorage"` and `"resourceGroup"`. + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved + token, which is the recommended method for authentication (see + https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + + Returns: + [`huggingface_hub.hf_api.ModelInfo`]: The model repository information. + + <Tip> + + Raises the following errors: + + - [`~utils.RepositoryNotFoundError`] + If the repository to download from cannot be found. This may be because it doesn't exist, + or because it is set to `private` and you do not have access. + - [`~utils.RevisionNotFoundError`] + If the revision to download from cannot be found. + + </Tip> + """ + if expand and (securityStatus or files_metadata): + raise ValueError("`expand` cannot be used if `securityStatus` or `files_metadata` are set.") + + headers = self._build_hf_headers(token=token) + path = ( + f"{self.endpoint}/api/models/{repo_id}" + if revision is None + else (f"{self.endpoint}/api/models/{repo_id}/revision/{quote(revision, safe='')}") + ) + params: Dict = {} + if securityStatus: + params["securityStatus"] = True + if files_metadata: + params["blobs"] = True + if expand: + params["expand"] = expand + r = get_session().get(path, headers=headers, timeout=timeout, params=params) + hf_raise_for_status(r) + data = r.json() + return ModelInfo(**data) + + @validate_hf_hub_args + def dataset_info( + self, + repo_id: str, + *, + revision: Optional[str] = None, + timeout: Optional[float] = None, + files_metadata: bool = False, + expand: Optional[List[ExpandDatasetProperty_T]] = None, + token: Union[bool, str, None] = None, + ) -> DatasetInfo: + """ + Get info on one specific dataset on huggingface.co. + + Dataset can be private if you pass an acceptable token. + + Args: + repo_id (`str`): + A namespace (user or an organization) and a repo name separated + by a `/`. + revision (`str`, *optional*): + The revision of the dataset repository from which to get the + information. + timeout (`float`, *optional*): + Whether to set a timeout for the request to the Hub. + files_metadata (`bool`, *optional*): + Whether or not to retrieve metadata for files in the repository + (size, LFS metadata, etc). Defaults to `False`. + expand (`List[ExpandDatasetProperty_T]`, *optional*): + List properties to return in the response. When used, only the properties in the list will be returned. + This parameter cannot be used if `files_metadata` is passed. + Possible values are `"author"`, `"cardData"`, `"citation"`, `"createdAt"`, `"disabled"`, `"description"`, `"downloads"`, `"downloadsAllTime"`, `"gated"`, `"lastModified"`, `"likes"`, `"paperswithcode_id"`, `"private"`, `"siblings"`, `"sha"`, `"tags"`, `"trendingScore"`,`"usedStorage"` and `"resourceGroup"`. + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved + token, which is the recommended method for authentication (see + https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + + Returns: + [`hf_api.DatasetInfo`]: The dataset repository information. + + <Tip> + + Raises the following errors: + + - [`~utils.RepositoryNotFoundError`] + If the repository to download from cannot be found. This may be because it doesn't exist, + or because it is set to `private` and you do not have access. + - [`~utils.RevisionNotFoundError`] + If the revision to download from cannot be found. + + </Tip> + """ + if expand and files_metadata: + raise ValueError("`expand` cannot be used if `files_metadata` is set.") + + headers = self._build_hf_headers(token=token) + path = ( + f"{self.endpoint}/api/datasets/{repo_id}" + if revision is None + else (f"{self.endpoint}/api/datasets/{repo_id}/revision/{quote(revision, safe='')}") + ) + params: Dict = {} + if files_metadata: + params["blobs"] = True + if expand: + params["expand"] = expand + + r = get_session().get(path, headers=headers, timeout=timeout, params=params) + hf_raise_for_status(r) + data = r.json() + return DatasetInfo(**data) + + @validate_hf_hub_args + def space_info( + self, + repo_id: str, + *, + revision: Optional[str] = None, + timeout: Optional[float] = None, + files_metadata: bool = False, + expand: Optional[List[ExpandSpaceProperty_T]] = None, + token: Union[bool, str, None] = None, + ) -> SpaceInfo: + """ + Get info on one specific Space on huggingface.co. + + Space can be private if you pass an acceptable token. + + Args: + repo_id (`str`): + A namespace (user or an organization) and a repo name separated + by a `/`. + revision (`str`, *optional*): + The revision of the space repository from which to get the + information. + timeout (`float`, *optional*): + Whether to set a timeout for the request to the Hub. + files_metadata (`bool`, *optional*): + Whether or not to retrieve metadata for files in the repository + (size, LFS metadata, etc). Defaults to `False`. + expand (`List[ExpandSpaceProperty_T]`, *optional*): + List properties to return in the response. When used, only the properties in the list will be returned. + This parameter cannot be used if `full` is passed. + Possible values are `"author"`, `"cardData"`, `"createdAt"`, `"datasets"`, `"disabled"`, `"lastModified"`, `"likes"`, `"models"`, `"private"`, `"runtime"`, `"sdk"`, `"siblings"`, `"sha"`, `"subdomain"`, `"tags"`, `"trendingScore"`, `"usedStorage"` and `"resourceGroup"`. + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved + token, which is the recommended method for authentication (see + https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + + Returns: + [`~hf_api.SpaceInfo`]: The space repository information. + + <Tip> + + Raises the following errors: + + - [`~utils.RepositoryNotFoundError`] + If the repository to download from cannot be found. This may be because it doesn't exist, + or because it is set to `private` and you do not have access. + - [`~utils.RevisionNotFoundError`] + If the revision to download from cannot be found. + + </Tip> + """ + if expand and files_metadata: + raise ValueError("`expand` cannot be used if `files_metadata` is set.") + + headers = self._build_hf_headers(token=token) + path = ( + f"{self.endpoint}/api/spaces/{repo_id}" + if revision is None + else (f"{self.endpoint}/api/spaces/{repo_id}/revision/{quote(revision, safe='')}") + ) + params: Dict = {} + if files_metadata: + params["blobs"] = True + if expand: + params["expand"] = expand + + r = get_session().get(path, headers=headers, timeout=timeout, params=params) + hf_raise_for_status(r) + data = r.json() + return SpaceInfo(**data) + + @validate_hf_hub_args + def repo_info( + self, + repo_id: str, + *, + revision: Optional[str] = None, + repo_type: Optional[str] = None, + timeout: Optional[float] = None, + files_metadata: bool = False, + expand: Optional[Union[ExpandModelProperty_T, ExpandDatasetProperty_T, ExpandSpaceProperty_T]] = None, + token: Union[bool, str, None] = None, + ) -> Union[ModelInfo, DatasetInfo, SpaceInfo]: + """ + Get the info object for a given repo of a given type. + + Args: + repo_id (`str`): + A namespace (user or an organization) and a repo name separated + by a `/`. + revision (`str`, *optional*): + The revision of the repository from which to get the + information. + repo_type (`str`, *optional*): + Set to `"dataset"` or `"space"` if getting repository info from a dataset or a space, + `None` or `"model"` if getting repository info from a model. Default is `None`. + timeout (`float`, *optional*): + Whether to set a timeout for the request to the Hub. + expand (`ExpandModelProperty_T` or `ExpandDatasetProperty_T` or `ExpandSpaceProperty_T`, *optional*): + List properties to return in the response. When used, only the properties in the list will be returned. + This parameter cannot be used if `files_metadata` is passed. + For an exhaustive list of available properties, check out [`model_info`], [`dataset_info`] or [`space_info`]. + files_metadata (`bool`, *optional*): + Whether or not to retrieve metadata for files in the repository + (size, LFS metadata, etc). Defaults to `False`. + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved + token, which is the recommended method for authentication (see + https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + + Returns: + `Union[SpaceInfo, DatasetInfo, ModelInfo]`: The repository information, as a + [`huggingface_hub.hf_api.DatasetInfo`], [`huggingface_hub.hf_api.ModelInfo`] + or [`huggingface_hub.hf_api.SpaceInfo`] object. + + <Tip> + + Raises the following errors: + + - [`~utils.RepositoryNotFoundError`] + If the repository to download from cannot be found. This may be because it doesn't exist, + or because it is set to `private` and you do not have access. + - [`~utils.RevisionNotFoundError`] + If the revision to download from cannot be found. + + </Tip> + """ + if repo_type is None or repo_type == "model": + method = self.model_info + elif repo_type == "dataset": + method = self.dataset_info # type: ignore + elif repo_type == "space": + method = self.space_info # type: ignore + else: + raise ValueError("Unsupported repo type.") + return method( + repo_id, + revision=revision, + token=token, + timeout=timeout, + expand=expand, # type: ignore[arg-type] + files_metadata=files_metadata, + ) + + @validate_hf_hub_args + def repo_exists( + self, + repo_id: str, + *, + repo_type: Optional[str] = None, + token: Union[str, bool, None] = None, + ) -> bool: + """ + Checks if a repository exists on the Hugging Face Hub. + + Args: + repo_id (`str`): + A namespace (user or an organization) and a repo name separated + by a `/`. + repo_type (`str`, *optional*): + Set to `"dataset"` or `"space"` if getting repository info from a dataset or a space, + `None` or `"model"` if getting repository info from a model. Default is `None`. + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved + token, which is the recommended method for authentication (see + https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + + Returns: + True if the repository exists, False otherwise. + + Examples: + ```py + >>> from huggingface_hub import repo_exists + >>> repo_exists("google/gemma-7b") + True + >>> repo_exists("google/not-a-repo") + False + ``` + """ + try: + self.repo_info(repo_id=repo_id, repo_type=repo_type, token=token) + return True + except GatedRepoError: + return True # we don't have access but it exists + except RepositoryNotFoundError: + return False + + @validate_hf_hub_args + def revision_exists( + self, + repo_id: str, + revision: str, + *, + repo_type: Optional[str] = None, + token: Union[str, bool, None] = None, + ) -> bool: + """ + Checks if a specific revision exists on a repo on the Hugging Face Hub. + + Args: + repo_id (`str`): + A namespace (user or an organization) and a repo name separated + by a `/`. + revision (`str`): + The revision of the repository to check. + repo_type (`str`, *optional*): + Set to `"dataset"` or `"space"` if getting repository info from a dataset or a space, + `None` or `"model"` if getting repository info from a model. Default is `None`. + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved + token, which is the recommended method for authentication (see + https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + + Returns: + True if the repository and the revision exists, False otherwise. + + Examples: + ```py + >>> from huggingface_hub import revision_exists + >>> revision_exists("google/gemma-7b", "float16") + True + >>> revision_exists("google/gemma-7b", "not-a-revision") + False + ``` + """ + try: + self.repo_info(repo_id=repo_id, revision=revision, repo_type=repo_type, token=token) + return True + except RevisionNotFoundError: + return False + except RepositoryNotFoundError: + return False + + @validate_hf_hub_args + def file_exists( + self, + repo_id: str, + filename: str, + *, + repo_type: Optional[str] = None, + revision: Optional[str] = None, + token: Union[str, bool, None] = None, + ) -> bool: + """ + Checks if a file exists in a repository on the Hugging Face Hub. + + Args: + repo_id (`str`): + A namespace (user or an organization) and a repo name separated + by a `/`. + filename (`str`): + The name of the file to check, for example: + `"config.json"` + repo_type (`str`, *optional*): + Set to `"dataset"` or `"space"` if getting repository info from a dataset or a space, + `None` or `"model"` if getting repository info from a model. Default is `None`. + revision (`str`, *optional*): + The revision of the repository from which to get the information. Defaults to `"main"` branch. + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved + token, which is the recommended method for authentication (see + https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + + Returns: + True if the file exists, False otherwise. + + Examples: + ```py + >>> from huggingface_hub import file_exists + >>> file_exists("bigcode/starcoder", "config.json") + True + >>> file_exists("bigcode/starcoder", "not-a-file") + False + >>> file_exists("bigcode/not-a-repo", "config.json") + False + ``` + """ + url = hf_hub_url( + repo_id=repo_id, repo_type=repo_type, revision=revision, filename=filename, endpoint=self.endpoint + ) + try: + if token is None: + token = self.token + get_hf_file_metadata(url, token=token) + return True + except GatedRepoError: # raise specifically on gated repo + raise + except (RepositoryNotFoundError, EntryNotFoundError, RevisionNotFoundError): + return False + + @validate_hf_hub_args + def list_repo_files( + self, + repo_id: str, + *, + revision: Optional[str] = None, + repo_type: Optional[str] = None, + token: Union[str, bool, None] = None, + ) -> List[str]: + """ + Get the list of files in a given repo. + + Args: + repo_id (`str`): + A namespace (user or an organization) and a repo name separated by a `/`. + revision (`str`, *optional*): + The revision of the repository from which to get the information. + repo_type (`str`, *optional*): + Set to `"dataset"` or `"space"` if uploading to a dataset or space, `None` or `"model"` if uploading to + a model. Default is `None`. + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved + token, which is the recommended method for authentication (see + https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + + Returns: + `List[str]`: the list of files in a given repository. + """ + return [ + f.rfilename + for f in self.list_repo_tree( + repo_id=repo_id, recursive=True, revision=revision, repo_type=repo_type, token=token + ) + if isinstance(f, RepoFile) + ] + + @validate_hf_hub_args + def list_repo_tree( + self, + repo_id: str, + path_in_repo: Optional[str] = None, + *, + recursive: bool = False, + expand: bool = False, + revision: Optional[str] = None, + repo_type: Optional[str] = None, + token: Union[str, bool, None] = None, + ) -> Iterable[Union[RepoFile, RepoFolder]]: + """ + List a repo tree's files and folders and get information about them. + + Args: + repo_id (`str`): + A namespace (user or an organization) and a repo name separated by a `/`. + path_in_repo (`str`, *optional*): + Relative path of the tree (folder) in the repo, for example: + `"checkpoints/1fec34a/results"`. Will default to the root tree (folder) of the repository. + recursive (`bool`, *optional*, defaults to `False`): + Whether to list tree's files and folders recursively. + expand (`bool`, *optional*, defaults to `False`): + Whether to fetch more information about the tree's files and folders (e.g. last commit and files' security scan results). This + operation is more expensive for the server so only 50 results are returned per page (instead of 1000). + As pagination is implemented in `huggingface_hub`, this is transparent for you except for the time it + takes to get the results. + revision (`str`, *optional*): + The revision of the repository from which to get the tree. Defaults to `"main"` branch. + repo_type (`str`, *optional*): + The type of the repository from which to get the tree (`"model"`, `"dataset"` or `"space"`. + Defaults to `"model"`. + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved + token, which is the recommended method for authentication (see + https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + + Returns: + `Iterable[Union[RepoFile, RepoFolder]]`: + The information about the tree's files and folders, as an iterable of [`RepoFile`] and [`RepoFolder`] objects. The order of the files and folders is + not guaranteed. + + Raises: + [`~utils.RepositoryNotFoundError`]: + If repository is not found (error 404): wrong repo_id/repo_type, private but not authenticated or repo + does not exist. + [`~utils.RevisionNotFoundError`]: + If revision is not found (error 404) on the repo. + [`~utils.EntryNotFoundError`]: + If the tree (folder) does not exist (error 404) on the repo. + + Examples: + + Get information about a repo's tree. + ```py + >>> from huggingface_hub import list_repo_tree + >>> repo_tree = list_repo_tree("lysandre/arxiv-nlp") + >>> repo_tree + <generator object HfApi.list_repo_tree at 0x7fa4088e1ac0> + >>> list(repo_tree) + [ + RepoFile(path='.gitattributes', size=391, blob_id='ae8c63daedbd4206d7d40126955d4e6ab1c80f8f', lfs=None, last_commit=None, security=None), + RepoFile(path='README.md', size=391, blob_id='43bd404b159de6fba7c2f4d3264347668d43af25', lfs=None, last_commit=None, security=None), + RepoFile(path='config.json', size=554, blob_id='2f9618c3a19b9a61add74f70bfb121335aeef666', lfs=None, last_commit=None, security=None), + RepoFile( + path='flax_model.msgpack', size=497764107, blob_id='8095a62ccb4d806da7666fcda07467e2d150218e', + lfs={'size': 497764107, 'sha256': 'd88b0d6a6ff9c3f8151f9d3228f57092aaea997f09af009eefd7373a77b5abb9', 'pointer_size': 134}, last_commit=None, security=None + ), + RepoFile(path='merges.txt', size=456318, blob_id='226b0752cac7789c48f0cb3ec53eda48b7be36cc', lfs=None, last_commit=None, security=None), + RepoFile( + path='pytorch_model.bin', size=548123560, blob_id='64eaa9c526867e404b68f2c5d66fd78e27026523', + lfs={'size': 548123560, 'sha256': '9be78edb5b928eba33aa88f431551348f7466ba9f5ef3daf1d552398722a5436', 'pointer_size': 134}, last_commit=None, security=None + ), + RepoFile(path='vocab.json', size=898669, blob_id='b00361fece0387ca34b4b8b8539ed830d644dbeb', lfs=None, last_commit=None, security=None)] + ] + ``` + + Get even more information about a repo's tree (last commit and files' security scan results) + ```py + >>> from huggingface_hub import list_repo_tree + >>> repo_tree = list_repo_tree("prompthero/openjourney-v4", expand=True) + >>> list(repo_tree) + [ + RepoFolder( + path='feature_extractor', + tree_id='aa536c4ea18073388b5b0bc791057a7296a00398', + last_commit={ + 'oid': '47b62b20b20e06b9de610e840282b7e6c3d51190', + 'title': 'Upload diffusers weights (#48)', + 'date': datetime.datetime(2023, 3, 21, 9, 5, 27, tzinfo=datetime.timezone.utc) + } + ), + RepoFolder( + path='safety_checker', + tree_id='65aef9d787e5557373fdf714d6c34d4fcdd70440', + last_commit={ + 'oid': '47b62b20b20e06b9de610e840282b7e6c3d51190', + 'title': 'Upload diffusers weights (#48)', + 'date': datetime.datetime(2023, 3, 21, 9, 5, 27, tzinfo=datetime.timezone.utc) + } + ), + RepoFile( + path='model_index.json', + size=582, + blob_id='d3d7c1e8c3e78eeb1640b8e2041ee256e24c9ee1', + lfs=None, + last_commit={ + 'oid': 'b195ed2d503f3eb29637050a886d77bd81d35f0e', + 'title': 'Fix deprecation warning by changing `CLIPFeatureExtractor` to `CLIPImageProcessor`. (#54)', + 'date': datetime.datetime(2023, 5, 15, 21, 41, 59, tzinfo=datetime.timezone.utc) + }, + security={ + 'safe': True, + 'av_scan': {'virusFound': False, 'virusNames': None}, + 'pickle_import_scan': None + } + ) + ... + ] + ``` + """ + repo_type = repo_type or constants.REPO_TYPE_MODEL + revision = quote(revision, safe="") if revision is not None else constants.DEFAULT_REVISION + headers = self._build_hf_headers(token=token) + + encoded_path_in_repo = "/" + quote(path_in_repo, safe="") if path_in_repo else "" + tree_url = f"{self.endpoint}/api/{repo_type}s/{repo_id}/tree/{revision}{encoded_path_in_repo}" + for path_info in paginate(path=tree_url, headers=headers, params={"recursive": recursive, "expand": expand}): + yield (RepoFile(**path_info) if path_info["type"] == "file" else RepoFolder(**path_info)) + + @validate_hf_hub_args + def list_repo_refs( + self, + repo_id: str, + *, + repo_type: Optional[str] = None, + include_pull_requests: bool = False, + token: Union[str, bool, None] = None, + ) -> GitRefs: + """ + Get the list of refs of a given repo (both tags and branches). + + Args: + repo_id (`str`): + A namespace (user or an organization) and a repo name separated + by a `/`. + repo_type (`str`, *optional*): + Set to `"dataset"` or `"space"` if listing refs from a dataset or a Space, + `None` or `"model"` if listing from a model. Default is `None`. + include_pull_requests (`bool`, *optional*): + Whether to include refs from pull requests in the list. Defaults to `False`. + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved + token, which is the recommended method for authentication (see + https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + + Example: + ```py + >>> from huggingface_hub import HfApi + >>> api = HfApi() + >>> api.list_repo_refs("gpt2") + GitRefs(branches=[GitRefInfo(name='main', ref='refs/heads/main', target_commit='e7da7f221d5bf496a48136c0cd264e630fe9fcc8')], converts=[], tags=[]) + + >>> api.list_repo_refs("bigcode/the-stack", repo_type='dataset') + GitRefs( + branches=[ + GitRefInfo(name='main', ref='refs/heads/main', target_commit='18edc1591d9ce72aa82f56c4431b3c969b210ae3'), + GitRefInfo(name='v1.1.a1', ref='refs/heads/v1.1.a1', target_commit='f9826b862d1567f3822d3d25649b0d6d22ace714') + ], + converts=[], + tags=[ + GitRefInfo(name='v1.0', ref='refs/tags/v1.0', target_commit='c37a8cd1e382064d8aced5e05543c5f7753834da') + ] + ) + ``` + + Returns: + [`GitRefs`]: object containing all information about branches and tags for a + repo on the Hub. + """ + repo_type = repo_type or constants.REPO_TYPE_MODEL + response = get_session().get( + f"{self.endpoint}/api/{repo_type}s/{repo_id}/refs", + headers=self._build_hf_headers(token=token), + params={"include_prs": 1} if include_pull_requests else {}, + ) + hf_raise_for_status(response) + data = response.json() + + def _format_as_git_ref_info(item: Dict) -> GitRefInfo: + return GitRefInfo(name=item["name"], ref=item["ref"], target_commit=item["targetCommit"]) + + return GitRefs( + branches=[_format_as_git_ref_info(item) for item in data["branches"]], + converts=[_format_as_git_ref_info(item) for item in data["converts"]], + tags=[_format_as_git_ref_info(item) for item in data["tags"]], + pull_requests=[_format_as_git_ref_info(item) for item in data["pullRequests"]] + if include_pull_requests + else None, + ) + + @validate_hf_hub_args + def list_repo_commits( + self, + repo_id: str, + *, + repo_type: Optional[str] = None, + token: Union[bool, str, None] = None, + revision: Optional[str] = None, + formatted: bool = False, + ) -> List[GitCommitInfo]: + """ + Get the list of commits of a given revision for a repo on the Hub. + + Commits are sorted by date (last commit first). + + Args: + repo_id (`str`): + A namespace (user or an organization) and a repo name separated by a `/`. + repo_type (`str`, *optional*): + Set to `"dataset"` or `"space"` if listing commits from a dataset or a Space, `None` or `"model"` if + listing from a model. Default is `None`. + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved + token, which is the recommended method for authentication (see + https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + revision (`str`, *optional*): + The git revision to commit from. Defaults to the head of the `"main"` branch. + formatted (`bool`): + Whether to return the HTML-formatted title and description of the commits. Defaults to False. + + Example: + ```py + >>> from huggingface_hub import HfApi + >>> api = HfApi() + + # Commits are sorted by date (last commit first) + >>> initial_commit = api.list_repo_commits("gpt2")[-1] + + # Initial commit is always a system commit containing the `.gitattributes` file. + >>> initial_commit + GitCommitInfo( + commit_id='9b865efde13a30c13e0a33e536cf3e4a5a9d71d8', + authors=['system'], + created_at=datetime.datetime(2019, 2, 18, 10, 36, 15, tzinfo=datetime.timezone.utc), + title='initial commit', + message='', + formatted_title=None, + formatted_message=None + ) + + # Create an empty branch by deriving from initial commit + >>> api.create_branch("gpt2", "new_empty_branch", revision=initial_commit.commit_id) + ``` + + Returns: + List[[`GitCommitInfo`]]: list of objects containing information about the commits for a repo on the Hub. + + Raises: + [`~utils.RepositoryNotFoundError`]: + If repository is not found (error 404): wrong repo_id/repo_type, private but not authenticated or repo + does not exist. + [`~utils.RevisionNotFoundError`]: + If revision is not found (error 404) on the repo. + """ + repo_type = repo_type or constants.REPO_TYPE_MODEL + revision = quote(revision, safe="") if revision is not None else constants.DEFAULT_REVISION + + # Paginate over results and return the list of commits. + return [ + GitCommitInfo( + commit_id=item["id"], + authors=[author["user"] for author in item["authors"]], + created_at=parse_datetime(item["date"]), + title=item["title"], + message=item["message"], + formatted_title=item.get("formatted", {}).get("title"), + formatted_message=item.get("formatted", {}).get("message"), + ) + for item in paginate( + f"{self.endpoint}/api/{repo_type}s/{repo_id}/commits/{revision}", + headers=self._build_hf_headers(token=token), + params={"expand[]": "formatted"} if formatted else {}, + ) + ] + + @validate_hf_hub_args + def get_paths_info( + self, + repo_id: str, + paths: Union[List[str], str], + *, + expand: bool = False, + revision: Optional[str] = None, + repo_type: Optional[str] = None, + token: Union[str, bool, None] = None, + ) -> List[Union[RepoFile, RepoFolder]]: + """ + Get information about a repo's paths. + + Args: + repo_id (`str`): + A namespace (user or an organization) and a repo name separated by a `/`. + paths (`Union[List[str], str]`, *optional*): + The paths to get information about. If a path do not exist, it is ignored without raising + an exception. + expand (`bool`, *optional*, defaults to `False`): + Whether to fetch more information about the paths (e.g. last commit and files' security scan results). This + operation is more expensive for the server so only 50 results are returned per page (instead of 1000). + As pagination is implemented in `huggingface_hub`, this is transparent for you except for the time it + takes to get the results. + revision (`str`, *optional*): + The revision of the repository from which to get the information. Defaults to `"main"` branch. + repo_type (`str`, *optional*): + The type of the repository from which to get the information (`"model"`, `"dataset"` or `"space"`. + Defaults to `"model"`. + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved + token, which is the recommended method for authentication (see + https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + + Returns: + `List[Union[RepoFile, RepoFolder]]`: + The information about the paths, as a list of [`RepoFile`] and [`RepoFolder`] objects. + + Raises: + [`~utils.RepositoryNotFoundError`]: + If repository is not found (error 404): wrong repo_id/repo_type, private but not authenticated or repo + does not exist. + [`~utils.RevisionNotFoundError`]: + If revision is not found (error 404) on the repo. + + Example: + ```py + >>> from huggingface_hub import get_paths_info + >>> paths_info = get_paths_info("allenai/c4", ["README.md", "en"], repo_type="dataset") + >>> paths_info + [ + RepoFile(path='README.md', size=2379, blob_id='f84cb4c97182890fc1dbdeaf1a6a468fd27b4fff', lfs=None, last_commit=None, security=None), + RepoFolder(path='en', tree_id='dc943c4c40f53d02b31ced1defa7e5f438d5862e', last_commit=None) + ] + ``` + """ + repo_type = repo_type or constants.REPO_TYPE_MODEL + revision = quote(revision, safe="") if revision is not None else constants.DEFAULT_REVISION + headers = self._build_hf_headers(token=token) + + response = get_session().post( + f"{self.endpoint}/api/{repo_type}s/{repo_id}/paths-info/{revision}", + data={ + "paths": paths if isinstance(paths, list) else [paths], + "expand": expand, + }, + headers=headers, + ) + hf_raise_for_status(response) + paths_info = response.json() + return [ + RepoFile(**path_info) if path_info["type"] == "file" else RepoFolder(**path_info) + for path_info in paths_info + ] + + @validate_hf_hub_args + def super_squash_history( + self, + repo_id: str, + *, + branch: Optional[str] = None, + commit_message: Optional[str] = None, + repo_type: Optional[str] = None, + token: Union[str, bool, None] = None, + ) -> None: + """Squash commit history on a branch for a repo on the Hub. + + Squashing the repo history is useful when you know you'll make hundreds of commits and you don't want to + clutter the history. Squashing commits can only be performed from the head of a branch. + + <Tip warning={true}> + + Once squashed, the commit history cannot be retrieved. This is a non-revertible operation. + + </Tip> + + <Tip warning={true}> + + Once the history of a branch has been squashed, it is not possible to merge it back into another branch since + their history will have diverged. + + </Tip> + + Args: + repo_id (`str`): + A namespace (user or an organization) and a repo name separated by a `/`. + branch (`str`, *optional*): + The branch to squash. Defaults to the head of the `"main"` branch. + commit_message (`str`, *optional*): + The commit message to use for the squashed commit. + repo_type (`str`, *optional*): + Set to `"dataset"` or `"space"` if listing commits from a dataset or a Space, `None` or `"model"` if + listing from a model. Default is `None`. + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved + token, which is the recommended method for authentication (see + https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + + Raises: + [`~utils.RepositoryNotFoundError`]: + If repository is not found (error 404): wrong repo_id/repo_type, private but not authenticated or repo + does not exist. + [`~utils.RevisionNotFoundError`]: + If the branch to squash cannot be found. + [`~utils.BadRequestError`]: + If invalid reference for a branch. You cannot squash history on tags. + + Example: + ```py + >>> from huggingface_hub import HfApi + >>> api = HfApi() + + # Create repo + >>> repo_id = api.create_repo("test-squash").repo_id + + # Make a lot of commits. + >>> api.upload_file(repo_id=repo_id, path_in_repo="file.txt", path_or_fileobj=b"content") + >>> api.upload_file(repo_id=repo_id, path_in_repo="lfs.bin", path_or_fileobj=b"content") + >>> api.upload_file(repo_id=repo_id, path_in_repo="file.txt", path_or_fileobj=b"another_content") + + # Squash history + >>> api.super_squash_history(repo_id=repo_id) + ``` + """ + if repo_type is None: + repo_type = constants.REPO_TYPE_MODEL + if repo_type not in constants.REPO_TYPES: + raise ValueError("Invalid repo type") + if branch is None: + branch = constants.DEFAULT_REVISION + + # Prepare request + url = f"{self.endpoint}/api/{repo_type}s/{repo_id}/super-squash/{quote(branch, safe='')}" + headers = self._build_hf_headers(token=token) + commit_message = commit_message or f"Super-squash branch '{branch}' using huggingface_hub" + + # Super-squash + response = get_session().post(url=url, headers=headers, json={"message": commit_message}) + hf_raise_for_status(response) + + @validate_hf_hub_args + def create_repo( + self, + repo_id: str, + *, + token: Union[str, bool, None] = None, + private: Optional[bool] = None, + repo_type: Optional[str] = None, + exist_ok: bool = False, + resource_group_id: Optional[str] = None, + space_sdk: Optional[str] = None, + space_hardware: Optional[SpaceHardware] = None, + space_storage: Optional[SpaceStorage] = None, + space_sleep_time: Optional[int] = None, + space_secrets: Optional[List[Dict[str, str]]] = None, + space_variables: Optional[List[Dict[str, str]]] = None, + ) -> RepoUrl: + """Create an empty repo on the HuggingFace Hub. + + Args: + repo_id (`str`): + A namespace (user or an organization) and a repo name separated + by a `/`. + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved + token, which is the recommended method for authentication (see + https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + private (`bool`, *optional*): + Whether to make the repo private. If `None` (default), the repo will be public unless the organization's default is private. This value is ignored if the repo already exists. + repo_type (`str`, *optional*): + Set to `"dataset"` or `"space"` if uploading to a dataset or + space, `None` or `"model"` if uploading to a model. Default is + `None`. + exist_ok (`bool`, *optional*, defaults to `False`): + If `True`, do not raise an error if repo already exists. + resource_group_id (`str`, *optional*): + Resource group in which to create the repo. Resource groups is only available for organizations and + allow to define which members of the organization can access the resource. The ID of a resource group + can be found in the URL of the resource's page on the Hub (e.g. `"66670e5163145ca562cb1988"`). + To learn more about resource groups, see https://huggingface.co/docs/hub/en/security-resource-groups. + space_sdk (`str`, *optional*): + Choice of SDK to use if repo_type is "space". Can be "streamlit", "gradio", "docker", or "static". + space_hardware (`SpaceHardware` or `str`, *optional*): + Choice of Hardware if repo_type is "space". See [`SpaceHardware`] for a complete list. + space_storage (`SpaceStorage` or `str`, *optional*): + Choice of persistent storage tier. Example: `"small"`. See [`SpaceStorage`] for a complete list. + space_sleep_time (`int`, *optional*): + Number of seconds of inactivity to wait before a Space is put to sleep. Set to `-1` if you don't want + your Space to sleep (default behavior for upgraded hardware). For free hardware, you can't configure + the sleep time (value is fixed to 48 hours of inactivity). + See https://huggingface.co/docs/hub/spaces-gpus#sleep-time for more details. + space_secrets (`List[Dict[str, str]]`, *optional*): + A list of secret keys to set in your Space. Each item is in the form `{"key": ..., "value": ..., "description": ...}` where description is optional. + For more details, see https://huggingface.co/docs/hub/spaces-overview#managing-secrets. + space_variables (`List[Dict[str, str]]`, *optional*): + A list of public environment variables to set in your Space. Each item is in the form `{"key": ..., "value": ..., "description": ...}` where description is optional. + For more details, see https://huggingface.co/docs/hub/spaces-overview#managing-secrets-and-environment-variables. + + Returns: + [`RepoUrl`]: URL to the newly created repo. Value is a subclass of `str` containing + attributes like `endpoint`, `repo_type` and `repo_id`. + """ + organization, name = repo_id.split("/") if "/" in repo_id else (None, repo_id) + + path = f"{self.endpoint}/api/repos/create" + + if repo_type not in constants.REPO_TYPES: + raise ValueError("Invalid repo type") + + json: Dict[str, Any] = {"name": name, "organization": organization} + if private is not None: + json["private"] = private + if repo_type is not None: + json["type"] = repo_type + if repo_type == "space": + if space_sdk is None: + raise ValueError( + "No space_sdk provided. `create_repo` expects space_sdk to be one" + f" of {constants.SPACES_SDK_TYPES} when repo_type is 'space'`" + ) + if space_sdk not in constants.SPACES_SDK_TYPES: + raise ValueError(f"Invalid space_sdk. Please choose one of {constants.SPACES_SDK_TYPES}.") + json["sdk"] = space_sdk + + if space_sdk is not None and repo_type != "space": + warnings.warn("Ignoring provided space_sdk because repo_type is not 'space'.") + + function_args = [ + "space_hardware", + "space_storage", + "space_sleep_time", + "space_secrets", + "space_variables", + ] + json_keys = ["hardware", "storageTier", "sleepTimeSeconds", "secrets", "variables"] + values = [space_hardware, space_storage, space_sleep_time, space_secrets, space_variables] + + if repo_type == "space": + json.update({k: v for k, v in zip(json_keys, values) if v is not None}) + else: + provided_space_args = [key for key, value in zip(function_args, values) if value is not None] + + if provided_space_args: + warnings.warn(f"Ignoring provided {', '.join(provided_space_args)} because repo_type is not 'space'.") + + if getattr(self, "_lfsmultipartthresh", None): + # Testing purposes only. + # See https://github.com/huggingface/huggingface_hub/pull/733/files#r820604472 + json["lfsmultipartthresh"] = self._lfsmultipartthresh # type: ignore + + if resource_group_id is not None: + json["resourceGroupId"] = resource_group_id + + headers = self._build_hf_headers(token=token) + while True: + r = get_session().post(path, headers=headers, json=json) + if r.status_code == 409 and "Cannot create repo: another conflicting operation is in progress" in r.text: + # Since https://github.com/huggingface/moon-landing/pull/7272 (private repo), it is not possible to + # concurrently create repos on the Hub for a same user. This is rarely an issue, except when running + # tests. To avoid any inconvenience, we retry to create the repo for this specific error. + # NOTE: This could have being fixed directly in the tests but adding it here should fixed CIs for all + # dependent libraries. + # NOTE: If a fix is implemented server-side, we should be able to remove this retry mechanism. + logger.debug("Create repo failed due to a concurrency issue. Retrying...") + continue + break + + try: + hf_raise_for_status(r) + except HTTPError as err: + if exist_ok and err.response.status_code == 409: + # Repo already exists and `exist_ok=True` + pass + elif exist_ok and err.response.status_code == 403: + # No write permission on the namespace but repo might already exist + try: + self.repo_info(repo_id=repo_id, repo_type=repo_type, token=token) + if repo_type is None or repo_type == constants.REPO_TYPE_MODEL: + return RepoUrl(f"{self.endpoint}/{repo_id}") + return RepoUrl(f"{self.endpoint}/{repo_type}/{repo_id}") + except HfHubHTTPError: + raise err + else: + raise + + d = r.json() + return RepoUrl(d["url"], endpoint=self.endpoint) + + @validate_hf_hub_args + def delete_repo( + self, + repo_id: str, + *, + token: Union[str, bool, None] = None, + repo_type: Optional[str] = None, + missing_ok: bool = False, + ) -> None: + """ + Delete a repo from the HuggingFace Hub. CAUTION: this is irreversible. + + Args: + repo_id (`str`): + A namespace (user or an organization) and a repo name separated + by a `/`. + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved + token, which is the recommended method for authentication (see + https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + repo_type (`str`, *optional*): + Set to `"dataset"` or `"space"` if uploading to a dataset or + space, `None` or `"model"` if uploading to a model. + missing_ok (`bool`, *optional*, defaults to `False`): + If `True`, do not raise an error if repo does not exist. + + Raises: + [`~utils.RepositoryNotFoundError`] + If the repository to delete from cannot be found and `missing_ok` is set to False (default). + """ + organization, name = repo_id.split("/") if "/" in repo_id else (None, repo_id) + + path = f"{self.endpoint}/api/repos/delete" + + if repo_type not in constants.REPO_TYPES: + raise ValueError("Invalid repo type") + + json = {"name": name, "organization": organization} + if repo_type is not None: + json["type"] = repo_type + + headers = self._build_hf_headers(token=token) + r = get_session().delete(path, headers=headers, json=json) + try: + hf_raise_for_status(r) + except RepositoryNotFoundError: + if not missing_ok: + raise + + @_deprecate_method(version="0.32", message="Please use `update_repo_settings` instead.") + @validate_hf_hub_args + def update_repo_visibility( + self, + repo_id: str, + private: bool = False, + *, + token: Union[str, bool, None] = None, + repo_type: Optional[str] = None, + ) -> Dict[str, bool]: + """Update the visibility setting of a repository. + + Deprecated. Use `update_repo_settings` instead. + + Args: + repo_id (`str`, *optional*): + A namespace (user or an organization) and a repo name separated by a `/`. + private (`bool`, *optional*, defaults to `False`): + Whether the repository should be private. + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved + token, which is the recommended method for authentication (see + https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + repo_type (`str`, *optional*): + Set to `"dataset"` or `"space"` if uploading to a dataset or + space, `None` or `"model"` if uploading to a model. Default is + `None`. + + Returns: + The HTTP response in json. + + <Tip> + + Raises the following errors: + + - [`~utils.RepositoryNotFoundError`] + If the repository to download from cannot be found. This may be because it doesn't exist, + or because it is set to `private` and you do not have access. + + </Tip> + """ + if repo_type not in constants.REPO_TYPES: + raise ValueError(f"Invalid repo type, must be one of {constants.REPO_TYPES}") + if repo_type is None: + repo_type = constants.REPO_TYPE_MODEL # default repo type + + r = get_session().put( + url=f"{self.endpoint}/api/{repo_type}s/{repo_id}/settings", + headers=self._build_hf_headers(token=token), + json={"private": private}, + ) + hf_raise_for_status(r) + return r.json() + + @validate_hf_hub_args + def update_repo_settings( + self, + repo_id: str, + *, + gated: Optional[Literal["auto", "manual", False]] = None, + private: Optional[bool] = None, + token: Union[str, bool, None] = None, + repo_type: Optional[str] = None, + ) -> None: + """ + Update the settings of a repository, including gated access and visibility. + + To give more control over how repos are used, the Hub allows repo authors to enable + access requests for their repos, and also to set the visibility of the repo to private. + + Args: + repo_id (`str`): + A namespace (user or an organization) and a repo name separated by a /. + gated (`Literal["auto", "manual", False]`, *optional*): + The gated status for the repository. If set to `None` (default), the `gated` setting of the repository won't be updated. + * "auto": The repository is gated, and access requests are automatically approved or denied based on predefined criteria. + * "manual": The repository is gated, and access requests require manual approval. + * False : The repository is not gated, and anyone can access it. + private (`bool`, *optional*): + Whether the repository should be private. + token (`Union[str, bool, None]`, *optional*): + A valid user access token (string). Defaults to the locally saved token, + which is the recommended method for authentication (see + https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass False. + repo_type (`str`, *optional*): + The type of the repository to update settings from (`"model"`, `"dataset"` or `"space"`). + Defaults to `"model"`. + + Raises: + [`ValueError`](https://docs.python.org/3/library/exceptions.html#ValueError) + If gated is not one of "auto", "manual", or False. + [`ValueError`](https://docs.python.org/3/library/exceptions.html#ValueError) + If repo_type is not one of the values in constants.REPO_TYPES. + [`~utils.HfHubHTTPError`]: + If the request to the Hugging Face Hub API fails. + [`~utils.RepositoryNotFoundError`] + If the repository to download from cannot be found. This may be because it doesn't exist, + or because it is set to `private` and you do not have access. + """ + + if repo_type not in constants.REPO_TYPES: + raise ValueError(f"Invalid repo type, must be one of {constants.REPO_TYPES}") + if repo_type is None: + repo_type = constants.REPO_TYPE_MODEL # default repo type + + # Check if both gated and private are None + if gated is None and private is None: + raise ValueError("At least one of 'gated' or 'private' must be provided.") + + # Build headers + headers = self._build_hf_headers(token=token) + + # Prepare the JSON payload for the PUT request + payload: Dict = {} + + if gated is not None: + if gated not in ["auto", "manual", False]: + raise ValueError(f"Invalid gated status, must be one of 'auto', 'manual', or False. Got '{gated}'.") + payload["gated"] = gated + + if private is not None: + payload["private"] = private + + r = get_session().put( + url=f"{self.endpoint}/api/{repo_type}s/{repo_id}/settings", + headers=headers, + json=payload, + ) + hf_raise_for_status(r) + + def move_repo( + self, + from_id: str, + to_id: str, + *, + repo_type: Optional[str] = None, + token: Union[str, bool, None] = None, + ): + """ + Moving a repository from namespace1/repo_name1 to namespace2/repo_name2 + + Note there are certain limitations. For more information about moving + repositories, please see + https://hf.co/docs/hub/repositories-settings#renaming-or-transferring-a-repo. + + Args: + from_id (`str`): + A namespace (user or an organization) and a repo name separated + by a `/`. Original repository identifier. + to_id (`str`): + A namespace (user or an organization) and a repo name separated + by a `/`. Final repository identifier. + repo_type (`str`, *optional*): + Set to `"dataset"` or `"space"` if uploading to a dataset or + space, `None` or `"model"` if uploading to a model. Default is + `None`. + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved + token, which is the recommended method for authentication (see + https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + + <Tip> + + Raises the following errors: + + - [`~utils.RepositoryNotFoundError`] + If the repository to download from cannot be found. This may be because it doesn't exist, + or because it is set to `private` and you do not have access. + + </Tip> + """ + if len(from_id.split("/")) != 2: + raise ValueError(f"Invalid repo_id: {from_id}. It should have a namespace (:namespace:/:repo_name:)") + + if len(to_id.split("/")) != 2: + raise ValueError(f"Invalid repo_id: {to_id}. It should have a namespace (:namespace:/:repo_name:)") + + if repo_type is None: + repo_type = constants.REPO_TYPE_MODEL # Hub won't accept `None`. + + json = {"fromRepo": from_id, "toRepo": to_id, "type": repo_type} + + path = f"{self.endpoint}/api/repos/move" + headers = self._build_hf_headers(token=token) + r = get_session().post(path, headers=headers, json=json) + try: + hf_raise_for_status(r) + except HfHubHTTPError as e: + e.append_to_message( + "\nFor additional documentation please see" + " https://hf.co/docs/hub/repositories-settings#renaming-or-transferring-a-repo." + ) + raise + + @overload + def create_commit( # type: ignore + self, + repo_id: str, + operations: Iterable[CommitOperation], + *, + commit_message: str, + commit_description: Optional[str] = None, + token: Union[str, bool, None] = None, + repo_type: Optional[str] = None, + revision: Optional[str] = None, + create_pr: Optional[bool] = None, + num_threads: int = 5, + parent_commit: Optional[str] = None, + run_as_future: Literal[False] = ..., + ) -> CommitInfo: ... + + @overload + def create_commit( + self, + repo_id: str, + operations: Iterable[CommitOperation], + *, + commit_message: str, + commit_description: Optional[str] = None, + token: Union[str, bool, None] = None, + repo_type: Optional[str] = None, + revision: Optional[str] = None, + create_pr: Optional[bool] = None, + num_threads: int = 5, + parent_commit: Optional[str] = None, + run_as_future: Literal[True] = ..., + ) -> Future[CommitInfo]: ... + + @validate_hf_hub_args + @future_compatible + def create_commit( + self, + repo_id: str, + operations: Iterable[CommitOperation], + *, + commit_message: str, + commit_description: Optional[str] = None, + token: Union[str, bool, None] = None, + repo_type: Optional[str] = None, + revision: Optional[str] = None, + create_pr: Optional[bool] = None, + num_threads: int = 5, + parent_commit: Optional[str] = None, + run_as_future: bool = False, + ) -> Union[CommitInfo, Future[CommitInfo]]: + """ + Creates a commit in the given repo, deleting & uploading files as needed. + + <Tip warning={true}> + + The input list of `CommitOperation` will be mutated during the commit process. Do not reuse the same objects + for multiple commits. + + </Tip> + + <Tip warning={true}> + + `create_commit` assumes that the repo already exists on the Hub. If you get a + Client error 404, please make sure you are authenticated and that `repo_id` and + `repo_type` are set correctly. If repo does not exist, create it first using + [`~hf_api.create_repo`]. + + </Tip> + + <Tip warning={true}> + + `create_commit` is limited to 25k LFS files and a 1GB payload for regular files. + + </Tip> + + Args: + repo_id (`str`): + The repository in which the commit will be created, for example: + `"username/custom_transformers"` + + operations (`Iterable` of [`~hf_api.CommitOperation`]): + An iterable of operations to include in the commit, either: + + - [`~hf_api.CommitOperationAdd`] to upload a file + - [`~hf_api.CommitOperationDelete`] to delete a file + - [`~hf_api.CommitOperationCopy`] to copy a file + + Operation objects will be mutated to include information relative to the upload. Do not reuse the + same objects for multiple commits. + + commit_message (`str`): + The summary (first line) of the commit that will be created. + + commit_description (`str`, *optional*): + The description of the commit that will be created + + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved + token, which is the recommended method for authentication (see + https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + + repo_type (`str`, *optional*): + Set to `"dataset"` or `"space"` if uploading to a dataset or + space, `None` or `"model"` if uploading to a model. Default is + `None`. + + revision (`str`, *optional*): + The git revision to commit from. Defaults to the head of the `"main"` branch. + + create_pr (`boolean`, *optional*): + Whether or not to create a Pull Request with that commit. Defaults to `False`. + If `revision` is not set, PR is opened against the `"main"` branch. If + `revision` is set and is a branch, PR is opened against this branch. If + `revision` is set and is not a branch name (example: a commit oid), an + `RevisionNotFoundError` is returned by the server. + + num_threads (`int`, *optional*): + Number of concurrent threads for uploading files. Defaults to 5. + Setting it to 2 means at most 2 files will be uploaded concurrently. + + parent_commit (`str`, *optional*): + The OID / SHA of the parent commit, as a hexadecimal string. + Shorthands (7 first characters) are also supported. If specified and `create_pr` is `False`, + the commit will fail if `revision` does not point to `parent_commit`. If specified and `create_pr` + is `True`, the pull request will be created from `parent_commit`. Specifying `parent_commit` + ensures the repo has not changed before committing the changes, and can be especially useful + if the repo is updated / committed to concurrently. + run_as_future (`bool`, *optional*): + Whether or not to run this method in the background. Background jobs are run sequentially without + blocking the main thread. Passing `run_as_future=True` will return a [Future](https://docs.python.org/3/library/concurrent.futures.html#future-objects) + object. Defaults to `False`. + + Returns: + [`CommitInfo`] or `Future`: + Instance of [`CommitInfo`] containing information about the newly created commit (commit hash, commit + url, pr url, commit message,...). If `run_as_future=True` is passed, returns a Future object which will + contain the result when executed. + + Raises: + [`ValueError`](https://docs.python.org/3/library/exceptions.html#ValueError) + If commit message is empty. + [`ValueError`](https://docs.python.org/3/library/exceptions.html#ValueError) + If parent commit is not a valid commit OID. + [`ValueError`](https://docs.python.org/3/library/exceptions.html#ValueError) + If a README.md file with an invalid metadata section is committed. In this case, the commit will fail + early, before trying to upload any file. + [`ValueError`](https://docs.python.org/3/library/exceptions.html#ValueError) + If `create_pr` is `True` and revision is neither `None` nor `"main"`. + [`~utils.RepositoryNotFoundError`]: + If repository is not found (error 404): wrong repo_id/repo_type, private + but not authenticated or repo does not exist. + """ + if parent_commit is not None and not constants.REGEX_COMMIT_OID.fullmatch(parent_commit): + raise ValueError( + f"`parent_commit` is not a valid commit OID. It must match the following regex: {constants.REGEX_COMMIT_OID}" + ) + + if commit_message is None or len(commit_message) == 0: + raise ValueError("`commit_message` can't be empty, please pass a value.") + + commit_description = commit_description if commit_description is not None else "" + repo_type = repo_type if repo_type is not None else constants.REPO_TYPE_MODEL + if repo_type not in constants.REPO_TYPES: + raise ValueError(f"Invalid repo type, must be one of {constants.REPO_TYPES}") + unquoted_revision = revision or constants.DEFAULT_REVISION + revision = quote(unquoted_revision, safe="") + create_pr = create_pr if create_pr is not None else False + + headers = self._build_hf_headers(token=token) + + operations = list(operations) + additions = [op for op in operations if isinstance(op, CommitOperationAdd)] + copies = [op for op in operations if isinstance(op, CommitOperationCopy)] + nb_additions = len(additions) + nb_copies = len(copies) + nb_deletions = len(operations) - nb_additions - nb_copies + + for addition in additions: + if addition._is_committed: + raise ValueError( + f"CommitOperationAdd {addition} has already being committed and cannot be reused. Please create a" + " new CommitOperationAdd object if you want to create a new commit." + ) + + if repo_type != "dataset": + for addition in additions: + if addition.path_in_repo.endswith((".arrow", ".parquet")): + warnings.warn( + f"It seems that you are about to commit a data file ({addition.path_in_repo}) to a {repo_type}" + " repository. You are sure this is intended? If you are trying to upload a dataset, please" + " set `repo_type='dataset'` or `--repo-type=dataset` in a CLI." + ) + + logger.debug( + f"About to commit to the hub: {len(additions)} addition(s), {len(copies)} copie(s) and" + f" {nb_deletions} deletion(s)." + ) + + # If updating a README.md file, make sure the metadata format is valid + # It's better to fail early than to fail after all the files have been uploaded. + for addition in additions: + if addition.path_in_repo == "README.md": + with addition.as_file() as file: + content = file.read().decode() + self._validate_yaml(content, repo_type=repo_type, token=token) + # Skip other additions after `README.md` has been processed + break + + # If updating twice the same file or update then delete a file in a single commit + _warn_on_overwriting_operations(operations) + + self.preupload_lfs_files( + repo_id=repo_id, + additions=additions, + token=token, + repo_type=repo_type, + revision=unquoted_revision, # first-class methods take unquoted revision + create_pr=create_pr, + num_threads=num_threads, + free_memory=False, # do not remove `CommitOperationAdd.path_or_fileobj` on LFS files for "normal" users + ) + + files_to_copy = _fetch_files_to_copy( + copies=copies, + repo_type=repo_type, + repo_id=repo_id, + headers=headers, + revision=unquoted_revision, + endpoint=self.endpoint, + ) + # Remove no-op operations (files that have not changed) + operations_without_no_op = [] + for operation in operations: + if ( + isinstance(operation, CommitOperationAdd) + and operation._remote_oid is not None + and operation._remote_oid == operation._local_oid + ): + # File already exists on the Hub and has not changed: we can skip it. + logger.debug(f"Skipping upload for '{operation.path_in_repo}' as the file has not changed.") + continue + if ( + isinstance(operation, CommitOperationCopy) + and operation._dest_oid is not None + and operation._dest_oid == operation._src_oid + ): + # Source and destination files are identical - skip + logger.debug( + f"Skipping copy for '{operation.src_path_in_repo}' -> '{operation.path_in_repo}' as the content of the source file is the same as the destination file." + ) + continue + operations_without_no_op.append(operation) + if len(operations) != len(operations_without_no_op): + logger.info( + f"Removing {len(operations) - len(operations_without_no_op)} file(s) from commit that have not changed." + ) + + # Return early if empty commit + if len(operations_without_no_op) == 0: + logger.warning("No files have been modified since last commit. Skipping to prevent empty commit.") + + # Get latest commit info + try: + info = self.repo_info(repo_id=repo_id, repo_type=repo_type, revision=unquoted_revision, token=token) + except RepositoryNotFoundError as e: + e.append_to_message(_CREATE_COMMIT_NO_REPO_ERROR_MESSAGE) + raise + + # Return commit info based on latest commit + url_prefix = self.endpoint + if repo_type is not None and repo_type != constants.REPO_TYPE_MODEL: + url_prefix = f"{url_prefix}/{repo_type}s" + return CommitInfo( + commit_url=f"{url_prefix}/{repo_id}/commit/{info.sha}", + commit_message=commit_message, + commit_description=commit_description, + oid=info.sha, # type: ignore[arg-type] + ) + + commit_payload = _prepare_commit_payload( + operations=operations, + files_to_copy=files_to_copy, + commit_message=commit_message, + commit_description=commit_description, + parent_commit=parent_commit, + ) + commit_url = f"{self.endpoint}/api/{repo_type}s/{repo_id}/commit/{revision}" + + def _payload_as_ndjson() -> Iterable[bytes]: + for item in commit_payload: + yield json.dumps(item).encode() + yield b"\n" + + headers = { + # See https://github.com/huggingface/huggingface_hub/issues/1085#issuecomment-1265208073 + "Content-Type": "application/x-ndjson", + **headers, + } + data = b"".join(_payload_as_ndjson()) + params = {"create_pr": "1"} if create_pr else None + + try: + commit_resp = get_session().post(url=commit_url, headers=headers, data=data, params=params) + hf_raise_for_status(commit_resp, endpoint_name="commit") + except RepositoryNotFoundError as e: + e.append_to_message(_CREATE_COMMIT_NO_REPO_ERROR_MESSAGE) + raise + except EntryNotFoundError as e: + if nb_deletions > 0 and "A file with this name doesn't exist" in str(e): + e.append_to_message( + "\nMake sure to differentiate file and folder paths in delete" + " operations with a trailing '/' or using `is_folder=True/False`." + ) + raise + + # Mark additions as committed (cannot be reused in another commit) + for addition in additions: + addition._is_committed = True + + commit_data = commit_resp.json() + return CommitInfo( + commit_url=commit_data["commitUrl"], + commit_message=commit_message, + commit_description=commit_description, + oid=commit_data["commitOid"], + pr_url=commit_data["pullRequestUrl"] if create_pr else None, + ) + + def preupload_lfs_files( + self, + repo_id: str, + additions: Iterable[CommitOperationAdd], + *, + token: Union[str, bool, None] = None, + repo_type: Optional[str] = None, + revision: Optional[str] = None, + create_pr: Optional[bool] = None, + num_threads: int = 5, + free_memory: bool = True, + gitignore_content: Optional[str] = None, + ): + """Pre-upload LFS files to S3 in preparation on a future commit. + + This method is useful if you are generating the files to upload on-the-fly and you don't want to store them + in memory before uploading them all at once. + + <Tip warning={true}> + + This is a power-user method. You shouldn't need to call it directly to make a normal commit. + Use [`create_commit`] directly instead. + + </Tip> + + <Tip warning={true}> + + Commit operations will be mutated during the process. In particular, the attached `path_or_fileobj` will be + removed after the upload to save memory (and replaced by an empty `bytes` object). Do not reuse the same + objects except to pass them to [`create_commit`]. If you don't want to remove the attached content from the + commit operation object, pass `free_memory=False`. + + </Tip> + + Args: + repo_id (`str`): + The repository in which you will commit the files, for example: `"username/custom_transformers"`. + + operations (`Iterable` of [`CommitOperationAdd`]): + The list of files to upload. Warning: the objects in this list will be mutated to include information + relative to the upload. Do not reuse the same objects for multiple commits. + + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved + token, which is the recommended method for authentication (see + https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + + repo_type (`str`, *optional*): + The type of repository to upload to (e.g. `"model"` -default-, `"dataset"` or `"space"`). + + revision (`str`, *optional*): + The git revision to commit from. Defaults to the head of the `"main"` branch. + + create_pr (`boolean`, *optional*): + Whether or not you plan to create a Pull Request with that commit. Defaults to `False`. + + num_threads (`int`, *optional*): + Number of concurrent threads for uploading files. Defaults to 5. + Setting it to 2 means at most 2 files will be uploaded concurrently. + + gitignore_content (`str`, *optional*): + The content of the `.gitignore` file to know which files should be ignored. The order of priority + is to first check if `gitignore_content` is passed, then check if the `.gitignore` file is present + in the list of files to commit and finally default to the `.gitignore` file already hosted on the Hub + (if any). + + Example: + ```py + >>> from huggingface_hub import CommitOperationAdd, preupload_lfs_files, create_commit, create_repo + + >>> repo_id = create_repo("test_preupload").repo_id + + # Generate and preupload LFS files one by one + >>> operations = [] # List of all `CommitOperationAdd` objects that will be generated + >>> for i in range(5): + ... content = ... # generate binary content + ... addition = CommitOperationAdd(path_in_repo=f"shard_{i}_of_5.bin", path_or_fileobj=content) + ... preupload_lfs_files(repo_id, additions=[addition]) # upload + free memory + ... operations.append(addition) + + # Create commit + >>> create_commit(repo_id, operations=operations, commit_message="Commit all shards") + ``` + """ + repo_type = repo_type if repo_type is not None else constants.REPO_TYPE_MODEL + if repo_type not in constants.REPO_TYPES: + raise ValueError(f"Invalid repo type, must be one of {constants.REPO_TYPES}") + revision = quote(revision, safe="") if revision is not None else constants.DEFAULT_REVISION + create_pr = create_pr if create_pr is not None else False + headers = self._build_hf_headers(token=token) + + # Check if a `gitignore` file is being committed to the Hub. + additions = list(additions) + if gitignore_content is None: + for addition in additions: + if addition.path_in_repo == ".gitignore": + with addition.as_file() as f: + gitignore_content = f.read().decode() + break + + # Filter out already uploaded files + new_additions = [addition for addition in additions if not addition._is_uploaded] + + # Check which new files are LFS + try: + _fetch_upload_modes( + additions=new_additions, + repo_type=repo_type, + repo_id=repo_id, + headers=headers, + revision=revision, + endpoint=self.endpoint, + create_pr=create_pr or False, + gitignore_content=gitignore_content, + ) + except RepositoryNotFoundError as e: + e.append_to_message(_CREATE_COMMIT_NO_REPO_ERROR_MESSAGE) + raise + + # Filter out regular files + new_lfs_additions = [addition for addition in new_additions if addition._upload_mode == "lfs"] + + # Filter out files listed in .gitignore + new_lfs_additions_to_upload = [] + for addition in new_lfs_additions: + if addition._should_ignore: + logger.debug(f"Skipping upload for LFS file '{addition.path_in_repo}' (ignored by gitignore file).") + else: + new_lfs_additions_to_upload.append(addition) + if len(new_lfs_additions) != len(new_lfs_additions_to_upload): + logger.info( + f"Skipped upload for {len(new_lfs_additions) - len(new_lfs_additions_to_upload)} LFS file(s) " + "(ignored by gitignore file)." + ) + + # Upload new LFS files + _upload_lfs_files( + additions=new_lfs_additions_to_upload, + repo_type=repo_type, + repo_id=repo_id, + headers=headers, + endpoint=self.endpoint, + num_threads=num_threads, + # If `create_pr`, we don't want to check user permission on the revision as users with read permission + # should still be able to create PRs even if they don't have write permission on the target branch of the + # PR (i.e. `revision`). + revision=revision if not create_pr else None, + ) + for addition in new_lfs_additions_to_upload: + addition._is_uploaded = True + if free_memory: + addition.path_or_fileobj = b"" + + @overload + def upload_file( # type: ignore + self, + *, + path_or_fileobj: Union[str, Path, bytes, BinaryIO], + path_in_repo: str, + repo_id: str, + token: Union[str, bool, None] = None, + repo_type: Optional[str] = None, + revision: Optional[str] = None, + commit_message: Optional[str] = None, + commit_description: Optional[str] = None, + create_pr: Optional[bool] = None, + parent_commit: Optional[str] = None, + run_as_future: Literal[False] = ..., + ) -> CommitInfo: ... + + @overload + def upload_file( + self, + *, + path_or_fileobj: Union[str, Path, bytes, BinaryIO], + path_in_repo: str, + repo_id: str, + token: Union[str, bool, None] = None, + repo_type: Optional[str] = None, + revision: Optional[str] = None, + commit_message: Optional[str] = None, + commit_description: Optional[str] = None, + create_pr: Optional[bool] = None, + parent_commit: Optional[str] = None, + run_as_future: Literal[True] = ..., + ) -> Future[CommitInfo]: ... + + @validate_hf_hub_args + @future_compatible + def upload_file( + self, + *, + path_or_fileobj: Union[str, Path, bytes, BinaryIO], + path_in_repo: str, + repo_id: str, + token: Union[str, bool, None] = None, + repo_type: Optional[str] = None, + revision: Optional[str] = None, + commit_message: Optional[str] = None, + commit_description: Optional[str] = None, + create_pr: Optional[bool] = None, + parent_commit: Optional[str] = None, + run_as_future: bool = False, + ) -> Union[CommitInfo, Future[CommitInfo]]: + """ + Upload a local file (up to 50 GB) to the given repo. The upload is done + through a HTTP post request, and doesn't require git or git-lfs to be + installed. + + Args: + path_or_fileobj (`str`, `Path`, `bytes`, or `IO`): + Path to a file on the local machine or binary data stream / + fileobj / buffer. + path_in_repo (`str`): + Relative filepath in the repo, for example: + `"checkpoints/1fec34a/weights.bin"` + repo_id (`str`): + The repository to which the file will be uploaded, for example: + `"username/custom_transformers"` + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved + token, which is the recommended method for authentication (see + https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + repo_type (`str`, *optional*): + Set to `"dataset"` or `"space"` if uploading to a dataset or + space, `None` or `"model"` if uploading to a model. Default is + `None`. + revision (`str`, *optional*): + The git revision to commit from. Defaults to the head of the `"main"` branch. + commit_message (`str`, *optional*): + The summary / title / first line of the generated commit + commit_description (`str` *optional*) + The description of the generated commit + create_pr (`boolean`, *optional*): + Whether or not to create a Pull Request with that commit. Defaults to `False`. + If `revision` is not set, PR is opened against the `"main"` branch. If + `revision` is set and is a branch, PR is opened against this branch. If + `revision` is set and is not a branch name (example: a commit oid), an + `RevisionNotFoundError` is returned by the server. + parent_commit (`str`, *optional*): + The OID / SHA of the parent commit, as a hexadecimal string. Shorthands (7 first characters) are also supported. + If specified and `create_pr` is `False`, the commit will fail if `revision` does not point to `parent_commit`. + If specified and `create_pr` is `True`, the pull request will be created from `parent_commit`. + Specifying `parent_commit` ensures the repo has not changed before committing the changes, and can be + especially useful if the repo is updated / committed to concurrently. + run_as_future (`bool`, *optional*): + Whether or not to run this method in the background. Background jobs are run sequentially without + blocking the main thread. Passing `run_as_future=True` will return a [Future](https://docs.python.org/3/library/concurrent.futures.html#future-objects) + object. Defaults to `False`. + + + Returns: + [`CommitInfo`] or `Future`: + Instance of [`CommitInfo`] containing information about the newly created commit (commit hash, commit + url, pr url, commit message,...). If `run_as_future=True` is passed, returns a Future object which will + contain the result when executed. + <Tip> + + Raises the following errors: + + - [`HTTPError`](https://requests.readthedocs.io/en/latest/api/#requests.HTTPError) + if the HuggingFace API returned an error + - [`ValueError`](https://docs.python.org/3/library/exceptions.html#ValueError) + if some parameter value is invalid + - [`~utils.RepositoryNotFoundError`] + If the repository to download from cannot be found. This may be because it doesn't exist, + or because it is set to `private` and you do not have access. + - [`~utils.RevisionNotFoundError`] + If the revision to download from cannot be found. + + </Tip> + + <Tip warning={true}> + + `upload_file` assumes that the repo already exists on the Hub. If you get a + Client error 404, please make sure you are authenticated and that `repo_id` and + `repo_type` are set correctly. If repo does not exist, create it first using + [`~hf_api.create_repo`]. + + </Tip> + + Example: + + ```python + >>> from huggingface_hub import upload_file + + >>> with open("./local/filepath", "rb") as fobj: + ... upload_file( + ... path_or_fileobj=fileobj, + ... path_in_repo="remote/file/path.h5", + ... repo_id="username/my-dataset", + ... repo_type="dataset", + ... token="my_token", + ... ) + "https://huggingface.co/datasets/username/my-dataset/blob/main/remote/file/path.h5" + + >>> upload_file( + ... path_or_fileobj=".\\\\local\\\\file\\\\path", + ... path_in_repo="remote/file/path.h5", + ... repo_id="username/my-model", + ... token="my_token", + ... ) + "https://huggingface.co/username/my-model/blob/main/remote/file/path.h5" + + >>> upload_file( + ... path_or_fileobj=".\\\\local\\\\file\\\\path", + ... path_in_repo="remote/file/path.h5", + ... repo_id="username/my-model", + ... token="my_token", + ... create_pr=True, + ... ) + "https://huggingface.co/username/my-model/blob/refs%2Fpr%2F1/remote/file/path.h5" + ``` + """ + if repo_type not in constants.REPO_TYPES: + raise ValueError(f"Invalid repo type, must be one of {constants.REPO_TYPES}") + + commit_message = ( + commit_message if commit_message is not None else f"Upload {path_in_repo} with huggingface_hub" + ) + operation = CommitOperationAdd( + path_or_fileobj=path_or_fileobj, + path_in_repo=path_in_repo, + ) + + commit_info = self.create_commit( + repo_id=repo_id, + repo_type=repo_type, + operations=[operation], + commit_message=commit_message, + commit_description=commit_description, + token=token, + revision=revision, + create_pr=create_pr, + parent_commit=parent_commit, + ) + + if commit_info.pr_url is not None: + revision = quote(_parse_revision_from_pr_url(commit_info.pr_url), safe="") + if repo_type in constants.REPO_TYPES_URL_PREFIXES: + repo_id = constants.REPO_TYPES_URL_PREFIXES[repo_type] + repo_id + revision = revision if revision is not None else constants.DEFAULT_REVISION + + return CommitInfo( + commit_url=commit_info.commit_url, + commit_message=commit_info.commit_message, + commit_description=commit_info.commit_description, + oid=commit_info.oid, + pr_url=commit_info.pr_url, + # Similar to `hf_hub_url` but it's "blob" instead of "resolve" + # TODO: remove this in v1.0 + _url=f"{self.endpoint}/{repo_id}/blob/{revision}/{path_in_repo}", + ) + + @overload + def upload_folder( # type: ignore + self, + *, + repo_id: str, + folder_path: Union[str, Path], + path_in_repo: Optional[str] = None, + commit_message: Optional[str] = None, + commit_description: Optional[str] = None, + token: Union[str, bool, None] = None, + repo_type: Optional[str] = None, + revision: Optional[str] = None, + create_pr: Optional[bool] = None, + parent_commit: Optional[str] = None, + allow_patterns: Optional[Union[List[str], str]] = None, + ignore_patterns: Optional[Union[List[str], str]] = None, + delete_patterns: Optional[Union[List[str], str]] = None, + run_as_future: Literal[False] = ..., + ) -> CommitInfo: ... + + @overload + def upload_folder( # type: ignore + self, + *, + repo_id: str, + folder_path: Union[str, Path], + path_in_repo: Optional[str] = None, + commit_message: Optional[str] = None, + commit_description: Optional[str] = None, + token: Union[str, bool, None] = None, + repo_type: Optional[str] = None, + revision: Optional[str] = None, + create_pr: Optional[bool] = None, + parent_commit: Optional[str] = None, + allow_patterns: Optional[Union[List[str], str]] = None, + ignore_patterns: Optional[Union[List[str], str]] = None, + delete_patterns: Optional[Union[List[str], str]] = None, + run_as_future: Literal[True] = ..., + ) -> Future[CommitInfo]: ... + + @validate_hf_hub_args + @future_compatible + def upload_folder( + self, + *, + repo_id: str, + folder_path: Union[str, Path], + path_in_repo: Optional[str] = None, + commit_message: Optional[str] = None, + commit_description: Optional[str] = None, + token: Union[str, bool, None] = None, + repo_type: Optional[str] = None, + revision: Optional[str] = None, + create_pr: Optional[bool] = None, + parent_commit: Optional[str] = None, + allow_patterns: Optional[Union[List[str], str]] = None, + ignore_patterns: Optional[Union[List[str], str]] = None, + delete_patterns: Optional[Union[List[str], str]] = None, + run_as_future: bool = False, + ) -> Union[CommitInfo, Future[CommitInfo]]: + """ + Upload a local folder to the given repo. The upload is done through a HTTP requests, and doesn't require git or + git-lfs to be installed. + + The structure of the folder will be preserved. Files with the same name already present in the repository will + be overwritten. Others will be left untouched. + + Use the `allow_patterns` and `ignore_patterns` arguments to specify which files to upload. These parameters + accept either a single pattern or a list of patterns. Patterns are Standard Wildcards (globbing patterns) as + documented [here](https://tldp.org/LDP/GNU-Linux-Tools-Summary/html/x11655.htm). If both `allow_patterns` and + `ignore_patterns` are provided, both constraints apply. By default, all files from the folder are uploaded. + + Use the `delete_patterns` argument to specify remote files you want to delete. Input type is the same as for + `allow_patterns` (see above). If `path_in_repo` is also provided, the patterns are matched against paths + relative to this folder. For example, `upload_folder(..., path_in_repo="experiment", delete_patterns="logs/*")` + will delete any remote file under `./experiment/logs/`. Note that the `.gitattributes` file will not be deleted + even if it matches the patterns. + + Any `.git/` folder present in any subdirectory will be ignored. However, please be aware that the `.gitignore` + file is not taken into account. + + Uses `HfApi.create_commit` under the hood. + + Args: + repo_id (`str`): + The repository to which the file will be uploaded, for example: + `"username/custom_transformers"` + folder_path (`str` or `Path`): + Path to the folder to upload on the local file system + path_in_repo (`str`, *optional*): + Relative path of the directory in the repo, for example: + `"checkpoints/1fec34a/results"`. Will default to the root folder of the repository. + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved + token, which is the recommended method for authentication (see + https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + repo_type (`str`, *optional*): + Set to `"dataset"` or `"space"` if uploading to a dataset or + space, `None` or `"model"` if uploading to a model. Default is + `None`. + revision (`str`, *optional*): + The git revision to commit from. Defaults to the head of the `"main"` branch. + commit_message (`str`, *optional*): + The summary / title / first line of the generated commit. Defaults to: + `f"Upload {path_in_repo} with huggingface_hub"` + commit_description (`str` *optional*): + The description of the generated commit + create_pr (`boolean`, *optional*): + Whether or not to create a Pull Request with that commit. Defaults to `False`. If `revision` is not + set, PR is opened against the `"main"` branch. If `revision` is set and is a branch, PR is opened + against this branch. If `revision` is set and is not a branch name (example: a commit oid), an + `RevisionNotFoundError` is returned by the server. + parent_commit (`str`, *optional*): + The OID / SHA of the parent commit, as a hexadecimal string. Shorthands (7 first characters) are also supported. + If specified and `create_pr` is `False`, the commit will fail if `revision` does not point to `parent_commit`. + If specified and `create_pr` is `True`, the pull request will be created from `parent_commit`. + Specifying `parent_commit` ensures the repo has not changed before committing the changes, and can be + especially useful if the repo is updated / committed to concurrently. + allow_patterns (`List[str]` or `str`, *optional*): + If provided, only files matching at least one pattern are uploaded. + ignore_patterns (`List[str]` or `str`, *optional*): + If provided, files matching any of the patterns are not uploaded. + delete_patterns (`List[str]` or `str`, *optional*): + If provided, remote files matching any of the patterns will be deleted from the repo while committing + new files. This is useful if you don't know which files have already been uploaded. + Note: to avoid discrepancies the `.gitattributes` file is not deleted even if it matches the pattern. + run_as_future (`bool`, *optional*): + Whether or not to run this method in the background. Background jobs are run sequentially without + blocking the main thread. Passing `run_as_future=True` will return a [Future](https://docs.python.org/3/library/concurrent.futures.html#future-objects) + object. Defaults to `False`. + + Returns: + [`CommitInfo`] or `Future`: + Instance of [`CommitInfo`] containing information about the newly created commit (commit hash, commit + url, pr url, commit message,...). If `run_as_future=True` is passed, returns a Future object which will + contain the result when executed. + + <Tip> + + Raises the following errors: + + - [`HTTPError`](https://requests.readthedocs.io/en/latest/api/#requests.HTTPError) + if the HuggingFace API returned an error + - [`ValueError`](https://docs.python.org/3/library/exceptions.html#ValueError) + if some parameter value is invalid + + </Tip> + + <Tip warning={true}> + + `upload_folder` assumes that the repo already exists on the Hub. If you get a Client error 404, please make + sure you are authenticated and that `repo_id` and `repo_type` are set correctly. If repo does not exist, create + it first using [`~hf_api.create_repo`]. + + </Tip> + + <Tip> + + When dealing with a large folder (thousands of files or hundreds of GB), we recommend using [`~hf_api.upload_large_folder`] instead. + + </Tip> + + Example: + + ```python + # Upload checkpoints folder except the log files + >>> upload_folder( + ... folder_path="local/checkpoints", + ... path_in_repo="remote/experiment/checkpoints", + ... repo_id="username/my-dataset", + ... repo_type="datasets", + ... token="my_token", + ... ignore_patterns="**/logs/*.txt", + ... ) + # "https://huggingface.co/datasets/username/my-dataset/tree/main/remote/experiment/checkpoints" + + # Upload checkpoints folder including logs while deleting existing logs from the repo + # Useful if you don't know exactly which log files have already being pushed + >>> upload_folder( + ... folder_path="local/checkpoints", + ... path_in_repo="remote/experiment/checkpoints", + ... repo_id="username/my-dataset", + ... repo_type="datasets", + ... token="my_token", + ... delete_patterns="**/logs/*.txt", + ... ) + "https://huggingface.co/datasets/username/my-dataset/tree/main/remote/experiment/checkpoints" + + # Upload checkpoints folder while creating a PR + >>> upload_folder( + ... folder_path="local/checkpoints", + ... path_in_repo="remote/experiment/checkpoints", + ... repo_id="username/my-dataset", + ... repo_type="datasets", + ... token="my_token", + ... create_pr=True, + ... ) + "https://huggingface.co/datasets/username/my-dataset/tree/refs%2Fpr%2F1/remote/experiment/checkpoints" + + ``` + """ + if repo_type not in constants.REPO_TYPES: + raise ValueError(f"Invalid repo type, must be one of {constants.REPO_TYPES}") + + # By default, upload folder to the root directory in repo. + if path_in_repo is None: + path_in_repo = "" + + # Do not upload .git folder + if ignore_patterns is None: + ignore_patterns = [] + elif isinstance(ignore_patterns, str): + ignore_patterns = [ignore_patterns] + ignore_patterns += DEFAULT_IGNORE_PATTERNS + + delete_operations = self._prepare_folder_deletions( + repo_id=repo_id, + repo_type=repo_type, + revision=constants.DEFAULT_REVISION if create_pr else revision, + token=token, + path_in_repo=path_in_repo, + delete_patterns=delete_patterns, + ) + add_operations = self._prepare_upload_folder_additions( + folder_path, + path_in_repo, + allow_patterns=allow_patterns, + ignore_patterns=ignore_patterns, + token=token, + repo_type=repo_type, + ) + + # Optimize operations: if some files will be overwritten, we don't need to delete them first + if len(add_operations) > 0: + added_paths = set(op.path_in_repo for op in add_operations) + delete_operations = [ + delete_op for delete_op in delete_operations if delete_op.path_in_repo not in added_paths + ] + commit_operations = delete_operations + add_operations + + commit_message = commit_message or "Upload folder using huggingface_hub" + + commit_info = self.create_commit( + repo_type=repo_type, + repo_id=repo_id, + operations=commit_operations, + commit_message=commit_message, + commit_description=commit_description, + token=token, + revision=revision, + create_pr=create_pr, + parent_commit=parent_commit, + ) + + # Create url to uploaded folder (for legacy return value) + if create_pr and commit_info.pr_url is not None: + revision = quote(_parse_revision_from_pr_url(commit_info.pr_url), safe="") + if repo_type in constants.REPO_TYPES_URL_PREFIXES: + repo_id = constants.REPO_TYPES_URL_PREFIXES[repo_type] + repo_id + revision = revision if revision is not None else constants.DEFAULT_REVISION + + return CommitInfo( + commit_url=commit_info.commit_url, + commit_message=commit_info.commit_message, + commit_description=commit_info.commit_description, + oid=commit_info.oid, + pr_url=commit_info.pr_url, + # Similar to `hf_hub_url` but it's "tree" instead of "resolve" + # TODO: remove this in v1.0 + _url=f"{self.endpoint}/{repo_id}/tree/{revision}/{path_in_repo}", + ) + + @validate_hf_hub_args + def delete_file( + self, + path_in_repo: str, + repo_id: str, + *, + token: Union[str, bool, None] = None, + repo_type: Optional[str] = None, + revision: Optional[str] = None, + commit_message: Optional[str] = None, + commit_description: Optional[str] = None, + create_pr: Optional[bool] = None, + parent_commit: Optional[str] = None, + ) -> CommitInfo: + """ + Deletes a file in the given repo. + + Args: + path_in_repo (`str`): + Relative filepath in the repo, for example: + `"checkpoints/1fec34a/weights.bin"` + repo_id (`str`): + The repository from which the file will be deleted, for example: + `"username/custom_transformers"` + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved + token, which is the recommended method for authentication (see + https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + repo_type (`str`, *optional*): + Set to `"dataset"` or `"space"` if the file is in a dataset or + space, `None` or `"model"` if in a model. Default is `None`. + revision (`str`, *optional*): + The git revision to commit from. Defaults to the head of the `"main"` branch. + commit_message (`str`, *optional*): + The summary / title / first line of the generated commit. Defaults to + `f"Delete {path_in_repo} with huggingface_hub"`. + commit_description (`str` *optional*) + The description of the generated commit + create_pr (`boolean`, *optional*): + Whether or not to create a Pull Request with that commit. Defaults to `False`. + If `revision` is not set, PR is opened against the `"main"` branch. If + `revision` is set and is a branch, PR is opened against this branch. If + `revision` is set and is not a branch name (example: a commit oid), an + `RevisionNotFoundError` is returned by the server. + parent_commit (`str`, *optional*): + The OID / SHA of the parent commit, as a hexadecimal string. Shorthands (7 first characters) are also supported. + If specified and `create_pr` is `False`, the commit will fail if `revision` does not point to `parent_commit`. + If specified and `create_pr` is `True`, the pull request will be created from `parent_commit`. + Specifying `parent_commit` ensures the repo has not changed before committing the changes, and can be + especially useful if the repo is updated / committed to concurrently. + + + <Tip> + + Raises the following errors: + + - [`HTTPError`](https://requests.readthedocs.io/en/latest/api/#requests.HTTPError) + if the HuggingFace API returned an error + - [`ValueError`](https://docs.python.org/3/library/exceptions.html#ValueError) + if some parameter value is invalid + - [`~utils.RepositoryNotFoundError`] + If the repository to download from cannot be found. This may be because it doesn't exist, + or because it is set to `private` and you do not have access. + - [`~utils.RevisionNotFoundError`] + If the revision to download from cannot be found. + - [`~utils.EntryNotFoundError`] + If the file to download cannot be found. + + </Tip> + + """ + commit_message = ( + commit_message if commit_message is not None else f"Delete {path_in_repo} with huggingface_hub" + ) + + operations = [CommitOperationDelete(path_in_repo=path_in_repo)] + + return self.create_commit( + repo_id=repo_id, + repo_type=repo_type, + token=token, + operations=operations, + revision=revision, + commit_message=commit_message, + commit_description=commit_description, + create_pr=create_pr, + parent_commit=parent_commit, + ) + + @validate_hf_hub_args + def delete_files( + self, + repo_id: str, + delete_patterns: List[str], + *, + token: Union[bool, str, None] = None, + repo_type: Optional[str] = None, + revision: Optional[str] = None, + commit_message: Optional[str] = None, + commit_description: Optional[str] = None, + create_pr: Optional[bool] = None, + parent_commit: Optional[str] = None, + ) -> CommitInfo: + """ + Delete files from a repository on the Hub. + + If a folder path is provided, the entire folder is deleted as well as + all files it contained. + + Args: + repo_id (`str`): + The repository from which the folder will be deleted, for example: + `"username/custom_transformers"` + delete_patterns (`List[str]`): + List of files or folders to delete. Each string can either be + a file path, a folder path or a Unix shell-style wildcard. + E.g. `["file.txt", "folder/", "data/*.parquet"]` + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved + token, which is the recommended method for authentication (see + https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + to the stored token. + repo_type (`str`, *optional*): + Type of the repo to delete files from. Can be `"model"`, + `"dataset"` or `"space"`. Defaults to `"model"`. + revision (`str`, *optional*): + The git revision to commit from. Defaults to the head of the `"main"` branch. + commit_message (`str`, *optional*): + The summary (first line) of the generated commit. Defaults to + `f"Delete files using huggingface_hub"`. + commit_description (`str` *optional*) + The description of the generated commit. + create_pr (`boolean`, *optional*): + Whether or not to create a Pull Request with that commit. Defaults to `False`. + If `revision` is not set, PR is opened against the `"main"` branch. If + `revision` is set and is a branch, PR is opened against this branch. If + `revision` is set and is not a branch name (example: a commit oid), an + `RevisionNotFoundError` is returned by the server. + parent_commit (`str`, *optional*): + The OID / SHA of the parent commit, as a hexadecimal string. Shorthands (7 first characters) are also supported. + If specified and `create_pr` is `False`, the commit will fail if `revision` does not point to `parent_commit`. + If specified and `create_pr` is `True`, the pull request will be created from `parent_commit`. + Specifying `parent_commit` ensures the repo has not changed before committing the changes, and can be + especially useful if the repo is updated / committed to concurrently. + """ + operations = self._prepare_folder_deletions( + repo_id=repo_id, repo_type=repo_type, delete_patterns=delete_patterns, path_in_repo="", revision=revision + ) + + if commit_message is None: + commit_message = f"Delete files {' '.join(delete_patterns)} with huggingface_hub" + + return self.create_commit( + repo_id=repo_id, + repo_type=repo_type, + token=token, + operations=operations, + revision=revision, + commit_message=commit_message, + commit_description=commit_description, + create_pr=create_pr, + parent_commit=parent_commit, + ) + + @validate_hf_hub_args + def delete_folder( + self, + path_in_repo: str, + repo_id: str, + *, + token: Union[bool, str, None] = None, + repo_type: Optional[str] = None, + revision: Optional[str] = None, + commit_message: Optional[str] = None, + commit_description: Optional[str] = None, + create_pr: Optional[bool] = None, + parent_commit: Optional[str] = None, + ) -> CommitInfo: + """ + Deletes a folder in the given repo. + + Simple wrapper around [`create_commit`] method. + + Args: + path_in_repo (`str`): + Relative folder path in the repo, for example: `"checkpoints/1fec34a"`. + repo_id (`str`): + The repository from which the folder will be deleted, for example: + `"username/custom_transformers"` + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved + token, which is the recommended method for authentication (see + https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + to the stored token. + repo_type (`str`, *optional*): + Set to `"dataset"` or `"space"` if the folder is in a dataset or + space, `None` or `"model"` if in a model. Default is `None`. + revision (`str`, *optional*): + The git revision to commit from. Defaults to the head of the `"main"` branch. + commit_message (`str`, *optional*): + The summary / title / first line of the generated commit. Defaults to + `f"Delete folder {path_in_repo} with huggingface_hub"`. + commit_description (`str` *optional*) + The description of the generated commit. + create_pr (`boolean`, *optional*): + Whether or not to create a Pull Request with that commit. Defaults to `False`. + If `revision` is not set, PR is opened against the `"main"` branch. If + `revision` is set and is a branch, PR is opened against this branch. If + `revision` is set and is not a branch name (example: a commit oid), an + `RevisionNotFoundError` is returned by the server. + parent_commit (`str`, *optional*): + The OID / SHA of the parent commit, as a hexadecimal string. Shorthands (7 first characters) are also supported. + If specified and `create_pr` is `False`, the commit will fail if `revision` does not point to `parent_commit`. + If specified and `create_pr` is `True`, the pull request will be created from `parent_commit`. + Specifying `parent_commit` ensures the repo has not changed before committing the changes, and can be + especially useful if the repo is updated / committed to concurrently. + """ + return self.create_commit( + repo_id=repo_id, + repo_type=repo_type, + token=token, + operations=[CommitOperationDelete(path_in_repo=path_in_repo, is_folder=True)], + revision=revision, + commit_message=( + commit_message if commit_message is not None else f"Delete folder {path_in_repo} with huggingface_hub" + ), + commit_description=commit_description, + create_pr=create_pr, + parent_commit=parent_commit, + ) + + def upload_large_folder( + self, + repo_id: str, + folder_path: Union[str, Path], + *, + repo_type: str, # Repo type is required! + revision: Optional[str] = None, + private: Optional[bool] = None, + allow_patterns: Optional[Union[List[str], str]] = None, + ignore_patterns: Optional[Union[List[str], str]] = None, + num_workers: Optional[int] = None, + print_report: bool = True, + print_report_every: int = 60, + ) -> None: + """Upload a large folder to the Hub in the most resilient way possible. + + Several workers are started to upload files in an optimized way. Before being committed to a repo, files must be + hashed and be pre-uploaded if they are LFS files. Workers will perform these tasks for each file in the folder. + At each step, some metadata information about the upload process is saved in the folder under `.cache/.huggingface/` + to be able to resume the process if interrupted. The whole process might result in several commits. + + Args: + repo_id (`str`): + The repository to which the file will be uploaded. + E.g. `"HuggingFaceTB/smollm-corpus"`. + folder_path (`str` or `Path`): + Path to the folder to upload on the local file system. + repo_type (`str`): + Type of the repository. Must be one of `"model"`, `"dataset"` or `"space"`. + Unlike in all other `HfApi` methods, `repo_type` is explicitly required here. This is to avoid + any mistake when uploading a large folder to the Hub, and therefore prevent from having to re-upload + everything. + revision (`str`, `optional`): + The branch to commit to. If not provided, the `main` branch will be used. + private (`bool`, `optional`): + Whether the repository should be private. + If `None` (default), the repo will be public unless the organization's default is private. + allow_patterns (`List[str]` or `str`, *optional*): + If provided, only files matching at least one pattern are uploaded. + ignore_patterns (`List[str]` or `str`, *optional*): + If provided, files matching any of the patterns are not uploaded. + num_workers (`int`, *optional*): + Number of workers to start. Defaults to `os.cpu_count() - 2` (minimum 2). + A higher number of workers may speed up the process if your machine allows it. However, on machines with a + slower connection, it is recommended to keep the number of workers low to ensure better resumability. + Indeed, partially uploaded files will have to be completely re-uploaded if the process is interrupted. + print_report (`bool`, *optional*): + Whether to print a report of the upload progress. Defaults to True. + Report is printed to `sys.stdout` every X seconds (60 by defaults) and overwrites the previous report. + print_report_every (`int`, *optional*): + Frequency at which the report is printed. Defaults to 60 seconds. + + <Tip> + + A few things to keep in mind: + - Repository limits still apply: https://huggingface.co/docs/hub/repositories-recommendations + - Do not start several processes in parallel. + - You can interrupt and resume the process at any time. + - Do not upload the same folder to several repositories. If you need to do so, you must delete the local `.cache/.huggingface/` folder first. + + </Tip> + + <Tip warning={true}> + + While being much more robust to upload large folders, `upload_large_folder` is more limited than [`upload_folder`] feature-wise. In practice: + - you cannot set a custom `path_in_repo`. If you want to upload to a subfolder, you need to set the proper structure locally. + - you cannot set a custom `commit_message` and `commit_description` since multiple commits are created. + - you cannot delete from the repo while uploading. Please make a separate commit first. + - you cannot create a PR directly. Please create a PR first (from the UI or using [`create_pull_request`]) and then commit to it by passing `revision`. + + </Tip> + + **Technical details:** + + `upload_large_folder` process is as follow: + 1. (Check parameters and setup.) + 2. Create repo if missing. + 3. List local files to upload. + 4. Start workers. Workers can perform the following tasks: + - Hash a file. + - Get upload mode (regular or LFS) for a list of files. + - Pre-upload an LFS file. + - Commit a bunch of files. + Once a worker finishes a task, it will move on to the next task based on the priority list (see below) until + all files are uploaded and committed. + 5. While workers are up, regularly print a report to sys.stdout. + + Order of priority: + 1. Commit if more than 5 minutes since last commit attempt (and at least 1 file). + 2. Commit if at least 150 files are ready to commit. + 3. Get upload mode if at least 10 files have been hashed. + 4. Pre-upload LFS file if at least 1 file and no worker is pre-uploading. + 5. Hash file if at least 1 file and no worker is hashing. + 6. Get upload mode if at least 1 file and no worker is getting upload mode. + 7. Pre-upload LFS file if at least 1 file (exception: if hf_transfer is enabled, only 1 worker can preupload LFS at a time). + 8. Hash file if at least 1 file to hash. + 9. Get upload mode if at least 1 file to get upload mode. + 10. Commit if at least 1 file to commit and at least 1 min since last commit attempt. + 11. Commit if at least 1 file to commit and all other queues are empty. + + Special rules: + - If `hf_transfer` is enabled, only 1 LFS uploader at a time. Otherwise the CPU would be bloated by `hf_transfer`. + - Only one worker can commit at a time. + - If no tasks are available, the worker waits for 10 seconds before checking again. + """ + return upload_large_folder_internal( + self, + repo_id=repo_id, + folder_path=folder_path, + repo_type=repo_type, + revision=revision, + private=private, + allow_patterns=allow_patterns, + ignore_patterns=ignore_patterns, + num_workers=num_workers, + print_report=print_report, + print_report_every=print_report_every, + ) + + @validate_hf_hub_args + def get_hf_file_metadata( + self, + *, + url: str, + token: Union[bool, str, None] = None, + proxies: Optional[Dict] = None, + timeout: Optional[float] = constants.DEFAULT_REQUEST_TIMEOUT, + ) -> HfFileMetadata: + """Fetch metadata of a file versioned on the Hub for a given url. + + Args: + url (`str`): + File url, for example returned by [`hf_hub_url`]. + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved + token, which is the recommended method for authentication (see + https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + proxies (`dict`, *optional*): + Dictionary mapping protocol to the URL of the proxy passed to `requests.request`. + timeout (`float`, *optional*, defaults to 10): + How many seconds to wait for the server to send metadata before giving up. + + Returns: + A [`HfFileMetadata`] object containing metadata such as location, etag, size and commit_hash. + """ + if token is None: + # Cannot do `token = token or self.token` as token can be `False`. + token = self.token + + return get_hf_file_metadata( + url=url, + token=token, + proxies=proxies, + timeout=timeout, + library_name=self.library_name, + library_version=self.library_version, + user_agent=self.user_agent, + ) + + @validate_hf_hub_args + def hf_hub_download( + self, + repo_id: str, + filename: str, + *, + subfolder: Optional[str] = None, + repo_type: Optional[str] = None, + revision: Optional[str] = None, + cache_dir: Union[str, Path, None] = None, + local_dir: Union[str, Path, None] = None, + force_download: bool = False, + proxies: Optional[Dict] = None, + etag_timeout: float = constants.DEFAULT_ETAG_TIMEOUT, + token: Union[bool, str, None] = None, + local_files_only: bool = False, + # Deprecated args + resume_download: Optional[bool] = None, + force_filename: Optional[str] = None, + local_dir_use_symlinks: Union[bool, Literal["auto"]] = "auto", + ) -> str: + """Download a given file if it's not already present in the local cache. + + The new cache file layout looks like this: + - The cache directory contains one subfolder per repo_id (namespaced by repo type) + - inside each repo folder: + - refs is a list of the latest known revision => commit_hash pairs + - blobs contains the actual file blobs (identified by their git-sha or sha256, depending on + whether they're LFS files or not) + - snapshots contains one subfolder per commit, each "commit" contains the subset of the files + that have been resolved at that particular commit. Each filename is a symlink to the blob + at that particular commit. + + ``` + [ 96] . + └── [ 160] models--julien-c--EsperBERTo-small + ├── [ 160] blobs + │ ├── [321M] 403450e234d65943a7dcf7e05a771ce3c92faa84dd07db4ac20f592037a1e4bd + │ ├── [ 398] 7cb18dc9bafbfcf74629a4b760af1b160957a83e + │ └── [1.4K] d7edf6bd2a681fb0175f7735299831ee1b22b812 + ├── [ 96] refs + │ └── [ 40] main + └── [ 128] snapshots + ├── [ 128] 2439f60ef33a0d46d85da5001d52aeda5b00ce9f + │ ├── [ 52] README.md -> ../../blobs/d7edf6bd2a681fb0175f7735299831ee1b22b812 + │ └── [ 76] pytorch_model.bin -> ../../blobs/403450e234d65943a7dcf7e05a771ce3c92faa84dd07db4ac20f592037a1e4bd + └── [ 128] bbc77c8132af1cc5cf678da3f1ddf2de43606d48 + ├── [ 52] README.md -> ../../blobs/7cb18dc9bafbfcf74629a4b760af1b160957a83e + └── [ 76] pytorch_model.bin -> ../../blobs/403450e234d65943a7dcf7e05a771ce3c92faa84dd07db4ac20f592037a1e4bd + ``` + + If `local_dir` is provided, the file structure from the repo will be replicated in this location. When using this + option, the `cache_dir` will not be used and a `.cache/huggingface/` folder will be created at the root of `local_dir` + to store some metadata related to the downloaded files. While this mechanism is not as robust as the main + cache-system, it's optimized for regularly pulling the latest version of a repository. + + Args: + repo_id (`str`): + A user or an organization name and a repo name separated by a `/`. + filename (`str`): + The name of the file in the repo. + subfolder (`str`, *optional*): + An optional value corresponding to a folder inside the repository. + repo_type (`str`, *optional*): + Set to `"dataset"` or `"space"` if downloading from a dataset or space, + `None` or `"model"` if downloading from a model. Default is `None`. + revision (`str`, *optional*): + An optional Git revision id which can be a branch name, a tag, or a + commit hash. + cache_dir (`str`, `Path`, *optional*): + Path to the folder where cached files are stored. + local_dir (`str` or `Path`, *optional*): + If provided, the downloaded file will be placed under this directory. + force_download (`bool`, *optional*, defaults to `False`): + Whether the file should be downloaded even if it already exists in + the local cache. + proxies (`dict`, *optional*): + Dictionary mapping protocol to the URL of the proxy passed to + `requests.request`. + etag_timeout (`float`, *optional*, defaults to `10`): + When fetching ETag, how many seconds to wait for the server to send + data before giving up which is passed to `requests.request`. + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved + token, which is the recommended method for authentication (see + https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + local_files_only (`bool`, *optional*, defaults to `False`): + If `True`, avoid downloading the file and return the path to the + local cached file if it exists. + + Returns: + `str`: Local path of file or if networking is off, last version of file cached on disk. + + Raises: + [`~utils.RepositoryNotFoundError`] + If the repository to download from cannot be found. This may be because it doesn't exist, + or because it is set to `private` and you do not have access. + [`~utils.RevisionNotFoundError`] + If the revision to download from cannot be found. + [`~utils.EntryNotFoundError`] + If the file to download cannot be found. + [`~utils.LocalEntryNotFoundError`] + If network is disabled or unavailable and file is not found in cache. + [`EnvironmentError`](https://docs.python.org/3/library/exceptions.html#EnvironmentError) + If `token=True` but the token cannot be found. + [`OSError`](https://docs.python.org/3/library/exceptions.html#OSError) + If ETag cannot be determined. + [`ValueError`](https://docs.python.org/3/library/exceptions.html#ValueError) + If some parameter value is invalid. + """ + from .file_download import hf_hub_download + + if token is None: + # Cannot do `token = token or self.token` as token can be `False`. + token = self.token + + return hf_hub_download( + repo_id=repo_id, + filename=filename, + subfolder=subfolder, + repo_type=repo_type, + revision=revision, + endpoint=self.endpoint, + library_name=self.library_name, + library_version=self.library_version, + cache_dir=cache_dir, + local_dir=local_dir, + local_dir_use_symlinks=local_dir_use_symlinks, + user_agent=self.user_agent, + force_download=force_download, + force_filename=force_filename, + proxies=proxies, + etag_timeout=etag_timeout, + resume_download=resume_download, + token=token, + headers=self.headers, + local_files_only=local_files_only, + ) + + @validate_hf_hub_args + def snapshot_download( + self, + repo_id: str, + *, + repo_type: Optional[str] = None, + revision: Optional[str] = None, + cache_dir: Union[str, Path, None] = None, + local_dir: Union[str, Path, None] = None, + proxies: Optional[Dict] = None, + etag_timeout: float = constants.DEFAULT_ETAG_TIMEOUT, + force_download: bool = False, + token: Union[bool, str, None] = None, + local_files_only: bool = False, + allow_patterns: Optional[Union[List[str], str]] = None, + ignore_patterns: Optional[Union[List[str], str]] = None, + max_workers: int = 8, + tqdm_class: Optional[base_tqdm] = None, + # Deprecated args + local_dir_use_symlinks: Union[bool, Literal["auto"]] = "auto", + resume_download: Optional[bool] = None, + ) -> str: + """Download repo files. + + Download a whole snapshot of a repo's files at the specified revision. This is useful when you want all files from + a repo, because you don't know which ones you will need a priori. All files are nested inside a folder in order + to keep their actual filename relative to that folder. You can also filter which files to download using + `allow_patterns` and `ignore_patterns`. + + If `local_dir` is provided, the file structure from the repo will be replicated in this location. When using this + option, the `cache_dir` will not be used and a `.cache/huggingface/` folder will be created at the root of `local_dir` + to store some metadata related to the downloaded files.While this mechanism is not as robust as the main + cache-system, it's optimized for regularly pulling the latest version of a repository. + + An alternative would be to clone the repo but this requires git and git-lfs to be installed and properly + configured. It is also not possible to filter which files to download when cloning a repository using git. + + Args: + repo_id (`str`): + A user or an organization name and a repo name separated by a `/`. + repo_type (`str`, *optional*): + Set to `"dataset"` or `"space"` if downloading from a dataset or space, + `None` or `"model"` if downloading from a model. Default is `None`. + revision (`str`, *optional*): + An optional Git revision id which can be a branch name, a tag, or a + commit hash. + cache_dir (`str`, `Path`, *optional*): + Path to the folder where cached files are stored. + local_dir (`str` or `Path`, *optional*): + If provided, the downloaded files will be placed under this directory. + proxies (`dict`, *optional*): + Dictionary mapping protocol to the URL of the proxy passed to + `requests.request`. + etag_timeout (`float`, *optional*, defaults to `10`): + When fetching ETag, how many seconds to wait for the server to send + data before giving up which is passed to `requests.request`. + force_download (`bool`, *optional*, defaults to `False`): + Whether the file should be downloaded even if it already exists in the local cache. + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved + token, which is the recommended method for authentication (see + https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + local_files_only (`bool`, *optional*, defaults to `False`): + If `True`, avoid downloading the file and return the path to the + local cached file if it exists. + allow_patterns (`List[str]` or `str`, *optional*): + If provided, only files matching at least one pattern are downloaded. + ignore_patterns (`List[str]` or `str`, *optional*): + If provided, files matching any of the patterns are not downloaded. + max_workers (`int`, *optional*): + Number of concurrent threads to download files (1 thread = 1 file download). + Defaults to 8. + tqdm_class (`tqdm`, *optional*): + If provided, overwrites the default behavior for the progress bar. Passed + argument must inherit from `tqdm.auto.tqdm` or at least mimic its behavior. + Note that the `tqdm_class` is not passed to each individual download. + Defaults to the custom HF progress bar that can be disabled by setting + `HF_HUB_DISABLE_PROGRESS_BARS` environment variable. + + Returns: + `str`: folder path of the repo snapshot. + + Raises: + [`~utils.RepositoryNotFoundError`] + If the repository to download from cannot be found. This may be because it doesn't exist, + or because it is set to `private` and you do not have access. + [`~utils.RevisionNotFoundError`] + If the revision to download from cannot be found. + [`EnvironmentError`](https://docs.python.org/3/library/exceptions.html#EnvironmentError) + If `token=True` and the token cannot be found. + [`OSError`](https://docs.python.org/3/library/exceptions.html#OSError) if + ETag cannot be determined. + [`ValueError`](https://docs.python.org/3/library/exceptions.html#ValueError) + if some parameter value is invalid. + """ + from ._snapshot_download import snapshot_download + + if token is None: + # Cannot do `token = token or self.token` as token can be `False`. + token = self.token + + return snapshot_download( + repo_id=repo_id, + repo_type=repo_type, + revision=revision, + endpoint=self.endpoint, + cache_dir=cache_dir, + local_dir=local_dir, + local_dir_use_symlinks=local_dir_use_symlinks, + library_name=self.library_name, + library_version=self.library_version, + user_agent=self.user_agent, + proxies=proxies, + etag_timeout=etag_timeout, + resume_download=resume_download, + force_download=force_download, + token=token, + local_files_only=local_files_only, + allow_patterns=allow_patterns, + ignore_patterns=ignore_patterns, + max_workers=max_workers, + tqdm_class=tqdm_class, + ) + + def get_safetensors_metadata( + self, + repo_id: str, + *, + repo_type: Optional[str] = None, + revision: Optional[str] = None, + token: Union[bool, str, None] = None, + ) -> SafetensorsRepoMetadata: + """ + Parse metadata for a safetensors repo on the Hub. + + We first check if the repo has a single safetensors file or a sharded safetensors repo. If it's a single + safetensors file, we parse the metadata from this file. If it's a sharded safetensors repo, we parse the + metadata from the index file and then parse the metadata from each shard. + + To parse metadata from a single safetensors file, use [`parse_safetensors_file_metadata`]. + + For more details regarding the safetensors format, check out https://huggingface.co/docs/safetensors/index#format. + + Args: + repo_id (`str`): + A user or an organization name and a repo name separated by a `/`. + repo_type (`str`, *optional*): + Set to `"dataset"` or `"space"` if the file is in a dataset or space, `None` or `"model"` if in a + model. Default is `None`. + revision (`str`, *optional*): + The git revision to fetch the file from. Can be a branch name, a tag, or a commit hash. Defaults to the + head of the `"main"` branch. + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved + token, which is the recommended method for authentication (see + https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + + Returns: + [`SafetensorsRepoMetadata`]: information related to safetensors repo. + + Raises: + [`NotASafetensorsRepoError`] + If the repo is not a safetensors repo i.e. doesn't have either a + `model.safetensors` or a `model.safetensors.index.json` file. + [`SafetensorsParsingError`] + If a safetensors file header couldn't be parsed correctly. + + Example: + ```py + # Parse repo with single weights file + >>> metadata = get_safetensors_metadata("bigscience/bloomz-560m") + >>> metadata + SafetensorsRepoMetadata( + metadata=None, + sharded=False, + weight_map={'h.0.input_layernorm.bias': 'model.safetensors', ...}, + files_metadata={'model.safetensors': SafetensorsFileMetadata(...)} + ) + >>> metadata.files_metadata["model.safetensors"].metadata + {'format': 'pt'} + + # Parse repo with sharded model + >>> metadata = get_safetensors_metadata("bigscience/bloom") + Parse safetensors files: 100%|██████████████████████████████████████████| 72/72 [00:12<00:00, 5.78it/s] + >>> metadata + SafetensorsRepoMetadata(metadata={'total_size': 352494542848}, sharded=True, weight_map={...}, files_metadata={...}) + >>> len(metadata.files_metadata) + 72 # All safetensors files have been fetched + + # Parse repo with sharded model + >>> get_safetensors_metadata("runwayml/stable-diffusion-v1-5") + NotASafetensorsRepoError: 'runwayml/stable-diffusion-v1-5' is not a safetensors repo. Couldn't find 'model.safetensors.index.json' or 'model.safetensors' files. + ``` + """ + if self.file_exists( # Single safetensors file => non-sharded model + repo_id=repo_id, + filename=constants.SAFETENSORS_SINGLE_FILE, + repo_type=repo_type, + revision=revision, + token=token, + ): + file_metadata = self.parse_safetensors_file_metadata( + repo_id=repo_id, + filename=constants.SAFETENSORS_SINGLE_FILE, + repo_type=repo_type, + revision=revision, + token=token, + ) + return SafetensorsRepoMetadata( + metadata=None, + sharded=False, + weight_map={ + tensor_name: constants.SAFETENSORS_SINGLE_FILE for tensor_name in file_metadata.tensors.keys() + }, + files_metadata={constants.SAFETENSORS_SINGLE_FILE: file_metadata}, + ) + elif self.file_exists( # Multiple safetensors files => sharded with index + repo_id=repo_id, + filename=constants.SAFETENSORS_INDEX_FILE, + repo_type=repo_type, + revision=revision, + token=token, + ): + # Fetch index + index_file = self.hf_hub_download( + repo_id=repo_id, + filename=constants.SAFETENSORS_INDEX_FILE, + repo_type=repo_type, + revision=revision, + token=token, + ) + with open(index_file) as f: + index = json.load(f) + + weight_map = index.get("weight_map", {}) + + # Fetch metadata per shard + files_metadata = {} + + def _parse(filename: str) -> None: + files_metadata[filename] = self.parse_safetensors_file_metadata( + repo_id=repo_id, filename=filename, repo_type=repo_type, revision=revision, token=token + ) + + thread_map( + _parse, + set(weight_map.values()), + desc="Parse safetensors files", + tqdm_class=hf_tqdm, + ) + + return SafetensorsRepoMetadata( + metadata=index.get("metadata", None), + sharded=True, + weight_map=weight_map, + files_metadata=files_metadata, + ) + else: + # Not a safetensors repo + raise NotASafetensorsRepoError( + f"'{repo_id}' is not a safetensors repo. Couldn't find '{constants.SAFETENSORS_INDEX_FILE}' or '{constants.SAFETENSORS_SINGLE_FILE}' files." + ) + + def parse_safetensors_file_metadata( + self, + repo_id: str, + filename: str, + *, + repo_type: Optional[str] = None, + revision: Optional[str] = None, + token: Union[bool, str, None] = None, + ) -> SafetensorsFileMetadata: + """ + Parse metadata from a safetensors file on the Hub. + + To parse metadata from all safetensors files in a repo at once, use [`get_safetensors_metadata`]. + + For more details regarding the safetensors format, check out https://huggingface.co/docs/safetensors/index#format. + + Args: + repo_id (`str`): + A user or an organization name and a repo name separated by a `/`. + filename (`str`): + The name of the file in the repo. + repo_type (`str`, *optional*): + Set to `"dataset"` or `"space"` if the file is in a dataset or space, `None` or `"model"` if in a + model. Default is `None`. + revision (`str`, *optional*): + The git revision to fetch the file from. Can be a branch name, a tag, or a commit hash. Defaults to the + head of the `"main"` branch. + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved + token, which is the recommended method for authentication (see + https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + + Returns: + [`SafetensorsFileMetadata`]: information related to a safetensors file. + + Raises: + [`NotASafetensorsRepoError`]: + If the repo is not a safetensors repo i.e. doesn't have either a + `model.safetensors` or a `model.safetensors.index.json` file. + [`SafetensorsParsingError`]: + If a safetensors file header couldn't be parsed correctly. + """ + url = hf_hub_url( + repo_id=repo_id, filename=filename, repo_type=repo_type, revision=revision, endpoint=self.endpoint + ) + _headers = self._build_hf_headers(token=token) + + # 1. Fetch first 100kb + # Empirically, 97% of safetensors files have a metadata size < 100kb (over the top 1000 models on the Hub). + # We assume fetching 100kb is faster than making 2 GET requests. Therefore we always fetch the first 100kb to + # avoid the 2nd GET in most cases. + # See https://github.com/huggingface/huggingface_hub/pull/1855#discussion_r1404286419. + response = get_session().get(url, headers={**_headers, "range": "bytes=0-100000"}) + hf_raise_for_status(response) + + # 2. Parse metadata size + metadata_size = struct.unpack("<Q", response.content[:8])[0] + if metadata_size > constants.SAFETENSORS_MAX_HEADER_LENGTH: + raise SafetensorsParsingError( + f"Failed to parse safetensors header for '{filename}' (repo '{repo_id}', revision " + f"'{revision or constants.DEFAULT_REVISION}'): safetensors header is too big. Maximum supported size is " + f"{constants.SAFETENSORS_MAX_HEADER_LENGTH} bytes (got {metadata_size})." + ) + + # 3.a. Get metadata from payload + if metadata_size <= 100000: + metadata_as_bytes = response.content[8 : 8 + metadata_size] + else: # 3.b. Request full metadata + response = get_session().get(url, headers={**_headers, "range": f"bytes=8-{metadata_size + 7}"}) + hf_raise_for_status(response) + metadata_as_bytes = response.content + + # 4. Parse json header + try: + metadata_as_dict = json.loads(metadata_as_bytes.decode(errors="ignore")) + except json.JSONDecodeError as e: + raise SafetensorsParsingError( + f"Failed to parse safetensors header for '{filename}' (repo '{repo_id}', revision " + f"'{revision or constants.DEFAULT_REVISION}'): header is not json-encoded string. Please make sure this is a " + "correctly formatted safetensors file." + ) from e + + try: + return SafetensorsFileMetadata( + metadata=metadata_as_dict.get("__metadata__", {}), + tensors={ + key: TensorInfo( + dtype=tensor["dtype"], + shape=tensor["shape"], + data_offsets=tuple(tensor["data_offsets"]), # type: ignore + ) + for key, tensor in metadata_as_dict.items() + if key != "__metadata__" + }, + ) + except (KeyError, IndexError) as e: + raise SafetensorsParsingError( + f"Failed to parse safetensors header for '{filename}' (repo '{repo_id}', revision " + f"'{revision or constants.DEFAULT_REVISION}'): header format not recognized. Please make sure this is a correctly" + " formatted safetensors file." + ) from e + + @validate_hf_hub_args + def create_branch( + self, + repo_id: str, + *, + branch: str, + revision: Optional[str] = None, + token: Union[bool, str, None] = None, + repo_type: Optional[str] = None, + exist_ok: bool = False, + ) -> None: + """ + Create a new branch for a repo on the Hub, starting from the specified revision (defaults to `main`). + To find a revision suiting your needs, you can use [`list_repo_refs`] or [`list_repo_commits`]. + + Args: + repo_id (`str`): + The repository in which the branch will be created. + Example: `"user/my-cool-model"`. + + branch (`str`): + The name of the branch to create. + + revision (`str`, *optional*): + The git revision to create the branch from. It can be a branch name or + the OID/SHA of a commit, as a hexadecimal string. Defaults to the head + of the `"main"` branch. + + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved + token, which is the recommended method for authentication (see + https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + + repo_type (`str`, *optional*): + Set to `"dataset"` or `"space"` if creating a branch on a dataset or + space, `None` or `"model"` if tagging a model. Default is `None`. + + exist_ok (`bool`, *optional*, defaults to `False`): + If `True`, do not raise an error if branch already exists. + + Raises: + [`~utils.RepositoryNotFoundError`]: + If repository is not found (error 404): wrong repo_id/repo_type, private + but not authenticated or repo does not exist. + [`~utils.BadRequestError`]: + If invalid reference for a branch. Ex: `refs/pr/5` or 'refs/foo/bar'. + [`~utils.HfHubHTTPError`]: + If the branch already exists on the repo (error 409) and `exist_ok` is + set to `False`. + """ + if repo_type is None: + repo_type = constants.REPO_TYPE_MODEL + branch = quote(branch, safe="") + + # Prepare request + branch_url = f"{self.endpoint}/api/{repo_type}s/{repo_id}/branch/{branch}" + headers = self._build_hf_headers(token=token) + payload = {} + if revision is not None: + payload["startingPoint"] = revision + + # Create branch + response = get_session().post(url=branch_url, headers=headers, json=payload) + try: + hf_raise_for_status(response) + except HfHubHTTPError as e: + if exist_ok and e.response.status_code == 409: + return + elif exist_ok and e.response.status_code == 403: + # No write permission on the namespace but branch might already exist + try: + refs = self.list_repo_refs(repo_id=repo_id, repo_type=repo_type, token=token) + for branch_ref in refs.branches: + if branch_ref.name == branch: + return # Branch already exists => do not raise + except HfHubHTTPError: + pass # We raise the original error if the branch does not exist + raise + + @validate_hf_hub_args + def delete_branch( + self, + repo_id: str, + *, + branch: str, + token: Union[bool, str, None] = None, + repo_type: Optional[str] = None, + ) -> None: + """ + Delete a branch from a repo on the Hub. + + Args: + repo_id (`str`): + The repository in which a branch will be deleted. + Example: `"user/my-cool-model"`. + + branch (`str`): + The name of the branch to delete. + + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved + token, which is the recommended method for authentication (see + https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + + repo_type (`str`, *optional*): + Set to `"dataset"` or `"space"` if creating a branch on a dataset or + space, `None` or `"model"` if tagging a model. Default is `None`. + + Raises: + [`~utils.RepositoryNotFoundError`]: + If repository is not found (error 404): wrong repo_id/repo_type, private + but not authenticated or repo does not exist. + [`~utils.HfHubHTTPError`]: + If trying to delete a protected branch. Ex: `main` cannot be deleted. + [`~utils.HfHubHTTPError`]: + If trying to delete a branch that does not exist. + + """ + if repo_type is None: + repo_type = constants.REPO_TYPE_MODEL + branch = quote(branch, safe="") + + # Prepare request + branch_url = f"{self.endpoint}/api/{repo_type}s/{repo_id}/branch/{branch}" + headers = self._build_hf_headers(token=token) + + # Delete branch + response = get_session().delete(url=branch_url, headers=headers) + hf_raise_for_status(response) + + @validate_hf_hub_args + def create_tag( + self, + repo_id: str, + *, + tag: str, + tag_message: Optional[str] = None, + revision: Optional[str] = None, + token: Union[bool, str, None] = None, + repo_type: Optional[str] = None, + exist_ok: bool = False, + ) -> None: + """ + Tag a given commit of a repo on the Hub. + + Args: + repo_id (`str`): + The repository in which a commit will be tagged. + Example: `"user/my-cool-model"`. + + tag (`str`): + The name of the tag to create. + + tag_message (`str`, *optional*): + The description of the tag to create. + + revision (`str`, *optional*): + The git revision to tag. It can be a branch name or the OID/SHA of a + commit, as a hexadecimal string. Shorthands (7 first characters) are + also supported. Defaults to the head of the `"main"` branch. + + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved + token, which is the recommended method for authentication (see + https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + + repo_type (`str`, *optional*): + Set to `"dataset"` or `"space"` if tagging a dataset or + space, `None` or `"model"` if tagging a model. Default is + `None`. + + exist_ok (`bool`, *optional*, defaults to `False`): + If `True`, do not raise an error if tag already exists. + + Raises: + [`~utils.RepositoryNotFoundError`]: + If repository is not found (error 404): wrong repo_id/repo_type, private + but not authenticated or repo does not exist. + [`~utils.RevisionNotFoundError`]: + If revision is not found (error 404) on the repo. + [`~utils.HfHubHTTPError`]: + If the branch already exists on the repo (error 409) and `exist_ok` is + set to `False`. + """ + if repo_type is None: + repo_type = constants.REPO_TYPE_MODEL + revision = quote(revision, safe="") if revision is not None else constants.DEFAULT_REVISION + + # Prepare request + tag_url = f"{self.endpoint}/api/{repo_type}s/{repo_id}/tag/{revision}" + headers = self._build_hf_headers(token=token) + payload = {"tag": tag} + if tag_message is not None: + payload["message"] = tag_message + + # Tag + response = get_session().post(url=tag_url, headers=headers, json=payload) + try: + hf_raise_for_status(response) + except HfHubHTTPError as e: + if not (e.response.status_code == 409 and exist_ok): + raise + + @validate_hf_hub_args + def delete_tag( + self, + repo_id: str, + *, + tag: str, + token: Union[bool, str, None] = None, + repo_type: Optional[str] = None, + ) -> None: + """ + Delete a tag from a repo on the Hub. + + Args: + repo_id (`str`): + The repository in which a tag will be deleted. + Example: `"user/my-cool-model"`. + + tag (`str`): + The name of the tag to delete. + + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved + token, which is the recommended method for authentication (see + https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + + repo_type (`str`, *optional*): + Set to `"dataset"` or `"space"` if tagging a dataset or space, `None` or + `"model"` if tagging a model. Default is `None`. + + Raises: + [`~utils.RepositoryNotFoundError`]: + If repository is not found (error 404): wrong repo_id/repo_type, private + but not authenticated or repo does not exist. + [`~utils.RevisionNotFoundError`]: + If tag is not found. + """ + if repo_type is None: + repo_type = constants.REPO_TYPE_MODEL + tag = quote(tag, safe="") + + # Prepare request + tag_url = f"{self.endpoint}/api/{repo_type}s/{repo_id}/tag/{tag}" + headers = self._build_hf_headers(token=token) + + # Un-tag + response = get_session().delete(url=tag_url, headers=headers) + hf_raise_for_status(response) + + @validate_hf_hub_args + def get_full_repo_name( + self, + model_id: str, + *, + organization: Optional[str] = None, + token: Union[bool, str, None] = None, + ): + """ + Returns the repository name for a given model ID and optional + organization. + + Args: + model_id (`str`): + The name of the model. + organization (`str`, *optional*): + If passed, the repository name will be in the organization + namespace instead of the user namespace. + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved + token, which is the recommended method for authentication (see + https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + + Returns: + `str`: The repository name in the user's namespace + ({username}/{model_id}) if no organization is passed, and under the + organization namespace ({organization}/{model_id}) otherwise. + """ + if organization is None: + if "/" in model_id: + username = model_id.split("/")[0] + else: + username = self.whoami(token=token)["name"] # type: ignore + return f"{username}/{model_id}" + else: + return f"{organization}/{model_id}" + + @validate_hf_hub_args + def get_repo_discussions( + self, + repo_id: str, + *, + author: Optional[str] = None, + discussion_type: Optional[constants.DiscussionTypeFilter] = None, + discussion_status: Optional[constants.DiscussionStatusFilter] = None, + repo_type: Optional[str] = None, + token: Union[bool, str, None] = None, + ) -> Iterator[Discussion]: + """ + Fetches Discussions and Pull Requests for the given repo. + + Args: + repo_id (`str`): + A namespace (user or an organization) and a repo name separated + by a `/`. + author (`str`, *optional*): + Pass a value to filter by discussion author. `None` means no filter. + Default is `None`. + discussion_type (`str`, *optional*): + Set to `"pull_request"` to fetch only pull requests, `"discussion"` + to fetch only discussions. Set to `"all"` or `None` to fetch both. + Default is `None`. + discussion_status (`str`, *optional*): + Set to `"open"` (respectively `"closed"`) to fetch only open + (respectively closed) discussions. Set to `"all"` or `None` + to fetch both. + Default is `None`. + repo_type (`str`, *optional*): + Set to `"dataset"` or `"space"` if fetching from a dataset or + space, `None` or `"model"` if fetching from a model. Default is + `None`. + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved + token, which is the recommended method for authentication (see + https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + + Returns: + `Iterator[Discussion]`: An iterator of [`Discussion`] objects. + + Example: + Collecting all discussions of a repo in a list: + + ```python + >>> from huggingface_hub import get_repo_discussions + >>> discussions_list = list(get_repo_discussions(repo_id="bert-base-uncased")) + ``` + + Iterating over discussions of a repo: + + ```python + >>> from huggingface_hub import get_repo_discussions + >>> for discussion in get_repo_discussions(repo_id="bert-base-uncased"): + ... print(discussion.num, discussion.title) + ``` + """ + if repo_type not in constants.REPO_TYPES: + raise ValueError(f"Invalid repo type, must be one of {constants.REPO_TYPES}") + if repo_type is None: + repo_type = constants.REPO_TYPE_MODEL + if discussion_type is not None and discussion_type not in constants.DISCUSSION_TYPES: + raise ValueError(f"Invalid discussion_type, must be one of {constants.DISCUSSION_TYPES}") + if discussion_status is not None and discussion_status not in constants.DISCUSSION_STATUS: + raise ValueError(f"Invalid discussion_status, must be one of {constants.DISCUSSION_STATUS}") + + headers = self._build_hf_headers(token=token) + path = f"{self.endpoint}/api/{repo_type}s/{repo_id}/discussions" + + params: Dict[str, Union[str, int]] = {} + if discussion_type is not None: + params["type"] = discussion_type + if discussion_status is not None: + params["status"] = discussion_status + if author is not None: + params["author"] = author + + def _fetch_discussion_page(page_index: int): + params["p"] = page_index + resp = get_session().get(path, headers=headers, params=params) + hf_raise_for_status(resp) + paginated_discussions = resp.json() + total = paginated_discussions["count"] + start = paginated_discussions["start"] + discussions = paginated_discussions["discussions"] + has_next = (start + len(discussions)) < total + return discussions, has_next + + has_next, page_index = True, 0 + + while has_next: + discussions, has_next = _fetch_discussion_page(page_index=page_index) + for discussion in discussions: + yield Discussion( + title=discussion["title"], + num=discussion["num"], + author=discussion.get("author", {}).get("name", "deleted"), + created_at=parse_datetime(discussion["createdAt"]), + status=discussion["status"], + repo_id=discussion["repo"]["name"], + repo_type=discussion["repo"]["type"], + is_pull_request=discussion["isPullRequest"], + endpoint=self.endpoint, + ) + page_index = page_index + 1 + + @validate_hf_hub_args + def get_discussion_details( + self, + repo_id: str, + discussion_num: int, + *, + repo_type: Optional[str] = None, + token: Union[bool, str, None] = None, + ) -> DiscussionWithDetails: + """Fetches a Discussion's / Pull Request 's details from the Hub. + + Args: + repo_id (`str`): + A namespace (user or an organization) and a repo name separated + by a `/`. + discussion_num (`int`): + The number of the Discussion or Pull Request . Must be a strictly positive integer. + repo_type (`str`, *optional*): + Set to `"dataset"` or `"space"` if uploading to a dataset or + space, `None` or `"model"` if uploading to a model. Default is + `None`. + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved + token, which is the recommended method for authentication (see + https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + + Returns: [`DiscussionWithDetails`] + + <Tip> + + Raises the following errors: + + - [`HTTPError`](https://requests.readthedocs.io/en/latest/api/#requests.HTTPError) + if the HuggingFace API returned an error + - [`ValueError`](https://docs.python.org/3/library/exceptions.html#ValueError) + if some parameter value is invalid + - [`~utils.RepositoryNotFoundError`] + If the repository to download from cannot be found. This may be because it doesn't exist, + or because it is set to `private` and you do not have access. + + </Tip> + """ + if not isinstance(discussion_num, int) or discussion_num <= 0: + raise ValueError("Invalid discussion_num, must be a positive integer") + if repo_type not in constants.REPO_TYPES: + raise ValueError(f"Invalid repo type, must be one of {constants.REPO_TYPES}") + if repo_type is None: + repo_type = constants.REPO_TYPE_MODEL + + path = f"{self.endpoint}/api/{repo_type}s/{repo_id}/discussions/{discussion_num}" + headers = self._build_hf_headers(token=token) + resp = get_session().get(path, params={"diff": "1"}, headers=headers) + hf_raise_for_status(resp) + + discussion_details = resp.json() + is_pull_request = discussion_details["isPullRequest"] + + target_branch = discussion_details["changes"]["base"] if is_pull_request else None + conflicting_files = discussion_details["filesWithConflicts"] if is_pull_request else None + merge_commit_oid = discussion_details["changes"].get("mergeCommitId", None) if is_pull_request else None + + return DiscussionWithDetails( + title=discussion_details["title"], + num=discussion_details["num"], + author=discussion_details.get("author", {}).get("name", "deleted"), + created_at=parse_datetime(discussion_details["createdAt"]), + status=discussion_details["status"], + repo_id=discussion_details["repo"]["name"], + repo_type=discussion_details["repo"]["type"], + is_pull_request=discussion_details["isPullRequest"], + events=[deserialize_event(evt) for evt in discussion_details["events"]], + conflicting_files=conflicting_files, + target_branch=target_branch, + merge_commit_oid=merge_commit_oid, + diff=discussion_details.get("diff"), + endpoint=self.endpoint, + ) + + @validate_hf_hub_args + def create_discussion( + self, + repo_id: str, + title: str, + *, + token: Union[bool, str, None] = None, + description: Optional[str] = None, + repo_type: Optional[str] = None, + pull_request: bool = False, + ) -> DiscussionWithDetails: + """Creates a Discussion or Pull Request. + + Pull Requests created programmatically will be in `"draft"` status. + + Creating a Pull Request with changes can also be done at once with [`HfApi.create_commit`]. + + Args: + repo_id (`str`): + A namespace (user or an organization) and a repo name separated + by a `/`. + title (`str`): + The title of the discussion. It can be up to 200 characters long, + and must be at least 3 characters long. Leading and trailing whitespaces + will be stripped. + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved + token, which is the recommended method for authentication (see + https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + description (`str`, *optional*): + An optional description for the Pull Request. + Defaults to `"Discussion opened with the huggingface_hub Python library"` + pull_request (`bool`, *optional*): + Whether to create a Pull Request or discussion. If `True`, creates a Pull Request. + If `False`, creates a discussion. Defaults to `False`. + repo_type (`str`, *optional*): + Set to `"dataset"` or `"space"` if uploading to a dataset or + space, `None` or `"model"` if uploading to a model. Default is + `None`. + + Returns: [`DiscussionWithDetails`] + + <Tip> + + Raises the following errors: + + - [`HTTPError`](https://requests.readthedocs.io/en/latest/api/#requests.HTTPError) + if the HuggingFace API returned an error + - [`ValueError`](https://docs.python.org/3/library/exceptions.html#ValueError) + if some parameter value is invalid + - [`~utils.RepositoryNotFoundError`] + If the repository to download from cannot be found. This may be because it doesn't exist, + or because it is set to `private` and you do not have access. + + </Tip>""" + if repo_type not in constants.REPO_TYPES: + raise ValueError(f"Invalid repo type, must be one of {constants.REPO_TYPES}") + if repo_type is None: + repo_type = constants.REPO_TYPE_MODEL + + if description is not None: + description = description.strip() + description = ( + description + if description + else ( + f"{'Pull Request' if pull_request else 'Discussion'} opened with the" + " [huggingface_hub Python" + " library](https://huggingface.co/docs/huggingface_hub)" + ) + ) + + headers = self._build_hf_headers(token=token) + resp = get_session().post( + f"{self.endpoint}/api/{repo_type}s/{repo_id}/discussions", + json={ + "title": title.strip(), + "description": description, + "pullRequest": pull_request, + }, + headers=headers, + ) + hf_raise_for_status(resp) + num = resp.json()["num"] + return self.get_discussion_details( + repo_id=repo_id, + repo_type=repo_type, + discussion_num=num, + token=token, + ) + + @validate_hf_hub_args + def create_pull_request( + self, + repo_id: str, + title: str, + *, + token: Union[bool, str, None] = None, + description: Optional[str] = None, + repo_type: Optional[str] = None, + ) -> DiscussionWithDetails: + """Creates a Pull Request . Pull Requests created programmatically will be in `"draft"` status. + + Creating a Pull Request with changes can also be done at once with [`HfApi.create_commit`]; + + This is a wrapper around [`HfApi.create_discussion`]. + + Args: + repo_id (`str`): + A namespace (user or an organization) and a repo name separated + by a `/`. + title (`str`): + The title of the discussion. It can be up to 200 characters long, + and must be at least 3 characters long. Leading and trailing whitespaces + will be stripped. + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved + token, which is the recommended method for authentication (see + https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + description (`str`, *optional*): + An optional description for the Pull Request. + Defaults to `"Discussion opened with the huggingface_hub Python library"` + repo_type (`str`, *optional*): + Set to `"dataset"` or `"space"` if uploading to a dataset or + space, `None` or `"model"` if uploading to a model. Default is + `None`. + + Returns: [`DiscussionWithDetails`] + + <Tip> + + Raises the following errors: + + - [`HTTPError`](https://requests.readthedocs.io/en/latest/api/#requests.HTTPError) + if the HuggingFace API returned an error + - [`ValueError`](https://docs.python.org/3/library/exceptions.html#ValueError) + if some parameter value is invalid + - [`~utils.RepositoryNotFoundError`] + If the repository to download from cannot be found. This may be because it doesn't exist, + or because it is set to `private` and you do not have access. + + </Tip>""" + return self.create_discussion( + repo_id=repo_id, + title=title, + token=token, + description=description, + repo_type=repo_type, + pull_request=True, + ) + + def _post_discussion_changes( + self, + *, + repo_id: str, + discussion_num: int, + resource: str, + body: Optional[dict] = None, + token: Union[bool, str, None] = None, + repo_type: Optional[str] = None, + ) -> requests.Response: + """Internal utility to POST changes to a Discussion or Pull Request""" + if not isinstance(discussion_num, int) or discussion_num <= 0: + raise ValueError("Invalid discussion_num, must be a positive integer") + if repo_type not in constants.REPO_TYPES: + raise ValueError(f"Invalid repo type, must be one of {constants.REPO_TYPES}") + if repo_type is None: + repo_type = constants.REPO_TYPE_MODEL + repo_id = f"{repo_type}s/{repo_id}" + + path = f"{self.endpoint}/api/{repo_id}/discussions/{discussion_num}/{resource}" + + headers = self._build_hf_headers(token=token) + resp = requests.post(path, headers=headers, json=body) + hf_raise_for_status(resp) + return resp + + @validate_hf_hub_args + def comment_discussion( + self, + repo_id: str, + discussion_num: int, + comment: str, + *, + token: Union[bool, str, None] = None, + repo_type: Optional[str] = None, + ) -> DiscussionComment: + """Creates a new comment on the given Discussion. + + Args: + repo_id (`str`): + A namespace (user or an organization) and a repo name separated + by a `/`. + discussion_num (`int`): + The number of the Discussion or Pull Request . Must be a strictly positive integer. + comment (`str`): + The content of the comment to create. Comments support markdown formatting. + repo_type (`str`, *optional*): + Set to `"dataset"` or `"space"` if uploading to a dataset or + space, `None` or `"model"` if uploading to a model. Default is + `None`. + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved + token, which is the recommended method for authentication (see + https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + + Returns: + [`DiscussionComment`]: the newly created comment + + + Examples: + ```python + + >>> comment = \"\"\" + ... Hello @otheruser! + ... + ... # This is a title + ... + ... **This is bold**, *this is italic* and ~this is strikethrough~ + ... And [this](http://url) is a link + ... \"\"\" + + >>> HfApi().comment_discussion( + ... repo_id="username/repo_name", + ... discussion_num=34 + ... comment=comment + ... ) + # DiscussionComment(id='deadbeef0000000', type='comment', ...) + + ``` + + <Tip> + + Raises the following errors: + + - [`HTTPError`](https://requests.readthedocs.io/en/latest/api/#requests.HTTPError) + if the HuggingFace API returned an error + - [`ValueError`](https://docs.python.org/3/library/exceptions.html#ValueError) + if some parameter value is invalid + - [`~utils.RepositoryNotFoundError`] + If the repository to download from cannot be found. This may be because it doesn't exist, + or because it is set to `private` and you do not have access. + + </Tip> + """ + resp = self._post_discussion_changes( + repo_id=repo_id, + repo_type=repo_type, + discussion_num=discussion_num, + token=token, + resource="comment", + body={"comment": comment}, + ) + return deserialize_event(resp.json()["newMessage"]) # type: ignore + + @validate_hf_hub_args + def rename_discussion( + self, + repo_id: str, + discussion_num: int, + new_title: str, + *, + token: Union[bool, str, None] = None, + repo_type: Optional[str] = None, + ) -> DiscussionTitleChange: + """Renames a Discussion. + + Args: + repo_id (`str`): + A namespace (user or an organization) and a repo name separated + by a `/`. + discussion_num (`int`): + The number of the Discussion or Pull Request . Must be a strictly positive integer. + new_title (`str`): + The new title for the discussion + repo_type (`str`, *optional*): + Set to `"dataset"` or `"space"` if uploading to a dataset or + space, `None` or `"model"` if uploading to a model. Default is + `None`. + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved + token, which is the recommended method for authentication (see + https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + + Returns: + [`DiscussionTitleChange`]: the title change event + + + Examples: + ```python + >>> new_title = "New title, fixing a typo" + >>> HfApi().rename_discussion( + ... repo_id="username/repo_name", + ... discussion_num=34 + ... new_title=new_title + ... ) + # DiscussionTitleChange(id='deadbeef0000000', type='title-change', ...) + + ``` + + <Tip> + + Raises the following errors: + + - [`HTTPError`](https://requests.readthedocs.io/en/latest/api/#requests.HTTPError) + if the HuggingFace API returned an error + - [`ValueError`](https://docs.python.org/3/library/exceptions.html#ValueError) + if some parameter value is invalid + - [`~utils.RepositoryNotFoundError`] + If the repository to download from cannot be found. This may be because it doesn't exist, + or because it is set to `private` and you do not have access. + + </Tip> + """ + resp = self._post_discussion_changes( + repo_id=repo_id, + repo_type=repo_type, + discussion_num=discussion_num, + token=token, + resource="title", + body={"title": new_title}, + ) + return deserialize_event(resp.json()["newTitle"]) # type: ignore + + @validate_hf_hub_args + def change_discussion_status( + self, + repo_id: str, + discussion_num: int, + new_status: Literal["open", "closed"], + *, + token: Union[bool, str, None] = None, + comment: Optional[str] = None, + repo_type: Optional[str] = None, + ) -> DiscussionStatusChange: + """Closes or re-opens a Discussion or Pull Request. + + Args: + repo_id (`str`): + A namespace (user or an organization) and a repo name separated + by a `/`. + discussion_num (`int`): + The number of the Discussion or Pull Request . Must be a strictly positive integer. + new_status (`str`): + The new status for the discussion, either `"open"` or `"closed"`. + comment (`str`, *optional*): + An optional comment to post with the status change. + repo_type (`str`, *optional*): + Set to `"dataset"` or `"space"` if uploading to a dataset or + space, `None` or `"model"` if uploading to a model. Default is + `None`. + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved + token, which is the recommended method for authentication (see + https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + + Returns: + [`DiscussionStatusChange`]: the status change event + + + Examples: + ```python + >>> new_title = "New title, fixing a typo" + >>> HfApi().rename_discussion( + ... repo_id="username/repo_name", + ... discussion_num=34 + ... new_title=new_title + ... ) + # DiscussionStatusChange(id='deadbeef0000000', type='status-change', ...) + + ``` + + <Tip> + + Raises the following errors: + + - [`HTTPError`](https://requests.readthedocs.io/en/latest/api/#requests.HTTPError) + if the HuggingFace API returned an error + - [`ValueError`](https://docs.python.org/3/library/exceptions.html#ValueError) + if some parameter value is invalid + - [`~utils.RepositoryNotFoundError`] + If the repository to download from cannot be found. This may be because it doesn't exist, + or because it is set to `private` and you do not have access. + + </Tip> + """ + if new_status not in ["open", "closed"]: + raise ValueError("Invalid status, valid statuses are: 'open' and 'closed'") + body: Dict[str, str] = {"status": new_status} + if comment and comment.strip(): + body["comment"] = comment.strip() + resp = self._post_discussion_changes( + repo_id=repo_id, + repo_type=repo_type, + discussion_num=discussion_num, + token=token, + resource="status", + body=body, + ) + return deserialize_event(resp.json()["newStatus"]) # type: ignore + + @validate_hf_hub_args + def merge_pull_request( + self, + repo_id: str, + discussion_num: int, + *, + token: Union[bool, str, None] = None, + comment: Optional[str] = None, + repo_type: Optional[str] = None, + ): + """Merges a Pull Request. + + Args: + repo_id (`str`): + A namespace (user or an organization) and a repo name separated + by a `/`. + discussion_num (`int`): + The number of the Discussion or Pull Request . Must be a strictly positive integer. + comment (`str`, *optional*): + An optional comment to post with the status change. + repo_type (`str`, *optional*): + Set to `"dataset"` or `"space"` if uploading to a dataset or + space, `None` or `"model"` if uploading to a model. Default is + `None`. + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved + token, which is the recommended method for authentication (see + https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + + Returns: + [`DiscussionStatusChange`]: the status change event + + <Tip> + + Raises the following errors: + + - [`HTTPError`](https://requests.readthedocs.io/en/latest/api/#requests.HTTPError) + if the HuggingFace API returned an error + - [`ValueError`](https://docs.python.org/3/library/exceptions.html#ValueError) + if some parameter value is invalid + - [`~utils.RepositoryNotFoundError`] + If the repository to download from cannot be found. This may be because it doesn't exist, + or because it is set to `private` and you do not have access. + + </Tip> + """ + self._post_discussion_changes( + repo_id=repo_id, + repo_type=repo_type, + discussion_num=discussion_num, + token=token, + resource="merge", + body={"comment": comment.strip()} if comment and comment.strip() else None, + ) + + @validate_hf_hub_args + def edit_discussion_comment( + self, + repo_id: str, + discussion_num: int, + comment_id: str, + new_content: str, + *, + token: Union[bool, str, None] = None, + repo_type: Optional[str] = None, + ) -> DiscussionComment: + """Edits a comment on a Discussion / Pull Request. + + Args: + repo_id (`str`): + A namespace (user or an organization) and a repo name separated + by a `/`. + discussion_num (`int`): + The number of the Discussion or Pull Request . Must be a strictly positive integer. + comment_id (`str`): + The ID of the comment to edit. + new_content (`str`): + The new content of the comment. Comments support markdown formatting. + repo_type (`str`, *optional*): + Set to `"dataset"` or `"space"` if uploading to a dataset or + space, `None` or `"model"` if uploading to a model. Default is + `None`. + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved + token, which is the recommended method for authentication (see + https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + + Returns: + [`DiscussionComment`]: the edited comment + + <Tip> + + Raises the following errors: + + - [`HTTPError`](https://requests.readthedocs.io/en/latest/api/#requests.HTTPError) + if the HuggingFace API returned an error + - [`ValueError`](https://docs.python.org/3/library/exceptions.html#ValueError) + if some parameter value is invalid + - [`~utils.RepositoryNotFoundError`] + If the repository to download from cannot be found. This may be because it doesn't exist, + or because it is set to `private` and you do not have access. + + </Tip> + """ + resp = self._post_discussion_changes( + repo_id=repo_id, + repo_type=repo_type, + discussion_num=discussion_num, + token=token, + resource=f"comment/{comment_id.lower()}/edit", + body={"content": new_content}, + ) + return deserialize_event(resp.json()["updatedComment"]) # type: ignore + + @validate_hf_hub_args + def hide_discussion_comment( + self, + repo_id: str, + discussion_num: int, + comment_id: str, + *, + token: Union[bool, str, None] = None, + repo_type: Optional[str] = None, + ) -> DiscussionComment: + """Hides a comment on a Discussion / Pull Request. + + <Tip warning={true}> + Hidden comments' content cannot be retrieved anymore. Hiding a comment is irreversible. + </Tip> + + Args: + repo_id (`str`): + A namespace (user or an organization) and a repo name separated + by a `/`. + discussion_num (`int`): + The number of the Discussion or Pull Request . Must be a strictly positive integer. + comment_id (`str`): + The ID of the comment to edit. + repo_type (`str`, *optional*): + Set to `"dataset"` or `"space"` if uploading to a dataset or + space, `None` or `"model"` if uploading to a model. Default is + `None`. + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved + token, which is the recommended method for authentication (see + https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + + Returns: + [`DiscussionComment`]: the hidden comment + + <Tip> + + Raises the following errors: + + - [`HTTPError`](https://requests.readthedocs.io/en/latest/api/#requests.HTTPError) + if the HuggingFace API returned an error + - [`ValueError`](https://docs.python.org/3/library/exceptions.html#ValueError) + if some parameter value is invalid + - [`~utils.RepositoryNotFoundError`] + If the repository to download from cannot be found. This may be because it doesn't exist, + or because it is set to `private` and you do not have access. + + </Tip> + """ + warnings.warn( + "Hidden comments' content cannot be retrieved anymore. Hiding a comment is irreversible.", + UserWarning, + ) + resp = self._post_discussion_changes( + repo_id=repo_id, + repo_type=repo_type, + discussion_num=discussion_num, + token=token, + resource=f"comment/{comment_id.lower()}/hide", + ) + return deserialize_event(resp.json()["updatedComment"]) # type: ignore + + @validate_hf_hub_args + def add_space_secret( + self, + repo_id: str, + key: str, + value: str, + *, + description: Optional[str] = None, + token: Union[bool, str, None] = None, + ) -> None: + """Adds or updates a secret in a Space. + + Secrets allow to set secret keys or tokens to a Space without hardcoding them. + For more details, see https://huggingface.co/docs/hub/spaces-overview#managing-secrets. + + Args: + repo_id (`str`): + ID of the repo to update. Example: `"bigcode/in-the-stack"`. + key (`str`): + Secret key. Example: `"GITHUB_API_KEY"` + value (`str`): + Secret value. Example: `"your_github_api_key"`. + description (`str`, *optional*): + Secret description. Example: `"Github API key to access the Github API"`. + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved + token, which is the recommended method for authentication (see + https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + """ + payload = {"key": key, "value": value} + if description is not None: + payload["description"] = description + r = get_session().post( + f"{self.endpoint}/api/spaces/{repo_id}/secrets", + headers=self._build_hf_headers(token=token), + json=payload, + ) + hf_raise_for_status(r) + + @validate_hf_hub_args + def delete_space_secret(self, repo_id: str, key: str, *, token: Union[bool, str, None] = None) -> None: + """Deletes a secret from a Space. + + Secrets allow to set secret keys or tokens to a Space without hardcoding them. + For more details, see https://huggingface.co/docs/hub/spaces-overview#managing-secrets. + + Args: + repo_id (`str`): + ID of the repo to update. Example: `"bigcode/in-the-stack"`. + key (`str`): + Secret key. Example: `"GITHUB_API_KEY"`. + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved + token, which is the recommended method for authentication (see + https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + """ + r = get_session().delete( + f"{self.endpoint}/api/spaces/{repo_id}/secrets", + headers=self._build_hf_headers(token=token), + json={"key": key}, + ) + hf_raise_for_status(r) + + @validate_hf_hub_args + def get_space_variables(self, repo_id: str, *, token: Union[bool, str, None] = None) -> Dict[str, SpaceVariable]: + """Gets all variables from a Space. + + Variables allow to set environment variables to a Space without hardcoding them. + For more details, see https://huggingface.co/docs/hub/spaces-overview#managing-secrets-and-environment-variables + + Args: + repo_id (`str`): + ID of the repo to query. Example: `"bigcode/in-the-stack"`. + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved + token, which is the recommended method for authentication (see + https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + """ + r = get_session().get( + f"{self.endpoint}/api/spaces/{repo_id}/variables", + headers=self._build_hf_headers(token=token), + ) + hf_raise_for_status(r) + return {k: SpaceVariable(k, v) for k, v in r.json().items()} + + @validate_hf_hub_args + def add_space_variable( + self, + repo_id: str, + key: str, + value: str, + *, + description: Optional[str] = None, + token: Union[bool, str, None] = None, + ) -> Dict[str, SpaceVariable]: + """Adds or updates a variable in a Space. + + Variables allow to set environment variables to a Space without hardcoding them. + For more details, see https://huggingface.co/docs/hub/spaces-overview#managing-secrets-and-environment-variables + + Args: + repo_id (`str`): + ID of the repo to update. Example: `"bigcode/in-the-stack"`. + key (`str`): + Variable key. Example: `"MODEL_REPO_ID"` + value (`str`): + Variable value. Example: `"the_model_repo_id"`. + description (`str`): + Description of the variable. Example: `"Model Repo ID of the implemented model"`. + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved + token, which is the recommended method for authentication (see + https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + """ + payload = {"key": key, "value": value} + if description is not None: + payload["description"] = description + r = get_session().post( + f"{self.endpoint}/api/spaces/{repo_id}/variables", + headers=self._build_hf_headers(token=token), + json=payload, + ) + hf_raise_for_status(r) + return {k: SpaceVariable(k, v) for k, v in r.json().items()} + + @validate_hf_hub_args + def delete_space_variable( + self, repo_id: str, key: str, *, token: Union[bool, str, None] = None + ) -> Dict[str, SpaceVariable]: + """Deletes a variable from a Space. + + Variables allow to set environment variables to a Space without hardcoding them. + For more details, see https://huggingface.co/docs/hub/spaces-overview#managing-secrets-and-environment-variables + + Args: + repo_id (`str`): + ID of the repo to update. Example: `"bigcode/in-the-stack"`. + key (`str`): + Variable key. Example: `"MODEL_REPO_ID"` + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved + token, which is the recommended method for authentication (see + https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + """ + r = get_session().delete( + f"{self.endpoint}/api/spaces/{repo_id}/variables", + headers=self._build_hf_headers(token=token), + json={"key": key}, + ) + hf_raise_for_status(r) + return {k: SpaceVariable(k, v) for k, v in r.json().items()} + + @validate_hf_hub_args + def get_space_runtime(self, repo_id: str, *, token: Union[bool, str, None] = None) -> SpaceRuntime: + """Gets runtime information about a Space. + + Args: + repo_id (`str`): + ID of the repo to update. Example: `"bigcode/in-the-stack"`. + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved + token, which is the recommended method for authentication (see + https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + Returns: + [`SpaceRuntime`]: Runtime information about a Space including Space stage and hardware. + """ + r = get_session().get( + f"{self.endpoint}/api/spaces/{repo_id}/runtime", headers=self._build_hf_headers(token=token) + ) + hf_raise_for_status(r) + return SpaceRuntime(r.json()) + + @validate_hf_hub_args + def request_space_hardware( + self, + repo_id: str, + hardware: SpaceHardware, + *, + token: Union[bool, str, None] = None, + sleep_time: Optional[int] = None, + ) -> SpaceRuntime: + """Request new hardware for a Space. + + Args: + repo_id (`str`): + ID of the repo to update. Example: `"bigcode/in-the-stack"`. + hardware (`str` or [`SpaceHardware`]): + Hardware on which to run the Space. Example: `"t4-medium"`. + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved + token, which is the recommended method for authentication (see + https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + sleep_time (`int`, *optional*): + Number of seconds of inactivity to wait before a Space is put to sleep. Set to `-1` if you don't want + your Space to sleep (default behavior for upgraded hardware). For free hardware, you can't configure + the sleep time (value is fixed to 48 hours of inactivity). + See https://huggingface.co/docs/hub/spaces-gpus#sleep-time for more details. + Returns: + [`SpaceRuntime`]: Runtime information about a Space including Space stage and hardware. + + <Tip> + + It is also possible to request hardware directly when creating the Space repo! See [`create_repo`] for details. + + </Tip> + """ + if sleep_time is not None and hardware == SpaceHardware.CPU_BASIC: + warnings.warn( + "If your Space runs on the default 'cpu-basic' hardware, it will go to sleep if inactive for more" + " than 48 hours. This value is not configurable. If you don't want your Space to deactivate or if" + " you want to set a custom sleep time, you need to upgrade to a paid Hardware.", + UserWarning, + ) + payload: Dict[str, Any] = {"flavor": hardware} + if sleep_time is not None: + payload["sleepTimeSeconds"] = sleep_time + r = get_session().post( + f"{self.endpoint}/api/spaces/{repo_id}/hardware", + headers=self._build_hf_headers(token=token), + json=payload, + ) + hf_raise_for_status(r) + return SpaceRuntime(r.json()) + + @validate_hf_hub_args + def set_space_sleep_time( + self, repo_id: str, sleep_time: int, *, token: Union[bool, str, None] = None + ) -> SpaceRuntime: + """Set a custom sleep time for a Space running on upgraded hardware.. + + Your Space will go to sleep after X seconds of inactivity. You are not billed when your Space is in "sleep" + mode. If a new visitor lands on your Space, it will "wake it up". Only upgraded hardware can have a + configurable sleep time. To know more about the sleep stage, please refer to + https://huggingface.co/docs/hub/spaces-gpus#sleep-time. + + Args: + repo_id (`str`): + ID of the repo to update. Example: `"bigcode/in-the-stack"`. + sleep_time (`int`, *optional*): + Number of seconds of inactivity to wait before a Space is put to sleep. Set to `-1` if you don't want + your Space to pause (default behavior for upgraded hardware). For free hardware, you can't configure + the sleep time (value is fixed to 48 hours of inactivity). + See https://huggingface.co/docs/hub/spaces-gpus#sleep-time for more details. + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved + token, which is the recommended method for authentication (see + https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + Returns: + [`SpaceRuntime`]: Runtime information about a Space including Space stage and hardware. + + <Tip> + + It is also possible to set a custom sleep time when requesting hardware with [`request_space_hardware`]. + + </Tip> + """ + r = get_session().post( + f"{self.endpoint}/api/spaces/{repo_id}/sleeptime", + headers=self._build_hf_headers(token=token), + json={"seconds": sleep_time}, + ) + hf_raise_for_status(r) + runtime = SpaceRuntime(r.json()) + + hardware = runtime.requested_hardware or runtime.hardware + if hardware == SpaceHardware.CPU_BASIC: + warnings.warn( + "If your Space runs on the default 'cpu-basic' hardware, it will go to sleep if inactive for more" + " than 48 hours. This value is not configurable. If you don't want your Space to deactivate or if" + " you want to set a custom sleep time, you need to upgrade to a paid Hardware.", + UserWarning, + ) + return runtime + + @validate_hf_hub_args + def pause_space(self, repo_id: str, *, token: Union[bool, str, None] = None) -> SpaceRuntime: + """Pause your Space. + + A paused Space stops executing until manually restarted by its owner. This is different from the sleeping + state in which free Spaces go after 48h of inactivity. Paused time is not billed to your account, no matter the + hardware you've selected. To restart your Space, use [`restart_space`] and go to your Space settings page. + + For more details, please visit [the docs](https://huggingface.co/docs/hub/spaces-gpus#pause). + + Args: + repo_id (`str`): + ID of the Space to pause. Example: `"Salesforce/BLIP2"`. + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved + token, which is the recommended method for authentication (see + https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + + Returns: + [`SpaceRuntime`]: Runtime information about your Space including `stage=PAUSED` and requested hardware. + + Raises: + [`~utils.RepositoryNotFoundError`]: + If your Space is not found (error 404). Most probably wrong repo_id or your space is private but you + are not authenticated. + [`~utils.HfHubHTTPError`]: + 403 Forbidden: only the owner of a Space can pause it. If you want to manage a Space that you don't + own, either ask the owner by opening a Discussion or duplicate the Space. + [`~utils.BadRequestError`]: + If your Space is a static Space. Static Spaces are always running and never billed. If you want to hide + a static Space, you can set it to private. + """ + r = get_session().post( + f"{self.endpoint}/api/spaces/{repo_id}/pause", headers=self._build_hf_headers(token=token) + ) + hf_raise_for_status(r) + return SpaceRuntime(r.json()) + + @validate_hf_hub_args + def restart_space( + self, repo_id: str, *, token: Union[bool, str, None] = None, factory_reboot: bool = False + ) -> SpaceRuntime: + """Restart your Space. + + This is the only way to programmatically restart a Space if you've put it on Pause (see [`pause_space`]). You + must be the owner of the Space to restart it. If you are using an upgraded hardware, your account will be + billed as soon as the Space is restarted. You can trigger a restart no matter the current state of a Space. + + For more details, please visit [the docs](https://huggingface.co/docs/hub/spaces-gpus#pause). + + Args: + repo_id (`str`): + ID of the Space to restart. Example: `"Salesforce/BLIP2"`. + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved + token, which is the recommended method for authentication (see + https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + factory_reboot (`bool`, *optional*): + If `True`, the Space will be rebuilt from scratch without caching any requirements. + + Returns: + [`SpaceRuntime`]: Runtime information about your Space. + + Raises: + [`~utils.RepositoryNotFoundError`]: + If your Space is not found (error 404). Most probably wrong repo_id or your space is private but you + are not authenticated. + [`~utils.HfHubHTTPError`]: + 403 Forbidden: only the owner of a Space can restart it. If you want to restart a Space that you don't + own, either ask the owner by opening a Discussion or duplicate the Space. + [`~utils.BadRequestError`]: + If your Space is a static Space. Static Spaces are always running and never billed. If you want to hide + a static Space, you can set it to private. + """ + params = {} + if factory_reboot: + params["factory"] = "true" + r = get_session().post( + f"{self.endpoint}/api/spaces/{repo_id}/restart", headers=self._build_hf_headers(token=token), params=params + ) + hf_raise_for_status(r) + return SpaceRuntime(r.json()) + + @validate_hf_hub_args + def duplicate_space( + self, + from_id: str, + to_id: Optional[str] = None, + *, + private: Optional[bool] = None, + token: Union[bool, str, None] = None, + exist_ok: bool = False, + hardware: Optional[SpaceHardware] = None, + storage: Optional[SpaceStorage] = None, + sleep_time: Optional[int] = None, + secrets: Optional[List[Dict[str, str]]] = None, + variables: Optional[List[Dict[str, str]]] = None, + ) -> RepoUrl: + """Duplicate a Space. + + Programmatically duplicate a Space. The new Space will be created in your account and will be in the same state + as the original Space (running or paused). You can duplicate a Space no matter the current state of a Space. + + Args: + from_id (`str`): + ID of the Space to duplicate. Example: `"pharma/CLIP-Interrogator"`. + to_id (`str`, *optional*): + ID of the new Space. Example: `"dog/CLIP-Interrogator"`. If not provided, the new Space will have the same + name as the original Space, but in your account. + private (`bool`, *optional*): + Whether the new Space should be private or not. Defaults to the same privacy as the original Space. + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved + token, which is the recommended method for authentication (see + https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + exist_ok (`bool`, *optional*, defaults to `False`): + If `True`, do not raise an error if repo already exists. + hardware (`SpaceHardware` or `str`, *optional*): + Choice of Hardware. Example: `"t4-medium"`. See [`SpaceHardware`] for a complete list. + storage (`SpaceStorage` or `str`, *optional*): + Choice of persistent storage tier. Example: `"small"`. See [`SpaceStorage`] for a complete list. + sleep_time (`int`, *optional*): + Number of seconds of inactivity to wait before a Space is put to sleep. Set to `-1` if you don't want + your Space to sleep (default behavior for upgraded hardware). For free hardware, you can't configure + the sleep time (value is fixed to 48 hours of inactivity). + See https://huggingface.co/docs/hub/spaces-gpus#sleep-time for more details. + secrets (`List[Dict[str, str]]`, *optional*): + A list of secret keys to set in your Space. Each item is in the form `{"key": ..., "value": ..., "description": ...}` where description is optional. + For more details, see https://huggingface.co/docs/hub/spaces-overview#managing-secrets. + variables (`List[Dict[str, str]]`, *optional*): + A list of public environment variables to set in your Space. Each item is in the form `{"key": ..., "value": ..., "description": ...}` where description is optional. + For more details, see https://huggingface.co/docs/hub/spaces-overview#managing-secrets-and-environment-variables. + + Returns: + [`RepoUrl`]: URL to the newly created repo. Value is a subclass of `str` containing + attributes like `endpoint`, `repo_type` and `repo_id`. + + Raises: + [`~utils.RepositoryNotFoundError`]: + If one of `from_id` or `to_id` cannot be found. This may be because it doesn't exist, + or because it is set to `private` and you do not have access. + [`HTTPError`](https://requests.readthedocs.io/en/latest/api/#requests.HTTPError): + If the HuggingFace API returned an error + + Example: + ```python + >>> from huggingface_hub import duplicate_space + + # Duplicate a Space to your account + >>> duplicate_space("multimodalart/dreambooth-training") + RepoUrl('https://huggingface.co/spaces/nateraw/dreambooth-training',...) + + # Can set custom destination id and visibility flag. + >>> duplicate_space("multimodalart/dreambooth-training", to_id="my-dreambooth", private=True) + RepoUrl('https://huggingface.co/spaces/nateraw/my-dreambooth',...) + ``` + """ + # Parse to_id if provided + parsed_to_id = RepoUrl(to_id) if to_id is not None else None + + # Infer target repo_id + to_namespace = ( # set namespace manually or default to username + parsed_to_id.namespace + if parsed_to_id is not None and parsed_to_id.namespace is not None + else self.whoami(token)["name"] + ) + to_repo_name = parsed_to_id.repo_name if to_id is not None else RepoUrl(from_id).repo_name # type: ignore + + # repository must be a valid repo_id (namespace/repo_name). + payload: Dict[str, Any] = {"repository": f"{to_namespace}/{to_repo_name}"} + + keys = ["private", "hardware", "storageTier", "sleepTimeSeconds", "secrets", "variables"] + values = [private, hardware, storage, sleep_time, secrets, variables] + payload.update({k: v for k, v in zip(keys, values) if v is not None}) + + if sleep_time is not None and hardware == SpaceHardware.CPU_BASIC: + warnings.warn( + "If your Space runs on the default 'cpu-basic' hardware, it will go to sleep if inactive for more" + " than 48 hours. This value is not configurable. If you don't want your Space to deactivate or if" + " you want to set a custom sleep time, you need to upgrade to a paid Hardware.", + UserWarning, + ) + + r = get_session().post( + f"{self.endpoint}/api/spaces/{from_id}/duplicate", + headers=self._build_hf_headers(token=token), + json=payload, + ) + + try: + hf_raise_for_status(r) + except HTTPError as err: + if exist_ok and err.response.status_code == 409: + # Repo already exists and `exist_ok=True` + pass + else: + raise + + return RepoUrl(r.json()["url"], endpoint=self.endpoint) + + @validate_hf_hub_args + def request_space_storage( + self, + repo_id: str, + storage: SpaceStorage, + *, + token: Union[bool, str, None] = None, + ) -> SpaceRuntime: + """Request persistent storage for a Space. + + Args: + repo_id (`str`): + ID of the Space to update. Example: `"open-llm-leaderboard/open_llm_leaderboard"`. + storage (`str` or [`SpaceStorage`]): + Storage tier. Either 'small', 'medium', or 'large'. + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved + token, which is the recommended method for authentication (see + https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + Returns: + [`SpaceRuntime`]: Runtime information about a Space including Space stage and hardware. + + <Tip> + + It is not possible to decrease persistent storage after its granted. To do so, you must delete it + via [`delete_space_storage`]. + + </Tip> + """ + payload: Dict[str, SpaceStorage] = {"tier": storage} + r = get_session().post( + f"{self.endpoint}/api/spaces/{repo_id}/storage", + headers=self._build_hf_headers(token=token), + json=payload, + ) + hf_raise_for_status(r) + return SpaceRuntime(r.json()) + + @validate_hf_hub_args + def delete_space_storage( + self, + repo_id: str, + *, + token: Union[bool, str, None] = None, + ) -> SpaceRuntime: + """Delete persistent storage for a Space. + + Args: + repo_id (`str`): + ID of the Space to update. Example: `"open-llm-leaderboard/open_llm_leaderboard"`. + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved + token, which is the recommended method for authentication (see + https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + Returns: + [`SpaceRuntime`]: Runtime information about a Space including Space stage and hardware. + Raises: + [`BadRequestError`] + If space has no persistent storage. + + """ + r = get_session().delete( + f"{self.endpoint}/api/spaces/{repo_id}/storage", + headers=self._build_hf_headers(token=token), + ) + hf_raise_for_status(r) + return SpaceRuntime(r.json()) + + ####################### + # Inference Endpoints # + ####################### + + def list_inference_endpoints( + self, namespace: Optional[str] = None, *, token: Union[bool, str, None] = None + ) -> List[InferenceEndpoint]: + """Lists all inference endpoints for the given namespace. + + Args: + namespace (`str`, *optional*): + The namespace to list endpoints for. Defaults to the current user. Set to `"*"` to list all endpoints + from all namespaces (i.e. personal namespace and all orgs the user belongs to). + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved + token, which is the recommended method for authentication (see + https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + + Returns: + List[`InferenceEndpoint`]: A list of all inference endpoints for the given namespace. + + Example: + ```python + >>> from huggingface_hub import HfApi + >>> api = HfApi() + >>> api.list_inference_endpoints() + [InferenceEndpoint(name='my-endpoint', ...), ...] + ``` + """ + # Special case: list all endpoints for all namespaces the user has access to + if namespace == "*": + user = self.whoami(token=token) + + # List personal endpoints first + endpoints: List[InferenceEndpoint] = list_inference_endpoints(namespace=self._get_namespace(token=token)) + + # Then list endpoints for all orgs the user belongs to and ignore 401 errors (no billing or no access) + for org in user.get("orgs", []): + try: + endpoints += list_inference_endpoints(namespace=org["name"], token=token) + except HfHubHTTPError as error: + if error.response.status_code == 401: # Either no billing or user don't have access) + logger.debug("Cannot list Inference Endpoints for org '%s': %s", org["name"], error) + pass + + return endpoints + + # Normal case: list endpoints for a specific namespace + namespace = namespace or self._get_namespace(token=token) + + response = get_session().get( + f"{constants.INFERENCE_ENDPOINTS_ENDPOINT}/endpoint/{namespace}", + headers=self._build_hf_headers(token=token), + ) + hf_raise_for_status(response) + + return [ + InferenceEndpoint.from_raw(endpoint, namespace=namespace, token=token) + for endpoint in response.json()["items"] + ] + + def create_inference_endpoint( + self, + name: str, + *, + repository: str, + framework: str, + accelerator: str, + instance_size: str, + instance_type: str, + region: str, + vendor: str, + account_id: Optional[str] = None, + min_replica: int = 0, + max_replica: int = 1, + scale_to_zero_timeout: int = 15, + revision: Optional[str] = None, + task: Optional[str] = None, + custom_image: Optional[Dict] = None, + secrets: Optional[Dict[str, str]] = None, + type: InferenceEndpointType = InferenceEndpointType.PROTECTED, + namespace: Optional[str] = None, + token: Union[bool, str, None] = None, + ) -> InferenceEndpoint: + """Create a new Inference Endpoint. + + Args: + name (`str`): + The unique name for the new Inference Endpoint. + repository (`str`): + The name of the model repository associated with the Inference Endpoint (e.g. `"gpt2"`). + framework (`str`): + The machine learning framework used for the model (e.g. `"custom"`). + accelerator (`str`): + The hardware accelerator to be used for inference (e.g. `"cpu"`). + instance_size (`str`): + The size or type of the instance to be used for hosting the model (e.g. `"x4"`). + instance_type (`str`): + The cloud instance type where the Inference Endpoint will be deployed (e.g. `"intel-icl"`). + region (`str`): + The cloud region in which the Inference Endpoint will be created (e.g. `"us-east-1"`). + vendor (`str`): + The cloud provider or vendor where the Inference Endpoint will be hosted (e.g. `"aws"`). + account_id (`str`, *optional*): + The account ID used to link a VPC to a private Inference Endpoint (if applicable). + min_replica (`int`, *optional*): + The minimum number of replicas (instances) to keep running for the Inference Endpoint. Defaults to 0. + max_replica (`int`, *optional*): + The maximum number of replicas (instances) to scale to for the Inference Endpoint. Defaults to 1. + scale_to_zero_timeout (`int`, *optional*): + The duration in minutes before an inactive endpoint is scaled to zero. Defaults to 15. + revision (`str`, *optional*): + The specific model revision to deploy on the Inference Endpoint (e.g. `"6c0e6080953db56375760c0471a8c5f2929baf11"`). + task (`str`, *optional*): + The task on which to deploy the model (e.g. `"text-classification"`). + custom_image (`Dict`, *optional*): + A custom Docker image to use for the Inference Endpoint. This is useful if you want to deploy an + Inference Endpoint running on the `text-generation-inference` (TGI) framework (see examples). + secrets (`Dict[str, str]`, *optional*): + Secret values to inject in the container environment. + type ([`InferenceEndpointType]`, *optional*): + The type of the Inference Endpoint, which can be `"protected"` (default), `"public"` or `"private"`. + namespace (`str`, *optional*): + The namespace where the Inference Endpoint will be created. Defaults to the current user's namespace. + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved + token, which is the recommended method for authentication (see + https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + + Returns: + [`InferenceEndpoint`]: information about the updated Inference Endpoint. + + Example: + ```python + >>> from huggingface_hub import HfApi + >>> api = HfApi() + >>> endpoint = api.create_inference_endpoint( + ... "my-endpoint-name", + ... repository="gpt2", + ... framework="pytorch", + ... task="text-generation", + ... accelerator="cpu", + ... vendor="aws", + ... region="us-east-1", + ... type="protected", + ... instance_size="x2", + ... instance_type="intel-icl", + ... ) + >>> endpoint + InferenceEndpoint(name='my-endpoint-name', status="pending",...) + + # Run inference on the endpoint + >>> endpoint.client.text_generation(...) + "..." + ``` + + ```python + # Start an Inference Endpoint running Zephyr-7b-beta on TGI + >>> from huggingface_hub import HfApi + >>> api = HfApi() + >>> endpoint = api.create_inference_endpoint( + ... "aws-zephyr-7b-beta-0486", + ... repository="HuggingFaceH4/zephyr-7b-beta", + ... framework="pytorch", + ... task="text-generation", + ... accelerator="gpu", + ... vendor="aws", + ... region="us-east-1", + ... type="protected", + ... instance_size="x1", + ... instance_type="nvidia-a10g", + ... custom_image={ + ... "health_route": "/health", + ... "env": { + ... "MAX_BATCH_PREFILL_TOKENS": "2048", + ... "MAX_INPUT_LENGTH": "1024", + ... "MAX_TOTAL_TOKENS": "1512", + ... "MODEL_ID": "/repository" + ... }, + ... "url": "ghcr.io/huggingface/text-generation-inference:1.1.0", + ... }, + ... secrets={"MY_SECRET_KEY": "secret_value"}, + ... ) + + ``` + """ + namespace = namespace or self._get_namespace(token=token) + + image = {"custom": custom_image} if custom_image is not None else {"huggingface": {}} + payload: Dict = { + "accountId": account_id, + "compute": { + "accelerator": accelerator, + "instanceSize": instance_size, + "instanceType": instance_type, + "scaling": { + "maxReplica": max_replica, + "minReplica": min_replica, + "scaleToZeroTimeout": scale_to_zero_timeout, + }, + }, + "model": { + "framework": framework, + "repository": repository, + "revision": revision, + "task": task, + "image": image, + }, + "name": name, + "provider": { + "region": region, + "vendor": vendor, + }, + "type": type, + } + if secrets: + payload["model"]["secrets"] = secrets + response = get_session().post( + f"{constants.INFERENCE_ENDPOINTS_ENDPOINT}/endpoint/{namespace}", + headers=self._build_hf_headers(token=token), + json=payload, + ) + hf_raise_for_status(response) + + return InferenceEndpoint.from_raw(response.json(), namespace=namespace, token=token) + + def get_inference_endpoint( + self, name: str, *, namespace: Optional[str] = None, token: Union[bool, str, None] = None + ) -> InferenceEndpoint: + """Get information about an Inference Endpoint. + + Args: + name (`str`): + The name of the Inference Endpoint to retrieve information about. + namespace (`str`, *optional*): + The namespace in which the Inference Endpoint is located. Defaults to the current user. + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved + token, which is the recommended method for authentication (see + https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + + Returns: + [`InferenceEndpoint`]: information about the requested Inference Endpoint. + + Example: + ```python + >>> from huggingface_hub import HfApi + >>> api = HfApi() + >>> endpoint = api.get_inference_endpoint("my-text-to-image") + >>> endpoint + InferenceEndpoint(name='my-text-to-image', ...) + + # Get status + >>> endpoint.status + 'running' + >>> endpoint.url + 'https://my-text-to-image.region.vendor.endpoints.huggingface.cloud' + + # Run inference + >>> endpoint.client.text_to_image(...) + ``` + """ + namespace = namespace or self._get_namespace(token=token) + + response = get_session().get( + f"{constants.INFERENCE_ENDPOINTS_ENDPOINT}/endpoint/{namespace}/{name}", + headers=self._build_hf_headers(token=token), + ) + hf_raise_for_status(response) + + return InferenceEndpoint.from_raw(response.json(), namespace=namespace, token=token) + + def update_inference_endpoint( + self, + name: str, + *, + # Compute update + accelerator: Optional[str] = None, + instance_size: Optional[str] = None, + instance_type: Optional[str] = None, + min_replica: Optional[int] = None, + max_replica: Optional[int] = None, + scale_to_zero_timeout: Optional[int] = None, + # Model update + repository: Optional[str] = None, + framework: Optional[str] = None, + revision: Optional[str] = None, + task: Optional[str] = None, + custom_image: Optional[Dict] = None, + secrets: Optional[Dict[str, str]] = None, + # Other + namespace: Optional[str] = None, + token: Union[bool, str, None] = None, + ) -> InferenceEndpoint: + """Update an Inference Endpoint. + + This method allows the update of either the compute configuration, the deployed model, or both. All arguments are + optional but at least one must be provided. + + For convenience, you can also update an Inference Endpoint using [`InferenceEndpoint.update`]. + + Args: + name (`str`): + The name of the Inference Endpoint to update. + + accelerator (`str`, *optional*): + The hardware accelerator to be used for inference (e.g. `"cpu"`). + instance_size (`str`, *optional*): + The size or type of the instance to be used for hosting the model (e.g. `"x4"`). + instance_type (`str`, *optional*): + The cloud instance type where the Inference Endpoint will be deployed (e.g. `"intel-icl"`). + min_replica (`int`, *optional*): + The minimum number of replicas (instances) to keep running for the Inference Endpoint. + max_replica (`int`, *optional*): + The maximum number of replicas (instances) to scale to for the Inference Endpoint. + scale_to_zero_timeout (`int`, *optional*): + The duration in minutes before an inactive endpoint is scaled to zero. + + repository (`str`, *optional*): + The name of the model repository associated with the Inference Endpoint (e.g. `"gpt2"`). + framework (`str`, *optional*): + The machine learning framework used for the model (e.g. `"custom"`). + revision (`str`, *optional*): + The specific model revision to deploy on the Inference Endpoint (e.g. `"6c0e6080953db56375760c0471a8c5f2929baf11"`). + task (`str`, *optional*): + The task on which to deploy the model (e.g. `"text-classification"`). + custom_image (`Dict`, *optional*): + A custom Docker image to use for the Inference Endpoint. This is useful if you want to deploy an + Inference Endpoint running on the `text-generation-inference` (TGI) framework (see examples). + secrets (`Dict[str, str]`, *optional*): + Secret values to inject in the container environment. + namespace (`str`, *optional*): + The namespace where the Inference Endpoint will be updated. Defaults to the current user's namespace. + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved + token, which is the recommended method for authentication (see + https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + + Returns: + [`InferenceEndpoint`]: information about the updated Inference Endpoint. + """ + namespace = namespace or self._get_namespace(token=token) + + # Populate only the fields that are not None + payload: Dict = defaultdict(lambda: defaultdict(dict)) + if accelerator is not None: + payload["compute"]["accelerator"] = accelerator + if instance_size is not None: + payload["compute"]["instanceSize"] = instance_size + if instance_type is not None: + payload["compute"]["instanceType"] = instance_type + if max_replica is not None: + payload["compute"]["scaling"]["maxReplica"] = max_replica + if min_replica is not None: + payload["compute"]["scaling"]["minReplica"] = min_replica + if scale_to_zero_timeout is not None: + payload["compute"]["scaling"]["scaleToZeroTimeout"] = scale_to_zero_timeout + if repository is not None: + payload["model"]["repository"] = repository + if framework is not None: + payload["model"]["framework"] = framework + if revision is not None: + payload["model"]["revision"] = revision + if task is not None: + payload["model"]["task"] = task + if custom_image is not None: + payload["model"]["image"] = {"custom": custom_image} + if secrets is not None: + payload["model"]["secrets"] = secrets + + response = get_session().put( + f"{constants.INFERENCE_ENDPOINTS_ENDPOINT}/endpoint/{namespace}/{name}", + headers=self._build_hf_headers(token=token), + json=payload, + ) + hf_raise_for_status(response) + + return InferenceEndpoint.from_raw(response.json(), namespace=namespace, token=token) + + def delete_inference_endpoint( + self, name: str, *, namespace: Optional[str] = None, token: Union[bool, str, None] = None + ) -> None: + """Delete an Inference Endpoint. + + This operation is not reversible. If you don't want to be charged for an Inference Endpoint, it is preferable + to pause it with [`pause_inference_endpoint`] or scale it to zero with [`scale_to_zero_inference_endpoint`]. + + For convenience, you can also delete an Inference Endpoint using [`InferenceEndpoint.delete`]. + + Args: + name (`str`): + The name of the Inference Endpoint to delete. + namespace (`str`, *optional*): + The namespace in which the Inference Endpoint is located. Defaults to the current user. + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved + token, which is the recommended method for authentication (see + https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + """ + namespace = namespace or self._get_namespace(token=token) + response = get_session().delete( + f"{constants.INFERENCE_ENDPOINTS_ENDPOINT}/endpoint/{namespace}/{name}", + headers=self._build_hf_headers(token=token), + ) + hf_raise_for_status(response) + + def pause_inference_endpoint( + self, name: str, *, namespace: Optional[str] = None, token: Union[bool, str, None] = None + ) -> InferenceEndpoint: + """Pause an Inference Endpoint. + + A paused Inference Endpoint will not be charged. It can be resumed at any time using [`resume_inference_endpoint`]. + This is different than scaling the Inference Endpoint to zero with [`scale_to_zero_inference_endpoint`], which + would be automatically restarted when a request is made to it. + + For convenience, you can also pause an Inference Endpoint using [`pause_inference_endpoint`]. + + Args: + name (`str`): + The name of the Inference Endpoint to pause. + namespace (`str`, *optional*): + The namespace in which the Inference Endpoint is located. Defaults to the current user. + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved + token, which is the recommended method for authentication (see + https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + + Returns: + [`InferenceEndpoint`]: information about the paused Inference Endpoint. + """ + namespace = namespace or self._get_namespace(token=token) + + response = get_session().post( + f"{constants.INFERENCE_ENDPOINTS_ENDPOINT}/endpoint/{namespace}/{name}/pause", + headers=self._build_hf_headers(token=token), + ) + hf_raise_for_status(response) + + return InferenceEndpoint.from_raw(response.json(), namespace=namespace, token=token) + + def resume_inference_endpoint( + self, + name: str, + *, + namespace: Optional[str] = None, + running_ok: bool = True, + token: Union[bool, str, None] = None, + ) -> InferenceEndpoint: + """Resume an Inference Endpoint. + + For convenience, you can also resume an Inference Endpoint using [`InferenceEndpoint.resume`]. + + Args: + name (`str`): + The name of the Inference Endpoint to resume. + namespace (`str`, *optional*): + The namespace in which the Inference Endpoint is located. Defaults to the current user. + running_ok (`bool`, *optional*): + If `True`, the method will not raise an error if the Inference Endpoint is already running. Defaults to + `True`. + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved + token, which is the recommended method for authentication (see + https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + + Returns: + [`InferenceEndpoint`]: information about the resumed Inference Endpoint. + """ + namespace = namespace or self._get_namespace(token=token) + + response = get_session().post( + f"{constants.INFERENCE_ENDPOINTS_ENDPOINT}/endpoint/{namespace}/{name}/resume", + headers=self._build_hf_headers(token=token), + ) + try: + hf_raise_for_status(response) + except HfHubHTTPError as error: + # If already running (and it's ok), then fetch current status and return + if running_ok and error.response.status_code == 400 and "already running" in error.response.text: + return self.get_inference_endpoint(name, namespace=namespace, token=token) + # Otherwise, raise the error + raise + + return InferenceEndpoint.from_raw(response.json(), namespace=namespace, token=token) + + def scale_to_zero_inference_endpoint( + self, name: str, *, namespace: Optional[str] = None, token: Union[bool, str, None] = None + ) -> InferenceEndpoint: + """Scale Inference Endpoint to zero. + + An Inference Endpoint scaled to zero will not be charged. It will be resume on the next request to it, with a + cold start delay. This is different than pausing the Inference Endpoint with [`pause_inference_endpoint`], which + would require a manual resume with [`resume_inference_endpoint`]. + + For convenience, you can also scale an Inference Endpoint to zero using [`InferenceEndpoint.scale_to_zero`]. + + Args: + name (`str`): + The name of the Inference Endpoint to scale to zero. + namespace (`str`, *optional*): + The namespace in which the Inference Endpoint is located. Defaults to the current user. + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved + token, which is the recommended method for authentication (see + https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + + Returns: + [`InferenceEndpoint`]: information about the scaled-to-zero Inference Endpoint. + """ + namespace = namespace or self._get_namespace(token=token) + + response = get_session().post( + f"{constants.INFERENCE_ENDPOINTS_ENDPOINT}/endpoint/{namespace}/{name}/scale-to-zero", + headers=self._build_hf_headers(token=token), + ) + hf_raise_for_status(response) + + return InferenceEndpoint.from_raw(response.json(), namespace=namespace, token=token) + + def _get_namespace(self, token: Union[bool, str, None] = None) -> str: + """Get the default namespace for the current user.""" + me = self.whoami(token=token) + if me["type"] == "user": + return me["name"] + else: + raise ValueError( + "Cannot determine default namespace. You must provide a 'namespace' as input or be logged in as a" + " user." + ) + + ######################## + # Collection Endpoints # + ######################## + @validate_hf_hub_args + def list_collections( + self, + *, + owner: Union[List[str], str, None] = None, + item: Union[List[str], str, None] = None, + sort: Optional[Literal["lastModified", "trending", "upvotes"]] = None, + limit: Optional[int] = None, + token: Union[bool, str, None] = None, + ) -> Iterable[Collection]: + """List collections on the Huggingface Hub, given some filters. + + <Tip warning={true}> + + When listing collections, the item list per collection is truncated to 4 items maximum. To retrieve all items + from a collection, you must use [`get_collection`]. + + </Tip> + + Args: + owner (`List[str]` or `str`, *optional*): + Filter by owner's username. + item (`List[str]` or `str`, *optional*): + Filter collections containing a particular items. Example: `"models/teknium/OpenHermes-2.5-Mistral-7B"`, `"datasets/squad"` or `"papers/2311.12983"`. + sort (`Literal["lastModified", "trending", "upvotes"]`, *optional*): + Sort collections by last modified, trending or upvotes. + limit (`int`, *optional*): + Maximum number of collections to be returned. + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved + token, which is the recommended method for authentication (see + https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + + Returns: + `Iterable[Collection]`: an iterable of [`Collection`] objects. + """ + # Construct the API endpoint + path = f"{self.endpoint}/api/collections" + headers = self._build_hf_headers(token=token) + params: Dict = {} + if owner is not None: + params.update({"owner": owner}) + if item is not None: + params.update({"item": item}) + if sort is not None: + params.update({"sort": sort}) + if limit is not None: + params.update({"limit": limit}) + + # Paginate over the results until limit is reached + items = paginate(path, headers=headers, params=params) + if limit is not None: + items = islice(items, limit) # Do not iterate over all pages + + # Parse as Collection and return + for position, collection_data in enumerate(items): + yield Collection(position=position, **collection_data) + + def get_collection(self, collection_slug: str, *, token: Union[bool, str, None] = None) -> Collection: + """Gets information about a Collection on the Hub. + + Args: + collection_slug (`str`): + Slug of the collection of the Hub. Example: `"TheBloke/recent-models-64f9a55bb3115b4f513ec026"`. + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved + token, which is the recommended method for authentication (see + https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + + Returns: [`Collection`] + + Example: + + ```py + >>> from huggingface_hub import get_collection + >>> collection = get_collection("TheBloke/recent-models-64f9a55bb3115b4f513ec026") + >>> collection.title + 'Recent models' + >>> len(collection.items) + 37 + >>> collection.items[0] + CollectionItem( + item_object_id='651446103cd773a050bf64c2', + item_id='TheBloke/U-Amethyst-20B-AWQ', + item_type='model', + position=88, + note=None + ) + ``` + """ + r = get_session().get( + f"{self.endpoint}/api/collections/{collection_slug}", headers=self._build_hf_headers(token=token) + ) + hf_raise_for_status(r) + return Collection(**{**r.json(), "endpoint": self.endpoint}) + + def create_collection( + self, + title: str, + *, + namespace: Optional[str] = None, + description: Optional[str] = None, + private: bool = False, + exists_ok: bool = False, + token: Union[bool, str, None] = None, + ) -> Collection: + """Create a new Collection on the Hub. + + Args: + title (`str`): + Title of the collection to create. Example: `"Recent models"`. + namespace (`str`, *optional*): + Namespace of the collection to create (username or org). Will default to the owner name. + description (`str`, *optional*): + Description of the collection to create. + private (`bool`, *optional*): + Whether the collection should be private or not. Defaults to `False` (i.e. public collection). + exists_ok (`bool`, *optional*): + If `True`, do not raise an error if collection already exists. + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved + token, which is the recommended method for authentication (see + https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + + Returns: [`Collection`] + + Example: + + ```py + >>> from huggingface_hub import create_collection + >>> collection = create_collection( + ... title="ICCV 2023", + ... description="Portfolio of models, papers and demos I presented at ICCV 2023", + ... ) + >>> collection.slug + "username/iccv-2023-64f9a55bb3115b4f513ec026" + ``` + """ + if namespace is None: + namespace = self.whoami(token)["name"] + + payload = { + "title": title, + "namespace": namespace, + "private": private, + } + if description is not None: + payload["description"] = description + + r = get_session().post( + f"{self.endpoint}/api/collections", headers=self._build_hf_headers(token=token), json=payload + ) + try: + hf_raise_for_status(r) + except HTTPError as err: + if exists_ok and err.response.status_code == 409: + # Collection already exists and `exists_ok=True` + slug = r.json()["slug"] + return self.get_collection(slug, token=token) + else: + raise + return Collection(**{**r.json(), "endpoint": self.endpoint}) + + def update_collection_metadata( + self, + collection_slug: str, + *, + title: Optional[str] = None, + description: Optional[str] = None, + position: Optional[int] = None, + private: Optional[bool] = None, + theme: Optional[str] = None, + token: Union[bool, str, None] = None, + ) -> Collection: + """Update metadata of a collection on the Hub. + + All arguments are optional. Only provided metadata will be updated. + + Args: + collection_slug (`str`): + Slug of the collection to update. Example: `"TheBloke/recent-models-64f9a55bb3115b4f513ec026"`. + title (`str`): + Title of the collection to update. + description (`str`, *optional*): + Description of the collection to update. + position (`int`, *optional*): + New position of the collection in the list of collections of the user. + private (`bool`, *optional*): + Whether the collection should be private or not. + theme (`str`, *optional*): + Theme of the collection on the Hub. + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved + token, which is the recommended method for authentication (see + https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + + Returns: [`Collection`] + + Example: + + ```py + >>> from huggingface_hub import update_collection_metadata + >>> collection = update_collection_metadata( + ... collection_slug="username/iccv-2023-64f9a55bb3115b4f513ec026", + ... title="ICCV Oct. 2023" + ... description="Portfolio of models, datasets, papers and demos I presented at ICCV Oct. 2023", + ... private=False, + ... theme="pink", + ... ) + >>> collection.slug + "username/iccv-oct-2023-64f9a55bb3115b4f513ec026" + # ^collection slug got updated but not the trailing ID + ``` + """ + payload = { + "position": position, + "private": private, + "theme": theme, + "title": title, + "description": description, + } + r = get_session().patch( + f"{self.endpoint}/api/collections/{collection_slug}", + headers=self._build_hf_headers(token=token), + # Only send not-none values to the API + json={key: value for key, value in payload.items() if value is not None}, + ) + hf_raise_for_status(r) + return Collection(**{**r.json()["data"], "endpoint": self.endpoint}) + + def delete_collection( + self, collection_slug: str, *, missing_ok: bool = False, token: Union[bool, str, None] = None + ) -> None: + """Delete a collection on the Hub. + + Args: + collection_slug (`str`): + Slug of the collection to delete. Example: `"TheBloke/recent-models-64f9a55bb3115b4f513ec026"`. + missing_ok (`bool`, *optional*): + If `True`, do not raise an error if collection doesn't exists. + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved + token, which is the recommended method for authentication (see + https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + + Example: + + ```py + >>> from huggingface_hub import delete_collection + >>> collection = delete_collection("username/useless-collection-64f9a55bb3115b4f513ec026", missing_ok=True) + ``` + + <Tip warning={true}> + + This is a non-revertible action. A deleted collection cannot be restored. + + </Tip> + """ + r = get_session().delete( + f"{self.endpoint}/api/collections/{collection_slug}", headers=self._build_hf_headers(token=token) + ) + try: + hf_raise_for_status(r) + except HTTPError as err: + if missing_ok and err.response.status_code == 404: + # Collection doesn't exists and `missing_ok=True` + return + else: + raise + + def add_collection_item( + self, + collection_slug: str, + item_id: str, + item_type: CollectionItemType_T, + *, + note: Optional[str] = None, + exists_ok: bool = False, + token: Union[bool, str, None] = None, + ) -> Collection: + """Add an item to a collection on the Hub. + + Args: + collection_slug (`str`): + Slug of the collection to update. Example: `"TheBloke/recent-models-64f9a55bb3115b4f513ec026"`. + item_id (`str`): + ID of the item to add to the collection. It can be the ID of a repo on the Hub (e.g. `"facebook/bart-large-mnli"`) + or a paper id (e.g. `"2307.09288"`). + item_type (`str`): + Type of the item to add. Can be one of `"model"`, `"dataset"`, `"space"` or `"paper"`. + note (`str`, *optional*): + A note to attach to the item in the collection. The maximum size for a note is 500 characters. + exists_ok (`bool`, *optional*): + If `True`, do not raise an error if item already exists. + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved + token, which is the recommended method for authentication (see + https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + + Returns: [`Collection`] + + Raises: + [`HTTPError`](https://requests.readthedocs.io/en/latest/api/#requests.HTTPError): + HTTP 403 if you only have read-only access to the repo. This can be the case if you don't have `write` + or `admin` role in the organization the repo belongs to or if you passed a `read` token. + [`HTTPError`](https://requests.readthedocs.io/en/latest/api/#requests.HTTPError): + HTTP 404 if the item you try to add to the collection does not exist on the Hub. + [`HTTPError`](https://requests.readthedocs.io/en/latest/api/#requests.HTTPError): + HTTP 409 if the item you try to add to the collection is already in the collection (and exists_ok=False) + + Example: + + ```py + >>> from huggingface_hub import add_collection_item + >>> collection = add_collection_item( + ... collection_slug="davanstrien/climate-64f99dc2a5067f6b65531bab", + ... item_id="pierre-loic/climate-news-articles", + ... item_type="dataset" + ... ) + >>> collection.items[-1].item_id + "pierre-loic/climate-news-articles" + # ^item got added to the collection on last position + + # Add item with a note + >>> add_collection_item( + ... collection_slug="davanstrien/climate-64f99dc2a5067f6b65531bab", + ... item_id="datasets/climate_fever", + ... item_type="dataset" + ... note="This dataset adopts the FEVER methodology that consists of 1,535 real-world claims regarding climate-change collected on the internet." + ... ) + (...) + ``` + """ + payload: Dict[str, Any] = {"item": {"id": item_id, "type": item_type}} + if note is not None: + payload["note"] = note + r = get_session().post( + f"{self.endpoint}/api/collections/{collection_slug}/items", + headers=self._build_hf_headers(token=token), + json=payload, + ) + try: + hf_raise_for_status(r) + except HTTPError as err: + if exists_ok and err.response.status_code == 409: + # Item already exists and `exists_ok=True` + return self.get_collection(collection_slug, token=token) + else: + raise + return Collection(**{**r.json(), "endpoint": self.endpoint}) + + def update_collection_item( + self, + collection_slug: str, + item_object_id: str, + *, + note: Optional[str] = None, + position: Optional[int] = None, + token: Union[bool, str, None] = None, + ) -> None: + """Update an item in a collection. + + Args: + collection_slug (`str`): + Slug of the collection to update. Example: `"TheBloke/recent-models-64f9a55bb3115b4f513ec026"`. + item_object_id (`str`): + ID of the item in the collection. This is not the id of the item on the Hub (repo_id or paper id). + It must be retrieved from a [`CollectionItem`] object. Example: `collection.items[0].item_object_id`. + note (`str`, *optional*): + A note to attach to the item in the collection. The maximum size for a note is 500 characters. + position (`int`, *optional*): + New position of the item in the collection. + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved + token, which is the recommended method for authentication (see + https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + + Example: + + ```py + >>> from huggingface_hub import get_collection, update_collection_item + + # Get collection first + >>> collection = get_collection("TheBloke/recent-models-64f9a55bb3115b4f513ec026") + + # Update item based on its ID (add note + update position) + >>> update_collection_item( + ... collection_slug="TheBloke/recent-models-64f9a55bb3115b4f513ec026", + ... item_object_id=collection.items[-1].item_object_id, + ... note="Newly updated model!" + ... position=0, + ... ) + ``` + """ + payload = {"position": position, "note": note} + r = get_session().patch( + f"{self.endpoint}/api/collections/{collection_slug}/items/{item_object_id}", + headers=self._build_hf_headers(token=token), + # Only send not-none values to the API + json={key: value for key, value in payload.items() if value is not None}, + ) + hf_raise_for_status(r) + + def delete_collection_item( + self, + collection_slug: str, + item_object_id: str, + *, + missing_ok: bool = False, + token: Union[bool, str, None] = None, + ) -> None: + """Delete an item from a collection. + + Args: + collection_slug (`str`): + Slug of the collection to update. Example: `"TheBloke/recent-models-64f9a55bb3115b4f513ec026"`. + item_object_id (`str`): + ID of the item in the collection. This is not the id of the item on the Hub (repo_id or paper id). + It must be retrieved from a [`CollectionItem`] object. Example: `collection.items[0].item_object_id`. + missing_ok (`bool`, *optional*): + If `True`, do not raise an error if item doesn't exists. + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved + token, which is the recommended method for authentication (see + https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + + Example: + + ```py + >>> from huggingface_hub import get_collection, delete_collection_item + + # Get collection first + >>> collection = get_collection("TheBloke/recent-models-64f9a55bb3115b4f513ec026") + + # Delete item based on its ID + >>> delete_collection_item( + ... collection_slug="TheBloke/recent-models-64f9a55bb3115b4f513ec026", + ... item_object_id=collection.items[-1].item_object_id, + ... ) + ``` + """ + r = get_session().delete( + f"{self.endpoint}/api/collections/{collection_slug}/items/{item_object_id}", + headers=self._build_hf_headers(token=token), + ) + try: + hf_raise_for_status(r) + except HTTPError as err: + if missing_ok and err.response.status_code == 404: + # Item already deleted and `missing_ok=True` + return + else: + raise + + ########################## + # Manage access requests # + ########################## + + @validate_hf_hub_args + def list_pending_access_requests( + self, repo_id: str, *, repo_type: Optional[str] = None, token: Union[bool, str, None] = None + ) -> List[AccessRequest]: + """ + Get pending access requests for a given gated repo. + + A pending request means the user has requested access to the repo but the request has not been processed yet. + If the approval mode is automatic, this list should be empty. Pending requests can be accepted or rejected + using [`accept_access_request`] and [`reject_access_request`]. + + For more info about gated repos, see https://huggingface.co/docs/hub/models-gated. + + Args: + repo_id (`str`): + The id of the repo to get access requests for. + repo_type (`str`, *optional*): + The type of the repo to get access requests for. Must be one of `model`, `dataset` or `space`. + Defaults to `model`. + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved + token, which is the recommended method for authentication (see + https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + + Returns: + `List[AccessRequest]`: A list of [`AccessRequest`] objects. Each time contains a `username`, `email`, + `status` and `timestamp` attribute. If the gated repo has a custom form, the `fields` attribute will + be populated with user's answers. + + Raises: + [`HTTPError`](https://requests.readthedocs.io/en/latest/api/#requests.HTTPError): + HTTP 400 if the repo is not gated. + [`HTTPError`](https://requests.readthedocs.io/en/latest/api/#requests.HTTPError): + HTTP 403 if you only have read-only access to the repo. This can be the case if you don't have `write` + or `admin` role in the organization the repo belongs to or if you passed a `read` token. + + Example: + ```py + >>> from huggingface_hub import list_pending_access_requests, accept_access_request + + # List pending requests + >>> requests = list_pending_access_requests("meta-llama/Llama-2-7b") + >>> len(requests) + 411 + >>> requests[0] + [ + AccessRequest( + username='clem', + fullname='Clem 🤗', + email='***', + timestamp=datetime.datetime(2023, 11, 23, 18, 4, 53, 828000, tzinfo=datetime.timezone.utc), + status='pending', + fields=None, + ), + ... + ] + + # Accept Clem's request + >>> accept_access_request("meta-llama/Llama-2-7b", "clem") + ``` + """ + return self._list_access_requests(repo_id, "pending", repo_type=repo_type, token=token) + + @validate_hf_hub_args + def list_accepted_access_requests( + self, repo_id: str, *, repo_type: Optional[str] = None, token: Union[bool, str, None] = None + ) -> List[AccessRequest]: + """ + Get accepted access requests for a given gated repo. + + An accepted request means the user has requested access to the repo and the request has been accepted. The user + can download any file of the repo. If the approval mode is automatic, this list should contains by default all + requests. Accepted requests can be cancelled or rejected at any time using [`cancel_access_request`] and + [`reject_access_request`]. A cancelled request will go back to the pending list while a rejected request will + go to the rejected list. In both cases, the user will lose access to the repo. + + For more info about gated repos, see https://huggingface.co/docs/hub/models-gated. + + Args: + repo_id (`str`): + The id of the repo to get access requests for. + repo_type (`str`, *optional*): + The type of the repo to get access requests for. Must be one of `model`, `dataset` or `space`. + Defaults to `model`. + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved + token, which is the recommended method for authentication (see + https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + + Returns: + `List[AccessRequest]`: A list of [`AccessRequest`] objects. Each time contains a `username`, `email`, + `status` and `timestamp` attribute. If the gated repo has a custom form, the `fields` attribute will + be populated with user's answers. + + Raises: + [`HTTPError`](https://requests.readthedocs.io/en/latest/api/#requests.HTTPError): + HTTP 400 if the repo is not gated. + [`HTTPError`](https://requests.readthedocs.io/en/latest/api/#requests.HTTPError): + HTTP 403 if you only have read-only access to the repo. This can be the case if you don't have `write` + or `admin` role in the organization the repo belongs to or if you passed a `read` token. + + Example: + ```py + >>> from huggingface_hub import list_accepted_access_requests + + >>> requests = list_accepted_access_requests("meta-llama/Llama-2-7b") + >>> len(requests) + 411 + >>> requests[0] + [ + AccessRequest( + username='clem', + fullname='Clem 🤗', + email='***', + timestamp=datetime.datetime(2023, 11, 23, 18, 4, 53, 828000, tzinfo=datetime.timezone.utc), + status='accepted', + fields=None, + ), + ... + ] + ``` + """ + return self._list_access_requests(repo_id, "accepted", repo_type=repo_type, token=token) + + @validate_hf_hub_args + def list_rejected_access_requests( + self, repo_id: str, *, repo_type: Optional[str] = None, token: Union[bool, str, None] = None + ) -> List[AccessRequest]: + """ + Get rejected access requests for a given gated repo. + + A rejected request means the user has requested access to the repo and the request has been explicitly rejected + by a repo owner (either you or another user from your organization). The user cannot download any file of the + repo. Rejected requests can be accepted or cancelled at any time using [`accept_access_request`] and + [`cancel_access_request`]. A cancelled request will go back to the pending list while an accepted request will + go to the accepted list. + + For more info about gated repos, see https://huggingface.co/docs/hub/models-gated. + + Args: + repo_id (`str`): + The id of the repo to get access requests for. + repo_type (`str`, *optional*): + The type of the repo to get access requests for. Must be one of `model`, `dataset` or `space`. + Defaults to `model`. + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved + token, which is the recommended method for authentication (see + https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + + Returns: + `List[AccessRequest]`: A list of [`AccessRequest`] objects. Each time contains a `username`, `email`, + `status` and `timestamp` attribute. If the gated repo has a custom form, the `fields` attribute will + be populated with user's answers. + + Raises: + [`HTTPError`](https://requests.readthedocs.io/en/latest/api/#requests.HTTPError): + HTTP 400 if the repo is not gated. + [`HTTPError`](https://requests.readthedocs.io/en/latest/api/#requests.HTTPError): + HTTP 403 if you only have read-only access to the repo. This can be the case if you don't have `write` + or `admin` role in the organization the repo belongs to or if you passed a `read` token. + + Example: + ```py + >>> from huggingface_hub import list_rejected_access_requests + + >>> requests = list_rejected_access_requests("meta-llama/Llama-2-7b") + >>> len(requests) + 411 + >>> requests[0] + [ + AccessRequest( + username='clem', + fullname='Clem 🤗', + email='***', + timestamp=datetime.datetime(2023, 11, 23, 18, 4, 53, 828000, tzinfo=datetime.timezone.utc), + status='rejected', + fields=None, + ), + ... + ] + ``` + """ + return self._list_access_requests(repo_id, "rejected", repo_type=repo_type, token=token) + + def _list_access_requests( + self, + repo_id: str, + status: Literal["accepted", "rejected", "pending"], + repo_type: Optional[str] = None, + token: Union[bool, str, None] = None, + ) -> List[AccessRequest]: + if repo_type not in constants.REPO_TYPES: + raise ValueError(f"Invalid repo type, must be one of {constants.REPO_TYPES}") + if repo_type is None: + repo_type = constants.REPO_TYPE_MODEL + + response = get_session().get( + f"{constants.ENDPOINT}/api/{repo_type}s/{repo_id}/user-access-request/{status}", + headers=self._build_hf_headers(token=token), + ) + hf_raise_for_status(response) + return [ + AccessRequest( + username=request["user"]["user"], + fullname=request["user"]["fullname"], + email=request["user"].get("email"), + status=request["status"], + timestamp=parse_datetime(request["timestamp"]), + fields=request.get("fields"), # only if custom fields in form + ) + for request in response.json() + ] + + @validate_hf_hub_args + def cancel_access_request( + self, repo_id: str, user: str, *, repo_type: Optional[str] = None, token: Union[bool, str, None] = None + ) -> None: + """ + Cancel an access request from a user for a given gated repo. + + A cancelled request will go back to the pending list and the user will lose access to the repo. + + For more info about gated repos, see https://huggingface.co/docs/hub/models-gated. + + Args: + repo_id (`str`): + The id of the repo to cancel access request for. + user (`str`): + The username of the user which access request should be cancelled. + repo_type (`str`, *optional*): + The type of the repo to cancel access request for. Must be one of `model`, `dataset` or `space`. + Defaults to `model`. + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved + token, which is the recommended method for authentication (see + https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + + Raises: + [`HTTPError`](https://requests.readthedocs.io/en/latest/api/#requests.HTTPError): + HTTP 400 if the repo is not gated. + [`HTTPError`](https://requests.readthedocs.io/en/latest/api/#requests.HTTPError): + HTTP 403 if you only have read-only access to the repo. This can be the case if you don't have `write` + or `admin` role in the organization the repo belongs to or if you passed a `read` token. + [`HTTPError`](https://requests.readthedocs.io/en/latest/api/#requests.HTTPError): + HTTP 404 if the user does not exist on the Hub. + [`HTTPError`](https://requests.readthedocs.io/en/latest/api/#requests.HTTPError): + HTTP 404 if the user access request cannot be found. + [`HTTPError`](https://requests.readthedocs.io/en/latest/api/#requests.HTTPError): + HTTP 404 if the user access request is already in the pending list. + """ + self._handle_access_request(repo_id, user, "pending", repo_type=repo_type, token=token) + + @validate_hf_hub_args + def accept_access_request( + self, repo_id: str, user: str, *, repo_type: Optional[str] = None, token: Union[bool, str, None] = None + ) -> None: + """ + Accept an access request from a user for a given gated repo. + + Once the request is accepted, the user will be able to download any file of the repo and access the community + tab. If the approval mode is automatic, you don't have to accept requests manually. An accepted request can be + cancelled or rejected at any time using [`cancel_access_request`] and [`reject_access_request`]. + + For more info about gated repos, see https://huggingface.co/docs/hub/models-gated. + + Args: + repo_id (`str`): + The id of the repo to accept access request for. + user (`str`): + The username of the user which access request should be accepted. + repo_type (`str`, *optional*): + The type of the repo to accept access request for. Must be one of `model`, `dataset` or `space`. + Defaults to `model`. + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved + token, which is the recommended method for authentication (see + https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + + Raises: + [`HTTPError`](https://requests.readthedocs.io/en/latest/api/#requests.HTTPError): + HTTP 400 if the repo is not gated. + [`HTTPError`](https://requests.readthedocs.io/en/latest/api/#requests.HTTPError): + HTTP 403 if you only have read-only access to the repo. This can be the case if you don't have `write` + or `admin` role in the organization the repo belongs to or if you passed a `read` token. + [`HTTPError`](https://requests.readthedocs.io/en/latest/api/#requests.HTTPError): + HTTP 404 if the user does not exist on the Hub. + [`HTTPError`](https://requests.readthedocs.io/en/latest/api/#requests.HTTPError): + HTTP 404 if the user access request cannot be found. + [`HTTPError`](https://requests.readthedocs.io/en/latest/api/#requests.HTTPError): + HTTP 404 if the user access request is already in the accepted list. + """ + self._handle_access_request(repo_id, user, "accepted", repo_type=repo_type, token=token) + + @validate_hf_hub_args + def reject_access_request( + self, + repo_id: str, + user: str, + *, + repo_type: Optional[str] = None, + rejection_reason: Optional[str], + token: Union[bool, str, None] = None, + ) -> None: + """ + Reject an access request from a user for a given gated repo. + + A rejected request will go to the rejected list. The user cannot download any file of the repo. Rejected + requests can be accepted or cancelled at any time using [`accept_access_request`] and [`cancel_access_request`]. + A cancelled request will go back to the pending list while an accepted request will go to the accepted list. + + For more info about gated repos, see https://huggingface.co/docs/hub/models-gated. + + Args: + repo_id (`str`): + The id of the repo to reject access request for. + user (`str`): + The username of the user which access request should be rejected. + repo_type (`str`, *optional*): + The type of the repo to reject access request for. Must be one of `model`, `dataset` or `space`. + Defaults to `model`. + rejection_reason (`str`, *optional*): + Optional rejection reason that will be visible to the user (max 200 characters). + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved + token, which is the recommended method for authentication (see + https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + + Raises: + [`HTTPError`](https://requests.readthedocs.io/en/latest/api/#requests.HTTPError): + HTTP 400 if the repo is not gated. + [`HTTPError`](https://requests.readthedocs.io/en/latest/api/#requests.HTTPError): + HTTP 403 if you only have read-only access to the repo. This can be the case if you don't have `write` + or `admin` role in the organization the repo belongs to or if you passed a `read` token. + [`HTTPError`](https://requests.readthedocs.io/en/latest/api/#requests.HTTPError): + HTTP 404 if the user does not exist on the Hub. + [`HTTPError`](https://requests.readthedocs.io/en/latest/api/#requests.HTTPError): + HTTP 404 if the user access request cannot be found. + [`HTTPError`](https://requests.readthedocs.io/en/latest/api/#requests.HTTPError): + HTTP 404 if the user access request is already in the rejected list. + """ + self._handle_access_request( + repo_id, user, "rejected", repo_type=repo_type, rejection_reason=rejection_reason, token=token + ) + + @validate_hf_hub_args + def _handle_access_request( + self, + repo_id: str, + user: str, + status: Literal["accepted", "rejected", "pending"], + repo_type: Optional[str] = None, + rejection_reason: Optional[str] = None, + token: Union[bool, str, None] = None, + ) -> None: + if repo_type not in constants.REPO_TYPES: + raise ValueError(f"Invalid repo type, must be one of {constants.REPO_TYPES}") + if repo_type is None: + repo_type = constants.REPO_TYPE_MODEL + + payload = {"user": user, "status": status} + + if rejection_reason is not None: + if status != "rejected": + raise ValueError("`rejection_reason` can only be passed when rejecting an access request.") + payload["rejectionReason"] = rejection_reason + + response = get_session().post( + f"{constants.ENDPOINT}/api/{repo_type}s/{repo_id}/user-access-request/handle", + headers=self._build_hf_headers(token=token), + json=payload, + ) + hf_raise_for_status(response) + + @validate_hf_hub_args + def grant_access( + self, repo_id: str, user: str, *, repo_type: Optional[str] = None, token: Union[bool, str, None] = None + ) -> None: + """ + Grant access to a user for a given gated repo. + + Granting access don't require for the user to send an access request by themselves. The user is automatically + added to the accepted list meaning they can download the files You can revoke the granted access at any time + using [`cancel_access_request`] or [`reject_access_request`]. + + For more info about gated repos, see https://huggingface.co/docs/hub/models-gated. + + Args: + repo_id (`str`): + The id of the repo to grant access to. + user (`str`): + The username of the user to grant access. + repo_type (`str`, *optional*): + The type of the repo to grant access to. Must be one of `model`, `dataset` or `space`. + Defaults to `model`. + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved + token, which is the recommended method for authentication (see + https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + + Raises: + [`HTTPError`](https://requests.readthedocs.io/en/latest/api/#requests.HTTPError): + HTTP 400 if the repo is not gated. + [`HTTPError`](https://requests.readthedocs.io/en/latest/api/#requests.HTTPError): + HTTP 400 if the user already has access to the repo. + [`HTTPError`](https://requests.readthedocs.io/en/latest/api/#requests.HTTPError): + HTTP 403 if you only have read-only access to the repo. This can be the case if you don't have `write` + or `admin` role in the organization the repo belongs to or if you passed a `read` token. + [`HTTPError`](https://requests.readthedocs.io/en/latest/api/#requests.HTTPError): + HTTP 404 if the user does not exist on the Hub. + """ + if repo_type not in constants.REPO_TYPES: + raise ValueError(f"Invalid repo type, must be one of {constants.REPO_TYPES}") + if repo_type is None: + repo_type = constants.REPO_TYPE_MODEL + + response = get_session().post( + f"{constants.ENDPOINT}/api/{repo_type}s/{repo_id}/user-access-request/grant", + headers=self._build_hf_headers(token=token), + json={"user": user}, + ) + hf_raise_for_status(response) + return response.json() + + ################### + # Manage webhooks # + ################### + + @validate_hf_hub_args + def get_webhook(self, webhook_id: str, *, token: Union[bool, str, None] = None) -> WebhookInfo: + """Get a webhook by its id. + + Args: + webhook_id (`str`): + The unique identifier of the webhook to get. + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved token, which is the recommended + method for authentication (see https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + + Returns: + [`WebhookInfo`]: + Info about the webhook. + + Example: + ```python + >>> from huggingface_hub import get_webhook + >>> webhook = get_webhook("654bbbc16f2ec14d77f109cc") + >>> print(webhook) + WebhookInfo( + id="654bbbc16f2ec14d77f109cc", + watched=[WebhookWatchedItem(type="user", name="julien-c"), WebhookWatchedItem(type="org", name="HuggingFaceH4")], + url="https://webhook.site/a2176e82-5720-43ee-9e06-f91cb4c91548", + secret="my-secret", + domains=["repo", "discussion"], + disabled=False, + ) + ``` + """ + response = get_session().get( + f"{constants.ENDPOINT}/api/settings/webhooks/{webhook_id}", + headers=self._build_hf_headers(token=token), + ) + hf_raise_for_status(response) + webhook_data = response.json()["webhook"] + + watched_items = [WebhookWatchedItem(type=item["type"], name=item["name"]) for item in webhook_data["watched"]] + + webhook = WebhookInfo( + id=webhook_data["id"], + url=webhook_data["url"], + watched=watched_items, + domains=webhook_data["domains"], + secret=webhook_data.get("secret"), + disabled=webhook_data["disabled"], + ) + + return webhook + + @validate_hf_hub_args + def list_webhooks(self, *, token: Union[bool, str, None] = None) -> List[WebhookInfo]: + """List all configured webhooks. + + Args: + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved token, which is the recommended + method for authentication (see https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + + Returns: + `List[WebhookInfo]`: + List of webhook info objects. + + Example: + ```python + >>> from huggingface_hub import list_webhooks + >>> webhooks = list_webhooks() + >>> len(webhooks) + 2 + >>> webhooks[0] + WebhookInfo( + id="654bbbc16f2ec14d77f109cc", + watched=[WebhookWatchedItem(type="user", name="julien-c"), WebhookWatchedItem(type="org", name="HuggingFaceH4")], + url="https://webhook.site/a2176e82-5720-43ee-9e06-f91cb4c91548", + secret="my-secret", + domains=["repo", "discussion"], + disabled=False, + ) + ``` + """ + response = get_session().get( + f"{constants.ENDPOINT}/api/settings/webhooks", + headers=self._build_hf_headers(token=token), + ) + hf_raise_for_status(response) + webhooks_data = response.json() + + return [ + WebhookInfo( + id=webhook["id"], + url=webhook["url"], + watched=[WebhookWatchedItem(type=item["type"], name=item["name"]) for item in webhook["watched"]], + domains=webhook["domains"], + secret=webhook.get("secret"), + disabled=webhook["disabled"], + ) + for webhook in webhooks_data + ] + + @validate_hf_hub_args + def create_webhook( + self, + *, + url: str, + watched: List[Union[Dict, WebhookWatchedItem]], + domains: Optional[List[constants.WEBHOOK_DOMAIN_T]] = None, + secret: Optional[str] = None, + token: Union[bool, str, None] = None, + ) -> WebhookInfo: + """Create a new webhook. + + Args: + url (`str`): + URL to send the payload to. + watched (`List[WebhookWatchedItem]`): + List of [`WebhookWatchedItem`] to be watched by the webhook. It can be users, orgs, models, datasets or spaces. + Watched items can also be provided as plain dictionaries. + domains (`List[Literal["repo", "discussion"]]`, optional): + List of domains to watch. It can be "repo", "discussion" or both. + secret (`str`, optional): + A secret to sign the payload with. + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved token, which is the recommended + method for authentication (see https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + + Returns: + [`WebhookInfo`]: + Info about the newly created webhook. + + Example: + ```python + >>> from huggingface_hub import create_webhook + >>> payload = create_webhook( + ... watched=[{"type": "user", "name": "julien-c"}, {"type": "org", "name": "HuggingFaceH4"}], + ... url="https://webhook.site/a2176e82-5720-43ee-9e06-f91cb4c91548", + ... domains=["repo", "discussion"], + ... secret="my-secret", + ... ) + >>> print(payload) + WebhookInfo( + id="654bbbc16f2ec14d77f109cc", + url="https://webhook.site/a2176e82-5720-43ee-9e06-f91cb4c91548", + watched=[WebhookWatchedItem(type="user", name="julien-c"), WebhookWatchedItem(type="org", name="HuggingFaceH4")], + domains=["repo", "discussion"], + secret="my-secret", + disabled=False, + ) + ``` + """ + watched_dicts = [asdict(item) if isinstance(item, WebhookWatchedItem) else item for item in watched] + + response = get_session().post( + f"{constants.ENDPOINT}/api/settings/webhooks", + json={"watched": watched_dicts, "url": url, "domains": domains, "secret": secret}, + headers=self._build_hf_headers(token=token), + ) + hf_raise_for_status(response) + webhook_data = response.json()["webhook"] + watched_items = [WebhookWatchedItem(type=item["type"], name=item["name"]) for item in webhook_data["watched"]] + + webhook = WebhookInfo( + id=webhook_data["id"], + url=webhook_data["url"], + watched=watched_items, + domains=webhook_data["domains"], + secret=webhook_data.get("secret"), + disabled=webhook_data["disabled"], + ) + + return webhook + + @validate_hf_hub_args + def update_webhook( + self, + webhook_id: str, + *, + url: Optional[str] = None, + watched: Optional[List[Union[Dict, WebhookWatchedItem]]] = None, + domains: Optional[List[constants.WEBHOOK_DOMAIN_T]] = None, + secret: Optional[str] = None, + token: Union[bool, str, None] = None, + ) -> WebhookInfo: + """Update an existing webhook. + + Args: + webhook_id (`str`): + The unique identifier of the webhook to be updated. + url (`str`, optional): + The URL to which the payload will be sent. + watched (`List[WebhookWatchedItem]`, optional): + List of items to watch. It can be users, orgs, models, datasets, or spaces. + Refer to [`WebhookWatchedItem`] for more details. Watched items can also be provided as plain dictionaries. + domains (`List[Literal["repo", "discussion"]]`, optional): + The domains to watch. This can include "repo", "discussion", or both. + secret (`str`, optional): + A secret to sign the payload with, providing an additional layer of security. + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved token, which is the recommended + method for authentication (see https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + + Returns: + [`WebhookInfo`]: + Info about the updated webhook. + + Example: + ```python + >>> from huggingface_hub import update_webhook + >>> updated_payload = update_webhook( + ... webhook_id="654bbbc16f2ec14d77f109cc", + ... url="https://new.webhook.site/a2176e82-5720-43ee-9e06-f91cb4c91548", + ... watched=[{"type": "user", "name": "julien-c"}, {"type": "org", "name": "HuggingFaceH4"}], + ... domains=["repo"], + ... secret="my-secret", + ... ) + >>> print(updated_payload) + WebhookInfo( + id="654bbbc16f2ec14d77f109cc", + url="https://new.webhook.site/a2176e82-5720-43ee-9e06-f91cb4c91548", + watched=[WebhookWatchedItem(type="user", name="julien-c"), WebhookWatchedItem(type="org", name="HuggingFaceH4")], + domains=["repo"], + secret="my-secret", + disabled=False, + ``` + """ + if watched is None: + watched = [] + watched_dicts = [asdict(item) if isinstance(item, WebhookWatchedItem) else item for item in watched] + + response = get_session().post( + f"{constants.ENDPOINT}/api/settings/webhooks/{webhook_id}", + json={"watched": watched_dicts, "url": url, "domains": domains, "secret": secret}, + headers=self._build_hf_headers(token=token), + ) + hf_raise_for_status(response) + webhook_data = response.json()["webhook"] + + watched_items = [WebhookWatchedItem(type=item["type"], name=item["name"]) for item in webhook_data["watched"]] + + webhook = WebhookInfo( + id=webhook_data["id"], + url=webhook_data["url"], + watched=watched_items, + domains=webhook_data["domains"], + secret=webhook_data.get("secret"), + disabled=webhook_data["disabled"], + ) + + return webhook + + @validate_hf_hub_args + def enable_webhook(self, webhook_id: str, *, token: Union[bool, str, None] = None) -> WebhookInfo: + """Enable a webhook (makes it "active"). + + Args: + webhook_id (`str`): + The unique identifier of the webhook to enable. + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved token, which is the recommended + method for authentication (see https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + + Returns: + [`WebhookInfo`]: + Info about the enabled webhook. + + Example: + ```python + >>> from huggingface_hub import enable_webhook + >>> enabled_webhook = enable_webhook("654bbbc16f2ec14d77f109cc") + >>> enabled_webhook + WebhookInfo( + id="654bbbc16f2ec14d77f109cc", + url="https://webhook.site/a2176e82-5720-43ee-9e06-f91cb4c91548", + watched=[WebhookWatchedItem(type="user", name="julien-c"), WebhookWatchedItem(type="org", name="HuggingFaceH4")], + domains=["repo", "discussion"], + secret="my-secret", + disabled=False, + ) + ``` + """ + response = get_session().post( + f"{constants.ENDPOINT}/api/settings/webhooks/{webhook_id}/enable", + headers=self._build_hf_headers(token=token), + ) + hf_raise_for_status(response) + webhook_data = response.json()["webhook"] + + watched_items = [WebhookWatchedItem(type=item["type"], name=item["name"]) for item in webhook_data["watched"]] + + webhook = WebhookInfo( + id=webhook_data["id"], + url=webhook_data["url"], + watched=watched_items, + domains=webhook_data["domains"], + secret=webhook_data.get("secret"), + disabled=webhook_data["disabled"], + ) + + return webhook + + @validate_hf_hub_args + def disable_webhook(self, webhook_id: str, *, token: Union[bool, str, None] = None) -> WebhookInfo: + """Disable a webhook (makes it "disabled"). + + Args: + webhook_id (`str`): + The unique identifier of the webhook to disable. + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved token, which is the recommended + method for authentication (see https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + + Returns: + [`WebhookInfo`]: + Info about the disabled webhook. + + Example: + ```python + >>> from huggingface_hub import disable_webhook + >>> disabled_webhook = disable_webhook("654bbbc16f2ec14d77f109cc") + >>> disabled_webhook + WebhookInfo( + id="654bbbc16f2ec14d77f109cc", + url="https://webhook.site/a2176e82-5720-43ee-9e06-f91cb4c91548", + watched=[WebhookWatchedItem(type="user", name="julien-c"), WebhookWatchedItem(type="org", name="HuggingFaceH4")], + domains=["repo", "discussion"], + secret="my-secret", + disabled=True, + ) + ``` + """ + response = get_session().post( + f"{constants.ENDPOINT}/api/settings/webhooks/{webhook_id}/disable", + headers=self._build_hf_headers(token=token), + ) + hf_raise_for_status(response) + webhook_data = response.json()["webhook"] + + watched_items = [WebhookWatchedItem(type=item["type"], name=item["name"]) for item in webhook_data["watched"]] + + webhook = WebhookInfo( + id=webhook_data["id"], + url=webhook_data["url"], + watched=watched_items, + domains=webhook_data["domains"], + secret=webhook_data.get("secret"), + disabled=webhook_data["disabled"], + ) + + return webhook + + @validate_hf_hub_args + def delete_webhook(self, webhook_id: str, *, token: Union[bool, str, None] = None) -> None: + """Delete a webhook. + + Args: + webhook_id (`str`): + The unique identifier of the webhook to delete. + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved token, which is the recommended + method for authentication (see https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + + Returns: + `None` + + Example: + ```python + >>> from huggingface_hub import delete_webhook + >>> delete_webhook("654bbbc16f2ec14d77f109cc") + ``` + """ + response = get_session().delete( + f"{constants.ENDPOINT}/api/settings/webhooks/{webhook_id}", + headers=self._build_hf_headers(token=token), + ) + hf_raise_for_status(response) + + ############# + # Internals # + ############# + + def _build_hf_headers( + self, + token: Union[bool, str, None] = None, + library_name: Optional[str] = None, + library_version: Optional[str] = None, + user_agent: Union[Dict, str, None] = None, + ) -> Dict[str, str]: + """ + Alias for [`build_hf_headers`] that uses the token from [`HfApi`] client + when `token` is not provided. + """ + if token is None: + # Cannot do `token = token or self.token` as token can be `False`. + token = self.token + return build_hf_headers( + token=token, + library_name=library_name or self.library_name, + library_version=library_version or self.library_version, + user_agent=user_agent or self.user_agent, + headers=self.headers, + ) + + def _prepare_folder_deletions( + self, + repo_id: str, + repo_type: Optional[str], + revision: Optional[str], + path_in_repo: str, + delete_patterns: Optional[Union[List[str], str]], + token: Union[bool, str, None] = None, + ) -> List[CommitOperationDelete]: + """Generate the list of Delete operations for a commit to delete files from a repo. + + List remote files and match them against the `delete_patterns` constraints. Returns a list of [`CommitOperationDelete`] + with the matching items. + + Note: `.gitattributes` file is essential to make a repo work properly on the Hub. This file will always be + kept even if it matches the `delete_patterns` constraints. + """ + if delete_patterns is None: + # If no delete patterns, no need to list and filter remote files + return [] + + # List remote files + filenames = self.list_repo_files(repo_id=repo_id, revision=revision, repo_type=repo_type, token=token) + + # Compute relative path in repo + if path_in_repo and path_in_repo not in (".", "./"): + path_in_repo = path_in_repo.strip("/") + "/" # harmonize + relpath_to_abspath = { + file[len(path_in_repo) :]: file for file in filenames if file.startswith(path_in_repo) + } + else: + relpath_to_abspath = {file: file for file in filenames} + + # Apply filter on relative paths and return + return [ + CommitOperationDelete(path_in_repo=relpath_to_abspath[relpath], is_folder=False) + for relpath in filter_repo_objects(relpath_to_abspath.keys(), allow_patterns=delete_patterns) + if relpath_to_abspath[relpath] != ".gitattributes" + ] + + def _prepare_upload_folder_additions( + self, + folder_path: Union[str, Path], + path_in_repo: str, + allow_patterns: Optional[Union[List[str], str]] = None, + ignore_patterns: Optional[Union[List[str], str]] = None, + repo_type: Optional[str] = None, + token: Union[bool, str, None] = None, + ) -> List[CommitOperationAdd]: + """Generate the list of Add operations for a commit to upload a folder. + + Files not matching the `allow_patterns` (allowlist) and `ignore_patterns` (denylist) + constraints are discarded. + """ + + folder_path = Path(folder_path).expanduser().resolve() + if not folder_path.is_dir(): + raise ValueError(f"Provided path: '{folder_path}' is not a directory") + + # List files from folder + relpath_to_abspath = { + path.relative_to(folder_path).as_posix(): path + for path in sorted(folder_path.glob("**/*")) # sorted to be deterministic + if path.is_file() + } + + # Filter files + # Patterns are applied on the path relative to `folder_path`. `path_in_repo` is prefixed after the filtering. + filtered_repo_objects = list( + filter_repo_objects( + relpath_to_abspath.keys(), allow_patterns=allow_patterns, ignore_patterns=ignore_patterns + ) + ) + + prefix = f"{path_in_repo.strip('/')}/" if path_in_repo else "" + + # If updating a README.md file, make sure the metadata format is valid + # It's better to fail early than to fail after all the files have been hashed. + if "README.md" in filtered_repo_objects: + self._validate_yaml( + content=relpath_to_abspath["README.md"].read_text(encoding="utf8"), + repo_type=repo_type, + token=token, + ) + if len(filtered_repo_objects) > 30: + log = logger.warning if len(filtered_repo_objects) > 200 else logger.info + log( + "It seems you are trying to upload a large folder at once. This might take some time and then fail if " + "the folder is too large. For such cases, it is recommended to upload in smaller batches or to use " + "`HfApi().upload_large_folder(...)`/`huggingface-cli upload-large-folder` instead. For more details, " + "check out https://huggingface.co/docs/huggingface_hub/main/en/guides/upload#upload-a-large-folder." + ) + + logger.info(f"Start hashing {len(filtered_repo_objects)} files.") + operations = [ + CommitOperationAdd( + path_or_fileobj=relpath_to_abspath[relpath], # absolute path on disk + path_in_repo=prefix + relpath, # "absolute" path in repo + ) + for relpath in filtered_repo_objects + ] + logger.info(f"Finished hashing {len(filtered_repo_objects)} files.") + return operations + + def _validate_yaml(self, content: str, *, repo_type: Optional[str] = None, token: Union[bool, str, None] = None): + """ + Validate YAML from `README.md`, used before file hashing and upload. + + Args: + content (`str`): + Content of `README.md` to validate. + repo_type (`str`, *optional*): + The type of the repo to grant access to. Must be one of `model`, `dataset` or `space`. + Defaults to `model`. + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved + token, which is the recommended method for authentication (see + https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + + Raises: + - [`ValueError`](https://docs.python.org/3/library/exceptions.html#ValueError) + if YAML is invalid + """ + repo_type = repo_type if repo_type is not None else constants.REPO_TYPE_MODEL + headers = self._build_hf_headers(token=token) + + response = get_session().post( + f"{self.endpoint}/api/validate-yaml", + json={"content": content, "repoType": repo_type}, + headers=headers, + ) + # Handle warnings (example: empty metadata) + response_content = response.json() + message = "\n".join([f"- {warning.get('message')}" for warning in response_content.get("warnings", [])]) + if message: + warnings.warn(f"Warnings while validating metadata in README.md:\n{message}") + + # Raise on errors + try: + hf_raise_for_status(response) + except BadRequestError as e: + errors = response_content.get("errors", []) + message = "\n".join([f"- {error.get('message')}" for error in errors]) + raise ValueError(f"Invalid metadata in README.md.\n{message}") from e + + def get_user_overview(self, username: str, token: Union[bool, str, None] = None) -> User: + """ + Get an overview of a user on the Hub. + + Args: + username (`str`): + Username of the user to get an overview of. + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved + token, which is the recommended method for authentication (see + https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + + Returns: + `User`: A [`User`] object with the user's overview. + + Raises: + [`HTTPError`](https://requests.readthedocs.io/en/latest/api/#requests.HTTPError): + HTTP 404 If the user does not exist on the Hub. + """ + r = get_session().get( + f"{constants.ENDPOINT}/api/users/{username}/overview", headers=self._build_hf_headers(token=token) + ) + hf_raise_for_status(r) + return User(**r.json()) + + def list_organization_members(self, organization: str, token: Union[bool, str, None] = None) -> Iterable[User]: + """ + List of members of an organization on the Hub. + + Args: + organization (`str`): + Name of the organization to get the members of. + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved + token, which is the recommended method for authentication (see + https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + + Returns: + `Iterable[User]`: A list of [`User`] objects with the members of the organization. + + Raises: + [`HTTPError`](https://requests.readthedocs.io/en/latest/api/#requests.HTTPError): + HTTP 404 If the organization does not exist on the Hub. + + """ + for member in paginate( + path=f"{constants.ENDPOINT}/api/organizations/{organization}/members", + params={}, + headers=self._build_hf_headers(token=token), + ): + yield User(**member) + + def list_user_followers(self, username: str, token: Union[bool, str, None] = None) -> Iterable[User]: + """ + Get the list of followers of a user on the Hub. + + Args: + username (`str`): + Username of the user to get the followers of. + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved + token, which is the recommended method for authentication (see + https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + + Returns: + `Iterable[User]`: A list of [`User`] objects with the followers of the user. + + Raises: + [`HTTPError`](https://requests.readthedocs.io/en/latest/api/#requests.HTTPError): + HTTP 404 If the user does not exist on the Hub. + + """ + for follower in paginate( + path=f"{constants.ENDPOINT}/api/users/{username}/followers", + params={}, + headers=self._build_hf_headers(token=token), + ): + yield User(**follower) + + def list_user_following(self, username: str, token: Union[bool, str, None] = None) -> Iterable[User]: + """ + Get the list of users followed by a user on the Hub. + + Args: + username (`str`): + Username of the user to get the users followed by. + token (Union[bool, str, None], optional): + A valid user access token (string). Defaults to the locally saved + token, which is the recommended method for authentication (see + https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + + Returns: + `Iterable[User]`: A list of [`User`] objects with the users followed by the user. + + Raises: + [`HTTPError`](https://requests.readthedocs.io/en/latest/api/#requests.HTTPError): + HTTP 404 If the user does not exist on the Hub. + + """ + for followed_user in paginate( + path=f"{constants.ENDPOINT}/api/users/{username}/following", + params={}, + headers=self._build_hf_headers(token=token), + ): + yield User(**followed_user) + + def list_papers( + self, + *, + query: Optional[str] = None, + token: Union[bool, str, None] = None, + ) -> Iterable[PaperInfo]: + """ + List daily papers on the Hugging Face Hub given a search query. + + Args: + query (`str`, *optional*): + A search query string to find papers. + If provided, returns papers that match the query. + token (Union[bool, str, None], *optional*): + A valid user access token (string). Defaults to the locally saved + token, which is the recommended method for authentication (see + https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + + Returns: + `Iterable[PaperInfo]`: an iterable of [`huggingface_hub.hf_api.PaperInfo`] objects. + + Example: + + ```python + >>> from huggingface_hub import HfApi + + >>> api = HfApi() + + # List all papers with "attention" in their title + >>> api.list_papers(query="attention") + ``` + """ + path = f"{self.endpoint}/api/papers/search" + params = {} + if query: + params["q"] = query + r = get_session().get( + path, + params=params, + headers=self._build_hf_headers(token=token), + ) + hf_raise_for_status(r) + for paper in r.json(): + yield PaperInfo(**paper) + + def paper_info(self, id: str) -> PaperInfo: + """ + Get information for a paper on the Hub. + + Args: + id (`str`, **optional**): + ArXiv id of the paper. + + Returns: + `PaperInfo`: A `PaperInfo` object. + + Raises: + [`HTTPError`](https://requests.readthedocs.io/en/latest/api/#requests.HTTPError): + HTTP 404 If the paper does not exist on the Hub. + """ + path = f"{self.endpoint}/api/papers/{id}" + r = get_session().get(path) + hf_raise_for_status(r) + return PaperInfo(**r.json()) + + def auth_check( + self, repo_id: str, *, repo_type: Optional[str] = None, token: Union[bool, str, None] = None + ) -> None: + """ + Check if the provided user token has access to a specific repository on the Hugging Face Hub. + + This method verifies whether the user, authenticated via the provided token, has access to the specified + repository. If the repository is not found or if the user lacks the required permissions to access it, + the method raises an appropriate exception. + + Args: + repo_id (`str`): + The repository to check for access. Format should be `"user/repo_name"`. + Example: `"user/my-cool-model"`. + + repo_type (`str`, *optional*): + The type of the repository. Should be one of `"model"`, `"dataset"`, or `"space"`. + If not specified, the default is `"model"`. + + token `(Union[bool, str, None]`, *optional*): + A valid user access token. If not provided, the locally saved token will be used, which is the + recommended authentication method. Set to `False` to disable authentication. + Refer to: https://huggingface.co/docs/huggingface_hub/quick-start#authentication. + + Raises: + [`~utils.RepositoryNotFoundError`]: + Raised if the repository does not exist, is private, or the user does not have access. This can + occur if the `repo_id` or `repo_type` is incorrect or if the repository is private but the user + is not authenticated. + + [`~utils.GatedRepoError`]: + Raised if the repository exists but is gated and the user is not authorized to access it. + + Example: + Check if the user has access to a repository: + + ```python + >>> from huggingface_hub import auth_check + >>> from huggingface_hub.utils import GatedRepoError, RepositoryNotFoundError + + try: + auth_check("user/my-cool-model") + except GatedRepoError: + # Handle gated repository error + print("You do not have permission to access this gated repository.") + except RepositoryNotFoundError: + # Handle repository not found error + print("The repository was not found or you do not have access.") + ``` + + In this example: + - If the user has access, the method completes successfully. + - If the repository is gated or does not exist, appropriate exceptions are raised, allowing the user + to handle them accordingly. + """ + headers = self._build_hf_headers(token=token) + if repo_type is None: + repo_type = constants.REPO_TYPE_MODEL + if repo_type not in constants.REPO_TYPES: + raise ValueError(f"Invalid repo type, must be one of {constants.REPO_TYPES}") + path = f"{self.endpoint}/api/{repo_type}s/{repo_id}/auth-check" + r = get_session().get(path, headers=headers) + hf_raise_for_status(r) + + +def _parse_revision_from_pr_url(pr_url: str) -> str: + """Safely parse revision number from a PR url. + + Example: + ```py + >>> _parse_revision_from_pr_url("https://huggingface.co/bigscience/bloom/discussions/2") + "refs/pr/2" + ``` + """ + re_match = re.match(_REGEX_DISCUSSION_URL, pr_url) + if re_match is None: + raise RuntimeError(f"Unexpected response from the hub, expected a Pull Request URL but got: '{pr_url}'") + return f"refs/pr/{re_match[1]}" + + +api = HfApi() + +whoami = api.whoami +auth_check = api.auth_check +get_token_permission = api.get_token_permission + +list_models = api.list_models +model_info = api.model_info + +list_datasets = api.list_datasets +dataset_info = api.dataset_info + +list_spaces = api.list_spaces +space_info = api.space_info + +list_papers = api.list_papers +paper_info = api.paper_info + +repo_exists = api.repo_exists +revision_exists = api.revision_exists +file_exists = api.file_exists +repo_info = api.repo_info +list_repo_files = api.list_repo_files +list_repo_refs = api.list_repo_refs +list_repo_commits = api.list_repo_commits +list_repo_tree = api.list_repo_tree +get_paths_info = api.get_paths_info + +get_model_tags = api.get_model_tags +get_dataset_tags = api.get_dataset_tags + +create_commit = api.create_commit +create_repo = api.create_repo +delete_repo = api.delete_repo +update_repo_visibility = api.update_repo_visibility +update_repo_settings = api.update_repo_settings +super_squash_history = api.super_squash_history +move_repo = api.move_repo +upload_file = api.upload_file +upload_folder = api.upload_folder +delete_file = api.delete_file +delete_folder = api.delete_folder +delete_files = api.delete_files +upload_large_folder = api.upload_large_folder +preupload_lfs_files = api.preupload_lfs_files +create_branch = api.create_branch +delete_branch = api.delete_branch +create_tag = api.create_tag +delete_tag = api.delete_tag +get_full_repo_name = api.get_full_repo_name + +# Safetensors helpers +get_safetensors_metadata = api.get_safetensors_metadata +parse_safetensors_file_metadata = api.parse_safetensors_file_metadata + +# Background jobs +run_as_future = api.run_as_future + +# Activity API +list_liked_repos = api.list_liked_repos +list_repo_likers = api.list_repo_likers +unlike = api.unlike + +# Community API +get_discussion_details = api.get_discussion_details +get_repo_discussions = api.get_repo_discussions +create_discussion = api.create_discussion +create_pull_request = api.create_pull_request +change_discussion_status = api.change_discussion_status +comment_discussion = api.comment_discussion +edit_discussion_comment = api.edit_discussion_comment +rename_discussion = api.rename_discussion +merge_pull_request = api.merge_pull_request + +# Space API +add_space_secret = api.add_space_secret +delete_space_secret = api.delete_space_secret +get_space_variables = api.get_space_variables +add_space_variable = api.add_space_variable +delete_space_variable = api.delete_space_variable +get_space_runtime = api.get_space_runtime +request_space_hardware = api.request_space_hardware +set_space_sleep_time = api.set_space_sleep_time +pause_space = api.pause_space +restart_space = api.restart_space +duplicate_space = api.duplicate_space +request_space_storage = api.request_space_storage +delete_space_storage = api.delete_space_storage + +# Inference Endpoint API +list_inference_endpoints = api.list_inference_endpoints +create_inference_endpoint = api.create_inference_endpoint +get_inference_endpoint = api.get_inference_endpoint +update_inference_endpoint = api.update_inference_endpoint +delete_inference_endpoint = api.delete_inference_endpoint +pause_inference_endpoint = api.pause_inference_endpoint +resume_inference_endpoint = api.resume_inference_endpoint +scale_to_zero_inference_endpoint = api.scale_to_zero_inference_endpoint + +# Collections API +get_collection = api.get_collection +list_collections = api.list_collections +create_collection = api.create_collection +update_collection_metadata = api.update_collection_metadata +delete_collection = api.delete_collection +add_collection_item = api.add_collection_item +update_collection_item = api.update_collection_item +delete_collection_item = api.delete_collection_item +delete_collection_item = api.delete_collection_item + +# Access requests API +list_pending_access_requests = api.list_pending_access_requests +list_accepted_access_requests = api.list_accepted_access_requests +list_rejected_access_requests = api.list_rejected_access_requests +cancel_access_request = api.cancel_access_request +accept_access_request = api.accept_access_request +reject_access_request = api.reject_access_request +grant_access = api.grant_access + +# Webhooks API +create_webhook = api.create_webhook +disable_webhook = api.disable_webhook +delete_webhook = api.delete_webhook +enable_webhook = api.enable_webhook +get_webhook = api.get_webhook +list_webhooks = api.list_webhooks +update_webhook = api.update_webhook + + +# User API +get_user_overview = api.get_user_overview +list_organization_members = api.list_organization_members +list_user_followers = api.list_user_followers +list_user_following = api.list_user_following diff --git a/.venv/lib/python3.12/site-packages/huggingface_hub/hf_file_system.py b/.venv/lib/python3.12/site-packages/huggingface_hub/hf_file_system.py new file mode 100644 index 00000000..2e70a66a --- /dev/null +++ b/.venv/lib/python3.12/site-packages/huggingface_hub/hf_file_system.py @@ -0,0 +1,1140 @@ +import os +import re +import tempfile +from collections import deque +from dataclasses import dataclass, field +from datetime import datetime +from itertools import chain +from pathlib import Path +from typing import Any, Dict, Iterator, List, NoReturn, Optional, Tuple, Union +from urllib.parse import quote, unquote + +import fsspec +from fsspec.callbacks import _DEFAULT_CALLBACK, NoOpCallback, TqdmCallback +from fsspec.utils import isfilelike +from requests import Response + +from . import constants +from ._commit_api import CommitOperationCopy, CommitOperationDelete +from .errors import EntryNotFoundError, RepositoryNotFoundError, RevisionNotFoundError +from .file_download import hf_hub_url, http_get +from .hf_api import HfApi, LastCommitInfo, RepoFile +from .utils import HFValidationError, hf_raise_for_status, http_backoff + + +# Regex used to match special revisions with "/" in them (see #1710) +SPECIAL_REFS_REVISION_REGEX = re.compile( + r""" + (^refs\/convert\/\w+) # `refs/convert/parquet` revisions + | + (^refs\/pr\/\d+) # PR revisions + """, + re.VERBOSE, +) + + +@dataclass +class HfFileSystemResolvedPath: + """Data structure containing information about a resolved Hugging Face file system path.""" + + repo_type: str + repo_id: str + revision: str + path_in_repo: str + # The part placed after '@' in the initial path. It can be a quoted or unquoted refs revision. + # Used to reconstruct the unresolved path to return to the user. + _raw_revision: Optional[str] = field(default=None, repr=False) + + def unresolve(self) -> str: + repo_path = constants.REPO_TYPES_URL_PREFIXES.get(self.repo_type, "") + self.repo_id + if self._raw_revision: + return f"{repo_path}@{self._raw_revision}/{self.path_in_repo}".rstrip("/") + elif self.revision != constants.DEFAULT_REVISION: + return f"{repo_path}@{safe_revision(self.revision)}/{self.path_in_repo}".rstrip("/") + else: + return f"{repo_path}/{self.path_in_repo}".rstrip("/") + + +class HfFileSystem(fsspec.AbstractFileSystem): + """ + Access a remote Hugging Face Hub repository as if were a local file system. + + <Tip warning={true}> + + [`HfFileSystem`] provides fsspec compatibility, which is useful for libraries that require it (e.g., reading + Hugging Face datasets directly with `pandas`). However, it introduces additional overhead due to this compatibility + layer. For better performance and reliability, it's recommended to use `HfApi` methods when possible. + + </Tip> + + Args: + token (`str` or `bool`, *optional*): + A valid user access token (string). Defaults to the locally saved + token, which is the recommended method for authentication (see + https://huggingface.co/docs/huggingface_hub/quick-start#authentication). + To disable authentication, pass `False`. + endpoint (`str`, *optional*): + Endpoint of the Hub. Defaults to <https://huggingface.co>. + Usage: + + ```python + >>> from huggingface_hub import HfFileSystem + + >>> fs = HfFileSystem() + + >>> # List files + >>> fs.glob("my-username/my-model/*.bin") + ['my-username/my-model/pytorch_model.bin'] + >>> fs.ls("datasets/my-username/my-dataset", detail=False) + ['datasets/my-username/my-dataset/.gitattributes', 'datasets/my-username/my-dataset/README.md', 'datasets/my-username/my-dataset/data.json'] + + >>> # Read/write files + >>> with fs.open("my-username/my-model/pytorch_model.bin") as f: + ... data = f.read() + >>> with fs.open("my-username/my-model/pytorch_model.bin", "wb") as f: + ... f.write(data) + ``` + """ + + root_marker = "" + protocol = "hf" + + def __init__( + self, + *args, + endpoint: Optional[str] = None, + token: Union[bool, str, None] = None, + **storage_options, + ): + super().__init__(*args, **storage_options) + self.endpoint = endpoint or constants.ENDPOINT + self.token = token + self._api = HfApi(endpoint=endpoint, token=token) + # Maps (repo_type, repo_id, revision) to a 2-tuple with: + # * the 1st element indicating whether the repositoy and the revision exist + # * the 2nd element being the exception raised if the repository or revision doesn't exist + self._repo_and_revision_exists_cache: Dict[ + Tuple[str, str, Optional[str]], Tuple[bool, Optional[Exception]] + ] = {} + + def _repo_and_revision_exist( + self, repo_type: str, repo_id: str, revision: Optional[str] + ) -> Tuple[bool, Optional[Exception]]: + if (repo_type, repo_id, revision) not in self._repo_and_revision_exists_cache: + try: + self._api.repo_info( + repo_id, revision=revision, repo_type=repo_type, timeout=constants.HF_HUB_ETAG_TIMEOUT + ) + except (RepositoryNotFoundError, HFValidationError) as e: + self._repo_and_revision_exists_cache[(repo_type, repo_id, revision)] = False, e + self._repo_and_revision_exists_cache[(repo_type, repo_id, None)] = False, e + except RevisionNotFoundError as e: + self._repo_and_revision_exists_cache[(repo_type, repo_id, revision)] = False, e + self._repo_and_revision_exists_cache[(repo_type, repo_id, None)] = True, None + else: + self._repo_and_revision_exists_cache[(repo_type, repo_id, revision)] = True, None + self._repo_and_revision_exists_cache[(repo_type, repo_id, None)] = True, None + return self._repo_and_revision_exists_cache[(repo_type, repo_id, revision)] + + def resolve_path(self, path: str, revision: Optional[str] = None) -> HfFileSystemResolvedPath: + """ + Resolve a Hugging Face file system path into its components. + + Args: + path (`str`): + Path to resolve. + revision (`str`, *optional*): + The revision of the repo to resolve. Defaults to the revision specified in the path. + + Returns: + [`HfFileSystemResolvedPath`]: Resolved path information containing `repo_type`, `repo_id`, `revision` and `path_in_repo`. + + Raises: + `ValueError`: + If path contains conflicting revision information. + `NotImplementedError`: + If trying to list repositories. + """ + + def _align_revision_in_path_with_revision( + revision_in_path: Optional[str], revision: Optional[str] + ) -> Optional[str]: + if revision is not None: + if revision_in_path is not None and revision_in_path != revision: + raise ValueError( + f'Revision specified in path ("{revision_in_path}") and in `revision` argument ("{revision}")' + " are not the same." + ) + else: + revision = revision_in_path + return revision + + path = self._strip_protocol(path) + if not path: + # can't list repositories at root + raise NotImplementedError("Access to repositories lists is not implemented.") + elif path.split("/")[0] + "/" in constants.REPO_TYPES_URL_PREFIXES.values(): + if "/" not in path: + # can't list repositories at the repository type level + raise NotImplementedError("Access to repositories lists is not implemented.") + repo_type, path = path.split("/", 1) + repo_type = constants.REPO_TYPES_MAPPING[repo_type] + else: + repo_type = constants.REPO_TYPE_MODEL + if path.count("/") > 0: + if "@" in path: + repo_id, revision_in_path = path.split("@", 1) + if "/" in revision_in_path: + match = SPECIAL_REFS_REVISION_REGEX.search(revision_in_path) + if match is not None and revision in (None, match.group()): + # Handle `refs/convert/parquet` and PR revisions separately + path_in_repo = SPECIAL_REFS_REVISION_REGEX.sub("", revision_in_path).lstrip("/") + revision_in_path = match.group() + else: + revision_in_path, path_in_repo = revision_in_path.split("/", 1) + else: + path_in_repo = "" + revision = _align_revision_in_path_with_revision(unquote(revision_in_path), revision) + repo_and_revision_exist, err = self._repo_and_revision_exist(repo_type, repo_id, revision) + if not repo_and_revision_exist: + _raise_file_not_found(path, err) + else: + revision_in_path = None + repo_id_with_namespace = "/".join(path.split("/")[:2]) + path_in_repo_with_namespace = "/".join(path.split("/")[2:]) + repo_id_without_namespace = path.split("/")[0] + path_in_repo_without_namespace = "/".join(path.split("/")[1:]) + repo_id = repo_id_with_namespace + path_in_repo = path_in_repo_with_namespace + repo_and_revision_exist, err = self._repo_and_revision_exist(repo_type, repo_id, revision) + if not repo_and_revision_exist: + if isinstance(err, (RepositoryNotFoundError, HFValidationError)): + repo_id = repo_id_without_namespace + path_in_repo = path_in_repo_without_namespace + repo_and_revision_exist, _ = self._repo_and_revision_exist(repo_type, repo_id, revision) + if not repo_and_revision_exist: + _raise_file_not_found(path, err) + else: + _raise_file_not_found(path, err) + else: + repo_id = path + path_in_repo = "" + if "@" in path: + repo_id, revision_in_path = path.split("@", 1) + revision = _align_revision_in_path_with_revision(unquote(revision_in_path), revision) + else: + revision_in_path = None + repo_and_revision_exist, _ = self._repo_and_revision_exist(repo_type, repo_id, revision) + if not repo_and_revision_exist: + raise NotImplementedError("Access to repositories lists is not implemented.") + + revision = revision if revision is not None else constants.DEFAULT_REVISION + return HfFileSystemResolvedPath(repo_type, repo_id, revision, path_in_repo, _raw_revision=revision_in_path) + + def invalidate_cache(self, path: Optional[str] = None) -> None: + """ + Clear the cache for a given path. + + For more details, refer to [fsspec documentation](https://filesystem-spec.readthedocs.io/en/latest/api.html#fsspec.spec.AbstractFileSystem.invalidate_cache). + + Args: + path (`str`, *optional*): + Path to clear from cache. If not provided, clear the entire cache. + + """ + if not path: + self.dircache.clear() + self._repo_and_revision_exists_cache.clear() + else: + resolved_path = self.resolve_path(path) + path = resolved_path.unresolve() + while path: + self.dircache.pop(path, None) + path = self._parent(path) + + # Only clear repo cache if path is to repo root + if not resolved_path.path_in_repo: + self._repo_and_revision_exists_cache.pop((resolved_path.repo_type, resolved_path.repo_id, None), None) + self._repo_and_revision_exists_cache.pop( + (resolved_path.repo_type, resolved_path.repo_id, resolved_path.revision), None + ) + + def _open( + self, + path: str, + mode: str = "rb", + revision: Optional[str] = None, + block_size: Optional[int] = None, + **kwargs, + ) -> "HfFileSystemFile": + if "a" in mode: + raise NotImplementedError("Appending to remote files is not yet supported.") + if block_size == 0: + return HfFileSystemStreamFile(self, path, mode=mode, revision=revision, block_size=block_size, **kwargs) + else: + return HfFileSystemFile(self, path, mode=mode, revision=revision, block_size=block_size, **kwargs) + + def _rm(self, path: str, revision: Optional[str] = None, **kwargs) -> None: + resolved_path = self.resolve_path(path, revision=revision) + self._api.delete_file( + path_in_repo=resolved_path.path_in_repo, + repo_id=resolved_path.repo_id, + token=self.token, + repo_type=resolved_path.repo_type, + revision=resolved_path.revision, + commit_message=kwargs.get("commit_message"), + commit_description=kwargs.get("commit_description"), + ) + self.invalidate_cache(path=resolved_path.unresolve()) + + def rm( + self, + path: str, + recursive: bool = False, + maxdepth: Optional[int] = None, + revision: Optional[str] = None, + **kwargs, + ) -> None: + """ + Delete files from a repository. + + For more details, refer to [fsspec documentation](https://filesystem-spec.readthedocs.io/en/latest/api.html#fsspec.spec.AbstractFileSystem.rm). + + <Tip warning={true}> + + Note: When possible, use `HfApi.delete_file()` for better performance. + + </Tip> + + Args: + path (`str`): + Path to delete. + recursive (`bool`, *optional*): + If True, delete directory and all its contents. Defaults to False. + maxdepth (`int`, *optional*): + Maximum number of subdirectories to visit when deleting recursively. + revision (`str`, *optional*): + The git revision to delete from. + + """ + resolved_path = self.resolve_path(path, revision=revision) + paths = self.expand_path(path, recursive=recursive, maxdepth=maxdepth, revision=revision) + paths_in_repo = [self.resolve_path(path).path_in_repo for path in paths if not self.isdir(path)] + operations = [CommitOperationDelete(path_in_repo=path_in_repo) for path_in_repo in paths_in_repo] + commit_message = f"Delete {path} " + commit_message += "recursively " if recursive else "" + commit_message += f"up to depth {maxdepth} " if maxdepth is not None else "" + # TODO: use `commit_description` to list all the deleted paths? + self._api.create_commit( + repo_id=resolved_path.repo_id, + repo_type=resolved_path.repo_type, + token=self.token, + operations=operations, + revision=resolved_path.revision, + commit_message=kwargs.get("commit_message", commit_message), + commit_description=kwargs.get("commit_description"), + ) + self.invalidate_cache(path=resolved_path.unresolve()) + + def ls( + self, path: str, detail: bool = True, refresh: bool = False, revision: Optional[str] = None, **kwargs + ) -> List[Union[str, Dict[str, Any]]]: + """ + List the contents of a directory. + + For more details, refer to [fsspec documentation](https://filesystem-spec.readthedocs.io/en/latest/api.html#fsspec.spec.AbstractFileSystem.ls). + + <Tip warning={true}> + + Note: When possible, use `HfApi.list_repo_tree()` for better performance. + + </Tip> + + Args: + path (`str`): + Path to the directory. + detail (`bool`, *optional*): + If True, returns a list of dictionaries containing file information. If False, + returns a list of file paths. Defaults to True. + refresh (`bool`, *optional*): + If True, bypass the cache and fetch the latest data. Defaults to False. + revision (`str`, *optional*): + The git revision to list from. + + Returns: + `List[Union[str, Dict[str, Any]]]`: List of file paths (if detail=False) or list of file information + dictionaries (if detail=True). + """ + resolved_path = self.resolve_path(path, revision=revision) + path = resolved_path.unresolve() + kwargs = {"expand_info": detail, **kwargs} + try: + out = self._ls_tree(path, refresh=refresh, revision=revision, **kwargs) + except EntryNotFoundError: + # Path could be a file + if not resolved_path.path_in_repo: + _raise_file_not_found(path, None) + out = self._ls_tree(self._parent(path), refresh=refresh, revision=revision, **kwargs) + out = [o for o in out if o["name"] == path] + if len(out) == 0: + _raise_file_not_found(path, None) + return out if detail else [o["name"] for o in out] + + def _ls_tree( + self, + path: str, + recursive: bool = False, + refresh: bool = False, + revision: Optional[str] = None, + expand_info: bool = True, + ): + resolved_path = self.resolve_path(path, revision=revision) + path = resolved_path.unresolve() + root_path = HfFileSystemResolvedPath( + resolved_path.repo_type, + resolved_path.repo_id, + resolved_path.revision, + path_in_repo="", + _raw_revision=resolved_path._raw_revision, + ).unresolve() + + out = [] + if path in self.dircache and not refresh: + cached_path_infos = self.dircache[path] + out.extend(cached_path_infos) + dirs_not_in_dircache = [] + if recursive: + # Use BFS to traverse the cache and build the "recursive "output + # (The Hub uses a so-called "tree first" strategy for the tree endpoint but we sort the output to follow the spec so the result is (eventually) the same) + dirs_to_visit = deque( + [path_info for path_info in cached_path_infos if path_info["type"] == "directory"] + ) + while dirs_to_visit: + dir_info = dirs_to_visit.popleft() + if dir_info["name"] not in self.dircache: + dirs_not_in_dircache.append(dir_info["name"]) + else: + cached_path_infos = self.dircache[dir_info["name"]] + out.extend(cached_path_infos) + dirs_to_visit.extend( + [path_info for path_info in cached_path_infos if path_info["type"] == "directory"] + ) + + dirs_not_expanded = [] + if expand_info: + # Check if there are directories with non-expanded entries + dirs_not_expanded = [self._parent(o["name"]) for o in out if o["last_commit"] is None] + + if (recursive and dirs_not_in_dircache) or (expand_info and dirs_not_expanded): + # If the dircache is incomplete, find the common path of the missing and non-expanded entries + # and extend the output with the result of `_ls_tree(common_path, recursive=True)` + common_prefix = os.path.commonprefix(dirs_not_in_dircache + dirs_not_expanded) + # Get the parent directory if the common prefix itself is not a directory + common_path = ( + common_prefix.rstrip("/") + if common_prefix.endswith("/") + or common_prefix == root_path + or common_prefix in chain(dirs_not_in_dircache, dirs_not_expanded) + else self._parent(common_prefix) + ) + out = [o for o in out if not o["name"].startswith(common_path + "/")] + for cached_path in self.dircache: + if cached_path.startswith(common_path + "/"): + self.dircache.pop(cached_path, None) + self.dircache.pop(common_path, None) + out.extend( + self._ls_tree( + common_path, + recursive=recursive, + refresh=True, + revision=revision, + expand_info=expand_info, + ) + ) + else: + tree = self._api.list_repo_tree( + resolved_path.repo_id, + resolved_path.path_in_repo, + recursive=recursive, + expand=expand_info, + revision=resolved_path.revision, + repo_type=resolved_path.repo_type, + ) + for path_info in tree: + if isinstance(path_info, RepoFile): + cache_path_info = { + "name": root_path + "/" + path_info.path, + "size": path_info.size, + "type": "file", + "blob_id": path_info.blob_id, + "lfs": path_info.lfs, + "last_commit": path_info.last_commit, + "security": path_info.security, + } + else: + cache_path_info = { + "name": root_path + "/" + path_info.path, + "size": 0, + "type": "directory", + "tree_id": path_info.tree_id, + "last_commit": path_info.last_commit, + } + parent_path = self._parent(cache_path_info["name"]) + self.dircache.setdefault(parent_path, []).append(cache_path_info) + out.append(cache_path_info) + return out + + def walk(self, path: str, *args, **kwargs) -> Iterator[Tuple[str, List[str], List[str]]]: + """ + Return all files below the given path. + + For more details, refer to [fsspec documentation](https://filesystem-spec.readthedocs.io/en/latest/api.html#fsspec.spec.AbstractFileSystem.walk). + + Args: + path (`str`): + Root path to list files from. + + Returns: + `Iterator[Tuple[str, List[str], List[str]]]`: An iterator of (path, list of directory names, list of file names) tuples. + """ + # Set expand_info=False by default to get a x10 speed boost + kwargs = {"expand_info": kwargs.get("detail", False), **kwargs} + path = self.resolve_path(path, revision=kwargs.get("revision")).unresolve() + yield from super().walk(path, *args, **kwargs) + + def glob(self, path: str, **kwargs) -> List[str]: + """ + Find files by glob-matching. + + For more details, refer to [fsspec documentation](https://filesystem-spec.readthedocs.io/en/latest/api.html#fsspec.spec.AbstractFileSystem.glob). + + Args: + path (`str`): + Path pattern to match. + + Returns: + `List[str]`: List of paths matching the pattern. + """ + # Set expand_info=False by default to get a x10 speed boost + kwargs = {"expand_info": kwargs.get("detail", False), **kwargs} + path = self.resolve_path(path, revision=kwargs.get("revision")).unresolve() + return super().glob(path, **kwargs) + + def find( + self, + path: str, + maxdepth: Optional[int] = None, + withdirs: bool = False, + detail: bool = False, + refresh: bool = False, + revision: Optional[str] = None, + **kwargs, + ) -> Union[List[str], Dict[str, Dict[str, Any]]]: + """ + List all files below path. + + For more details, refer to [fsspec documentation](https://filesystem-spec.readthedocs.io/en/latest/api.html#fsspec.spec.AbstractFileSystem.find). + + Args: + path (`str`): + Root path to list files from. + maxdepth (`int`, *optional*): + Maximum depth to descend into subdirectories. + withdirs (`bool`, *optional*): + Include directory paths in the output. Defaults to False. + detail (`bool`, *optional*): + If True, returns a dict mapping paths to file information. Defaults to False. + refresh (`bool`, *optional*): + If True, bypass the cache and fetch the latest data. Defaults to False. + revision (`str`, *optional*): + The git revision to list from. + + Returns: + `Union[List[str], Dict[str, Dict[str, Any]]]`: List of paths or dict of file information. + """ + if maxdepth: + return super().find( + path, maxdepth=maxdepth, withdirs=withdirs, detail=detail, refresh=refresh, revision=revision, **kwargs + ) + resolved_path = self.resolve_path(path, revision=revision) + path = resolved_path.unresolve() + kwargs = {"expand_info": detail, **kwargs} + try: + out = self._ls_tree(path, recursive=True, refresh=refresh, revision=resolved_path.revision, **kwargs) + except EntryNotFoundError: + # Path could be a file + if self.info(path, revision=revision, **kwargs)["type"] == "file": + out = {path: {}} + else: + out = {} + else: + if not withdirs: + out = [o for o in out if o["type"] != "directory"] + else: + # If `withdirs=True`, include the directory itself to be consistent with the spec + path_info = self.info(path, revision=resolved_path.revision, **kwargs) + out = [path_info] + out if path_info["type"] == "directory" else out + out = {o["name"]: o for o in out} + names = sorted(out) + if not detail: + return names + else: + return {name: out[name] for name in names} + + def cp_file(self, path1: str, path2: str, revision: Optional[str] = None, **kwargs) -> None: + """ + Copy a file within or between repositories. + + <Tip warning={true}> + + Note: When possible, use `HfApi.upload_file()` for better performance. + + </Tip> + + Args: + path1 (`str`): + Source path to copy from. + path2 (`str`): + Destination path to copy to. + revision (`str`, *optional*): + The git revision to copy from. + + """ + resolved_path1 = self.resolve_path(path1, revision=revision) + resolved_path2 = self.resolve_path(path2, revision=revision) + + same_repo = ( + resolved_path1.repo_type == resolved_path2.repo_type and resolved_path1.repo_id == resolved_path2.repo_id + ) + + if same_repo: + commit_message = f"Copy {path1} to {path2}" + self._api.create_commit( + repo_id=resolved_path1.repo_id, + repo_type=resolved_path1.repo_type, + revision=resolved_path2.revision, + commit_message=kwargs.get("commit_message", commit_message), + commit_description=kwargs.get("commit_description", ""), + operations=[ + CommitOperationCopy( + src_path_in_repo=resolved_path1.path_in_repo, + path_in_repo=resolved_path2.path_in_repo, + src_revision=resolved_path1.revision, + ) + ], + ) + else: + with self.open(path1, "rb", revision=resolved_path1.revision) as f: + content = f.read() + commit_message = f"Copy {path1} to {path2}" + self._api.upload_file( + path_or_fileobj=content, + path_in_repo=resolved_path2.path_in_repo, + repo_id=resolved_path2.repo_id, + token=self.token, + repo_type=resolved_path2.repo_type, + revision=resolved_path2.revision, + commit_message=kwargs.get("commit_message", commit_message), + commit_description=kwargs.get("commit_description"), + ) + self.invalidate_cache(path=resolved_path1.unresolve()) + self.invalidate_cache(path=resolved_path2.unresolve()) + + def modified(self, path: str, **kwargs) -> datetime: + """ + Get the last modified time of a file. + + For more details, refer to [fsspec documentation](https://filesystem-spec.readthedocs.io/en/latest/api.html#fsspec.spec.AbstractFileSystem.modified). + + Args: + path (`str`): + Path to the file. + + Returns: + `datetime`: Last commit date of the file. + """ + info = self.info(path, **kwargs) + return info["last_commit"]["date"] + + def info(self, path: str, refresh: bool = False, revision: Optional[str] = None, **kwargs) -> Dict[str, Any]: + """ + Get information about a file or directory. + + For more details, refer to [fsspec documentation](https://filesystem-spec.readthedocs.io/en/latest/api.html#fsspec.spec.AbstractFileSystem.info). + + <Tip warning={true}> + + Note: When possible, use `HfApi.get_paths_info()` or `HfApi.repo_info()` for better performance. + + </Tip> + + Args: + path (`str`): + Path to get info for. + refresh (`bool`, *optional*): + If True, bypass the cache and fetch the latest data. Defaults to False. + revision (`str`, *optional*): + The git revision to get info from. + + Returns: + `Dict[str, Any]`: Dictionary containing file information (type, size, commit info, etc.). + + """ + resolved_path = self.resolve_path(path, revision=revision) + path = resolved_path.unresolve() + expand_info = kwargs.get( + "expand_info", True + ) # don't expose it as a parameter in the public API to follow the spec + if not resolved_path.path_in_repo: + # Path is the root directory + out = { + "name": path, + "size": 0, + "type": "directory", + } + if expand_info: + last_commit = self._api.list_repo_commits( + resolved_path.repo_id, repo_type=resolved_path.repo_type, revision=resolved_path.revision + )[-1] + out = { + **out, + "tree_id": None, # TODO: tree_id of the root directory? + "last_commit": LastCommitInfo( + oid=last_commit.commit_id, title=last_commit.title, date=last_commit.created_at + ), + } + else: + out = None + parent_path = self._parent(path) + if not expand_info and parent_path not in self.dircache: + # Fill the cache with cheap call + self.ls(parent_path, expand_info=False) + if parent_path in self.dircache: + # Check if the path is in the cache + out1 = [o for o in self.dircache[parent_path] if o["name"] == path] + if not out1: + _raise_file_not_found(path, None) + out = out1[0] + if refresh or out is None or (expand_info and out and out["last_commit"] is None): + paths_info = self._api.get_paths_info( + resolved_path.repo_id, + resolved_path.path_in_repo, + expand=expand_info, + revision=resolved_path.revision, + repo_type=resolved_path.repo_type, + ) + if not paths_info: + _raise_file_not_found(path, None) + path_info = paths_info[0] + root_path = HfFileSystemResolvedPath( + resolved_path.repo_type, + resolved_path.repo_id, + resolved_path.revision, + path_in_repo="", + _raw_revision=resolved_path._raw_revision, + ).unresolve() + if isinstance(path_info, RepoFile): + out = { + "name": root_path + "/" + path_info.path, + "size": path_info.size, + "type": "file", + "blob_id": path_info.blob_id, + "lfs": path_info.lfs, + "last_commit": path_info.last_commit, + "security": path_info.security, + } + else: + out = { + "name": root_path + "/" + path_info.path, + "size": 0, + "type": "directory", + "tree_id": path_info.tree_id, + "last_commit": path_info.last_commit, + } + if not expand_info: + out = {k: out[k] for k in ["name", "size", "type"]} + assert out is not None + return out + + def exists(self, path, **kwargs): + """ + Check if a file exists. + + For more details, refer to [fsspec documentation](https://filesystem-spec.readthedocs.io/en/latest/api.html#fsspec.spec.AbstractFileSystem.exists). + + <Tip warning={true}> + + Note: When possible, use `HfApi.file_exists()` for better performance. + + </Tip> + + Args: + path (`str`): + Path to check. + + Returns: + `bool`: True if file exists, False otherwise. + """ + try: + if kwargs.get("refresh", False): + self.invalidate_cache(path) + + self.info(path, **{**kwargs, "expand_info": False}) + return True + except: # noqa: E722 + return False + + def isdir(self, path): + """ + Check if a path is a directory. + + For more details, refer to [fsspec documentation](https://filesystem-spec.readthedocs.io/en/latest/api.html#fsspec.spec.AbstractFileSystem.isdir). + + Args: + path (`str`): + Path to check. + + Returns: + `bool`: True if path is a directory, False otherwise. + """ + try: + return self.info(path, expand_info=False)["type"] == "directory" + except OSError: + return False + + def isfile(self, path): + """ + Check if a path is a file. + + For more details, refer to [fsspec documentation](https://filesystem-spec.readthedocs.io/en/latest/api.html#fsspec.spec.AbstractFileSystem.isfile). + + Args: + path (`str`): + Path to check. + + Returns: + `bool`: True if path is a file, False otherwise. + """ + try: + return self.info(path, expand_info=False)["type"] == "file" + except: # noqa: E722 + return False + + def url(self, path: str) -> str: + """ + Get the HTTP URL of the given path. + + Args: + path (`str`): + Path to get URL for. + + Returns: + `str`: HTTP URL to access the file or directory on the Hub. + """ + resolved_path = self.resolve_path(path) + url = hf_hub_url( + resolved_path.repo_id, + resolved_path.path_in_repo, + repo_type=resolved_path.repo_type, + revision=resolved_path.revision, + endpoint=self.endpoint, + ) + if self.isdir(path): + url = url.replace("/resolve/", "/tree/", 1) + return url + + def get_file(self, rpath, lpath, callback=_DEFAULT_CALLBACK, outfile=None, **kwargs) -> None: + """ + Copy single remote file to local. + + <Tip warning={true}> + + Note: When possible, use `HfApi.hf_hub_download()` for better performance. + + </Tip> + + Args: + rpath (`str`): + Remote path to download from. + lpath (`str`): + Local path to download to. + callback (`Callback`, *optional*): + Optional callback to track download progress. Defaults to no callback. + outfile (`IO`, *optional*): + Optional file-like object to write to. If provided, `lpath` is ignored. + + """ + revision = kwargs.get("revision") + unhandled_kwargs = set(kwargs.keys()) - {"revision"} + if not isinstance(callback, (NoOpCallback, TqdmCallback)) or len(unhandled_kwargs) > 0: + # for now, let's not handle custom callbacks + # and let's not handle custom kwargs + return super().get_file(rpath, lpath, callback=callback, outfile=outfile, **kwargs) + + # Taken from https://github.com/fsspec/filesystem_spec/blob/47b445ae4c284a82dd15e0287b1ffc410e8fc470/fsspec/spec.py#L883 + if isfilelike(lpath): + outfile = lpath + elif self.isdir(rpath): + os.makedirs(lpath, exist_ok=True) + return None + + if isinstance(lpath, (str, Path)): # otherwise, let's assume it's a file-like object + os.makedirs(os.path.dirname(lpath), exist_ok=True) + + # Open file if not already open + close_file = False + if outfile is None: + outfile = open(lpath, "wb") + close_file = True + initial_pos = outfile.tell() + + # Custom implementation of `get_file` to use `http_get`. + resolve_remote_path = self.resolve_path(rpath, revision=revision) + expected_size = self.info(rpath, revision=revision)["size"] + callback.set_size(expected_size) + try: + http_get( + url=hf_hub_url( + repo_id=resolve_remote_path.repo_id, + revision=resolve_remote_path.revision, + filename=resolve_remote_path.path_in_repo, + repo_type=resolve_remote_path.repo_type, + endpoint=self.endpoint, + ), + temp_file=outfile, + displayed_filename=rpath, + expected_size=expected_size, + resume_size=0, + headers=self._api._build_hf_headers(), + _tqdm_bar=callback.tqdm if isinstance(callback, TqdmCallback) else None, + ) + outfile.seek(initial_pos) + finally: + # Close file only if we opened it ourselves + if close_file: + outfile.close() + + @property + def transaction(self): + """A context within which files are committed together upon exit + + Requires the file class to implement `.commit()` and `.discard()` + for the normal and exception cases. + """ + # Taken from https://github.com/fsspec/filesystem_spec/blob/3fbb6fee33b46cccb015607630843dea049d3243/fsspec/spec.py#L231 + # See https://github.com/huggingface/huggingface_hub/issues/1733 + raise NotImplementedError("Transactional commits are not supported.") + + def start_transaction(self): + """Begin write transaction for deferring files, non-context version""" + # Taken from https://github.com/fsspec/filesystem_spec/blob/3fbb6fee33b46cccb015607630843dea049d3243/fsspec/spec.py#L241 + # See https://github.com/huggingface/huggingface_hub/issues/1733 + raise NotImplementedError("Transactional commits are not supported.") + + +class HfFileSystemFile(fsspec.spec.AbstractBufferedFile): + def __init__(self, fs: HfFileSystem, path: str, revision: Optional[str] = None, **kwargs): + try: + self.resolved_path = fs.resolve_path(path, revision=revision) + except FileNotFoundError as e: + if "w" in kwargs.get("mode", ""): + raise FileNotFoundError( + f"{e}.\nMake sure the repository and revision exist before writing data." + ) from e + raise + # avoid an unnecessary .info() call with expensive expand_info=True to instantiate .details + if kwargs.get("mode", "rb") == "rb": + self.details = fs.info(self.resolved_path.unresolve(), expand_info=False) + super().__init__(fs, self.resolved_path.unresolve(), **kwargs) + self.fs: HfFileSystem + + def __del__(self): + if not hasattr(self, "resolved_path"): + # Means that the constructor failed. Nothing to do. + return + return super().__del__() + + def _fetch_range(self, start: int, end: int) -> bytes: + headers = { + "range": f"bytes={start}-{end - 1}", + **self.fs._api._build_hf_headers(), + } + url = hf_hub_url( + repo_id=self.resolved_path.repo_id, + revision=self.resolved_path.revision, + filename=self.resolved_path.path_in_repo, + repo_type=self.resolved_path.repo_type, + endpoint=self.fs.endpoint, + ) + r = http_backoff( + "GET", + url, + headers=headers, + retry_on_status_codes=(500, 502, 503, 504), + timeout=constants.HF_HUB_DOWNLOAD_TIMEOUT, + ) + hf_raise_for_status(r) + return r.content + + def _initiate_upload(self) -> None: + self.temp_file = tempfile.NamedTemporaryFile(prefix="hffs-", delete=False) + + def _upload_chunk(self, final: bool = False) -> None: + self.buffer.seek(0) + block = self.buffer.read() + self.temp_file.write(block) + if final: + self.temp_file.close() + self.fs._api.upload_file( + path_or_fileobj=self.temp_file.name, + path_in_repo=self.resolved_path.path_in_repo, + repo_id=self.resolved_path.repo_id, + token=self.fs.token, + repo_type=self.resolved_path.repo_type, + revision=self.resolved_path.revision, + commit_message=self.kwargs.get("commit_message"), + commit_description=self.kwargs.get("commit_description"), + ) + os.remove(self.temp_file.name) + self.fs.invalidate_cache( + path=self.resolved_path.unresolve(), + ) + + def read(self, length=-1): + """Read remote file. + + If `length` is not provided or is -1, the entire file is downloaded and read. On POSIX systems and if + `hf_transfer` is not enabled, the file is loaded in memory directly. Otherwise, the file is downloaded to a + temporary file and read from there. + """ + if self.mode == "rb" and (length is None or length == -1) and self.loc == 0: + with self.fs.open(self.path, "rb", block_size=0) as f: # block_size=0 enables fast streaming + return f.read() + return super().read(length) + + def url(self) -> str: + return self.fs.url(self.path) + + +class HfFileSystemStreamFile(fsspec.spec.AbstractBufferedFile): + def __init__( + self, + fs: HfFileSystem, + path: str, + mode: str = "rb", + revision: Optional[str] = None, + block_size: int = 0, + cache_type: str = "none", + **kwargs, + ): + if block_size != 0: + raise ValueError(f"HfFileSystemStreamFile only supports block_size=0 but got {block_size}") + if cache_type != "none": + raise ValueError(f"HfFileSystemStreamFile only supports cache_type='none' but got {cache_type}") + if "w" in mode: + raise ValueError(f"HfFileSystemStreamFile only supports reading but got mode='{mode}'") + try: + self.resolved_path = fs.resolve_path(path, revision=revision) + except FileNotFoundError as e: + if "w" in kwargs.get("mode", ""): + raise FileNotFoundError( + f"{e}.\nMake sure the repository and revision exist before writing data." + ) from e + # avoid an unnecessary .info() call to instantiate .details + self.details = {"name": self.resolved_path.unresolve(), "size": None} + super().__init__( + fs, self.resolved_path.unresolve(), mode=mode, block_size=block_size, cache_type=cache_type, **kwargs + ) + self.response: Optional[Response] = None + self.fs: HfFileSystem + + def seek(self, loc: int, whence: int = 0): + if loc == 0 and whence == 1: + return + if loc == self.loc and whence == 0: + return + raise ValueError("Cannot seek streaming HF file") + + def read(self, length: int = -1): + read_args = (length,) if length >= 0 else () + if self.response is None or self.response.raw.isclosed(): + url = hf_hub_url( + repo_id=self.resolved_path.repo_id, + revision=self.resolved_path.revision, + filename=self.resolved_path.path_in_repo, + repo_type=self.resolved_path.repo_type, + endpoint=self.fs.endpoint, + ) + self.response = http_backoff( + "GET", + url, + headers=self.fs._api._build_hf_headers(), + retry_on_status_codes=(500, 502, 503, 504), + stream=True, + timeout=constants.HF_HUB_DOWNLOAD_TIMEOUT, + ) + hf_raise_for_status(self.response) + try: + out = self.response.raw.read(*read_args) + except Exception: + self.response.close() + + # Retry by recreating the connection + url = hf_hub_url( + repo_id=self.resolved_path.repo_id, + revision=self.resolved_path.revision, + filename=self.resolved_path.path_in_repo, + repo_type=self.resolved_path.repo_type, + endpoint=self.fs.endpoint, + ) + self.response = http_backoff( + "GET", + url, + headers={"Range": "bytes=%d-" % self.loc, **self.fs._api._build_hf_headers()}, + retry_on_status_codes=(500, 502, 503, 504), + stream=True, + timeout=constants.HF_HUB_DOWNLOAD_TIMEOUT, + ) + hf_raise_for_status(self.response) + try: + out = self.response.raw.read(*read_args) + except Exception: + self.response.close() + raise + self.loc += len(out) + return out + + def url(self) -> str: + return self.fs.url(self.path) + + def __del__(self): + if not hasattr(self, "resolved_path"): + # Means that the constructor failed. Nothing to do. + return + return super().__del__() + + def __reduce__(self): + return reopen, (self.fs, self.path, self.mode, self.blocksize, self.cache.name) + + +def safe_revision(revision: str) -> str: + return revision if SPECIAL_REFS_REVISION_REGEX.match(revision) else safe_quote(revision) + + +def safe_quote(s: str) -> str: + return quote(s, safe="") + + +def _raise_file_not_found(path: str, err: Optional[Exception]) -> NoReturn: + msg = path + if isinstance(err, RepositoryNotFoundError): + msg = f"{path} (repository not found)" + elif isinstance(err, RevisionNotFoundError): + msg = f"{path} (revision not found)" + elif isinstance(err, HFValidationError): + msg = f"{path} (invalid repository id)" + raise FileNotFoundError(msg) from err + + +def reopen(fs: HfFileSystem, path: str, mode: str, block_size: int, cache_type: str): + return fs.open(path, mode=mode, block_size=block_size, cache_type=cache_type) diff --git a/.venv/lib/python3.12/site-packages/huggingface_hub/hub_mixin.py b/.venv/lib/python3.12/site-packages/huggingface_hub/hub_mixin.py new file mode 100644 index 00000000..8bf32f12 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/huggingface_hub/hub_mixin.py @@ -0,0 +1,836 @@ +import inspect +import json +import os +from dataclasses import Field, asdict, dataclass, is_dataclass +from pathlib import Path +from typing import Any, Callable, ClassVar, Dict, List, Optional, Protocol, Tuple, Type, TypeVar, Union + +import packaging.version + +from . import constants +from .errors import EntryNotFoundError, HfHubHTTPError +from .file_download import hf_hub_download +from .hf_api import HfApi +from .repocard import ModelCard, ModelCardData +from .utils import ( + SoftTemporaryDirectory, + is_jsonable, + is_safetensors_available, + is_simple_optional_type, + is_torch_available, + logging, + unwrap_simple_optional_type, + validate_hf_hub_args, +) + + +if is_torch_available(): + import torch # type: ignore + +if is_safetensors_available(): + import safetensors + from safetensors.torch import load_model as load_model_as_safetensor + from safetensors.torch import save_model as save_model_as_safetensor + + +logger = logging.get_logger(__name__) + + +# Type alias for dataclass instances, copied from https://github.com/python/typeshed/blob/9f28171658b9ca6c32a7cb93fbb99fc92b17858b/stdlib/_typeshed/__init__.pyi#L349 +class DataclassInstance(Protocol): + __dataclass_fields__: ClassVar[Dict[str, Field]] + + +# Generic variable that is either ModelHubMixin or a subclass thereof +T = TypeVar("T", bound="ModelHubMixin") +# Generic variable to represent an args type +ARGS_T = TypeVar("ARGS_T") +ENCODER_T = Callable[[ARGS_T], Any] +DECODER_T = Callable[[Any], ARGS_T] +CODER_T = Tuple[ENCODER_T, DECODER_T] + + +DEFAULT_MODEL_CARD = """ +--- +# For reference on model card metadata, see the spec: https://github.com/huggingface/hub-docs/blob/main/modelcard.md?plain=1 +# Doc / guide: https://huggingface.co/docs/hub/model-cards +{{ card_data }} +--- + +This model has been pushed to the Hub using the [PytorchModelHubMixin](https://huggingface.co/docs/huggingface_hub/package_reference/mixins#huggingface_hub.PyTorchModelHubMixin) integration: +- Library: {{ repo_url | default("[More Information Needed]", true) }} +- Docs: {{ docs_url | default("[More Information Needed]", true) }} +""" + + +@dataclass +class MixinInfo: + model_card_template: str + model_card_data: ModelCardData + repo_url: Optional[str] = None + docs_url: Optional[str] = None + + +class ModelHubMixin: + """ + A generic mixin to integrate ANY machine learning framework with the Hub. + + To integrate your framework, your model class must inherit from this class. Custom logic for saving/loading models + have to be overwritten in [`_from_pretrained`] and [`_save_pretrained`]. [`PyTorchModelHubMixin`] is a good example + of mixin integration with the Hub. Check out our [integration guide](../guides/integrations) for more instructions. + + When inheriting from [`ModelHubMixin`], you can define class-level attributes. These attributes are not passed to + `__init__` but to the class definition itself. This is useful to define metadata about the library integrating + [`ModelHubMixin`]. + + For more details on how to integrate the mixin with your library, checkout the [integration guide](../guides/integrations). + + Args: + repo_url (`str`, *optional*): + URL of the library repository. Used to generate model card. + docs_url (`str`, *optional*): + URL of the library documentation. Used to generate model card. + model_card_template (`str`, *optional*): + Template of the model card. Used to generate model card. Defaults to a generic template. + language (`str` or `List[str]`, *optional*): + Language supported by the library. Used to generate model card. + library_name (`str`, *optional*): + Name of the library integrating ModelHubMixin. Used to generate model card. + license (`str`, *optional*): + License of the library integrating ModelHubMixin. Used to generate model card. + E.g: "apache-2.0" + license_name (`str`, *optional*): + Name of the library integrating ModelHubMixin. Used to generate model card. + Only used if `license` is set to `other`. + E.g: "coqui-public-model-license". + license_link (`str`, *optional*): + URL to the license of the library integrating ModelHubMixin. Used to generate model card. + Only used if `license` is set to `other` and `license_name` is set. + E.g: "https://coqui.ai/cpml". + pipeline_tag (`str`, *optional*): + Tag of the pipeline. Used to generate model card. E.g. "text-classification". + tags (`List[str]`, *optional*): + Tags to be added to the model card. Used to generate model card. E.g. ["x-custom-tag", "arxiv:2304.12244"] + coders (`Dict[Type, Tuple[Callable, Callable]]`, *optional*): + Dictionary of custom types and their encoders/decoders. Used to encode/decode arguments that are not + jsonable by default. E.g dataclasses, argparse.Namespace, OmegaConf, etc. + + Example: + + ```python + >>> from huggingface_hub import ModelHubMixin + + # Inherit from ModelHubMixin + >>> class MyCustomModel( + ... ModelHubMixin, + ... library_name="my-library", + ... tags=["x-custom-tag", "arxiv:2304.12244"], + ... repo_url="https://github.com/huggingface/my-cool-library", + ... docs_url="https://huggingface.co/docs/my-cool-library", + ... # ^ optional metadata to generate model card + ... ): + ... def __init__(self, size: int = 512, device: str = "cpu"): + ... # define how to initialize your model + ... super().__init__() + ... ... + ... + ... def _save_pretrained(self, save_directory: Path) -> None: + ... # define how to serialize your model + ... ... + ... + ... @classmethod + ... def from_pretrained( + ... cls: Type[T], + ... pretrained_model_name_or_path: Union[str, Path], + ... *, + ... force_download: bool = False, + ... resume_download: Optional[bool] = None, + ... proxies: Optional[Dict] = None, + ... token: Optional[Union[str, bool]] = None, + ... cache_dir: Optional[Union[str, Path]] = None, + ... local_files_only: bool = False, + ... revision: Optional[str] = None, + ... **model_kwargs, + ... ) -> T: + ... # define how to deserialize your model + ... ... + + >>> model = MyCustomModel(size=256, device="gpu") + + # Save model weights to local directory + >>> model.save_pretrained("my-awesome-model") + + # Push model weights to the Hub + >>> model.push_to_hub("my-awesome-model") + + # Download and initialize weights from the Hub + >>> reloaded_model = MyCustomModel.from_pretrained("username/my-awesome-model") + >>> reloaded_model.size + 256 + + # Model card has been correctly populated + >>> from huggingface_hub import ModelCard + >>> card = ModelCard.load("username/my-awesome-model") + >>> card.data.tags + ["x-custom-tag", "pytorch_model_hub_mixin", "model_hub_mixin"] + >>> card.data.library_name + "my-library" + ``` + """ + + _hub_mixin_config: Optional[Union[dict, DataclassInstance]] = None + # ^ optional config attribute automatically set in `from_pretrained` + _hub_mixin_info: MixinInfo + # ^ information about the library integrating ModelHubMixin (used to generate model card) + _hub_mixin_inject_config: bool # whether `_from_pretrained` expects `config` or not + _hub_mixin_init_parameters: Dict[str, inspect.Parameter] # __init__ parameters + _hub_mixin_jsonable_default_values: Dict[str, Any] # default values for __init__ parameters + _hub_mixin_jsonable_custom_types: Tuple[Type, ...] # custom types that can be encoded/decoded + _hub_mixin_coders: Dict[Type, CODER_T] # encoders/decoders for custom types + # ^ internal values to handle config + + def __init_subclass__( + cls, + *, + # Generic info for model card + repo_url: Optional[str] = None, + docs_url: Optional[str] = None, + # Model card template + model_card_template: str = DEFAULT_MODEL_CARD, + # Model card metadata + language: Optional[List[str]] = None, + library_name: Optional[str] = None, + license: Optional[str] = None, + license_name: Optional[str] = None, + license_link: Optional[str] = None, + pipeline_tag: Optional[str] = None, + tags: Optional[List[str]] = None, + # How to encode/decode arguments with custom type into a JSON config? + coders: Optional[ + Dict[Type, CODER_T] + # Key is a type. + # Value is a tuple (encoder, decoder). + # Example: {MyCustomType: (lambda x: x.value, lambda data: MyCustomType(data))} + ] = None, + ) -> None: + """Inspect __init__ signature only once when subclassing + handle modelcard.""" + super().__init_subclass__() + + # Will be reused when creating modelcard + tags = tags or [] + tags.append("model_hub_mixin") + + # Initialize MixinInfo if not existent + info = MixinInfo(model_card_template=model_card_template, model_card_data=ModelCardData()) + + # If parent class has a MixinInfo, inherit from it as a copy + if hasattr(cls, "_hub_mixin_info"): + # Inherit model card template from parent class if not explicitly set + if model_card_template == DEFAULT_MODEL_CARD: + info.model_card_template = cls._hub_mixin_info.model_card_template + + # Inherit from parent model card data + info.model_card_data = ModelCardData(**cls._hub_mixin_info.model_card_data.to_dict()) + + # Inherit other info + info.docs_url = cls._hub_mixin_info.docs_url + info.repo_url = cls._hub_mixin_info.repo_url + cls._hub_mixin_info = info + + # Update MixinInfo with metadata + if model_card_template is not None and model_card_template != DEFAULT_MODEL_CARD: + info.model_card_template = model_card_template + if repo_url is not None: + info.repo_url = repo_url + if docs_url is not None: + info.docs_url = docs_url + if language is not None: + info.model_card_data.language = language + if library_name is not None: + info.model_card_data.library_name = library_name + if license is not None: + info.model_card_data.license = license + if license_name is not None: + info.model_card_data.license_name = license_name + if license_link is not None: + info.model_card_data.license_link = license_link + if pipeline_tag is not None: + info.model_card_data.pipeline_tag = pipeline_tag + if tags is not None: + if info.model_card_data.tags is not None: + info.model_card_data.tags.extend(tags) + else: + info.model_card_data.tags = tags + + info.model_card_data.tags = sorted(set(info.model_card_data.tags)) + + # Handle encoders/decoders for args + cls._hub_mixin_coders = coders or {} + cls._hub_mixin_jsonable_custom_types = tuple(cls._hub_mixin_coders.keys()) + + # Inspect __init__ signature to handle config + cls._hub_mixin_init_parameters = dict(inspect.signature(cls.__init__).parameters) + cls._hub_mixin_jsonable_default_values = { + param.name: cls._encode_arg(param.default) + for param in cls._hub_mixin_init_parameters.values() + if param.default is not inspect.Parameter.empty and cls._is_jsonable(param.default) + } + cls._hub_mixin_inject_config = "config" in inspect.signature(cls._from_pretrained).parameters + + def __new__(cls: Type[T], *args, **kwargs) -> T: + """Create a new instance of the class and handle config. + + 3 cases: + - If `self._hub_mixin_config` is already set, do nothing. + - If `config` is passed as a dataclass, set it as `self._hub_mixin_config`. + - Otherwise, build `self._hub_mixin_config` from default values and passed values. + """ + instance = super().__new__(cls) + + # If `config` is already set, return early + if instance._hub_mixin_config is not None: + return instance + + # Infer passed values + passed_values = { + **{ + key: value + for key, value in zip( + # [1:] to skip `self` parameter + list(cls._hub_mixin_init_parameters)[1:], + args, + ) + }, + **kwargs, + } + + # If config passed as dataclass => set it and return early + if is_dataclass(passed_values.get("config")): + instance._hub_mixin_config = passed_values["config"] + return instance + + # Otherwise, build config from default + passed values + init_config = { + # default values + **cls._hub_mixin_jsonable_default_values, + # passed values + **{ + key: cls._encode_arg(value) # Encode custom types as jsonable value + for key, value in passed_values.items() + if instance._is_jsonable(value) # Only if jsonable or we have a custom encoder + }, + } + passed_config = init_config.pop("config", {}) + + # Populate `init_config` with provided config + if isinstance(passed_config, dict): + init_config.update(passed_config) + + # Set `config` attribute and return + if init_config != {}: + instance._hub_mixin_config = init_config + return instance + + @classmethod + def _is_jsonable(cls, value: Any) -> bool: + """Check if a value is JSON serializable.""" + if isinstance(value, cls._hub_mixin_jsonable_custom_types): + return True + return is_jsonable(value) + + @classmethod + def _encode_arg(cls, arg: Any) -> Any: + """Encode an argument into a JSON serializable format.""" + for type_, (encoder, _) in cls._hub_mixin_coders.items(): + if isinstance(arg, type_): + if arg is None: + return None + return encoder(arg) + return arg + + @classmethod + def _decode_arg(cls, expected_type: Type[ARGS_T], value: Any) -> Optional[ARGS_T]: + """Decode a JSON serializable value into an argument.""" + if is_simple_optional_type(expected_type): + if value is None: + return None + expected_type = unwrap_simple_optional_type(expected_type) + # Dataclass => handle it + if is_dataclass(expected_type): + return _load_dataclass(expected_type, value) # type: ignore[return-value] + # Otherwise => check custom decoders + for type_, (_, decoder) in cls._hub_mixin_coders.items(): + if inspect.isclass(expected_type) and issubclass(expected_type, type_): + return decoder(value) + # Otherwise => don't decode + return value + + def save_pretrained( + self, + save_directory: Union[str, Path], + *, + config: Optional[Union[dict, DataclassInstance]] = None, + repo_id: Optional[str] = None, + push_to_hub: bool = False, + model_card_kwargs: Optional[Dict[str, Any]] = None, + **push_to_hub_kwargs, + ) -> Optional[str]: + """ + Save weights in local directory. + + Args: + save_directory (`str` or `Path`): + Path to directory in which the model weights and configuration will be saved. + config (`dict` or `DataclassInstance`, *optional*): + Model configuration specified as a key/value dictionary or a dataclass instance. + push_to_hub (`bool`, *optional*, defaults to `False`): + Whether or not to push your model to the Huggingface Hub after saving it. + repo_id (`str`, *optional*): + ID of your repository on the Hub. Used only if `push_to_hub=True`. Will default to the folder name if + not provided. + model_card_kwargs (`Dict[str, Any]`, *optional*): + Additional arguments passed to the model card template to customize the model card. + push_to_hub_kwargs: + Additional key word arguments passed along to the [`~ModelHubMixin.push_to_hub`] method. + Returns: + `str` or `None`: url of the commit on the Hub if `push_to_hub=True`, `None` otherwise. + """ + save_directory = Path(save_directory) + save_directory.mkdir(parents=True, exist_ok=True) + + # Remove config.json if already exists. After `_save_pretrained` we don't want to overwrite config.json + # as it might have been saved by the custom `_save_pretrained` already. However we do want to overwrite + # an existing config.json if it was not saved by `_save_pretrained`. + config_path = save_directory / constants.CONFIG_NAME + config_path.unlink(missing_ok=True) + + # save model weights/files (framework-specific) + self._save_pretrained(save_directory) + + # save config (if provided and if not serialized yet in `_save_pretrained`) + if config is None: + config = self._hub_mixin_config + if config is not None: + if is_dataclass(config): + config = asdict(config) # type: ignore[arg-type] + if not config_path.exists(): + config_str = json.dumps(config, sort_keys=True, indent=2) + config_path.write_text(config_str) + + # save model card + model_card_path = save_directory / "README.md" + model_card_kwargs = model_card_kwargs if model_card_kwargs is not None else {} + if not model_card_path.exists(): # do not overwrite if already exists + self.generate_model_card(**model_card_kwargs).save(save_directory / "README.md") + + # push to the Hub if required + if push_to_hub: + kwargs = push_to_hub_kwargs.copy() # soft-copy to avoid mutating input + if config is not None: # kwarg for `push_to_hub` + kwargs["config"] = config + if repo_id is None: + repo_id = save_directory.name # Defaults to `save_directory` name + return self.push_to_hub(repo_id=repo_id, model_card_kwargs=model_card_kwargs, **kwargs) + return None + + def _save_pretrained(self, save_directory: Path) -> None: + """ + Overwrite this method in subclass to define how to save your model. + Check out our [integration guide](../guides/integrations) for instructions. + + Args: + save_directory (`str` or `Path`): + Path to directory in which the model weights and configuration will be saved. + """ + raise NotImplementedError + + @classmethod + @validate_hf_hub_args + def from_pretrained( + cls: Type[T], + pretrained_model_name_or_path: Union[str, Path], + *, + force_download: bool = False, + resume_download: Optional[bool] = None, + proxies: Optional[Dict] = None, + token: Optional[Union[str, bool]] = None, + cache_dir: Optional[Union[str, Path]] = None, + local_files_only: bool = False, + revision: Optional[str] = None, + **model_kwargs, + ) -> T: + """ + Download a model from the Huggingface Hub and instantiate it. + + Args: + pretrained_model_name_or_path (`str`, `Path`): + - Either the `model_id` (string) of a model hosted on the Hub, e.g. `bigscience/bloom`. + - Or a path to a `directory` containing model weights saved using + [`~transformers.PreTrainedModel.save_pretrained`], e.g., `../path/to/my_model_directory/`. + revision (`str`, *optional*): + Revision of the model on the Hub. Can be a branch name, a git tag or any commit id. + Defaults to the latest commit on `main` branch. + force_download (`bool`, *optional*, defaults to `False`): + Whether to force (re-)downloading the model weights and configuration files from the Hub, overriding + the existing cache. + proxies (`Dict[str, str]`, *optional*): + A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128', + 'http://hostname': 'foo.bar:4012'}`. The proxies are used on every request. + token (`str` or `bool`, *optional*): + The token to use as HTTP bearer authorization for remote files. By default, it will use the token + cached when running `huggingface-cli login`. + cache_dir (`str`, `Path`, *optional*): + Path to the folder where cached files are stored. + local_files_only (`bool`, *optional*, defaults to `False`): + If `True`, avoid downloading the file and return the path to the local cached file if it exists. + model_kwargs (`Dict`, *optional*): + Additional kwargs to pass to the model during initialization. + """ + model_id = str(pretrained_model_name_or_path) + config_file: Optional[str] = None + if os.path.isdir(model_id): + if constants.CONFIG_NAME in os.listdir(model_id): + config_file = os.path.join(model_id, constants.CONFIG_NAME) + else: + logger.warning(f"{constants.CONFIG_NAME} not found in {Path(model_id).resolve()}") + else: + try: + config_file = hf_hub_download( + repo_id=model_id, + filename=constants.CONFIG_NAME, + revision=revision, + cache_dir=cache_dir, + force_download=force_download, + proxies=proxies, + resume_download=resume_download, + token=token, + local_files_only=local_files_only, + ) + except HfHubHTTPError as e: + logger.info(f"{constants.CONFIG_NAME} not found on the HuggingFace Hub: {str(e)}") + + # Read config + config = None + if config_file is not None: + with open(config_file, "r", encoding="utf-8") as f: + config = json.load(f) + + # Decode custom types in config + for key, value in config.items(): + if key in cls._hub_mixin_init_parameters: + expected_type = cls._hub_mixin_init_parameters[key].annotation + if expected_type is not inspect.Parameter.empty: + config[key] = cls._decode_arg(expected_type, value) + + # Populate model_kwargs from config + for param in cls._hub_mixin_init_parameters.values(): + if param.name not in model_kwargs and param.name in config: + model_kwargs[param.name] = config[param.name] + + # Check if `config` argument was passed at init + if "config" in cls._hub_mixin_init_parameters and "config" not in model_kwargs: + # Decode `config` argument if it was passed + config_annotation = cls._hub_mixin_init_parameters["config"].annotation + config = cls._decode_arg(config_annotation, config) + + # Forward config to model initialization + model_kwargs["config"] = config + + # Inject config if `**kwargs` are expected + if is_dataclass(cls): + for key in cls.__dataclass_fields__: + if key not in model_kwargs and key in config: + model_kwargs[key] = config[key] + elif any(param.kind == inspect.Parameter.VAR_KEYWORD for param in cls._hub_mixin_init_parameters.values()): + for key, value in config.items(): + if key not in model_kwargs: + model_kwargs[key] = value + + # Finally, also inject if `_from_pretrained` expects it + if cls._hub_mixin_inject_config and "config" not in model_kwargs: + model_kwargs["config"] = config + + instance = cls._from_pretrained( + model_id=str(model_id), + revision=revision, + cache_dir=cache_dir, + force_download=force_download, + proxies=proxies, + resume_download=resume_download, + local_files_only=local_files_only, + token=token, + **model_kwargs, + ) + + # Implicitly set the config as instance attribute if not already set by the class + # This way `config` will be available when calling `save_pretrained` or `push_to_hub`. + if config is not None and (getattr(instance, "_hub_mixin_config", None) in (None, {})): + instance._hub_mixin_config = config + + return instance + + @classmethod + def _from_pretrained( + cls: Type[T], + *, + model_id: str, + revision: Optional[str], + cache_dir: Optional[Union[str, Path]], + force_download: bool, + proxies: Optional[Dict], + resume_download: Optional[bool], + local_files_only: bool, + token: Optional[Union[str, bool]], + **model_kwargs, + ) -> T: + """Overwrite this method in subclass to define how to load your model from pretrained. + + Use [`hf_hub_download`] or [`snapshot_download`] to download files from the Hub before loading them. Most + args taken as input can be directly passed to those 2 methods. If needed, you can add more arguments to this + method using "model_kwargs". For example [`PyTorchModelHubMixin._from_pretrained`] takes as input a `map_location` + parameter to set on which device the model should be loaded. + + Check out our [integration guide](../guides/integrations) for more instructions. + + Args: + model_id (`str`): + ID of the model to load from the Huggingface Hub (e.g. `bigscience/bloom`). + revision (`str`, *optional*): + Revision of the model on the Hub. Can be a branch name, a git tag or any commit id. Defaults to the + latest commit on `main` branch. + force_download (`bool`, *optional*, defaults to `False`): + Whether to force (re-)downloading the model weights and configuration files from the Hub, overriding + the existing cache. + proxies (`Dict[str, str]`, *optional*): + A dictionary of proxy servers to use by protocol or endpoint (e.g., `{'http': 'foo.bar:3128', + 'http://hostname': 'foo.bar:4012'}`). + token (`str` or `bool`, *optional*): + The token to use as HTTP bearer authorization for remote files. By default, it will use the token + cached when running `huggingface-cli login`. + cache_dir (`str`, `Path`, *optional*): + Path to the folder where cached files are stored. + local_files_only (`bool`, *optional*, defaults to `False`): + If `True`, avoid downloading the file and return the path to the local cached file if it exists. + model_kwargs: + Additional keyword arguments passed along to the [`~ModelHubMixin._from_pretrained`] method. + """ + raise NotImplementedError + + @validate_hf_hub_args + def push_to_hub( + self, + repo_id: str, + *, + config: Optional[Union[dict, DataclassInstance]] = None, + commit_message: str = "Push model using huggingface_hub.", + private: Optional[bool] = None, + token: Optional[str] = None, + branch: Optional[str] = None, + create_pr: Optional[bool] = None, + allow_patterns: Optional[Union[List[str], str]] = None, + ignore_patterns: Optional[Union[List[str], str]] = None, + delete_patterns: Optional[Union[List[str], str]] = None, + model_card_kwargs: Optional[Dict[str, Any]] = None, + ) -> str: + """ + Upload model checkpoint to the Hub. + + Use `allow_patterns` and `ignore_patterns` to precisely filter which files should be pushed to the hub. Use + `delete_patterns` to delete existing remote files in the same commit. See [`upload_folder`] reference for more + details. + + Args: + repo_id (`str`): + ID of the repository to push to (example: `"username/my-model"`). + config (`dict` or `DataclassInstance`, *optional*): + Model configuration specified as a key/value dictionary or a dataclass instance. + commit_message (`str`, *optional*): + Message to commit while pushing. + private (`bool`, *optional*): + Whether the repository created should be private. + If `None` (default), the repo will be public unless the organization's default is private. + token (`str`, *optional*): + The token to use as HTTP bearer authorization for remote files. By default, it will use the token + cached when running `huggingface-cli login`. + branch (`str`, *optional*): + The git branch on which to push the model. This defaults to `"main"`. + create_pr (`boolean`, *optional*): + Whether or not to create a Pull Request from `branch` with that commit. Defaults to `False`. + allow_patterns (`List[str]` or `str`, *optional*): + If provided, only files matching at least one pattern are pushed. + ignore_patterns (`List[str]` or `str`, *optional*): + If provided, files matching any of the patterns are not pushed. + delete_patterns (`List[str]` or `str`, *optional*): + If provided, remote files matching any of the patterns will be deleted from the repo. + model_card_kwargs (`Dict[str, Any]`, *optional*): + Additional arguments passed to the model card template to customize the model card. + + Returns: + The url of the commit of your model in the given repository. + """ + api = HfApi(token=token) + repo_id = api.create_repo(repo_id=repo_id, private=private, exist_ok=True).repo_id + + # Push the files to the repo in a single commit + with SoftTemporaryDirectory() as tmp: + saved_path = Path(tmp) / repo_id + self.save_pretrained(saved_path, config=config, model_card_kwargs=model_card_kwargs) + return api.upload_folder( + repo_id=repo_id, + repo_type="model", + folder_path=saved_path, + commit_message=commit_message, + revision=branch, + create_pr=create_pr, + allow_patterns=allow_patterns, + ignore_patterns=ignore_patterns, + delete_patterns=delete_patterns, + ) + + def generate_model_card(self, *args, **kwargs) -> ModelCard: + card = ModelCard.from_template( + card_data=self._hub_mixin_info.model_card_data, + template_str=self._hub_mixin_info.model_card_template, + repo_url=self._hub_mixin_info.repo_url, + docs_url=self._hub_mixin_info.docs_url, + **kwargs, + ) + return card + + +class PyTorchModelHubMixin(ModelHubMixin): + """ + Implementation of [`ModelHubMixin`] to provide model Hub upload/download capabilities to PyTorch models. The model + is set in evaluation mode by default using `model.eval()` (dropout modules are deactivated). To train the model, + you should first set it back in training mode with `model.train()`. + + See [`ModelHubMixin`] for more details on how to use the mixin. + + Example: + + ```python + >>> import torch + >>> import torch.nn as nn + >>> from huggingface_hub import PyTorchModelHubMixin + + >>> class MyModel( + ... nn.Module, + ... PyTorchModelHubMixin, + ... library_name="keras-nlp", + ... repo_url="https://github.com/keras-team/keras-nlp", + ... docs_url="https://keras.io/keras_nlp/", + ... # ^ optional metadata to generate model card + ... ): + ... def __init__(self, hidden_size: int = 512, vocab_size: int = 30000, output_size: int = 4): + ... super().__init__() + ... self.param = nn.Parameter(torch.rand(hidden_size, vocab_size)) + ... self.linear = nn.Linear(output_size, vocab_size) + + ... def forward(self, x): + ... return self.linear(x + self.param) + >>> model = MyModel(hidden_size=256) + + # Save model weights to local directory + >>> model.save_pretrained("my-awesome-model") + + # Push model weights to the Hub + >>> model.push_to_hub("my-awesome-model") + + # Download and initialize weights from the Hub + >>> model = MyModel.from_pretrained("username/my-awesome-model") + >>> model.hidden_size + 256 + ``` + """ + + def __init_subclass__(cls, *args, tags: Optional[List[str]] = None, **kwargs) -> None: + tags = tags or [] + tags.append("pytorch_model_hub_mixin") + kwargs["tags"] = tags + return super().__init_subclass__(*args, **kwargs) + + def _save_pretrained(self, save_directory: Path) -> None: + """Save weights from a Pytorch model to a local directory.""" + model_to_save = self.module if hasattr(self, "module") else self # type: ignore + save_model_as_safetensor(model_to_save, str(save_directory / constants.SAFETENSORS_SINGLE_FILE)) + + @classmethod + def _from_pretrained( + cls, + *, + model_id: str, + revision: Optional[str], + cache_dir: Optional[Union[str, Path]], + force_download: bool, + proxies: Optional[Dict], + resume_download: Optional[bool], + local_files_only: bool, + token: Union[str, bool, None], + map_location: str = "cpu", + strict: bool = False, + **model_kwargs, + ): + """Load Pytorch pretrained weights and return the loaded model.""" + model = cls(**model_kwargs) + if os.path.isdir(model_id): + print("Loading weights from local directory") + model_file = os.path.join(model_id, constants.SAFETENSORS_SINGLE_FILE) + return cls._load_as_safetensor(model, model_file, map_location, strict) + else: + try: + model_file = hf_hub_download( + repo_id=model_id, + filename=constants.SAFETENSORS_SINGLE_FILE, + revision=revision, + cache_dir=cache_dir, + force_download=force_download, + proxies=proxies, + resume_download=resume_download, + token=token, + local_files_only=local_files_only, + ) + return cls._load_as_safetensor(model, model_file, map_location, strict) + except EntryNotFoundError: + model_file = hf_hub_download( + repo_id=model_id, + filename=constants.PYTORCH_WEIGHTS_NAME, + revision=revision, + cache_dir=cache_dir, + force_download=force_download, + proxies=proxies, + resume_download=resume_download, + token=token, + local_files_only=local_files_only, + ) + return cls._load_as_pickle(model, model_file, map_location, strict) + + @classmethod + def _load_as_pickle(cls, model: T, model_file: str, map_location: str, strict: bool) -> T: + state_dict = torch.load(model_file, map_location=torch.device(map_location), weights_only=True) + model.load_state_dict(state_dict, strict=strict) # type: ignore + model.eval() # type: ignore + return model + + @classmethod + def _load_as_safetensor(cls, model: T, model_file: str, map_location: str, strict: bool) -> T: + if packaging.version.parse(safetensors.__version__) < packaging.version.parse("0.4.3"): # type: ignore [attr-defined] + load_model_as_safetensor(model, model_file, strict=strict) # type: ignore [arg-type] + if map_location != "cpu": + logger.warning( + "Loading model weights on other devices than 'cpu' is not supported natively in your version of safetensors." + " This means that the model is loaded on 'cpu' first and then copied to the device." + " This leads to a slower loading time." + " Please update safetensors to version 0.4.3 or above for improved performance." + ) + model.to(map_location) # type: ignore [attr-defined] + else: + safetensors.torch.load_model(model, model_file, strict=strict, device=map_location) # type: ignore [arg-type] + return model + + +def _load_dataclass(datacls: Type[DataclassInstance], data: dict) -> DataclassInstance: + """Load a dataclass instance from a dictionary. + + Fields not expected by the dataclass are ignored. + """ + return datacls(**{k: v for k, v in data.items() if k in datacls.__dataclass_fields__}) diff --git a/.venv/lib/python3.12/site-packages/huggingface_hub/inference/__init__.py b/.venv/lib/python3.12/site-packages/huggingface_hub/inference/__init__.py new file mode 100644 index 00000000..e69de29b --- /dev/null +++ b/.venv/lib/python3.12/site-packages/huggingface_hub/inference/__init__.py diff --git a/.venv/lib/python3.12/site-packages/huggingface_hub/inference/_client.py b/.venv/lib/python3.12/site-packages/huggingface_hub/inference/_client.py new file mode 100644 index 00000000..988c8156 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/huggingface_hub/inference/_client.py @@ -0,0 +1,3516 @@ +# coding=utf-8 +# Copyright 2023-present, the HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# +# Related resources: +# https://huggingface.co/tasks +# https://huggingface.co/docs/huggingface.js/inference/README +# https://github.com/huggingface/huggingface.js/tree/main/packages/inference/src +# https://github.com/huggingface/text-generation-inference/tree/main/clients/python +# https://github.com/huggingface/text-generation-inference/blob/main/clients/python/text_generation/client.py +# https://huggingface.slack.com/archives/C03E4DQ9LAJ/p1680169099087869 +# https://github.com/huggingface/unity-api#tasks +# +# Some TODO: +# - add all tasks +# +# NOTE: the philosophy of this client is "let's make it as easy as possible to use it, even if less optimized". Some +# examples of how it translates: +# - Timeout / Server unavailable is handled by the client in a single "timeout" parameter. +# - Files can be provided as bytes, file paths, or URLs and the client will try to "guess" the type. +# - Images are parsed as PIL.Image for easier manipulation. +# - Provides a "recommended model" for each task => suboptimal but user-wise quicker to get a first script running. +# - Only the main parameters are publicly exposed. Power users can always read the docs for more options. +import base64 +import logging +import re +import warnings +from typing import TYPE_CHECKING, Any, Dict, Iterable, List, Literal, Optional, Union, overload + +from requests import HTTPError + +from huggingface_hub import constants +from huggingface_hub.errors import BadRequestError, InferenceTimeoutError +from huggingface_hub.inference._common import ( + TASKS_EXPECTING_IMAGES, + ContentT, + ModelStatus, + RequestParameters, + _b64_encode, + _b64_to_image, + _bytes_to_dict, + _bytes_to_image, + _bytes_to_list, + _get_unsupported_text_generation_kwargs, + _import_numpy, + _open_as_binary, + _set_unsupported_text_generation_kwargs, + _stream_chat_completion_response, + _stream_text_generation_response, + raise_text_generation_error, +) +from huggingface_hub.inference._generated.types import ( + AudioClassificationOutputElement, + AudioClassificationOutputTransform, + AudioToAudioOutputElement, + AutomaticSpeechRecognitionOutput, + ChatCompletionInputGrammarType, + ChatCompletionInputStreamOptions, + ChatCompletionInputTool, + ChatCompletionInputToolChoiceClass, + ChatCompletionInputToolChoiceEnum, + ChatCompletionOutput, + ChatCompletionStreamOutput, + DocumentQuestionAnsweringOutputElement, + FillMaskOutputElement, + ImageClassificationOutputElement, + ImageClassificationOutputTransform, + ImageSegmentationOutputElement, + ImageSegmentationSubtask, + ImageToImageTargetSize, + ImageToTextOutput, + ObjectDetectionOutputElement, + Padding, + QuestionAnsweringOutputElement, + SummarizationOutput, + SummarizationTruncationStrategy, + TableQuestionAnsweringOutputElement, + TextClassificationOutputElement, + TextClassificationOutputTransform, + TextGenerationInputGrammarType, + TextGenerationOutput, + TextGenerationStreamOutput, + TextToSpeechEarlyStoppingEnum, + TokenClassificationAggregationStrategy, + TokenClassificationOutputElement, + TranslationOutput, + TranslationTruncationStrategy, + VisualQuestionAnsweringOutputElement, + ZeroShotClassificationOutputElement, + ZeroShotImageClassificationOutputElement, +) +from huggingface_hub.inference._providers import PROVIDER_T, HFInferenceTask, get_provider_helper +from huggingface_hub.utils import build_hf_headers, get_session, hf_raise_for_status +from huggingface_hub.utils._deprecation import _deprecate_arguments, _deprecate_method + + +if TYPE_CHECKING: + import numpy as np + from PIL.Image import Image + +logger = logging.getLogger(__name__) + + +MODEL_KWARGS_NOT_USED_REGEX = re.compile(r"The following `model_kwargs` are not used by the model: \[(.*?)\]") + + +class InferenceClient: + """ + Initialize a new Inference Client. + + [`InferenceClient`] aims to provide a unified experience to perform inference. The client can be used + seamlessly with either the (free) Inference API, self-hosted Inference Endpoints, or third-party Inference Providers. + + Args: + model (`str`, `optional`): + The model to run inference with. Can be a model id hosted on the Hugging Face Hub, e.g. `meta-llama/Meta-Llama-3-8B-Instruct` + or a URL to a deployed Inference Endpoint. Defaults to None, in which case a recommended model is + automatically selected for the task. + Note: for better compatibility with OpenAI's client, `model` has been aliased as `base_url`. Those 2 + arguments are mutually exclusive. If using `base_url` for chat completion, the `/chat/completions` suffix + path will be appended to the base URL (see the [TGI Messages API](https://huggingface.co/docs/text-generation-inference/en/messages_api) + documentation for details). When passing a URL as `model`, the client will not append any suffix path to it. + provider (`str`, *optional*): + Name of the provider to use for inference. Can be `"black-forest-labs"`, `"cerebras"`, `"cohere"`, `"fal-ai"`, `"fireworks-ai"`, `"hf-inference"`, `"hyperbolic"`, `"nebius"`, `"novita"`, `"replicate"`, "sambanova"` or `"together"`. + defaults to hf-inference (Hugging Face Serverless Inference API). + If model is a URL or `base_url` is passed, then `provider` is not used. + token (`str` or `bool`, *optional*): + Hugging Face token. Will default to the locally saved token if not provided. + Pass `token=False` if you don't want to send your token to the server. + Note: for better compatibility with OpenAI's client, `token` has been aliased as `api_key`. Those 2 + arguments are mutually exclusive and have the exact same behavior. + timeout (`float`, `optional`): + The maximum number of seconds to wait for a response from the server. Loading a new model in Inference + API can take up to several minutes. Defaults to None, meaning it will loop until the server is available. + headers (`Dict[str, str]`, `optional`): + Additional headers to send to the server. By default only the authorization and user-agent headers are sent. + Values in this dictionary will override the default values. + cookies (`Dict[str, str]`, `optional`): + Additional cookies to send to the server. + proxies (`Any`, `optional`): + Proxies to use for the request. + base_url (`str`, `optional`): + Base URL to run inference. This is a duplicated argument from `model` to make [`InferenceClient`] + follow the same pattern as `openai.OpenAI` client. Cannot be used if `model` is set. Defaults to None. + api_key (`str`, `optional`): + Token to use for authentication. This is a duplicated argument from `token` to make [`InferenceClient`] + follow the same pattern as `openai.OpenAI` client. Cannot be used if `token` is set. Defaults to None. + """ + + def __init__( + self, + model: Optional[str] = None, + *, + provider: Optional[PROVIDER_T] = None, + token: Optional[str] = None, + timeout: Optional[float] = None, + headers: Optional[Dict[str, str]] = None, + cookies: Optional[Dict[str, str]] = None, + proxies: Optional[Any] = None, + # OpenAI compatibility + base_url: Optional[str] = None, + api_key: Optional[str] = None, + ) -> None: + if model is not None and base_url is not None: + raise ValueError( + "Received both `model` and `base_url` arguments. Please provide only one of them." + " `base_url` is an alias for `model` to make the API compatible with OpenAI's client." + " If using `base_url` for chat completion, the `/chat/completions` suffix path will be appended to the base url." + " When passing a URL as `model`, the client will not append any suffix path to it." + ) + if token is not None and api_key is not None: + raise ValueError( + "Received both `token` and `api_key` arguments. Please provide only one of them." + " `api_key` is an alias for `token` to make the API compatible with OpenAI's client." + " It has the exact same behavior as `token`." + ) + + self.model: Optional[str] = base_url or model + self.token: Optional[str] = token if token is not None else api_key + self.headers = headers if headers is not None else {} + + # Configure provider + self.provider = provider if provider is not None else "hf-inference" + + self.cookies = cookies + self.timeout = timeout + self.proxies = proxies + + def __repr__(self): + return f"<InferenceClient(model='{self.model if self.model else ''}', timeout={self.timeout})>" + + @overload + def post( # type: ignore[misc] + self, + *, + json: Optional[Union[str, Dict, List]] = None, + data: Optional[ContentT] = None, + model: Optional[str] = None, + task: Optional[str] = None, + stream: Literal[False] = ..., + ) -> bytes: ... + + @overload + def post( # type: ignore[misc] + self, + *, + json: Optional[Union[str, Dict, List]] = None, + data: Optional[ContentT] = None, + model: Optional[str] = None, + task: Optional[str] = None, + stream: Literal[True] = ..., + ) -> Iterable[bytes]: ... + + @overload + def post( + self, + *, + json: Optional[Union[str, Dict, List]] = None, + data: Optional[ContentT] = None, + model: Optional[str] = None, + task: Optional[str] = None, + stream: bool = False, + ) -> Union[bytes, Iterable[bytes]]: ... + + @_deprecate_method( + version="0.31.0", + message=( + "Making direct POST requests to the inference server is not supported anymore. " + "Please use task methods instead (e.g. `InferenceClient.chat_completion`). " + "If your use case is not supported, please open an issue in https://github.com/huggingface/huggingface_hub." + ), + ) + def post( + self, + *, + json: Optional[Union[str, Dict, List]] = None, + data: Optional[ContentT] = None, + model: Optional[str] = None, + task: Optional[str] = None, + stream: bool = False, + ) -> Union[bytes, Iterable[bytes]]: + """ + Make a POST request to the inference server. + + This method is deprecated and will be removed in the future. + Please use task methods instead (e.g. `InferenceClient.chat_completion`). + """ + if self.provider != "hf-inference": + raise ValueError( + "Cannot use `post` with another provider than `hf-inference`. " + "`InferenceClient.post` is deprecated and should not be used directly anymore." + ) + provider_helper = HFInferenceTask(task or "unknown") + mapped_model = provider_helper._prepare_mapped_model(model or self.model) + url = provider_helper._prepare_url(self.token, mapped_model) # type: ignore[arg-type] + headers = provider_helper._prepare_headers(self.headers, self.token) # type: ignore[arg-type] + return self._inner_post( + request_parameters=RequestParameters( + url=url, + task=task or "unknown", + model=model or "unknown", + json=json, + data=data, + headers=headers, + ), + stream=stream, + ) + + @overload + def _inner_post( # type: ignore[misc] + self, request_parameters: RequestParameters, *, stream: Literal[False] = ... + ) -> bytes: ... + + @overload + def _inner_post( # type: ignore[misc] + self, request_parameters: RequestParameters, *, stream: Literal[True] = ... + ) -> Iterable[bytes]: ... + + @overload + def _inner_post( + self, request_parameters: RequestParameters, *, stream: bool = False + ) -> Union[bytes, Iterable[bytes]]: ... + + def _inner_post( + self, request_parameters: RequestParameters, *, stream: bool = False + ) -> Union[bytes, Iterable[bytes]]: + """Make a request to the inference server.""" + # TODO: this should be handled in provider helpers directly + if request_parameters.task in TASKS_EXPECTING_IMAGES and "Accept" not in request_parameters.headers: + request_parameters.headers["Accept"] = "image/png" + + while True: + with _open_as_binary(request_parameters.data) as data_as_binary: + try: + response = get_session().post( + request_parameters.url, + json=request_parameters.json, + data=data_as_binary, + headers=request_parameters.headers, + cookies=self.cookies, + timeout=self.timeout, + stream=stream, + proxies=self.proxies, + ) + except TimeoutError as error: + # Convert any `TimeoutError` to a `InferenceTimeoutError` + raise InferenceTimeoutError(f"Inference call timed out: {request_parameters.url}") from error # type: ignore + + try: + hf_raise_for_status(response) + return response.iter_lines() if stream else response.content + except HTTPError as error: + if error.response.status_code == 422 and request_parameters.task != "unknown": + msg = str(error.args[0]) + if len(error.response.text) > 0: + msg += f"\n{error.response.text}\n" + error.args = (msg,) + error.args[1:] + raise + + def audio_classification( + self, + audio: ContentT, + *, + model: Optional[str] = None, + top_k: Optional[int] = None, + function_to_apply: Optional["AudioClassificationOutputTransform"] = None, + ) -> List[AudioClassificationOutputElement]: + """ + Perform audio classification on the provided audio content. + + Args: + audio (Union[str, Path, bytes, BinaryIO]): + The audio content to classify. It can be raw audio bytes, a local audio file, or a URL pointing to an + audio file. + model (`str`, *optional*): + The model to use for audio classification. Can be a model ID hosted on the Hugging Face Hub + or a URL to a deployed Inference Endpoint. If not provided, the default recommended model for + audio classification will be used. + top_k (`int`, *optional*): + When specified, limits the output to the top K most probable classes. + function_to_apply (`"AudioClassificationOutputTransform"`, *optional*): + The function to apply to the model outputs in order to retrieve the scores. + + Returns: + `List[AudioClassificationOutputElement]`: List of [`AudioClassificationOutputElement`] items containing the predicted labels and their confidence. + + Raises: + [`InferenceTimeoutError`]: + If the model is unavailable or the request times out. + `HTTPError`: + If the request fails with an HTTP error status code other than HTTP 503. + + Example: + ```py + >>> from huggingface_hub import InferenceClient + >>> client = InferenceClient() + >>> client.audio_classification("audio.flac") + [ + AudioClassificationOutputElement(score=0.4976358711719513, label='hap'), + AudioClassificationOutputElement(score=0.3677836060523987, label='neu'), + ... + ] + ``` + """ + provider_helper = get_provider_helper(self.provider, task="audio-classification") + request_parameters = provider_helper.prepare_request( + inputs=audio, + parameters={"function_to_apply": function_to_apply, "top_k": top_k}, + headers=self.headers, + model=model or self.model, + api_key=self.token, + ) + response = self._inner_post(request_parameters) + return AudioClassificationOutputElement.parse_obj_as_list(response) + + def audio_to_audio( + self, + audio: ContentT, + *, + model: Optional[str] = None, + ) -> List[AudioToAudioOutputElement]: + """ + Performs multiple tasks related to audio-to-audio depending on the model (eg: speech enhancement, source separation). + + Args: + audio (Union[str, Path, bytes, BinaryIO]): + The audio content for the model. It can be raw audio bytes, a local audio file, or a URL pointing to an + audio file. + model (`str`, *optional*): + The model can be any model which takes an audio file and returns another audio file. Can be a model ID hosted on the Hugging Face Hub + or a URL to a deployed Inference Endpoint. If not provided, the default recommended model for + audio_to_audio will be used. + + Returns: + `List[AudioToAudioOutputElement]`: A list of [`AudioToAudioOutputElement`] items containing audios label, content-type, and audio content in blob. + + Raises: + `InferenceTimeoutError`: + If the model is unavailable or the request times out. + `HTTPError`: + If the request fails with an HTTP error status code other than HTTP 503. + + Example: + ```py + >>> from huggingface_hub import InferenceClient + >>> client = InferenceClient() + >>> audio_output = client.audio_to_audio("audio.flac") + >>> for i, item in enumerate(audio_output): + >>> with open(f"output_{i}.flac", "wb") as f: + f.write(item.blob) + ``` + """ + provider_helper = get_provider_helper(self.provider, task="audio-to-audio") + request_parameters = provider_helper.prepare_request( + inputs=audio, + parameters={}, + headers=self.headers, + model=model or self.model, + api_key=self.token, + ) + response = self._inner_post(request_parameters) + audio_output = AudioToAudioOutputElement.parse_obj_as_list(response) + for item in audio_output: + item.blob = base64.b64decode(item.blob) + return audio_output + + def automatic_speech_recognition( + self, + audio: ContentT, + *, + model: Optional[str] = None, + extra_body: Optional[Dict] = None, + ) -> AutomaticSpeechRecognitionOutput: + """ + Perform automatic speech recognition (ASR or audio-to-text) on the given audio content. + + Args: + audio (Union[str, Path, bytes, BinaryIO]): + The content to transcribe. It can be raw audio bytes, local audio file, or a URL to an audio file. + model (`str`, *optional*): + The model to use for ASR. Can be a model ID hosted on the Hugging Face Hub or a URL to a deployed + Inference Endpoint. If not provided, the default recommended model for ASR will be used. + extra_body (`Dict`, *optional*): + Additional provider-specific parameters to pass to the model. Refer to the provider's documentation + for supported parameters. + Returns: + [`AutomaticSpeechRecognitionOutput`]: An item containing the transcribed text and optionally the timestamp chunks. + + Raises: + [`InferenceTimeoutError`]: + If the model is unavailable or the request times out. + `HTTPError`: + If the request fails with an HTTP error status code other than HTTP 503. + + Example: + ```py + >>> from huggingface_hub import InferenceClient + >>> client = InferenceClient() + >>> client.automatic_speech_recognition("hello_world.flac").text + "hello world" + ``` + """ + provider_helper = get_provider_helper(self.provider, task="automatic-speech-recognition") + request_parameters = provider_helper.prepare_request( + inputs=audio, + parameters={**(extra_body or {})}, + headers=self.headers, + model=model or self.model, + api_key=self.token, + ) + response = self._inner_post(request_parameters) + return AutomaticSpeechRecognitionOutput.parse_obj_as_instance(response) + + @overload + def chat_completion( # type: ignore + self, + messages: List[Dict], + *, + model: Optional[str] = None, + stream: Literal[False] = False, + frequency_penalty: Optional[float] = None, + logit_bias: Optional[List[float]] = None, + logprobs: Optional[bool] = None, + max_tokens: Optional[int] = None, + n: Optional[int] = None, + presence_penalty: Optional[float] = None, + response_format: Optional[ChatCompletionInputGrammarType] = None, + seed: Optional[int] = None, + stop: Optional[List[str]] = None, + stream_options: Optional[ChatCompletionInputStreamOptions] = None, + temperature: Optional[float] = None, + tool_choice: Optional[Union[ChatCompletionInputToolChoiceClass, "ChatCompletionInputToolChoiceEnum"]] = None, + tool_prompt: Optional[str] = None, + tools: Optional[List[ChatCompletionInputTool]] = None, + top_logprobs: Optional[int] = None, + top_p: Optional[float] = None, + extra_body: Optional[Dict] = None, + ) -> ChatCompletionOutput: ... + + @overload + def chat_completion( # type: ignore + self, + messages: List[Dict], + *, + model: Optional[str] = None, + stream: Literal[True] = True, + frequency_penalty: Optional[float] = None, + logit_bias: Optional[List[float]] = None, + logprobs: Optional[bool] = None, + max_tokens: Optional[int] = None, + n: Optional[int] = None, + presence_penalty: Optional[float] = None, + response_format: Optional[ChatCompletionInputGrammarType] = None, + seed: Optional[int] = None, + stop: Optional[List[str]] = None, + stream_options: Optional[ChatCompletionInputStreamOptions] = None, + temperature: Optional[float] = None, + tool_choice: Optional[Union[ChatCompletionInputToolChoiceClass, "ChatCompletionInputToolChoiceEnum"]] = None, + tool_prompt: Optional[str] = None, + tools: Optional[List[ChatCompletionInputTool]] = None, + top_logprobs: Optional[int] = None, + top_p: Optional[float] = None, + extra_body: Optional[Dict] = None, + ) -> Iterable[ChatCompletionStreamOutput]: ... + + @overload + def chat_completion( + self, + messages: List[Dict], + *, + model: Optional[str] = None, + stream: bool = False, + frequency_penalty: Optional[float] = None, + logit_bias: Optional[List[float]] = None, + logprobs: Optional[bool] = None, + max_tokens: Optional[int] = None, + n: Optional[int] = None, + presence_penalty: Optional[float] = None, + response_format: Optional[ChatCompletionInputGrammarType] = None, + seed: Optional[int] = None, + stop: Optional[List[str]] = None, + stream_options: Optional[ChatCompletionInputStreamOptions] = None, + temperature: Optional[float] = None, + tool_choice: Optional[Union[ChatCompletionInputToolChoiceClass, "ChatCompletionInputToolChoiceEnum"]] = None, + tool_prompt: Optional[str] = None, + tools: Optional[List[ChatCompletionInputTool]] = None, + top_logprobs: Optional[int] = None, + top_p: Optional[float] = None, + extra_body: Optional[Dict] = None, + ) -> Union[ChatCompletionOutput, Iterable[ChatCompletionStreamOutput]]: ... + + def chat_completion( + self, + messages: List[Dict], + *, + model: Optional[str] = None, + stream: bool = False, + # Parameters from ChatCompletionInput (handled manually) + frequency_penalty: Optional[float] = None, + logit_bias: Optional[List[float]] = None, + logprobs: Optional[bool] = None, + max_tokens: Optional[int] = None, + n: Optional[int] = None, + presence_penalty: Optional[float] = None, + response_format: Optional[ChatCompletionInputGrammarType] = None, + seed: Optional[int] = None, + stop: Optional[List[str]] = None, + stream_options: Optional[ChatCompletionInputStreamOptions] = None, + temperature: Optional[float] = None, + tool_choice: Optional[Union[ChatCompletionInputToolChoiceClass, "ChatCompletionInputToolChoiceEnum"]] = None, + tool_prompt: Optional[str] = None, + tools: Optional[List[ChatCompletionInputTool]] = None, + top_logprobs: Optional[int] = None, + top_p: Optional[float] = None, + extra_body: Optional[Dict] = None, + ) -> Union[ChatCompletionOutput, Iterable[ChatCompletionStreamOutput]]: + """ + A method for completing conversations using a specified language model. + + <Tip> + + The `client.chat_completion` method is aliased as `client.chat.completions.create` for compatibility with OpenAI's client. + Inputs and outputs are strictly the same and using either syntax will yield the same results. + Check out the [Inference guide](https://huggingface.co/docs/huggingface_hub/guides/inference#openai-compatibility) + for more details about OpenAI's compatibility. + + </Tip> + + <Tip> + You can pass provider-specific parameters to the model by using the `extra_body` argument. + </Tip> + + Args: + messages (List of [`ChatCompletionInputMessage`]): + Conversation history consisting of roles and content pairs. + model (`str`, *optional*): + The model to use for chat-completion. Can be a model ID hosted on the Hugging Face Hub or a URL to a deployed + Inference Endpoint. If not provided, the default recommended model for chat-based text-generation will be used. + See https://huggingface.co/tasks/text-generation for more details. + If `model` is a model ID, it is passed to the server as the `model` parameter. If you want to define a + custom URL while setting `model` in the request payload, you must set `base_url` when initializing [`InferenceClient`]. + frequency_penalty (`float`, *optional*): + Penalizes new tokens based on their existing frequency + in the text so far. Range: [-2.0, 2.0]. Defaults to 0.0. + logit_bias (`List[float]`, *optional*): + Adjusts the likelihood of specific tokens appearing in the generated output. + logprobs (`bool`, *optional*): + Whether to return log probabilities of the output tokens or not. If true, returns the log + probabilities of each output token returned in the content of message. + max_tokens (`int`, *optional*): + Maximum number of tokens allowed in the response. Defaults to 100. + n (`int`, *optional*): + The number of completions to generate for each prompt. + presence_penalty (`float`, *optional*): + Number between -2.0 and 2.0. Positive values penalize new tokens based on whether they appear in the + text so far, increasing the model's likelihood to talk about new topics. + response_format ([`ChatCompletionInputGrammarType`], *optional*): + Grammar constraints. Can be either a JSONSchema or a regex. + seed (Optional[`int`], *optional*): + Seed for reproducible control flow. Defaults to None. + stop (`List[str]`, *optional*): + Up to four strings which trigger the end of the response. + Defaults to None. + stream (`bool`, *optional*): + Enable realtime streaming of responses. Defaults to False. + stream_options ([`ChatCompletionInputStreamOptions`], *optional*): + Options for streaming completions. + temperature (`float`, *optional*): + Controls randomness of the generations. Lower values ensure + less random completions. Range: [0, 2]. Defaults to 1.0. + top_logprobs (`int`, *optional*): + An integer between 0 and 5 specifying the number of most likely tokens to return at each token + position, each with an associated log probability. logprobs must be set to true if this parameter is + used. + top_p (`float`, *optional*): + Fraction of the most likely next words to sample from. + Must be between 0 and 1. Defaults to 1.0. + tool_choice ([`ChatCompletionInputToolChoiceClass`] or [`ChatCompletionInputToolChoiceEnum`], *optional*): + The tool to use for the completion. Defaults to "auto". + tool_prompt (`str`, *optional*): + A prompt to be appended before the tools. + tools (List of [`ChatCompletionInputTool`], *optional*): + A list of tools the model may call. Currently, only functions are supported as a tool. Use this to + provide a list of functions the model may generate JSON inputs for. + extra_body (`Dict`, *optional*): + Additional provider-specific parameters to pass to the model. Refer to the provider's documentation + for supported parameters. + Returns: + [`ChatCompletionOutput`] or Iterable of [`ChatCompletionStreamOutput`]: + Generated text returned from the server: + - if `stream=False`, the generated text is returned as a [`ChatCompletionOutput`] (default). + - if `stream=True`, the generated text is returned token by token as a sequence of [`ChatCompletionStreamOutput`]. + + Raises: + [`InferenceTimeoutError`]: + If the model is unavailable or the request times out. + `HTTPError`: + If the request fails with an HTTP error status code other than HTTP 503. + + Example: + + ```py + >>> from huggingface_hub import InferenceClient + >>> messages = [{"role": "user", "content": "What is the capital of France?"}] + >>> client = InferenceClient("meta-llama/Meta-Llama-3-8B-Instruct") + >>> client.chat_completion(messages, max_tokens=100) + ChatCompletionOutput( + choices=[ + ChatCompletionOutputComplete( + finish_reason='eos_token', + index=0, + message=ChatCompletionOutputMessage( + role='assistant', + content='The capital of France is Paris.', + name=None, + tool_calls=None + ), + logprobs=None + ) + ], + created=1719907176, + id='', + model='meta-llama/Meta-Llama-3-8B-Instruct', + object='text_completion', + system_fingerprint='2.0.4-sha-f426a33', + usage=ChatCompletionOutputUsage( + completion_tokens=8, + prompt_tokens=17, + total_tokens=25 + ) + ) + ``` + + Example using streaming: + ```py + >>> from huggingface_hub import InferenceClient + >>> messages = [{"role": "user", "content": "What is the capital of France?"}] + >>> client = InferenceClient("meta-llama/Meta-Llama-3-8B-Instruct") + >>> for token in client.chat_completion(messages, max_tokens=10, stream=True): + ... print(token) + ChatCompletionStreamOutput(choices=[ChatCompletionStreamOutputChoice(delta=ChatCompletionStreamOutputDelta(content='The', role='assistant'), index=0, finish_reason=None)], created=1710498504) + ChatCompletionStreamOutput(choices=[ChatCompletionStreamOutputChoice(delta=ChatCompletionStreamOutputDelta(content=' capital', role='assistant'), index=0, finish_reason=None)], created=1710498504) + (...) + ChatCompletionStreamOutput(choices=[ChatCompletionStreamOutputChoice(delta=ChatCompletionStreamOutputDelta(content=' may', role='assistant'), index=0, finish_reason=None)], created=1710498504) + ``` + + Example using OpenAI's syntax: + ```py + # instead of `from openai import OpenAI` + from huggingface_hub import InferenceClient + + # instead of `client = OpenAI(...)` + client = InferenceClient( + base_url=..., + api_key=..., + ) + + output = client.chat.completions.create( + model="meta-llama/Meta-Llama-3-8B-Instruct", + messages=[ + {"role": "system", "content": "You are a helpful assistant."}, + {"role": "user", "content": "Count to 10"}, + ], + stream=True, + max_tokens=1024, + ) + + for chunk in output: + print(chunk.choices[0].delta.content) + ``` + + Example using a third-party provider directly with extra (provider-specific) parameters. Usage will be billed on your Together AI account. + ```py + >>> from huggingface_hub import InferenceClient + >>> client = InferenceClient( + ... provider="together", # Use Together AI provider + ... api_key="<together_api_key>", # Pass your Together API key directly + ... ) + >>> client.chat_completion( + ... model="meta-llama/Meta-Llama-3-8B-Instruct", + ... messages=[{"role": "user", "content": "What is the capital of France?"}], + ... extra_body={"safety_model": "Meta-Llama/Llama-Guard-7b"}, + ... ) + ``` + + Example using a third-party provider through Hugging Face Routing. Usage will be billed on your Hugging Face account. + ```py + >>> from huggingface_hub import InferenceClient + >>> client = InferenceClient( + ... provider="sambanova", # Use Sambanova provider + ... api_key="hf_...", # Pass your HF token + ... ) + >>> client.chat_completion( + ... model="meta-llama/Meta-Llama-3-8B-Instruct", + ... messages=[{"role": "user", "content": "What is the capital of France?"}], + ... ) + ``` + + Example using Image + Text as input: + ```py + >>> from huggingface_hub import InferenceClient + + # provide a remote URL + >>> image_url ="https://cdn.britannica.com/61/93061-050-99147DCE/Statue-of-Liberty-Island-New-York-Bay.jpg" + # or a base64-encoded image + >>> image_path = "/path/to/image.jpeg" + >>> with open(image_path, "rb") as f: + ... base64_image = base64.b64encode(f.read()).decode("utf-8") + >>> image_url = f"data:image/jpeg;base64,{base64_image}" + + >>> client = InferenceClient("meta-llama/Llama-3.2-11B-Vision-Instruct") + >>> output = client.chat.completions.create( + ... messages=[ + ... { + ... "role": "user", + ... "content": [ + ... { + ... "type": "image_url", + ... "image_url": {"url": image_url}, + ... }, + ... { + ... "type": "text", + ... "text": "Describe this image in one sentence.", + ... }, + ... ], + ... }, + ... ], + ... ) + >>> output + The image depicts the iconic Statue of Liberty situated in New York Harbor, New York, on a clear day. + ``` + + Example using tools: + ```py + >>> client = InferenceClient("meta-llama/Meta-Llama-3-70B-Instruct") + >>> messages = [ + ... { + ... "role": "system", + ... "content": "Don't make assumptions about what values to plug into functions. Ask for clarification if a user request is ambiguous.", + ... }, + ... { + ... "role": "user", + ... "content": "What's the weather like the next 3 days in San Francisco, CA?", + ... }, + ... ] + >>> tools = [ + ... { + ... "type": "function", + ... "function": { + ... "name": "get_current_weather", + ... "description": "Get the current weather", + ... "parameters": { + ... "type": "object", + ... "properties": { + ... "location": { + ... "type": "string", + ... "description": "The city and state, e.g. San Francisco, CA", + ... }, + ... "format": { + ... "type": "string", + ... "enum": ["celsius", "fahrenheit"], + ... "description": "The temperature unit to use. Infer this from the users location.", + ... }, + ... }, + ... "required": ["location", "format"], + ... }, + ... }, + ... }, + ... { + ... "type": "function", + ... "function": { + ... "name": "get_n_day_weather_forecast", + ... "description": "Get an N-day weather forecast", + ... "parameters": { + ... "type": "object", + ... "properties": { + ... "location": { + ... "type": "string", + ... "description": "The city and state, e.g. San Francisco, CA", + ... }, + ... "format": { + ... "type": "string", + ... "enum": ["celsius", "fahrenheit"], + ... "description": "The temperature unit to use. Infer this from the users location.", + ... }, + ... "num_days": { + ... "type": "integer", + ... "description": "The number of days to forecast", + ... }, + ... }, + ... "required": ["location", "format", "num_days"], + ... }, + ... }, + ... }, + ... ] + + >>> response = client.chat_completion( + ... model="meta-llama/Meta-Llama-3-70B-Instruct", + ... messages=messages, + ... tools=tools, + ... tool_choice="auto", + ... max_tokens=500, + ... ) + >>> response.choices[0].message.tool_calls[0].function + ChatCompletionOutputFunctionDefinition( + arguments={ + 'location': 'San Francisco, CA', + 'format': 'fahrenheit', + 'num_days': 3 + }, + name='get_n_day_weather_forecast', + description=None + ) + ``` + + Example using response_format: + ```py + >>> from huggingface_hub import InferenceClient + >>> client = InferenceClient("meta-llama/Meta-Llama-3-70B-Instruct") + >>> messages = [ + ... { + ... "role": "user", + ... "content": "I saw a puppy a cat and a raccoon during my bike ride in the park. What did I saw and when?", + ... }, + ... ] + >>> response_format = { + ... "type": "json", + ... "value": { + ... "properties": { + ... "location": {"type": "string"}, + ... "activity": {"type": "string"}, + ... "animals_seen": {"type": "integer", "minimum": 1, "maximum": 5}, + ... "animals": {"type": "array", "items": {"type": "string"}}, + ... }, + ... "required": ["location", "activity", "animals_seen", "animals"], + ... }, + ... } + >>> response = client.chat_completion( + ... messages=messages, + ... response_format=response_format, + ... max_tokens=500, + ) + >>> response.choices[0].message.content + '{\n\n"activity": "bike ride",\n"animals": ["puppy", "cat", "raccoon"],\n"animals_seen": 3,\n"location": "park"}' + ``` + """ + # Get the provider helper + provider_helper = get_provider_helper(self.provider, task="conversational") + + # Since `chat_completion(..., model=xxx)` is also a payload parameter for the server, we need to handle 'model' differently. + # `self.model` takes precedence over 'model' argument for building URL. + # `model` takes precedence for payload value. + model_id_or_url = self.model or model + payload_model = model or self.model + + # Prepare the payload + parameters = { + "model": payload_model, + "frequency_penalty": frequency_penalty, + "logit_bias": logit_bias, + "logprobs": logprobs, + "max_tokens": max_tokens, + "n": n, + "presence_penalty": presence_penalty, + "response_format": response_format, + "seed": seed, + "stop": stop, + "temperature": temperature, + "tool_choice": tool_choice, + "tool_prompt": tool_prompt, + "tools": tools, + "top_logprobs": top_logprobs, + "top_p": top_p, + "stream": stream, + "stream_options": stream_options, + **(extra_body or {}), + } + request_parameters = provider_helper.prepare_request( + inputs=messages, + parameters=parameters, + headers=self.headers, + model=model_id_or_url, + api_key=self.token, + ) + data = self._inner_post(request_parameters, stream=stream) + + if stream: + return _stream_chat_completion_response(data) # type: ignore[arg-type] + + return ChatCompletionOutput.parse_obj_as_instance(data) # type: ignore[arg-type] + + def document_question_answering( + self, + image: ContentT, + question: str, + *, + model: Optional[str] = None, + doc_stride: Optional[int] = None, + handle_impossible_answer: Optional[bool] = None, + lang: Optional[str] = None, + max_answer_len: Optional[int] = None, + max_question_len: Optional[int] = None, + max_seq_len: Optional[int] = None, + top_k: Optional[int] = None, + word_boxes: Optional[List[Union[List[float], str]]] = None, + ) -> List[DocumentQuestionAnsweringOutputElement]: + """ + Answer questions on document images. + + Args: + image (`Union[str, Path, bytes, BinaryIO]`): + The input image for the context. It can be raw bytes, an image file, or a URL to an online image. + question (`str`): + Question to be answered. + model (`str`, *optional*): + The model to use for the document question answering task. Can be a model ID hosted on the Hugging Face Hub or a URL to + a deployed Inference Endpoint. If not provided, the default recommended document question answering model will be used. + Defaults to None. + doc_stride (`int`, *optional*): + If the words in the document are too long to fit with the question for the model, it will be split in + several chunks with some overlap. This argument controls the size of that overlap. + handle_impossible_answer (`bool`, *optional*): + Whether to accept impossible as an answer + lang (`str`, *optional*): + Language to use while running OCR. Defaults to english. + max_answer_len (`int`, *optional*): + The maximum length of predicted answers (e.g., only answers with a shorter length are considered). + max_question_len (`int`, *optional*): + The maximum length of the question after tokenization. It will be truncated if needed. + max_seq_len (`int`, *optional*): + The maximum length of the total sentence (context + question) in tokens of each chunk passed to the + model. The context will be split in several chunks (using doc_stride as overlap) if needed. + top_k (`int`, *optional*): + The number of answers to return (will be chosen by order of likelihood). Can return less than top_k + answers if there are not enough options available within the context. + word_boxes (`List[Union[List[float], str`, *optional*): + A list of words and bounding boxes (normalized 0->1000). If provided, the inference will skip the OCR + step and use the provided bounding boxes instead. + Returns: + `List[DocumentQuestionAnsweringOutputElement]`: a list of [`DocumentQuestionAnsweringOutputElement`] items containing the predicted label, associated probability, word ids, and page number. + + Raises: + [`InferenceTimeoutError`]: + If the model is unavailable or the request times out. + `HTTPError`: + If the request fails with an HTTP error status code other than HTTP 503. + + + Example: + ```py + >>> from huggingface_hub import InferenceClient + >>> client = InferenceClient() + >>> client.document_question_answering(image="https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png", question="What is the invoice number?") + [DocumentQuestionAnsweringOutputElement(answer='us-001', end=16, score=0.9999666213989258, start=16)] + ``` + """ + inputs: Dict[str, Any] = {"question": question, "image": _b64_encode(image)} + provider_helper = get_provider_helper(self.provider, task="document-question-answering") + request_parameters = provider_helper.prepare_request( + inputs=inputs, + parameters={ + "doc_stride": doc_stride, + "handle_impossible_answer": handle_impossible_answer, + "lang": lang, + "max_answer_len": max_answer_len, + "max_question_len": max_question_len, + "max_seq_len": max_seq_len, + "top_k": top_k, + "word_boxes": word_boxes, + }, + headers=self.headers, + model=model or self.model, + api_key=self.token, + ) + response = self._inner_post(request_parameters) + return DocumentQuestionAnsweringOutputElement.parse_obj_as_list(response) + + def feature_extraction( + self, + text: str, + *, + normalize: Optional[bool] = None, + prompt_name: Optional[str] = None, + truncate: Optional[bool] = None, + truncation_direction: Optional[Literal["Left", "Right"]] = None, + model: Optional[str] = None, + ) -> "np.ndarray": + """ + Generate embeddings for a given text. + + Args: + text (`str`): + The text to embed. + model (`str`, *optional*): + The model to use for the conversational task. Can be a model ID hosted on the Hugging Face Hub or a URL to + a deployed Inference Endpoint. If not provided, the default recommended conversational model will be used. + Defaults to None. + normalize (`bool`, *optional*): + Whether to normalize the embeddings or not. + Only available on server powered by Text-Embedding-Inference. + prompt_name (`str`, *optional*): + The name of the prompt that should be used by for encoding. If not set, no prompt will be applied. + Must be a key in the `Sentence Transformers` configuration `prompts` dictionary. + For example if ``prompt_name`` is "query" and the ``prompts`` is {"query": "query: ",...}, + then the sentence "What is the capital of France?" will be encoded as "query: What is the capital of France?" + because the prompt text will be prepended before any text to encode. + truncate (`bool`, *optional*): + Whether to truncate the embeddings or not. + Only available on server powered by Text-Embedding-Inference. + truncation_direction (`Literal["Left", "Right"]`, *optional*): + Which side of the input should be truncated when `truncate=True` is passed. + + Returns: + `np.ndarray`: The embedding representing the input text as a float32 numpy array. + + Raises: + [`InferenceTimeoutError`]: + If the model is unavailable or the request times out. + `HTTPError`: + If the request fails with an HTTP error status code other than HTTP 503. + + Example: + ```py + >>> from huggingface_hub import InferenceClient + >>> client = InferenceClient() + >>> client.feature_extraction("Hi, who are you?") + array([[ 2.424802 , 2.93384 , 1.1750331 , ..., 1.240499, -0.13776633, -0.7889173 ], + [-0.42943227, -0.6364878 , -1.693462 , ..., 0.41978157, -2.4336355 , 0.6162071 ], + ..., + [ 0.28552425, -0.928395 , -1.2077185 , ..., 0.76810825, -2.1069427 , 0.6236161 ]], dtype=float32) + ``` + """ + provider_helper = get_provider_helper(self.provider, task="feature-extraction") + request_parameters = provider_helper.prepare_request( + inputs=text, + parameters={ + "normalize": normalize, + "prompt_name": prompt_name, + "truncate": truncate, + "truncation_direction": truncation_direction, + }, + headers=self.headers, + model=model or self.model, + api_key=self.token, + ) + response = self._inner_post(request_parameters) + np = _import_numpy() + return np.array(_bytes_to_dict(response), dtype="float32") + + def fill_mask( + self, + text: str, + *, + model: Optional[str] = None, + targets: Optional[List[str]] = None, + top_k: Optional[int] = None, + ) -> List[FillMaskOutputElement]: + """ + Fill in a hole with a missing word (token to be precise). + + Args: + text (`str`): + a string to be filled from, must contain the [MASK] token (check model card for exact name of the mask). + model (`str`, *optional*): + The model to use for the fill mask task. Can be a model ID hosted on the Hugging Face Hub or a URL to + a deployed Inference Endpoint. If not provided, the default recommended fill mask model will be used. + targets (`List[str`, *optional*): + When passed, the model will limit the scores to the passed targets instead of looking up in the whole + vocabulary. If the provided targets are not in the model vocab, they will be tokenized and the first + resulting token will be used (with a warning, and that might be slower). + top_k (`int`, *optional*): + When passed, overrides the number of predictions to return. + Returns: + `List[FillMaskOutputElement]`: a list of [`FillMaskOutputElement`] items containing the predicted label, associated + probability, token reference, and completed text. + + Raises: + [`InferenceTimeoutError`]: + If the model is unavailable or the request times out. + `HTTPError`: + If the request fails with an HTTP error status code other than HTTP 503. + + Example: + ```py + >>> from huggingface_hub import InferenceClient + >>> client = InferenceClient() + >>> client.fill_mask("The goal of life is <mask>.") + [ + FillMaskOutputElement(score=0.06897063553333282, token=11098, token_str=' happiness', sequence='The goal of life is happiness.'), + FillMaskOutputElement(score=0.06554922461509705, token=45075, token_str=' immortality', sequence='The goal of life is immortality.') + ] + ``` + """ + provider_helper = get_provider_helper(self.provider, task="fill-mask") + request_parameters = provider_helper.prepare_request( + inputs=text, + parameters={"targets": targets, "top_k": top_k}, + headers=self.headers, + model=model or self.model, + api_key=self.token, + ) + response = self._inner_post(request_parameters) + return FillMaskOutputElement.parse_obj_as_list(response) + + def image_classification( + self, + image: ContentT, + *, + model: Optional[str] = None, + function_to_apply: Optional["ImageClassificationOutputTransform"] = None, + top_k: Optional[int] = None, + ) -> List[ImageClassificationOutputElement]: + """ + Perform image classification on the given image using the specified model. + + Args: + image (`Union[str, Path, bytes, BinaryIO]`): + The image to classify. It can be raw bytes, an image file, or a URL to an online image. + model (`str`, *optional*): + The model to use for image classification. Can be a model ID hosted on the Hugging Face Hub or a URL to a + deployed Inference Endpoint. If not provided, the default recommended model for image classification will be used. + function_to_apply (`"ImageClassificationOutputTransform"`, *optional*): + The function to apply to the model outputs in order to retrieve the scores. + top_k (`int`, *optional*): + When specified, limits the output to the top K most probable classes. + Returns: + `List[ImageClassificationOutputElement]`: a list of [`ImageClassificationOutputElement`] items containing the predicted label and associated probability. + + Raises: + [`InferenceTimeoutError`]: + If the model is unavailable or the request times out. + `HTTPError`: + If the request fails with an HTTP error status code other than HTTP 503. + + Example: + ```py + >>> from huggingface_hub import InferenceClient + >>> client = InferenceClient() + >>> client.image_classification("https://upload.wikimedia.org/wikipedia/commons/thumb/4/43/Cute_dog.jpg/320px-Cute_dog.jpg") + [ImageClassificationOutputElement(label='Blenheim spaniel', score=0.9779096841812134), ...] + ``` + """ + provider_helper = get_provider_helper(self.provider, task="image-classification") + request_parameters = provider_helper.prepare_request( + inputs=image, + parameters={"function_to_apply": function_to_apply, "top_k": top_k}, + headers=self.headers, + model=model or self.model, + api_key=self.token, + ) + response = self._inner_post(request_parameters) + return ImageClassificationOutputElement.parse_obj_as_list(response) + + def image_segmentation( + self, + image: ContentT, + *, + model: Optional[str] = None, + mask_threshold: Optional[float] = None, + overlap_mask_area_threshold: Optional[float] = None, + subtask: Optional["ImageSegmentationSubtask"] = None, + threshold: Optional[float] = None, + ) -> List[ImageSegmentationOutputElement]: + """ + Perform image segmentation on the given image using the specified model. + + <Tip warning={true}> + + You must have `PIL` installed if you want to work with images (`pip install Pillow`). + + </Tip> + + Args: + image (`Union[str, Path, bytes, BinaryIO]`): + The image to segment. It can be raw bytes, an image file, or a URL to an online image. + model (`str`, *optional*): + The model to use for image segmentation. Can be a model ID hosted on the Hugging Face Hub or a URL to a + deployed Inference Endpoint. If not provided, the default recommended model for image segmentation will be used. + mask_threshold (`float`, *optional*): + Threshold to use when turning the predicted masks into binary values. + overlap_mask_area_threshold (`float`, *optional*): + Mask overlap threshold to eliminate small, disconnected segments. + subtask (`"ImageSegmentationSubtask"`, *optional*): + Segmentation task to be performed, depending on model capabilities. + threshold (`float`, *optional*): + Probability threshold to filter out predicted masks. + Returns: + `List[ImageSegmentationOutputElement]`: A list of [`ImageSegmentationOutputElement`] items containing the segmented masks and associated attributes. + + Raises: + [`InferenceTimeoutError`]: + If the model is unavailable or the request times out. + `HTTPError`: + If the request fails with an HTTP error status code other than HTTP 503. + + Example: + ```py + >>> from huggingface_hub import InferenceClient + >>> client = InferenceClient() + >>> client.image_segmentation("cat.jpg") + [ImageSegmentationOutputElement(score=0.989008, label='LABEL_184', mask=<PIL.PngImagePlugin.PngImageFile image mode=L size=400x300 at 0x7FDD2B129CC0>), ...] + ``` + """ + provider_helper = get_provider_helper(self.provider, task="audio-classification") + request_parameters = provider_helper.prepare_request( + inputs=image, + parameters={ + "mask_threshold": mask_threshold, + "overlap_mask_area_threshold": overlap_mask_area_threshold, + "subtask": subtask, + "threshold": threshold, + }, + headers=self.headers, + model=model or self.model, + api_key=self.token, + ) + response = self._inner_post(request_parameters) + output = ImageSegmentationOutputElement.parse_obj_as_list(response) + for item in output: + item.mask = _b64_to_image(item.mask) # type: ignore [assignment] + return output + + def image_to_image( + self, + image: ContentT, + prompt: Optional[str] = None, + *, + negative_prompt: Optional[str] = None, + num_inference_steps: Optional[int] = None, + guidance_scale: Optional[float] = None, + model: Optional[str] = None, + target_size: Optional[ImageToImageTargetSize] = None, + **kwargs, + ) -> "Image": + """ + Perform image-to-image translation using a specified model. + + <Tip warning={true}> + + You must have `PIL` installed if you want to work with images (`pip install Pillow`). + + </Tip> + + Args: + image (`Union[str, Path, bytes, BinaryIO]`): + The input image for translation. It can be raw bytes, an image file, or a URL to an online image. + prompt (`str`, *optional*): + The text prompt to guide the image generation. + negative_prompt (`str`, *optional*): + One prompt to guide what NOT to include in image generation. + num_inference_steps (`int`, *optional*): + For diffusion models. The number of denoising steps. More denoising steps usually lead to a higher + quality image at the expense of slower inference. + guidance_scale (`float`, *optional*): + For diffusion models. A higher guidance scale value encourages the model to generate images closely + linked to the text prompt at the expense of lower image quality. + model (`str`, *optional*): + The model to use for inference. Can be a model ID hosted on the Hugging Face Hub or a URL to a deployed + Inference Endpoint. This parameter overrides the model defined at the instance level. Defaults to None. + target_size (`ImageToImageTargetSize`, *optional*): + The size in pixel of the output image. + + Returns: + `Image`: The translated image. + + Raises: + [`InferenceTimeoutError`]: + If the model is unavailable or the request times out. + `HTTPError`: + If the request fails with an HTTP error status code other than HTTP 503. + + Example: + ```py + >>> from huggingface_hub import InferenceClient + >>> client = InferenceClient() + >>> image = client.image_to_image("cat.jpg", prompt="turn the cat into a tiger") + >>> image.save("tiger.jpg") + ``` + """ + provider_helper = get_provider_helper(self.provider, task="image-to-image") + request_parameters = provider_helper.prepare_request( + inputs=image, + parameters={ + "prompt": prompt, + "negative_prompt": negative_prompt, + "target_size": target_size, + "num_inference_steps": num_inference_steps, + "guidance_scale": guidance_scale, + **kwargs, + }, + headers=self.headers, + model=model or self.model, + api_key=self.token, + ) + response = self._inner_post(request_parameters) + return _bytes_to_image(response) + + def image_to_text(self, image: ContentT, *, model: Optional[str] = None) -> ImageToTextOutput: + """ + Takes an input image and return text. + + Models can have very different outputs depending on your use case (image captioning, optical character recognition + (OCR), Pix2Struct, etc). Please have a look to the model card to learn more about a model's specificities. + + Args: + image (`Union[str, Path, bytes, BinaryIO]`): + The input image to caption. It can be raw bytes, an image file, or a URL to an online image.. + model (`str`, *optional*): + The model to use for inference. Can be a model ID hosted on the Hugging Face Hub or a URL to a deployed + Inference Endpoint. This parameter overrides the model defined at the instance level. Defaults to None. + + Returns: + [`ImageToTextOutput`]: The generated text. + + Raises: + [`InferenceTimeoutError`]: + If the model is unavailable or the request times out. + `HTTPError`: + If the request fails with an HTTP error status code other than HTTP 503. + + Example: + ```py + >>> from huggingface_hub import InferenceClient + >>> client = InferenceClient() + >>> client.image_to_text("cat.jpg") + 'a cat standing in a grassy field ' + >>> client.image_to_text("https://upload.wikimedia.org/wikipedia/commons/thumb/4/43/Cute_dog.jpg/320px-Cute_dog.jpg") + 'a dog laying on the grass next to a flower pot ' + ``` + """ + provider_helper = get_provider_helper(self.provider, task="image-to-text") + request_parameters = provider_helper.prepare_request( + inputs=image, + parameters={}, + headers=self.headers, + model=model or self.model, + api_key=self.token, + ) + response = self._inner_post(request_parameters) + output = ImageToTextOutput.parse_obj(response) + return output[0] if isinstance(output, list) else output + + def object_detection( + self, image: ContentT, *, model: Optional[str] = None, threshold: Optional[float] = None + ) -> List[ObjectDetectionOutputElement]: + """ + Perform object detection on the given image using the specified model. + + <Tip warning={true}> + + You must have `PIL` installed if you want to work with images (`pip install Pillow`). + + </Tip> + + Args: + image (`Union[str, Path, bytes, BinaryIO]`): + The image to detect objects on. It can be raw bytes, an image file, or a URL to an online image. + model (`str`, *optional*): + The model to use for object detection. Can be a model ID hosted on the Hugging Face Hub or a URL to a + deployed Inference Endpoint. If not provided, the default recommended model for object detection (DETR) will be used. + threshold (`float`, *optional*): + The probability necessary to make a prediction. + Returns: + `List[ObjectDetectionOutputElement]`: A list of [`ObjectDetectionOutputElement`] items containing the bounding boxes and associated attributes. + + Raises: + [`InferenceTimeoutError`]: + If the model is unavailable or the request times out. + `HTTPError`: + If the request fails with an HTTP error status code other than HTTP 503. + `ValueError`: + If the request output is not a List. + + Example: + ```py + >>> from huggingface_hub import InferenceClient + >>> client = InferenceClient() + >>> client.object_detection("people.jpg") + [ObjectDetectionOutputElement(score=0.9486683011054993, label='person', box=ObjectDetectionBoundingBox(xmin=59, ymin=39, xmax=420, ymax=510)), ...] + ``` + """ + provider_helper = get_provider_helper(self.provider, task="object-detection") + request_parameters = provider_helper.prepare_request( + inputs=image, + parameters={"threshold": threshold}, + headers=self.headers, + model=model or self.model, + api_key=self.token, + ) + response = self._inner_post(request_parameters) + return ObjectDetectionOutputElement.parse_obj_as_list(response) + + def question_answering( + self, + question: str, + context: str, + *, + model: Optional[str] = None, + align_to_words: Optional[bool] = None, + doc_stride: Optional[int] = None, + handle_impossible_answer: Optional[bool] = None, + max_answer_len: Optional[int] = None, + max_question_len: Optional[int] = None, + max_seq_len: Optional[int] = None, + top_k: Optional[int] = None, + ) -> Union[QuestionAnsweringOutputElement, List[QuestionAnsweringOutputElement]]: + """ + Retrieve the answer to a question from a given text. + + Args: + question (`str`): + Question to be answered. + context (`str`): + The context of the question. + model (`str`): + The model to use for the question answering task. Can be a model ID hosted on the Hugging Face Hub or a URL to + a deployed Inference Endpoint. + align_to_words (`bool`, *optional*): + Attempts to align the answer to real words. Improves quality on space separated languages. Might hurt + on non-space-separated languages (like Japanese or Chinese) + doc_stride (`int`, *optional*): + If the context is too long to fit with the question for the model, it will be split in several chunks + with some overlap. This argument controls the size of that overlap. + handle_impossible_answer (`bool`, *optional*): + Whether to accept impossible as an answer. + max_answer_len (`int`, *optional*): + The maximum length of predicted answers (e.g., only answers with a shorter length are considered). + max_question_len (`int`, *optional*): + The maximum length of the question after tokenization. It will be truncated if needed. + max_seq_len (`int`, *optional*): + The maximum length of the total sentence (context + question) in tokens of each chunk passed to the + model. The context will be split in several chunks (using docStride as overlap) if needed. + top_k (`int`, *optional*): + The number of answers to return (will be chosen by order of likelihood). Note that we return less than + topk answers if there are not enough options available within the context. + + Returns: + Union[`QuestionAnsweringOutputElement`, List[`QuestionAnsweringOutputElement`]]: + When top_k is 1 or not provided, it returns a single `QuestionAnsweringOutputElement`. + When top_k is greater than 1, it returns a list of `QuestionAnsweringOutputElement`. + Raises: + [`InferenceTimeoutError`]: + If the model is unavailable or the request times out. + `HTTPError`: + If the request fails with an HTTP error status code other than HTTP 503. + + Example: + ```py + >>> from huggingface_hub import InferenceClient + >>> client = InferenceClient() + >>> client.question_answering(question="What's my name?", context="My name is Clara and I live in Berkeley.") + QuestionAnsweringOutputElement(answer='Clara', end=16, score=0.9326565265655518, start=11) + ``` + """ + provider_helper = get_provider_helper(self.provider, task="question-answering") + request_parameters = provider_helper.prepare_request( + inputs=None, + parameters={ + "align_to_words": align_to_words, + "doc_stride": doc_stride, + "handle_impossible_answer": handle_impossible_answer, + "max_answer_len": max_answer_len, + "max_question_len": max_question_len, + "max_seq_len": max_seq_len, + "top_k": top_k, + }, + extra_payload={"question": question, "context": context}, + headers=self.headers, + model=model or self.model, + api_key=self.token, + ) + response = self._inner_post(request_parameters) + # Parse the response as a single `QuestionAnsweringOutputElement` when top_k is 1 or not provided, or a list of `QuestionAnsweringOutputElement` to ensure backward compatibility. + output = QuestionAnsweringOutputElement.parse_obj(response) + return output + + def sentence_similarity( + self, sentence: str, other_sentences: List[str], *, model: Optional[str] = None + ) -> List[float]: + """ + Compute the semantic similarity between a sentence and a list of other sentences by comparing their embeddings. + + Args: + sentence (`str`): + The main sentence to compare to others. + other_sentences (`List[str]`): + The list of sentences to compare to. + model (`str`, *optional*): + The model to use for the conversational task. Can be a model ID hosted on the Hugging Face Hub or a URL to + a deployed Inference Endpoint. If not provided, the default recommended conversational model will be used. + Defaults to None. + + Returns: + `List[float]`: The embedding representing the input text. + + Raises: + [`InferenceTimeoutError`]: + If the model is unavailable or the request times out. + `HTTPError`: + If the request fails with an HTTP error status code other than HTTP 503. + + Example: + ```py + >>> from huggingface_hub import InferenceClient + >>> client = InferenceClient() + >>> client.sentence_similarity( + ... "Machine learning is so easy.", + ... other_sentences=[ + ... "Deep learning is so straightforward.", + ... "This is so difficult, like rocket science.", + ... "I can't believe how much I struggled with this.", + ... ], + ... ) + [0.7785726189613342, 0.45876261591911316, 0.2906220555305481] + ``` + """ + provider_helper = get_provider_helper(self.provider, task="sentence-similarity") + request_parameters = provider_helper.prepare_request( + inputs=None, + parameters={}, + extra_payload={"source_sentence": sentence, "sentences": other_sentences}, + headers=self.headers, + model=model or self.model, + api_key=self.token, + ) + response = self._inner_post(request_parameters) + return _bytes_to_list(response) + + def summarization( + self, + text: str, + *, + model: Optional[str] = None, + clean_up_tokenization_spaces: Optional[bool] = None, + generate_parameters: Optional[Dict[str, Any]] = None, + truncation: Optional["SummarizationTruncationStrategy"] = None, + ) -> SummarizationOutput: + """ + Generate a summary of a given text using a specified model. + + Args: + text (`str`): + The input text to summarize. + model (`str`, *optional*): + The model to use for inference. Can be a model ID hosted on the Hugging Face Hub or a URL to a deployed + Inference Endpoint. If not provided, the default recommended model for summarization will be used. + clean_up_tokenization_spaces (`bool`, *optional*): + Whether to clean up the potential extra spaces in the text output. + generate_parameters (`Dict[str, Any]`, *optional*): + Additional parametrization of the text generation algorithm. + truncation (`"SummarizationTruncationStrategy"`, *optional*): + The truncation strategy to use. + Returns: + [`SummarizationOutput`]: The generated summary text. + + Raises: + [`InferenceTimeoutError`]: + If the model is unavailable or the request times out. + `HTTPError`: + If the request fails with an HTTP error status code other than HTTP 503. + + Example: + ```py + >>> from huggingface_hub import InferenceClient + >>> client = InferenceClient() + >>> client.summarization("The Eiffel tower...") + SummarizationOutput(generated_text="The Eiffel tower is one of the most famous landmarks in the world....") + ``` + """ + parameters = { + "clean_up_tokenization_spaces": clean_up_tokenization_spaces, + "generate_parameters": generate_parameters, + "truncation": truncation, + } + provider_helper = get_provider_helper(self.provider, task="summarization") + request_parameters = provider_helper.prepare_request( + inputs=text, + parameters=parameters, + headers=self.headers, + model=model or self.model, + api_key=self.token, + ) + response = self._inner_post(request_parameters) + return SummarizationOutput.parse_obj_as_list(response)[0] + + def table_question_answering( + self, + table: Dict[str, Any], + query: str, + *, + model: Optional[str] = None, + padding: Optional["Padding"] = None, + sequential: Optional[bool] = None, + truncation: Optional[bool] = None, + ) -> TableQuestionAnsweringOutputElement: + """ + Retrieve the answer to a question from information given in a table. + + Args: + table (`str`): + A table of data represented as a dict of lists where entries are headers and the lists are all the + values, all lists must have the same size. + query (`str`): + The query in plain text that you want to ask the table. + model (`str`): + The model to use for the table-question-answering task. Can be a model ID hosted on the Hugging Face + Hub or a URL to a deployed Inference Endpoint. + padding (`"Padding"`, *optional*): + Activates and controls padding. + sequential (`bool`, *optional*): + Whether to do inference sequentially or as a batch. Batching is faster, but models like SQA require the + inference to be done sequentially to extract relations within sequences, given their conversational + nature. + truncation (`bool`, *optional*): + Activates and controls truncation. + + Returns: + [`TableQuestionAnsweringOutputElement`]: a table question answering output containing the answer, coordinates, cells and the aggregator used. + + Raises: + [`InferenceTimeoutError`]: + If the model is unavailable or the request times out. + `HTTPError`: + If the request fails with an HTTP error status code other than HTTP 503. + + Example: + ```py + >>> from huggingface_hub import InferenceClient + >>> client = InferenceClient() + >>> query = "How many stars does the transformers repository have?" + >>> table = {"Repository": ["Transformers", "Datasets", "Tokenizers"], "Stars": ["36542", "4512", "3934"]} + >>> client.table_question_answering(table, query, model="google/tapas-base-finetuned-wtq") + TableQuestionAnsweringOutputElement(answer='36542', coordinates=[[0, 1]], cells=['36542'], aggregator='AVERAGE') + ``` + """ + provider_helper = get_provider_helper(self.provider, task="table-question-answering") + request_parameters = provider_helper.prepare_request( + inputs=None, + parameters={"model": model, "padding": padding, "sequential": sequential, "truncation": truncation}, + extra_payload={"query": query, "table": table}, + headers=self.headers, + model=model or self.model, + api_key=self.token, + ) + response = self._inner_post(request_parameters) + return TableQuestionAnsweringOutputElement.parse_obj_as_instance(response) + + def tabular_classification(self, table: Dict[str, Any], *, model: Optional[str] = None) -> List[str]: + """ + Classifying a target category (a group) based on a set of attributes. + + Args: + table (`Dict[str, Any]`): + Set of attributes to classify. + model (`str`, *optional*): + The model to use for the tabular classification task. Can be a model ID hosted on the Hugging Face Hub or a URL to + a deployed Inference Endpoint. If not provided, the default recommended tabular classification model will be used. + Defaults to None. + + Returns: + `List`: a list of labels, one per row in the initial table. + + Raises: + [`InferenceTimeoutError`]: + If the model is unavailable or the request times out. + `HTTPError`: + If the request fails with an HTTP error status code other than HTTP 503. + + Example: + ```py + >>> from huggingface_hub import InferenceClient + >>> client = InferenceClient() + >>> table = { + ... "fixed_acidity": ["7.4", "7.8", "10.3"], + ... "volatile_acidity": ["0.7", "0.88", "0.32"], + ... "citric_acid": ["0", "0", "0.45"], + ... "residual_sugar": ["1.9", "2.6", "6.4"], + ... "chlorides": ["0.076", "0.098", "0.073"], + ... "free_sulfur_dioxide": ["11", "25", "5"], + ... "total_sulfur_dioxide": ["34", "67", "13"], + ... "density": ["0.9978", "0.9968", "0.9976"], + ... "pH": ["3.51", "3.2", "3.23"], + ... "sulphates": ["0.56", "0.68", "0.82"], + ... "alcohol": ["9.4", "9.8", "12.6"], + ... } + >>> client.tabular_classification(table=table, model="julien-c/wine-quality") + ["5", "5", "5"] + ``` + """ + provider_helper = get_provider_helper(self.provider, task="tabular-classification") + request_parameters = provider_helper.prepare_request( + inputs=None, + extra_payload={"table": table}, + parameters={}, + headers=self.headers, + model=model or self.model, + api_key=self.token, + ) + response = self._inner_post(request_parameters) + return _bytes_to_list(response) + + def tabular_regression(self, table: Dict[str, Any], *, model: Optional[str] = None) -> List[float]: + """ + Predicting a numerical target value given a set of attributes/features in a table. + + Args: + table (`Dict[str, Any]`): + Set of attributes stored in a table. The attributes used to predict the target can be both numerical and categorical. + model (`str`, *optional*): + The model to use for the tabular regression task. Can be a model ID hosted on the Hugging Face Hub or a URL to + a deployed Inference Endpoint. If not provided, the default recommended tabular regression model will be used. + Defaults to None. + + Returns: + `List`: a list of predicted numerical target values. + + Raises: + [`InferenceTimeoutError`]: + If the model is unavailable or the request times out. + `HTTPError`: + If the request fails with an HTTP error status code other than HTTP 503. + + Example: + ```py + >>> from huggingface_hub import InferenceClient + >>> client = InferenceClient() + >>> table = { + ... "Height": ["11.52", "12.48", "12.3778"], + ... "Length1": ["23.2", "24", "23.9"], + ... "Length2": ["25.4", "26.3", "26.5"], + ... "Length3": ["30", "31.2", "31.1"], + ... "Species": ["Bream", "Bream", "Bream"], + ... "Width": ["4.02", "4.3056", "4.6961"], + ... } + >>> client.tabular_regression(table, model="scikit-learn/Fish-Weight") + [110, 120, 130] + ``` + """ + provider_helper = get_provider_helper(self.provider, task="tabular-regression") + request_parameters = provider_helper.prepare_request( + inputs=None, + parameters={}, + extra_payload={"table": table}, + headers=self.headers, + model=model or self.model, + api_key=self.token, + ) + response = self._inner_post(request_parameters) + return _bytes_to_list(response) + + def text_classification( + self, + text: str, + *, + model: Optional[str] = None, + top_k: Optional[int] = None, + function_to_apply: Optional["TextClassificationOutputTransform"] = None, + ) -> List[TextClassificationOutputElement]: + """ + Perform text classification (e.g. sentiment-analysis) on the given text. + + Args: + text (`str`): + A string to be classified. + model (`str`, *optional*): + The model to use for the text classification task. Can be a model ID hosted on the Hugging Face Hub or a URL to + a deployed Inference Endpoint. If not provided, the default recommended text classification model will be used. + Defaults to None. + top_k (`int`, *optional*): + When specified, limits the output to the top K most probable classes. + function_to_apply (`"TextClassificationOutputTransform"`, *optional*): + The function to apply to the model outputs in order to retrieve the scores. + + Returns: + `List[TextClassificationOutputElement]`: a list of [`TextClassificationOutputElement`] items containing the predicted label and associated probability. + + Raises: + [`InferenceTimeoutError`]: + If the model is unavailable or the request times out. + `HTTPError`: + If the request fails with an HTTP error status code other than HTTP 503. + + Example: + ```py + >>> from huggingface_hub import InferenceClient + >>> client = InferenceClient() + >>> client.text_classification("I like you") + [ + TextClassificationOutputElement(label='POSITIVE', score=0.9998695850372314), + TextClassificationOutputElement(label='NEGATIVE', score=0.0001304351753788069), + ] + ``` + """ + provider_helper = get_provider_helper(self.provider, task="text-classification") + request_parameters = provider_helper.prepare_request( + inputs=text, + parameters={ + "function_to_apply": function_to_apply, + "top_k": top_k, + }, + headers=self.headers, + model=model or self.model, + api_key=self.token, + ) + response = self._inner_post(request_parameters) + return TextClassificationOutputElement.parse_obj_as_list(response)[0] # type: ignore [return-value] + + @overload + def text_generation( # type: ignore + self, + prompt: str, + *, + details: Literal[False] = ..., + stream: Literal[False] = ..., + model: Optional[str] = None, + # Parameters from `TextGenerationInputGenerateParameters` (maintained manually) + adapter_id: Optional[str] = None, + best_of: Optional[int] = None, + decoder_input_details: Optional[bool] = None, + do_sample: Optional[bool] = False, # Manual default value + frequency_penalty: Optional[float] = None, + grammar: Optional[TextGenerationInputGrammarType] = None, + max_new_tokens: Optional[int] = None, + repetition_penalty: Optional[float] = None, + return_full_text: Optional[bool] = False, # Manual default value + seed: Optional[int] = None, + stop: Optional[List[str]] = None, + stop_sequences: Optional[List[str]] = None, # Deprecated, use `stop` instead + temperature: Optional[float] = None, + top_k: Optional[int] = None, + top_n_tokens: Optional[int] = None, + top_p: Optional[float] = None, + truncate: Optional[int] = None, + typical_p: Optional[float] = None, + watermark: Optional[bool] = None, + ) -> str: ... + + @overload + def text_generation( # type: ignore + self, + prompt: str, + *, + details: Literal[True] = ..., + stream: Literal[False] = ..., + model: Optional[str] = None, + # Parameters from `TextGenerationInputGenerateParameters` (maintained manually) + adapter_id: Optional[str] = None, + best_of: Optional[int] = None, + decoder_input_details: Optional[bool] = None, + do_sample: Optional[bool] = False, # Manual default value + frequency_penalty: Optional[float] = None, + grammar: Optional[TextGenerationInputGrammarType] = None, + max_new_tokens: Optional[int] = None, + repetition_penalty: Optional[float] = None, + return_full_text: Optional[bool] = False, # Manual default value + seed: Optional[int] = None, + stop: Optional[List[str]] = None, + stop_sequences: Optional[List[str]] = None, # Deprecated, use `stop` instead + temperature: Optional[float] = None, + top_k: Optional[int] = None, + top_n_tokens: Optional[int] = None, + top_p: Optional[float] = None, + truncate: Optional[int] = None, + typical_p: Optional[float] = None, + watermark: Optional[bool] = None, + ) -> TextGenerationOutput: ... + + @overload + def text_generation( # type: ignore + self, + prompt: str, + *, + details: Literal[False] = ..., + stream: Literal[True] = ..., + model: Optional[str] = None, + # Parameters from `TextGenerationInputGenerateParameters` (maintained manually) + adapter_id: Optional[str] = None, + best_of: Optional[int] = None, + decoder_input_details: Optional[bool] = None, + do_sample: Optional[bool] = False, # Manual default value + frequency_penalty: Optional[float] = None, + grammar: Optional[TextGenerationInputGrammarType] = None, + max_new_tokens: Optional[int] = None, + repetition_penalty: Optional[float] = None, + return_full_text: Optional[bool] = False, # Manual default value + seed: Optional[int] = None, + stop: Optional[List[str]] = None, + stop_sequences: Optional[List[str]] = None, # Deprecated, use `stop` instead + temperature: Optional[float] = None, + top_k: Optional[int] = None, + top_n_tokens: Optional[int] = None, + top_p: Optional[float] = None, + truncate: Optional[int] = None, + typical_p: Optional[float] = None, + watermark: Optional[bool] = None, + ) -> Iterable[str]: ... + + @overload + def text_generation( # type: ignore + self, + prompt: str, + *, + details: Literal[True] = ..., + stream: Literal[True] = ..., + model: Optional[str] = None, + # Parameters from `TextGenerationInputGenerateParameters` (maintained manually) + adapter_id: Optional[str] = None, + best_of: Optional[int] = None, + decoder_input_details: Optional[bool] = None, + do_sample: Optional[bool] = False, # Manual default value + frequency_penalty: Optional[float] = None, + grammar: Optional[TextGenerationInputGrammarType] = None, + max_new_tokens: Optional[int] = None, + repetition_penalty: Optional[float] = None, + return_full_text: Optional[bool] = False, # Manual default value + seed: Optional[int] = None, + stop: Optional[List[str]] = None, + stop_sequences: Optional[List[str]] = None, # Deprecated, use `stop` instead + temperature: Optional[float] = None, + top_k: Optional[int] = None, + top_n_tokens: Optional[int] = None, + top_p: Optional[float] = None, + truncate: Optional[int] = None, + typical_p: Optional[float] = None, + watermark: Optional[bool] = None, + ) -> Iterable[TextGenerationStreamOutput]: ... + + @overload + def text_generation( + self, + prompt: str, + *, + details: Literal[True] = ..., + stream: bool = ..., + model: Optional[str] = None, + # Parameters from `TextGenerationInputGenerateParameters` (maintained manually) + adapter_id: Optional[str] = None, + best_of: Optional[int] = None, + decoder_input_details: Optional[bool] = None, + do_sample: Optional[bool] = False, # Manual default value + frequency_penalty: Optional[float] = None, + grammar: Optional[TextGenerationInputGrammarType] = None, + max_new_tokens: Optional[int] = None, + repetition_penalty: Optional[float] = None, + return_full_text: Optional[bool] = False, # Manual default value + seed: Optional[int] = None, + stop: Optional[List[str]] = None, + stop_sequences: Optional[List[str]] = None, # Deprecated, use `stop` instead + temperature: Optional[float] = None, + top_k: Optional[int] = None, + top_n_tokens: Optional[int] = None, + top_p: Optional[float] = None, + truncate: Optional[int] = None, + typical_p: Optional[float] = None, + watermark: Optional[bool] = None, + ) -> Union[TextGenerationOutput, Iterable[TextGenerationStreamOutput]]: ... + + def text_generation( + self, + prompt: str, + *, + details: bool = False, + stream: bool = False, + model: Optional[str] = None, + # Parameters from `TextGenerationInputGenerateParameters` (maintained manually) + adapter_id: Optional[str] = None, + best_of: Optional[int] = None, + decoder_input_details: Optional[bool] = None, + do_sample: Optional[bool] = False, # Manual default value + frequency_penalty: Optional[float] = None, + grammar: Optional[TextGenerationInputGrammarType] = None, + max_new_tokens: Optional[int] = None, + repetition_penalty: Optional[float] = None, + return_full_text: Optional[bool] = False, # Manual default value + seed: Optional[int] = None, + stop: Optional[List[str]] = None, + stop_sequences: Optional[List[str]] = None, # Deprecated, use `stop` instead + temperature: Optional[float] = None, + top_k: Optional[int] = None, + top_n_tokens: Optional[int] = None, + top_p: Optional[float] = None, + truncate: Optional[int] = None, + typical_p: Optional[float] = None, + watermark: Optional[bool] = None, + ) -> Union[str, TextGenerationOutput, Iterable[str], Iterable[TextGenerationStreamOutput]]: + """ + Given a prompt, generate the following text. + + <Tip> + + If you want to generate a response from chat messages, you should use the [`InferenceClient.chat_completion`] method. + It accepts a list of messages instead of a single text prompt and handles the chat templating for you. + + </Tip> + + Args: + prompt (`str`): + Input text. + details (`bool`, *optional*): + By default, text_generation returns a string. Pass `details=True` if you want a detailed output (tokens, + probabilities, seed, finish reason, etc.). Only available for models running on with the + `text-generation-inference` backend. + stream (`bool`, *optional*): + By default, text_generation returns the full generated text. Pass `stream=True` if you want a stream of + tokens to be returned. Only available for models running on with the `text-generation-inference` + backend. + model (`str`, *optional*): + The model to use for inference. Can be a model ID hosted on the Hugging Face Hub or a URL to a deployed + Inference Endpoint. This parameter overrides the model defined at the instance level. Defaults to None. + adapter_id (`str`, *optional*): + Lora adapter id. + best_of (`int`, *optional*): + Generate best_of sequences and return the one if the highest token logprobs. + decoder_input_details (`bool`, *optional*): + Return the decoder input token logprobs and ids. You must set `details=True` as well for it to be taken + into account. Defaults to `False`. + do_sample (`bool`, *optional*): + Activate logits sampling + frequency_penalty (`float`, *optional*): + Number between -2.0 and 2.0. Positive values penalize new tokens based on their existing frequency in + the text so far, decreasing the model's likelihood to repeat the same line verbatim. + grammar ([`TextGenerationInputGrammarType`], *optional*): + Grammar constraints. Can be either a JSONSchema or a regex. + max_new_tokens (`int`, *optional*): + Maximum number of generated tokens. Defaults to 100. + repetition_penalty (`float`, *optional*): + The parameter for repetition penalty. 1.0 means no penalty. See [this + paper](https://arxiv.org/pdf/1909.05858.pdf) for more details. + return_full_text (`bool`, *optional*): + Whether to prepend the prompt to the generated text + seed (`int`, *optional*): + Random sampling seed + stop (`List[str]`, *optional*): + Stop generating tokens if a member of `stop` is generated. + stop_sequences (`List[str]`, *optional*): + Deprecated argument. Use `stop` instead. + temperature (`float`, *optional*): + The value used to module the logits distribution. + top_n_tokens (`int`, *optional*): + Return information about the `top_n_tokens` most likely tokens at each generation step, instead of + just the sampled token. + top_k (`int`, *optional`): + The number of highest probability vocabulary tokens to keep for top-k-filtering. + top_p (`float`, *optional`): + If set to < 1, only the smallest set of most probable tokens with probabilities that add up to `top_p` or + higher are kept for generation. + truncate (`int`, *optional`): + Truncate inputs tokens to the given size. + typical_p (`float`, *optional`): + Typical Decoding mass + See [Typical Decoding for Natural Language Generation](https://arxiv.org/abs/2202.00666) for more information + watermark (`bool`, *optional`): + Watermarking with [A Watermark for Large Language Models](https://arxiv.org/abs/2301.10226) + + Returns: + `Union[str, TextGenerationOutput, Iterable[str], Iterable[TextGenerationStreamOutput]]`: + Generated text returned from the server: + - if `stream=False` and `details=False`, the generated text is returned as a `str` (default) + - if `stream=True` and `details=False`, the generated text is returned token by token as a `Iterable[str]` + - if `stream=False` and `details=True`, the generated text is returned with more details as a [`~huggingface_hub.TextGenerationOutput`] + - if `details=True` and `stream=True`, the generated text is returned token by token as a iterable of [`~huggingface_hub.TextGenerationStreamOutput`] + + Raises: + `ValidationError`: + If input values are not valid. No HTTP call is made to the server. + [`InferenceTimeoutError`]: + If the model is unavailable or the request times out. + `HTTPError`: + If the request fails with an HTTP error status code other than HTTP 503. + + Example: + ```py + >>> from huggingface_hub import InferenceClient + >>> client = InferenceClient() + + # Case 1: generate text + >>> client.text_generation("The huggingface_hub library is ", max_new_tokens=12) + '100% open source and built to be easy to use.' + + # Case 2: iterate over the generated tokens. Useful for large generation. + >>> for token in client.text_generation("The huggingface_hub library is ", max_new_tokens=12, stream=True): + ... print(token) + 100 + % + open + source + and + built + to + be + easy + to + use + . + + # Case 3: get more details about the generation process. + >>> client.text_generation("The huggingface_hub library is ", max_new_tokens=12, details=True) + TextGenerationOutput( + generated_text='100% open source and built to be easy to use.', + details=TextGenerationDetails( + finish_reason='length', + generated_tokens=12, + seed=None, + prefill=[ + TextGenerationPrefillOutputToken(id=487, text='The', logprob=None), + TextGenerationPrefillOutputToken(id=53789, text=' hugging', logprob=-13.171875), + (...) + TextGenerationPrefillOutputToken(id=204, text=' ', logprob=-7.0390625) + ], + tokens=[ + TokenElement(id=1425, text='100', logprob=-1.0175781, special=False), + TokenElement(id=16, text='%', logprob=-0.0463562, special=False), + (...) + TokenElement(id=25, text='.', logprob=-0.5703125, special=False) + ], + best_of_sequences=None + ) + ) + + # Case 4: iterate over the generated tokens with more details. + # Last object is more complete, containing the full generated text and the finish reason. + >>> for details in client.text_generation("The huggingface_hub library is ", max_new_tokens=12, details=True, stream=True): + ... print(details) + ... + TextGenerationStreamOutput(token=TokenElement(id=1425, text='100', logprob=-1.0175781, special=False), generated_text=None, details=None) + TextGenerationStreamOutput(token=TokenElement(id=16, text='%', logprob=-0.0463562, special=False), generated_text=None, details=None) + TextGenerationStreamOutput(token=TokenElement(id=1314, text=' open', logprob=-1.3359375, special=False), generated_text=None, details=None) + TextGenerationStreamOutput(token=TokenElement(id=3178, text=' source', logprob=-0.28100586, special=False), generated_text=None, details=None) + TextGenerationStreamOutput(token=TokenElement(id=273, text=' and', logprob=-0.5961914, special=False), generated_text=None, details=None) + TextGenerationStreamOutput(token=TokenElement(id=3426, text=' built', logprob=-1.9423828, special=False), generated_text=None, details=None) + TextGenerationStreamOutput(token=TokenElement(id=271, text=' to', logprob=-1.4121094, special=False), generated_text=None, details=None) + TextGenerationStreamOutput(token=TokenElement(id=314, text=' be', logprob=-1.5224609, special=False), generated_text=None, details=None) + TextGenerationStreamOutput(token=TokenElement(id=1833, text=' easy', logprob=-2.1132812, special=False), generated_text=None, details=None) + TextGenerationStreamOutput(token=TokenElement(id=271, text=' to', logprob=-0.08520508, special=False), generated_text=None, details=None) + TextGenerationStreamOutput(token=TokenElement(id=745, text=' use', logprob=-0.39453125, special=False), generated_text=None, details=None) + TextGenerationStreamOutput(token=TokenElement( + id=25, + text='.', + logprob=-0.5703125, + special=False), + generated_text='100% open source and built to be easy to use.', + details=TextGenerationStreamOutputStreamDetails(finish_reason='length', generated_tokens=12, seed=None) + ) + + # Case 5: generate constrained output using grammar + >>> response = client.text_generation( + ... prompt="I saw a puppy a cat and a raccoon during my bike ride in the park", + ... model="HuggingFaceH4/zephyr-orpo-141b-A35b-v0.1", + ... max_new_tokens=100, + ... repetition_penalty=1.3, + ... grammar={ + ... "type": "json", + ... "value": { + ... "properties": { + ... "location": {"type": "string"}, + ... "activity": {"type": "string"}, + ... "animals_seen": {"type": "integer", "minimum": 1, "maximum": 5}, + ... "animals": {"type": "array", "items": {"type": "string"}}, + ... }, + ... "required": ["location", "activity", "animals_seen", "animals"], + ... }, + ... }, + ... ) + >>> json.loads(response) + { + "activity": "bike riding", + "animals": ["puppy", "cat", "raccoon"], + "animals_seen": 3, + "location": "park" + } + ``` + """ + if decoder_input_details and not details: + warnings.warn( + "`decoder_input_details=True` has been passed to the server but `details=False` is set meaning that" + " the output from the server will be truncated." + ) + decoder_input_details = False + + if stop_sequences is not None: + warnings.warn( + "`stop_sequences` is a deprecated argument for `text_generation` task" + " and will be removed in version '0.28.0'. Use `stop` instead.", + FutureWarning, + ) + if stop is None: + stop = stop_sequences # use deprecated arg if provided + + # Build payload + parameters = { + "adapter_id": adapter_id, + "best_of": best_of, + "decoder_input_details": decoder_input_details, + "details": details, + "do_sample": do_sample, + "frequency_penalty": frequency_penalty, + "grammar": grammar, + "max_new_tokens": max_new_tokens, + "repetition_penalty": repetition_penalty, + "return_full_text": return_full_text, + "seed": seed, + "stop": stop if stop is not None else [], + "temperature": temperature, + "top_k": top_k, + "top_n_tokens": top_n_tokens, + "top_p": top_p, + "truncate": truncate, + "typical_p": typical_p, + "watermark": watermark, + } + + # Remove some parameters if not a TGI server + unsupported_kwargs = _get_unsupported_text_generation_kwargs(model) + if len(unsupported_kwargs) > 0: + # The server does not support some parameters + # => means it is not a TGI server + # => remove unsupported parameters and warn the user + + ignored_parameters = [] + for key in unsupported_kwargs: + if parameters.get(key): + ignored_parameters.append(key) + parameters.pop(key, None) + if len(ignored_parameters) > 0: + warnings.warn( + "API endpoint/model for text-generation is not served via TGI. Ignoring following parameters:" + f" {', '.join(ignored_parameters)}.", + UserWarning, + ) + if details: + warnings.warn( + "API endpoint/model for text-generation is not served via TGI. Parameter `details=True` will" + " be ignored meaning only the generated text will be returned.", + UserWarning, + ) + details = False + if stream: + raise ValueError( + "API endpoint/model for text-generation is not served via TGI. Cannot return output as a stream." + " Please pass `stream=False` as input." + ) + + provider_helper = get_provider_helper(self.provider, task="text-generation") + request_parameters = provider_helper.prepare_request( + inputs=prompt, + parameters=parameters, + extra_payload={"stream": stream}, + headers=self.headers, + model=model or self.model, + api_key=self.token, + ) + + # Handle errors separately for more precise error messages + try: + bytes_output = self._inner_post(request_parameters, stream=stream) + except HTTPError as e: + match = MODEL_KWARGS_NOT_USED_REGEX.search(str(e)) + if isinstance(e, BadRequestError) and match: + unused_params = [kwarg.strip("' ") for kwarg in match.group(1).split(",")] + _set_unsupported_text_generation_kwargs(model, unused_params) + return self.text_generation( # type: ignore + prompt=prompt, + details=details, + stream=stream, + model=model or self.model, + adapter_id=adapter_id, + best_of=best_of, + decoder_input_details=decoder_input_details, + do_sample=do_sample, + frequency_penalty=frequency_penalty, + grammar=grammar, + max_new_tokens=max_new_tokens, + repetition_penalty=repetition_penalty, + return_full_text=return_full_text, + seed=seed, + stop=stop, + temperature=temperature, + top_k=top_k, + top_n_tokens=top_n_tokens, + top_p=top_p, + truncate=truncate, + typical_p=typical_p, + watermark=watermark, + ) + raise_text_generation_error(e) + + # Parse output + if stream: + return _stream_text_generation_response(bytes_output, details) # type: ignore + + data = _bytes_to_dict(bytes_output) # type: ignore[arg-type] + + # Data can be a single element (dict) or an iterable of dicts where we select the first element of. + if isinstance(data, list): + data = data[0] + + return TextGenerationOutput.parse_obj_as_instance(data) if details else data["generated_text"] + + def text_to_image( + self, + prompt: str, + *, + negative_prompt: Optional[str] = None, + height: Optional[int] = None, + width: Optional[int] = None, + num_inference_steps: Optional[int] = None, + guidance_scale: Optional[float] = None, + model: Optional[str] = None, + scheduler: Optional[str] = None, + seed: Optional[int] = None, + extra_body: Optional[Dict[str, Any]] = None, + ) -> "Image": + """ + Generate an image based on a given text using a specified model. + + <Tip warning={true}> + + You must have `PIL` installed if you want to work with images (`pip install Pillow`). + + </Tip> + + <Tip> + You can pass provider-specific parameters to the model by using the `extra_body` argument. + </Tip> + + Args: + prompt (`str`): + The prompt to generate an image from. + negative_prompt (`str`, *optional*): + One prompt to guide what NOT to include in image generation. + height (`int`, *optional*): + The height in pixels of the output image + width (`int`, *optional*): + The width in pixels of the output image + num_inference_steps (`int`, *optional*): + The number of denoising steps. More denoising steps usually lead to a higher quality image at the + expense of slower inference. + guidance_scale (`float`, *optional*): + A higher guidance scale value encourages the model to generate images closely linked to the text + prompt, but values too high may cause saturation and other artifacts. + model (`str`, *optional*): + The model to use for inference. Can be a model ID hosted on the Hugging Face Hub or a URL to a deployed + Inference Endpoint. If not provided, the default recommended text-to-image model will be used. + Defaults to None. + scheduler (`str`, *optional*): + Override the scheduler with a compatible one. + seed (`int`, *optional*): + Seed for the random number generator. + extra_body (`Dict[str, Any]`, *optional*): + Additional provider-specific parameters to pass to the model. Refer to the provider's documentation + for supported parameters. + + Returns: + `Image`: The generated image. + + Raises: + [`InferenceTimeoutError`]: + If the model is unavailable or the request times out. + `HTTPError`: + If the request fails with an HTTP error status code other than HTTP 503. + + Example: + ```py + >>> from huggingface_hub import InferenceClient + >>> client = InferenceClient() + + >>> image = client.text_to_image("An astronaut riding a horse on the moon.") + >>> image.save("astronaut.png") + + >>> image = client.text_to_image( + ... "An astronaut riding a horse on the moon.", + ... negative_prompt="low resolution, blurry", + ... model="stabilityai/stable-diffusion-2-1", + ... ) + >>> image.save("better_astronaut.png") + ``` + Example using a third-party provider directly. Usage will be billed on your fal.ai account. + ```py + >>> from huggingface_hub import InferenceClient + >>> client = InferenceClient( + ... provider="fal-ai", # Use fal.ai provider + ... api_key="fal-ai-api-key", # Pass your fal.ai API key + ... ) + >>> image = client.text_to_image( + ... "A majestic lion in a fantasy forest", + ... model="black-forest-labs/FLUX.1-schnell", + ... ) + >>> image.save("lion.png") + ``` + + Example using a third-party provider through Hugging Face Routing. Usage will be billed on your Hugging Face account. + ```py + >>> from huggingface_hub import InferenceClient + >>> client = InferenceClient( + ... provider="replicate", # Use replicate provider + ... api_key="hf_...", # Pass your HF token + ... ) + >>> image = client.text_to_image( + ... "An astronaut riding a horse on the moon.", + ... model="black-forest-labs/FLUX.1-dev", + ... ) + >>> image.save("astronaut.png") + ``` + + Example using Replicate provider with extra parameters + ```py + >>> from huggingface_hub import InferenceClient + >>> client = InferenceClient( + ... provider="replicate", # Use replicate provider + ... api_key="hf_...", # Pass your HF token + ... ) + >>> image = client.text_to_image( + ... "An astronaut riding a horse on the moon.", + ... model="black-forest-labs/FLUX.1-schnell", + ... extra_body={"output_quality": 100}, + ... ) + >>> image.save("astronaut.png") + ``` + """ + provider_helper = get_provider_helper(self.provider, task="text-to-image") + request_parameters = provider_helper.prepare_request( + inputs=prompt, + parameters={ + "negative_prompt": negative_prompt, + "height": height, + "width": width, + "num_inference_steps": num_inference_steps, + "guidance_scale": guidance_scale, + "scheduler": scheduler, + "seed": seed, + **(extra_body or {}), + }, + headers=self.headers, + model=model or self.model, + api_key=self.token, + ) + response = self._inner_post(request_parameters) + response = provider_helper.get_response(response) + return _bytes_to_image(response) + + def text_to_video( + self, + prompt: str, + *, + model: Optional[str] = None, + guidance_scale: Optional[float] = None, + negative_prompt: Optional[List[str]] = None, + num_frames: Optional[float] = None, + num_inference_steps: Optional[int] = None, + seed: Optional[int] = None, + extra_body: Optional[Dict[str, Any]] = None, + ) -> bytes: + """ + Generate a video based on a given text. + + <Tip> + You can pass provider-specific parameters to the model by using the `extra_body` argument. + </Tip> + + Args: + prompt (`str`): + The prompt to generate a video from. + model (`str`, *optional*): + The model to use for inference. Can be a model ID hosted on the Hugging Face Hub or a URL to a deployed + Inference Endpoint. If not provided, the default recommended text-to-video model will be used. + Defaults to None. + guidance_scale (`float`, *optional*): + A higher guidance scale value encourages the model to generate videos closely linked to the text + prompt, but values too high may cause saturation and other artifacts. + negative_prompt (`List[str]`, *optional*): + One or several prompt to guide what NOT to include in video generation. + num_frames (`float`, *optional*): + The num_frames parameter determines how many video frames are generated. + num_inference_steps (`int`, *optional*): + The number of denoising steps. More denoising steps usually lead to a higher quality video at the + expense of slower inference. + seed (`int`, *optional*): + Seed for the random number generator. + extra_body (`Dict[str, Any]`, *optional*): + Additional provider-specific parameters to pass to the model. Refer to the provider's documentation + for supported parameters. + + Returns: + `bytes`: The generated video. + + Example: + + Example using a third-party provider directly. Usage will be billed on your fal.ai account. + ```py + >>> from huggingface_hub import InferenceClient + >>> client = InferenceClient( + ... provider="fal-ai", # Using fal.ai provider + ... api_key="fal-ai-api-key", # Pass your fal.ai API key + ... ) + >>> video = client.text_to_video( + ... "A majestic lion running in a fantasy forest", + ... model="tencent/HunyuanVideo", + ... ) + >>> with open("lion.mp4", "wb") as file: + ... file.write(video) + ``` + + Example using a third-party provider through Hugging Face Routing. Usage will be billed on your Hugging Face account. + ```py + >>> from huggingface_hub import InferenceClient + >>> client = InferenceClient( + ... provider="replicate", # Using replicate provider + ... api_key="hf_...", # Pass your HF token + ... ) + >>> video = client.text_to_video( + ... "A cat running in a park", + ... model="genmo/mochi-1-preview", + ... ) + >>> with open("cat.mp4", "wb") as file: + ... file.write(video) + ``` + """ + provider_helper = get_provider_helper(self.provider, task="text-to-video") + request_parameters = provider_helper.prepare_request( + inputs=prompt, + parameters={ + "guidance_scale": guidance_scale, + "negative_prompt": negative_prompt, + "num_frames": num_frames, + "num_inference_steps": num_inference_steps, + "seed": seed, + **(extra_body or {}), + }, + headers=self.headers, + model=model or self.model, + api_key=self.token, + ) + response = self._inner_post(request_parameters) + response = provider_helper.get_response(response) + return response + + def text_to_speech( + self, + text: str, + *, + model: Optional[str] = None, + do_sample: Optional[bool] = None, + early_stopping: Optional[Union[bool, "TextToSpeechEarlyStoppingEnum"]] = None, + epsilon_cutoff: Optional[float] = None, + eta_cutoff: Optional[float] = None, + max_length: Optional[int] = None, + max_new_tokens: Optional[int] = None, + min_length: Optional[int] = None, + min_new_tokens: Optional[int] = None, + num_beam_groups: Optional[int] = None, + num_beams: Optional[int] = None, + penalty_alpha: Optional[float] = None, + temperature: Optional[float] = None, + top_k: Optional[int] = None, + top_p: Optional[float] = None, + typical_p: Optional[float] = None, + use_cache: Optional[bool] = None, + extra_body: Optional[Dict[str, Any]] = None, + ) -> bytes: + """ + Synthesize an audio of a voice pronouncing a given text. + + <Tip> + You can pass provider-specific parameters to the model by using the `extra_body` argument. + </Tip> + + Args: + text (`str`): + The text to synthesize. + model (`str`, *optional*): + The model to use for inference. Can be a model ID hosted on the Hugging Face Hub or a URL to a deployed + Inference Endpoint. If not provided, the default recommended text-to-speech model will be used. + Defaults to None. + do_sample (`bool`, *optional*): + Whether to use sampling instead of greedy decoding when generating new tokens. + early_stopping (`Union[bool, "TextToSpeechEarlyStoppingEnum"]`, *optional*): + Controls the stopping condition for beam-based methods. + epsilon_cutoff (`float`, *optional*): + If set to float strictly between 0 and 1, only tokens with a conditional probability greater than + epsilon_cutoff will be sampled. In the paper, suggested values range from 3e-4 to 9e-4, depending on + the size of the model. See [Truncation Sampling as Language Model + Desmoothing](https://hf.co/papers/2210.15191) for more details. + eta_cutoff (`float`, *optional*): + Eta sampling is a hybrid of locally typical sampling and epsilon sampling. If set to float strictly + between 0 and 1, a token is only considered if it is greater than either eta_cutoff or sqrt(eta_cutoff) + * exp(-entropy(softmax(next_token_logits))). The latter term is intuitively the expected next token + probability, scaled by sqrt(eta_cutoff). In the paper, suggested values range from 3e-4 to 2e-3, + depending on the size of the model. See [Truncation Sampling as Language Model + Desmoothing](https://hf.co/papers/2210.15191) for more details. + max_length (`int`, *optional*): + The maximum length (in tokens) of the generated text, including the input. + max_new_tokens (`int`, *optional*): + The maximum number of tokens to generate. Takes precedence over max_length. + min_length (`int`, *optional*): + The minimum length (in tokens) of the generated text, including the input. + min_new_tokens (`int`, *optional*): + The minimum number of tokens to generate. Takes precedence over min_length. + num_beam_groups (`int`, *optional*): + Number of groups to divide num_beams into in order to ensure diversity among different groups of beams. + See [this paper](https://hf.co/papers/1610.02424) for more details. + num_beams (`int`, *optional*): + Number of beams to use for beam search. + penalty_alpha (`float`, *optional*): + The value balances the model confidence and the degeneration penalty in contrastive search decoding. + temperature (`float`, *optional*): + The value used to modulate the next token probabilities. + top_k (`int`, *optional*): + The number of highest probability vocabulary tokens to keep for top-k-filtering. + top_p (`float`, *optional*): + If set to float < 1, only the smallest set of most probable tokens with probabilities that add up to + top_p or higher are kept for generation. + typical_p (`float`, *optional*): + Local typicality measures how similar the conditional probability of predicting a target token next is + to the expected conditional probability of predicting a random token next, given the partial text + already generated. If set to float < 1, the smallest set of the most locally typical tokens with + probabilities that add up to typical_p or higher are kept for generation. See [this + paper](https://hf.co/papers/2202.00666) for more details. + use_cache (`bool`, *optional*): + Whether the model should use the past last key/values attentions to speed up decoding + extra_body (`Dict[str, Any]`, *optional*): + Additional provider-specific parameters to pass to the model. Refer to the provider's documentation + for supported parameters. + Returns: + `bytes`: The generated audio. + + Raises: + [`InferenceTimeoutError`]: + If the model is unavailable or the request times out. + `HTTPError`: + If the request fails with an HTTP error status code other than HTTP 503. + + Example: + ```py + >>> from pathlib import Path + >>> from huggingface_hub import InferenceClient + >>> client = InferenceClient() + + >>> audio = client.text_to_speech("Hello world") + >>> Path("hello_world.flac").write_bytes(audio) + ``` + + Example using a third-party provider directly. Usage will be billed on your Replicate account. + ```py + >>> from huggingface_hub import InferenceClient + >>> client = InferenceClient( + ... provider="replicate", + ... api_key="your-replicate-api-key", # Pass your Replicate API key directly + ... ) + >>> audio = client.text_to_speech( + ... text="Hello world", + ... model="OuteAI/OuteTTS-0.3-500M", + ... ) + >>> Path("hello_world.flac").write_bytes(audio) + ``` + + Example using a third-party provider through Hugging Face Routing. Usage will be billed on your Hugging Face account. + ```py + >>> from huggingface_hub import InferenceClient + >>> client = InferenceClient( + ... provider="replicate", + ... api_key="hf_...", # Pass your HF token + ... ) + >>> audio =client.text_to_speech( + ... text="Hello world", + ... model="OuteAI/OuteTTS-0.3-500M", + ... ) + >>> Path("hello_world.flac").write_bytes(audio) + ``` + Example using Replicate provider with extra parameters + ```py + >>> from huggingface_hub import InferenceClient + >>> client = InferenceClient( + ... provider="replicate", # Use replicate provider + ... api_key="hf_...", # Pass your HF token + ... ) + >>> audio = client.text_to_speech( + ... "Hello, my name is Kororo, an awesome text-to-speech model.", + ... model="hexgrad/Kokoro-82M", + ... extra_body={"voice": "af_nicole"}, + ... ) + >>> Path("hello.flac").write_bytes(audio) + ``` + + Example music-gen using "YuE-s1-7B-anneal-en-cot" on fal.ai + ```py + >>> from huggingface_hub import InferenceClient + >>> lyrics = ''' + ... [verse] + ... In the town where I was born + ... Lived a man who sailed to sea + ... And he told us of his life + ... In the land of submarines + ... So we sailed on to the sun + ... 'Til we found a sea of green + ... And we lived beneath the waves + ... In our yellow submarine + + ... [chorus] + ... We all live in a yellow submarine + ... Yellow submarine, yellow submarine + ... We all live in a yellow submarine + ... Yellow submarine, yellow submarine + ... ''' + >>> genres = "pavarotti-style tenor voice" + >>> client = InferenceClient( + ... provider="fal-ai", + ... model="m-a-p/YuE-s1-7B-anneal-en-cot", + ... api_key=..., + ... ) + >>> audio = client.text_to_speech(lyrics, extra_body={"genres": genres}) + >>> with open("output.mp3", "wb") as f: + ... f.write(audio) + ``` + """ + provider_helper = get_provider_helper(self.provider, task="text-to-speech") + request_parameters = provider_helper.prepare_request( + inputs=text, + parameters={ + "do_sample": do_sample, + "early_stopping": early_stopping, + "epsilon_cutoff": epsilon_cutoff, + "eta_cutoff": eta_cutoff, + "max_length": max_length, + "max_new_tokens": max_new_tokens, + "min_length": min_length, + "min_new_tokens": min_new_tokens, + "num_beam_groups": num_beam_groups, + "num_beams": num_beams, + "penalty_alpha": penalty_alpha, + "temperature": temperature, + "top_k": top_k, + "top_p": top_p, + "typical_p": typical_p, + "use_cache": use_cache, + **(extra_body or {}), + }, + headers=self.headers, + model=model or self.model, + api_key=self.token, + ) + response = self._inner_post(request_parameters) + response = provider_helper.get_response(response) + return response + + def token_classification( + self, + text: str, + *, + model: Optional[str] = None, + aggregation_strategy: Optional["TokenClassificationAggregationStrategy"] = None, + ignore_labels: Optional[List[str]] = None, + stride: Optional[int] = None, + ) -> List[TokenClassificationOutputElement]: + """ + Perform token classification on the given text. + Usually used for sentence parsing, either grammatical, or Named Entity Recognition (NER) to understand keywords contained within text. + + Args: + text (`str`): + A string to be classified. + model (`str`, *optional*): + The model to use for the token classification task. Can be a model ID hosted on the Hugging Face Hub or a URL to + a deployed Inference Endpoint. If not provided, the default recommended token classification model will be used. + Defaults to None. + aggregation_strategy (`"TokenClassificationAggregationStrategy"`, *optional*): + The strategy used to fuse tokens based on model predictions + ignore_labels (`List[str`, *optional*): + A list of labels to ignore + stride (`int`, *optional*): + The number of overlapping tokens between chunks when splitting the input text. + + Returns: + `List[TokenClassificationOutputElement]`: List of [`TokenClassificationOutputElement`] items containing the entity group, confidence score, word, start and end index. + + Raises: + [`InferenceTimeoutError`]: + If the model is unavailable or the request times out. + `HTTPError`: + If the request fails with an HTTP error status code other than HTTP 503. + + Example: + ```py + >>> from huggingface_hub import InferenceClient + >>> client = InferenceClient() + >>> client.token_classification("My name is Sarah Jessica Parker but you can call me Jessica") + [ + TokenClassificationOutputElement( + entity_group='PER', + score=0.9971321225166321, + word='Sarah Jessica Parker', + start=11, + end=31, + ), + TokenClassificationOutputElement( + entity_group='PER', + score=0.9773476123809814, + word='Jessica', + start=52, + end=59, + ) + ] + ``` + """ + provider_helper = get_provider_helper(self.provider, task="token-classification") + request_parameters = provider_helper.prepare_request( + inputs=text, + parameters={ + "aggregation_strategy": aggregation_strategy, + "ignore_labels": ignore_labels, + "stride": stride, + }, + headers=self.headers, + model=model or self.model, + api_key=self.token, + ) + response = self._inner_post(request_parameters) + return TokenClassificationOutputElement.parse_obj_as_list(response) + + def translation( + self, + text: str, + *, + model: Optional[str] = None, + src_lang: Optional[str] = None, + tgt_lang: Optional[str] = None, + clean_up_tokenization_spaces: Optional[bool] = None, + truncation: Optional["TranslationTruncationStrategy"] = None, + generate_parameters: Optional[Dict[str, Any]] = None, + ) -> TranslationOutput: + """ + Convert text from one language to another. + + Check out https://huggingface.co/tasks/translation for more information on how to choose the best model for + your specific use case. Source and target languages usually depend on the model. + However, it is possible to specify source and target languages for certain models. If you are working with one of these models, + you can use `src_lang` and `tgt_lang` arguments to pass the relevant information. + + Args: + text (`str`): + A string to be translated. + model (`str`, *optional*): + The model to use for the translation task. Can be a model ID hosted on the Hugging Face Hub or a URL to + a deployed Inference Endpoint. If not provided, the default recommended translation model will be used. + Defaults to None. + src_lang (`str`, *optional*): + The source language of the text. Required for models that can translate from multiple languages. + tgt_lang (`str`, *optional*): + Target language to translate to. Required for models that can translate to multiple languages. + clean_up_tokenization_spaces (`bool`, *optional*): + Whether to clean up the potential extra spaces in the text output. + truncation (`"TranslationTruncationStrategy"`, *optional*): + The truncation strategy to use. + generate_parameters (`Dict[str, Any]`, *optional*): + Additional parametrization of the text generation algorithm. + + Returns: + [`TranslationOutput`]: The generated translated text. + + Raises: + [`InferenceTimeoutError`]: + If the model is unavailable or the request times out. + `HTTPError`: + If the request fails with an HTTP error status code other than HTTP 503. + `ValueError`: + If only one of the `src_lang` and `tgt_lang` arguments are provided. + + Example: + ```py + >>> from huggingface_hub import InferenceClient + >>> client = InferenceClient() + >>> client.translation("My name is Wolfgang and I live in Berlin") + 'Mein Name ist Wolfgang und ich lebe in Berlin.' + >>> client.translation("My name is Wolfgang and I live in Berlin", model="Helsinki-NLP/opus-mt-en-fr") + TranslationOutput(translation_text='Je m'appelle Wolfgang et je vis à Berlin.') + ``` + + Specifying languages: + ```py + >>> client.translation("My name is Sarah Jessica Parker but you can call me Jessica", model="facebook/mbart-large-50-many-to-many-mmt", src_lang="en_XX", tgt_lang="fr_XX") + "Mon nom est Sarah Jessica Parker mais vous pouvez m'appeler Jessica" + ``` + """ + # Throw error if only one of `src_lang` and `tgt_lang` was given + if src_lang is not None and tgt_lang is None: + raise ValueError("You cannot specify `src_lang` without specifying `tgt_lang`.") + + if src_lang is None and tgt_lang is not None: + raise ValueError("You cannot specify `tgt_lang` without specifying `src_lang`.") + + provider_helper = get_provider_helper(self.provider, task="translation") + request_parameters = provider_helper.prepare_request( + inputs=text, + parameters={ + "src_lang": src_lang, + "tgt_lang": tgt_lang, + "clean_up_tokenization_spaces": clean_up_tokenization_spaces, + "truncation": truncation, + "generate_parameters": generate_parameters, + }, + headers=self.headers, + model=model or self.model, + api_key=self.token, + ) + response = self._inner_post(request_parameters) + return TranslationOutput.parse_obj_as_list(response)[0] + + def visual_question_answering( + self, + image: ContentT, + question: str, + *, + model: Optional[str] = None, + top_k: Optional[int] = None, + ) -> List[VisualQuestionAnsweringOutputElement]: + """ + Answering open-ended questions based on an image. + + Args: + image (`Union[str, Path, bytes, BinaryIO]`): + The input image for the context. It can be raw bytes, an image file, or a URL to an online image. + question (`str`): + Question to be answered. + model (`str`, *optional*): + The model to use for the visual question answering task. Can be a model ID hosted on the Hugging Face Hub or a URL to + a deployed Inference Endpoint. If not provided, the default recommended visual question answering model will be used. + Defaults to None. + top_k (`int`, *optional*): + The number of answers to return (will be chosen by order of likelihood). Note that we return less than + topk answers if there are not enough options available within the context. + Returns: + `List[VisualQuestionAnsweringOutputElement]`: a list of [`VisualQuestionAnsweringOutputElement`] items containing the predicted label and associated probability. + + Raises: + `InferenceTimeoutError`: + If the model is unavailable or the request times out. + `HTTPError`: + If the request fails with an HTTP error status code other than HTTP 503. + + Example: + ```py + >>> from huggingface_hub import InferenceClient + >>> client = InferenceClient() + >>> client.visual_question_answering( + ... image="https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg", + ... question="What is the animal doing?" + ... ) + [ + VisualQuestionAnsweringOutputElement(score=0.778609573841095, answer='laying down'), + VisualQuestionAnsweringOutputElement(score=0.6957435607910156, answer='sitting'), + ] + ``` + """ + provider_helper = get_provider_helper(self.provider, task="visual-question-answering") + request_parameters = provider_helper.prepare_request( + inputs=image, + parameters={"top_k": top_k}, + headers=self.headers, + model=model or self.model, + api_key=self.token, + extra_payload={"question": question, "image": _b64_encode(image)}, + ) + response = self._inner_post(request_parameters) + return VisualQuestionAnsweringOutputElement.parse_obj_as_list(response) + + @_deprecate_arguments( + version="0.30.0", + deprecated_args=["labels"], + custom_message="`labels`has been renamed to `candidate_labels` and will be removed in huggingface_hub>=0.30.0.", + ) + def zero_shot_classification( + self, + text: str, + # temporarily keeping it optional for backward compatibility. + candidate_labels: List[str] = None, # type: ignore + *, + multi_label: Optional[bool] = False, + hypothesis_template: Optional[str] = None, + model: Optional[str] = None, + # deprecated argument + labels: List[str] = None, # type: ignore + ) -> List[ZeroShotClassificationOutputElement]: + """ + Provide as input a text and a set of candidate labels to classify the input text. + + Args: + text (`str`): + The input text to classify. + candidate_labels (`List[str]`): + The set of possible class labels to classify the text into. + labels (`List[str]`, *optional*): + (deprecated) List of strings. Each string is the verbalization of a possible label for the input text. + multi_label (`bool`, *optional*): + Whether multiple candidate labels can be true. If false, the scores are normalized such that the sum of + the label likelihoods for each sequence is 1. If true, the labels are considered independent and + probabilities are normalized for each candidate. + hypothesis_template (`str`, *optional*): + The sentence used in conjunction with `candidate_labels` to attempt the text classification by + replacing the placeholder with the candidate labels. + model (`str`, *optional*): + The model to use for inference. Can be a model ID hosted on the Hugging Face Hub or a URL to a deployed + Inference Endpoint. This parameter overrides the model defined at the instance level. If not provided, the default recommended zero-shot classification model will be used. + + + Returns: + `List[ZeroShotClassificationOutputElement]`: List of [`ZeroShotClassificationOutputElement`] items containing the predicted labels and their confidence. + + Raises: + [`InferenceTimeoutError`]: + If the model is unavailable or the request times out. + `HTTPError`: + If the request fails with an HTTP error status code other than HTTP 503. + + Example with `multi_label=False`: + ```py + >>> from huggingface_hub import InferenceClient + >>> client = InferenceClient() + >>> text = ( + ... "A new model offers an explanation for how the Galilean satellites formed around the solar system's" + ... "largest world. Konstantin Batygin did not set out to solve one of the solar system's most puzzling" + ... " mysteries when he went for a run up a hill in Nice, France." + ... ) + >>> labels = ["space & cosmos", "scientific discovery", "microbiology", "robots", "archeology"] + >>> client.zero_shot_classification(text, labels) + [ + ZeroShotClassificationOutputElement(label='scientific discovery', score=0.7961668968200684), + ZeroShotClassificationOutputElement(label='space & cosmos', score=0.18570658564567566), + ZeroShotClassificationOutputElement(label='microbiology', score=0.00730885099619627), + ZeroShotClassificationOutputElement(label='archeology', score=0.006258360575884581), + ZeroShotClassificationOutputElement(label='robots', score=0.004559356719255447), + ] + >>> client.zero_shot_classification(text, labels, multi_label=True) + [ + ZeroShotClassificationOutputElement(label='scientific discovery', score=0.9829297661781311), + ZeroShotClassificationOutputElement(label='space & cosmos', score=0.755190908908844), + ZeroShotClassificationOutputElement(label='microbiology', score=0.0005462635890580714), + ZeroShotClassificationOutputElement(label='archeology', score=0.00047131875180639327), + ZeroShotClassificationOutputElement(label='robots', score=0.00030448526376858354), + ] + ``` + + Example with `multi_label=True` and a custom `hypothesis_template`: + ```py + >>> from huggingface_hub import InferenceClient + >>> client = InferenceClient() + >>> client.zero_shot_classification( + ... text="I really like our dinner and I'm very happy. I don't like the weather though.", + ... labels=["positive", "negative", "pessimistic", "optimistic"], + ... multi_label=True, + ... hypothesis_template="This text is {} towards the weather" + ... ) + [ + ZeroShotClassificationOutputElement(label='negative', score=0.9231801629066467), + ZeroShotClassificationOutputElement(label='pessimistic', score=0.8760990500450134), + ZeroShotClassificationOutputElement(label='optimistic', score=0.0008674879791215062), + ZeroShotClassificationOutputElement(label='positive', score=0.0005250611575320363) + ] + ``` + """ + # handle deprecation + if labels is not None: + if candidate_labels is not None: + raise ValueError( + "Cannot specify both `labels` and `candidate_labels`. Use `candidate_labels` instead." + ) + candidate_labels = labels + elif candidate_labels is None: + raise ValueError("Must specify `candidate_labels`") + + provider_helper = get_provider_helper(self.provider, task="zero-shot-classification") + request_parameters = provider_helper.prepare_request( + inputs=text, + parameters={ + "candidate_labels": candidate_labels, + "multi_label": multi_label, + "hypothesis_template": hypothesis_template, + }, + headers=self.headers, + model=model or self.model, + api_key=self.token, + ) + response = self._inner_post(request_parameters) + output = _bytes_to_dict(response) + return [ + ZeroShotClassificationOutputElement.parse_obj_as_instance({"label": label, "score": score}) + for label, score in zip(output["labels"], output["scores"]) + ] + + @_deprecate_arguments( + version="0.30.0", + deprecated_args=["labels"], + custom_message="`labels`has been renamed to `candidate_labels` and will be removed in huggingface_hub>=0.30.0.", + ) + def zero_shot_image_classification( + self, + image: ContentT, + # temporarily keeping it optional for backward compatibility. + candidate_labels: List[str] = None, # type: ignore + *, + model: Optional[str] = None, + hypothesis_template: Optional[str] = None, + # deprecated argument + labels: List[str] = None, # type: ignore + ) -> List[ZeroShotImageClassificationOutputElement]: + """ + Provide input image and text labels to predict text labels for the image. + + Args: + image (`Union[str, Path, bytes, BinaryIO]`): + The input image to caption. It can be raw bytes, an image file, or a URL to an online image. + candidate_labels (`List[str]`): + The candidate labels for this image + labels (`List[str]`, *optional*): + (deprecated) List of string possible labels. There must be at least 2 labels. + model (`str`, *optional*): + The model to use for inference. Can be a model ID hosted on the Hugging Face Hub or a URL to a deployed + Inference Endpoint. This parameter overrides the model defined at the instance level. If not provided, the default recommended zero-shot image classification model will be used. + hypothesis_template (`str`, *optional*): + The sentence used in conjunction with `candidate_labels` to attempt the image classification by + replacing the placeholder with the candidate labels. + + Returns: + `List[ZeroShotImageClassificationOutputElement]`: List of [`ZeroShotImageClassificationOutputElement`] items containing the predicted labels and their confidence. + + Raises: + [`InferenceTimeoutError`]: + If the model is unavailable or the request times out. + `HTTPError`: + If the request fails with an HTTP error status code other than HTTP 503. + + Example: + ```py + >>> from huggingface_hub import InferenceClient + >>> client = InferenceClient() + + >>> client.zero_shot_image_classification( + ... "https://upload.wikimedia.org/wikipedia/commons/thumb/4/43/Cute_dog.jpg/320px-Cute_dog.jpg", + ... labels=["dog", "cat", "horse"], + ... ) + [ZeroShotImageClassificationOutputElement(label='dog', score=0.956),...] + ``` + """ + # handle deprecation + if labels is not None: + if candidate_labels is not None: + raise ValueError( + "Cannot specify both `labels` and `candidate_labels`. Use `candidate_labels` instead." + ) + candidate_labels = labels + elif candidate_labels is None: + raise ValueError("Must specify `candidate_labels`") + # Raise ValueError if input is less than 2 labels + if len(candidate_labels) < 2: + raise ValueError("You must specify at least 2 classes to compare.") + + provider_helper = get_provider_helper(self.provider, task="zero-shot-image-classification") + request_parameters = provider_helper.prepare_request( + inputs=image, + parameters={ + "candidate_labels": candidate_labels, + "hypothesis_template": hypothesis_template, + }, + headers=self.headers, + model=model or self.model, + api_key=self.token, + ) + response = self._inner_post(request_parameters) + return ZeroShotImageClassificationOutputElement.parse_obj_as_list(response) + + @_deprecate_method( + version="0.33.0", + message=( + "HF Inference API is getting revamped and will only support warm models in the future (no cold start allowed)." + " Use `HfApi.list_models(..., inference_provider='...')` to list warm models per provider." + ), + ) + def list_deployed_models( + self, frameworks: Union[None, str, Literal["all"], List[str]] = None + ) -> Dict[str, List[str]]: + """ + List models deployed on the HF Serverless Inference API service. + + This helper checks deployed models framework by framework. By default, it will check the 4 main frameworks that + are supported and account for 95% of the hosted models. However, if you want a complete list of models you can + specify `frameworks="all"` as input. Alternatively, if you know before-hand which framework you are interested + in, you can also restrict to search to this one (e.g. `frameworks="text-generation-inference"`). The more + frameworks are checked, the more time it will take. + + <Tip warning={true}> + + This endpoint method does not return a live list of all models available for the HF Inference API service. + It searches over a cached list of models that were recently available and the list may not be up to date. + If you want to know the live status of a specific model, use [`~InferenceClient.get_model_status`]. + + </Tip> + + <Tip> + + This endpoint method is mostly useful for discoverability. If you already know which model you want to use and want to + check its availability, you can directly use [`~InferenceClient.get_model_status`]. + + </Tip> + + Args: + frameworks (`Literal["all"]` or `List[str]` or `str`, *optional*): + The frameworks to filter on. By default only a subset of the available frameworks are tested. If set to + "all", all available frameworks will be tested. It is also possible to provide a single framework or a + custom set of frameworks to check. + + Returns: + `Dict[str, List[str]]`: A dictionary mapping task names to a sorted list of model IDs. + + Example: + ```python + >>> from huggingface_hub import InferenceClient + >>> client = InferenceClient() + + # Discover zero-shot-classification models currently deployed + >>> models = client.list_deployed_models() + >>> models["zero-shot-classification"] + ['Narsil/deberta-large-mnli-zero-cls', 'facebook/bart-large-mnli', ...] + + # List from only 1 framework + >>> client.list_deployed_models("text-generation-inference") + {'text-generation': ['bigcode/starcoder', 'meta-llama/Llama-2-70b-chat-hf', ...], ...} + ``` + """ + if self.provider != "hf-inference": + raise ValueError(f"Listing deployed models is not supported on '{self.provider}'.") + + # Resolve which frameworks to check + if frameworks is None: + frameworks = constants.MAIN_INFERENCE_API_FRAMEWORKS + elif frameworks == "all": + frameworks = constants.ALL_INFERENCE_API_FRAMEWORKS + elif isinstance(frameworks, str): + frameworks = [frameworks] + frameworks = list(set(frameworks)) + + # Fetch them iteratively + models_by_task: Dict[str, List[str]] = {} + + def _unpack_response(framework: str, items: List[Dict]) -> None: + for model in items: + if framework == "sentence-transformers": + # Model running with the `sentence-transformers` framework can work with both tasks even if not + # branded as such in the API response + models_by_task.setdefault("feature-extraction", []).append(model["model_id"]) + models_by_task.setdefault("sentence-similarity", []).append(model["model_id"]) + else: + models_by_task.setdefault(model["task"], []).append(model["model_id"]) + + for framework in frameworks: + response = get_session().get( + f"{constants.INFERENCE_ENDPOINT}/framework/{framework}", headers=build_hf_headers(token=self.token) + ) + hf_raise_for_status(response) + _unpack_response(framework, response.json()) + + # Sort alphabetically for discoverability and return + for task, models in models_by_task.items(): + models_by_task[task] = sorted(set(models), key=lambda x: x.lower()) + return models_by_task + + def get_endpoint_info(self, *, model: Optional[str] = None) -> Dict[str, Any]: + """ + Get information about the deployed endpoint. + + This endpoint is only available on endpoints powered by Text-Generation-Inference (TGI) or Text-Embedding-Inference (TEI). + Endpoints powered by `transformers` return an empty payload. + + Args: + model (`str`, *optional*): + The model to use for inference. Can be a model ID hosted on the Hugging Face Hub or a URL to a deployed + Inference Endpoint. This parameter overrides the model defined at the instance level. Defaults to None. + + Returns: + `Dict[str, Any]`: Information about the endpoint. + + Example: + ```py + >>> from huggingface_hub import InferenceClient + >>> client = InferenceClient("meta-llama/Meta-Llama-3-70B-Instruct") + >>> client.get_endpoint_info() + { + 'model_id': 'meta-llama/Meta-Llama-3-70B-Instruct', + 'model_sha': None, + 'model_dtype': 'torch.float16', + 'model_device_type': 'cuda', + 'model_pipeline_tag': None, + 'max_concurrent_requests': 128, + 'max_best_of': 2, + 'max_stop_sequences': 4, + 'max_input_length': 8191, + 'max_total_tokens': 8192, + 'waiting_served_ratio': 0.3, + 'max_batch_total_tokens': 1259392, + 'max_waiting_tokens': 20, + 'max_batch_size': None, + 'validation_workers': 32, + 'max_client_batch_size': 4, + 'version': '2.0.2', + 'sha': 'dccab72549635c7eb5ddb17f43f0b7cdff07c214', + 'docker_label': 'sha-dccab72' + } + ``` + """ + if self.provider != "hf-inference": + raise ValueError(f"Getting endpoint info is not supported on '{self.provider}'.") + + model = model or self.model + if model is None: + raise ValueError("Model id not provided.") + if model.startswith(("http://", "https://")): + url = model.rstrip("/") + "/info" + else: + url = f"{constants.INFERENCE_ENDPOINT}/models/{model}/info" + + response = get_session().get(url, headers=build_hf_headers(token=self.token)) + hf_raise_for_status(response) + return response.json() + + def health_check(self, model: Optional[str] = None) -> bool: + """ + Check the health of the deployed endpoint. + + Health check is only available with Inference Endpoints powered by Text-Generation-Inference (TGI) or Text-Embedding-Inference (TEI). + For Inference API, please use [`InferenceClient.get_model_status`] instead. + + Args: + model (`str`, *optional*): + URL of the Inference Endpoint. This parameter overrides the model defined at the instance level. Defaults to None. + + Returns: + `bool`: True if everything is working fine. + + Example: + ```py + >>> from huggingface_hub import InferenceClient + >>> client = InferenceClient("https://jzgu0buei5.us-east-1.aws.endpoints.huggingface.cloud") + >>> client.health_check() + True + ``` + """ + if self.provider != "hf-inference": + raise ValueError(f"Health check is not supported on '{self.provider}'.") + + model = model or self.model + if model is None: + raise ValueError("Model id not provided.") + if not model.startswith(("http://", "https://")): + raise ValueError( + "Model must be an Inference Endpoint URL. For serverless Inference API, please use `InferenceClient.get_model_status`." + ) + url = model.rstrip("/") + "/health" + + response = get_session().get(url, headers=build_hf_headers(token=self.token)) + return response.status_code == 200 + + @_deprecate_method( + version="0.33.0", + message=( + "HF Inference API is getting revamped and will only support warm models in the future (no cold start allowed)." + " Use `HfApi.model_info` to get the model status both with HF Inference API and external providers." + ), + ) + def get_model_status(self, model: Optional[str] = None) -> ModelStatus: + """ + Get the status of a model hosted on the HF Inference API. + + <Tip> + + This endpoint is mostly useful when you already know which model you want to use and want to check its + availability. If you want to discover already deployed models, you should rather use [`~InferenceClient.list_deployed_models`]. + + </Tip> + + Args: + model (`str`, *optional*): + Identifier of the model for witch the status gonna be checked. If model is not provided, + the model associated with this instance of [`InferenceClient`] will be used. Only HF Inference API service can be checked so the + identifier cannot be a URL. + + + Returns: + [`ModelStatus`]: An instance of ModelStatus dataclass, containing information, + about the state of the model: load, state, compute type and framework. + + Example: + ```py + >>> from huggingface_hub import InferenceClient + >>> client = InferenceClient() + >>> client.get_model_status("meta-llama/Meta-Llama-3-8B-Instruct") + ModelStatus(loaded=True, state='Loaded', compute_type='gpu', framework='text-generation-inference') + ``` + """ + if self.provider != "hf-inference": + raise ValueError(f"Getting model status is not supported on '{self.provider}'.") + + model = model or self.model + if model is None: + raise ValueError("Model id not provided.") + if model.startswith("https://"): + raise NotImplementedError("Model status is only available for Inference API endpoints.") + url = f"{constants.INFERENCE_ENDPOINT}/status/{model}" + + response = get_session().get(url, headers=build_hf_headers(token=self.token)) + hf_raise_for_status(response) + response_data = response.json() + + if "error" in response_data: + raise ValueError(response_data["error"]) + + return ModelStatus( + loaded=response_data["loaded"], + state=response_data["state"], + compute_type=response_data["compute_type"], + framework=response_data["framework"], + ) + + @property + def chat(self) -> "ProxyClientChat": + return ProxyClientChat(self) + + +class _ProxyClient: + """Proxy class to be able to call `client.chat.completion.create(...)` as OpenAI client.""" + + def __init__(self, client: InferenceClient): + self._client = client + + +class ProxyClientChat(_ProxyClient): + """Proxy class to be able to call `client.chat.completion.create(...)` as OpenAI client.""" + + @property + def completions(self) -> "ProxyClientChatCompletions": + return ProxyClientChatCompletions(self._client) + + +class ProxyClientChatCompletions(_ProxyClient): + """Proxy class to be able to call `client.chat.completion.create(...)` as OpenAI client.""" + + @property + def create(self): + return self._client.chat_completion diff --git a/.venv/lib/python3.12/site-packages/huggingface_hub/inference/_common.py b/.venv/lib/python3.12/site-packages/huggingface_hub/inference/_common.py new file mode 100644 index 00000000..574f726b --- /dev/null +++ b/.venv/lib/python3.12/site-packages/huggingface_hub/inference/_common.py @@ -0,0 +1,422 @@ +# coding=utf-8 +# Copyright 2023-present, the HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Contains utilities used by both the sync and async inference clients.""" + +import base64 +import io +import json +import logging +from contextlib import contextmanager +from dataclasses import dataclass +from pathlib import Path +from typing import ( + TYPE_CHECKING, + Any, + AsyncIterable, + BinaryIO, + ContextManager, + Dict, + Generator, + Iterable, + List, + Literal, + NoReturn, + Optional, + Union, + overload, +) + +from requests import HTTPError + +from huggingface_hub.errors import ( + GenerationError, + IncompleteGenerationError, + OverloadedError, + TextGenerationError, + UnknownError, + ValidationError, +) + +from ..utils import get_session, is_aiohttp_available, is_numpy_available, is_pillow_available +from ._generated.types import ChatCompletionStreamOutput, TextGenerationStreamOutput + + +if TYPE_CHECKING: + from aiohttp import ClientResponse, ClientSession + from PIL.Image import Image + +# TYPES +UrlT = str +PathT = Union[str, Path] +BinaryT = Union[bytes, BinaryIO] +ContentT = Union[BinaryT, PathT, UrlT] + +# Use to set a Accept: image/png header +TASKS_EXPECTING_IMAGES = {"text-to-image", "image-to-image"} + +logger = logging.getLogger(__name__) + + +@dataclass +class RequestParameters: + url: str + task: str + model: Optional[str] + json: Optional[Union[str, Dict, List]] + data: Optional[ContentT] + headers: Dict[str, Any] + + +# Add dataclass for ModelStatus. We use this dataclass in get_model_status function. +@dataclass +class ModelStatus: + """ + This Dataclass represents the model status in the HF Inference API. + + Args: + loaded (`bool`): + If the model is currently loaded into HF's Inference API. Models + are loaded on-demand, leading to the user's first request taking longer. + If a model is loaded, you can be assured that it is in a healthy state. + state (`str`): + The current state of the model. This can be 'Loaded', 'Loadable', 'TooBig'. + If a model's state is 'Loadable', it's not too big and has a supported + backend. Loadable models are automatically loaded when the user first + requests inference on the endpoint. This means it is transparent for the + user to load a model, except that the first call takes longer to complete. + compute_type (`Dict`): + Information about the compute resource the model is using or will use, such as 'gpu' type and number of + replicas. + framework (`str`): + The name of the framework that the model was built with, such as 'transformers' + or 'text-generation-inference'. + """ + + loaded: bool + state: str + compute_type: Dict + framework: str + + +## IMPORT UTILS + + +def _import_aiohttp(): + # Make sure `aiohttp` is installed on the machine. + if not is_aiohttp_available(): + raise ImportError("Please install aiohttp to use `AsyncInferenceClient` (`pip install aiohttp`).") + import aiohttp + + return aiohttp + + +def _import_numpy(): + """Make sure `numpy` is installed on the machine.""" + if not is_numpy_available(): + raise ImportError("Please install numpy to use deal with embeddings (`pip install numpy`).") + import numpy + + return numpy + + +def _import_pil_image(): + """Make sure `PIL` is installed on the machine.""" + if not is_pillow_available(): + raise ImportError( + "Please install Pillow to use deal with images (`pip install Pillow`). If you don't want the image to be" + " post-processed, use `client.post(...)` and get the raw response from the server." + ) + from PIL import Image + + return Image + + +## ENCODING / DECODING UTILS + + +@overload +def _open_as_binary( + content: ContentT, +) -> ContextManager[BinaryT]: ... # means "if input is not None, output is not None" + + +@overload +def _open_as_binary( + content: Literal[None], +) -> ContextManager[Literal[None]]: ... # means "if input is None, output is None" + + +@contextmanager # type: ignore +def _open_as_binary(content: Optional[ContentT]) -> Generator[Optional[BinaryT], None, None]: + """Open `content` as a binary file, either from a URL, a local path, or raw bytes. + + Do nothing if `content` is None, + + TODO: handle a PIL.Image as input + TODO: handle base64 as input + """ + # If content is a string => must be either a URL or a path + if isinstance(content, str): + if content.startswith("https://") or content.startswith("http://"): + logger.debug(f"Downloading content from {content}") + yield get_session().get(content).content # TODO: retrieve as stream and pipe to post request ? + return + content = Path(content) + if not content.exists(): + raise FileNotFoundError( + f"File not found at {content}. If `data` is a string, it must either be a URL or a path to a local" + " file. To pass raw content, please encode it as bytes first." + ) + + # If content is a Path => open it + if isinstance(content, Path): + logger.debug(f"Opening content from {content}") + with content.open("rb") as f: + yield f + else: + # Otherwise: already a file-like object or None + yield content + + +def _b64_encode(content: ContentT) -> str: + """Encode a raw file (image, audio) into base64. Can be bytes, an opened file, a path or a URL.""" + with _open_as_binary(content) as data: + data_as_bytes = data if isinstance(data, bytes) else data.read() + return base64.b64encode(data_as_bytes).decode() + + +def _b64_to_image(encoded_image: str) -> "Image": + """Parse a base64-encoded string into a PIL Image.""" + Image = _import_pil_image() + return Image.open(io.BytesIO(base64.b64decode(encoded_image))) + + +def _bytes_to_list(content: bytes) -> List: + """Parse bytes from a Response object into a Python list. + + Expects the response body to be JSON-encoded data. + + NOTE: This is exactly the same implementation as `_bytes_to_dict` and will not complain if the returned data is a + dictionary. The only advantage of having both is to help the user (and mypy) understand what kind of data to expect. + """ + return json.loads(content.decode()) + + +def _bytes_to_dict(content: bytes) -> Dict: + """Parse bytes from a Response object into a Python dictionary. + + Expects the response body to be JSON-encoded data. + + NOTE: This is exactly the same implementation as `_bytes_to_list` and will not complain if the returned data is a + list. The only advantage of having both is to help the user (and mypy) understand what kind of data to expect. + """ + return json.loads(content.decode()) + + +def _bytes_to_image(content: bytes) -> "Image": + """Parse bytes from a Response object into a PIL Image. + + Expects the response body to be raw bytes. To deal with b64 encoded images, use `_b64_to_image` instead. + """ + Image = _import_pil_image() + return Image.open(io.BytesIO(content)) + + +def _as_dict(response: Union[bytes, Dict]) -> Dict: + return json.loads(response) if isinstance(response, bytes) else response + + +## PAYLOAD UTILS + + +## STREAMING UTILS + + +def _stream_text_generation_response( + bytes_output_as_lines: Iterable[bytes], details: bool +) -> Union[Iterable[str], Iterable[TextGenerationStreamOutput]]: + """Used in `InferenceClient.text_generation`.""" + # Parse ServerSentEvents + for byte_payload in bytes_output_as_lines: + try: + output = _format_text_generation_stream_output(byte_payload, details) + except StopIteration: + break + if output is not None: + yield output + + +async def _async_stream_text_generation_response( + bytes_output_as_lines: AsyncIterable[bytes], details: bool +) -> Union[AsyncIterable[str], AsyncIterable[TextGenerationStreamOutput]]: + """Used in `AsyncInferenceClient.text_generation`.""" + # Parse ServerSentEvents + async for byte_payload in bytes_output_as_lines: + try: + output = _format_text_generation_stream_output(byte_payload, details) + except StopIteration: + break + if output is not None: + yield output + + +def _format_text_generation_stream_output( + byte_payload: bytes, details: bool +) -> Optional[Union[str, TextGenerationStreamOutput]]: + if not byte_payload.startswith(b"data:"): + return None # empty line + + if byte_payload.strip() == b"data: [DONE]": + raise StopIteration("[DONE] signal received.") + + # Decode payload + payload = byte_payload.decode("utf-8") + json_payload = json.loads(payload.lstrip("data:").rstrip("/n")) + + # Either an error as being returned + if json_payload.get("error") is not None: + raise _parse_text_generation_error(json_payload["error"], json_payload.get("error_type")) + + # Or parse token payload + output = TextGenerationStreamOutput.parse_obj_as_instance(json_payload) + return output.token.text if not details else output + + +def _stream_chat_completion_response( + bytes_lines: Iterable[bytes], +) -> Iterable[ChatCompletionStreamOutput]: + """Used in `InferenceClient.chat_completion` if model is served with TGI.""" + for item in bytes_lines: + try: + output = _format_chat_completion_stream_output(item) + except StopIteration: + break + if output is not None: + yield output + + +async def _async_stream_chat_completion_response( + bytes_lines: AsyncIterable[bytes], +) -> AsyncIterable[ChatCompletionStreamOutput]: + """Used in `AsyncInferenceClient.chat_completion`.""" + async for item in bytes_lines: + try: + output = _format_chat_completion_stream_output(item) + except StopIteration: + break + if output is not None: + yield output + + +def _format_chat_completion_stream_output( + byte_payload: bytes, +) -> Optional[ChatCompletionStreamOutput]: + if not byte_payload.startswith(b"data:"): + return None # empty line + + if byte_payload.strip() == b"data: [DONE]": + raise StopIteration("[DONE] signal received.") + + # Decode payload + payload = byte_payload.decode("utf-8") + json_payload = json.loads(payload.lstrip("data:").rstrip("/n")) + + # Either an error as being returned + if json_payload.get("error") is not None: + raise _parse_text_generation_error(json_payload["error"], json_payload.get("error_type")) + + # Or parse token payload + return ChatCompletionStreamOutput.parse_obj_as_instance(json_payload) + + +async def _async_yield_from(client: "ClientSession", response: "ClientResponse") -> AsyncIterable[bytes]: + async for byte_payload in response.content: + yield byte_payload.strip() + await client.close() + + +# "TGI servers" are servers running with the `text-generation-inference` backend. +# This backend is the go-to solution to run large language models at scale. However, +# for some smaller models (e.g. "gpt2") the default `transformers` + `api-inference` +# solution is still in use. +# +# Both approaches have very similar APIs, but not exactly the same. What we do first in +# the `text_generation` method is to assume the model is served via TGI. If we realize +# it's not the case (i.e. we receive an HTTP 400 Bad Request), we fallback to the +# default API with a warning message. When that's the case, We remember the unsupported +# attributes for this model in the `_UNSUPPORTED_TEXT_GENERATION_KWARGS` global variable. +# +# In addition, TGI servers have a built-in API route for chat-completion, which is not +# available on the default API. We use this route to provide a more consistent behavior +# when available. +# +# For more details, see https://github.com/huggingface/text-generation-inference and +# https://huggingface.co/docs/api-inference/detailed_parameters#text-generation-task. + +_UNSUPPORTED_TEXT_GENERATION_KWARGS: Dict[Optional[str], List[str]] = {} + + +def _set_unsupported_text_generation_kwargs(model: Optional[str], unsupported_kwargs: List[str]) -> None: + _UNSUPPORTED_TEXT_GENERATION_KWARGS.setdefault(model, []).extend(unsupported_kwargs) + + +def _get_unsupported_text_generation_kwargs(model: Optional[str]) -> List[str]: + return _UNSUPPORTED_TEXT_GENERATION_KWARGS.get(model, []) + + +# TEXT GENERATION ERRORS +# ---------------------- +# Text-generation errors are parsed separately to handle as much as possible the errors returned by the text generation +# inference project (https://github.com/huggingface/text-generation-inference). +# ---------------------- + + +def raise_text_generation_error(http_error: HTTPError) -> NoReturn: + """ + Try to parse text-generation-inference error message and raise HTTPError in any case. + + Args: + error (`HTTPError`): + The HTTPError that have been raised. + """ + # Try to parse a Text Generation Inference error + + try: + # Hacky way to retrieve payload in case of aiohttp error + payload = getattr(http_error, "response_error_payload", None) or http_error.response.json() + error = payload.get("error") + error_type = payload.get("error_type") + except Exception: # no payload + raise http_error + + # If error_type => more information than `hf_raise_for_status` + if error_type is not None: + exception = _parse_text_generation_error(error, error_type) + raise exception from http_error + + # Otherwise, fallback to default error + raise http_error + + +def _parse_text_generation_error(error: Optional[str], error_type: Optional[str]) -> TextGenerationError: + if error_type == "generation": + return GenerationError(error) # type: ignore + if error_type == "incomplete_generation": + return IncompleteGenerationError(error) # type: ignore + if error_type == "overloaded": + return OverloadedError(error) # type: ignore + if error_type == "validation": + return ValidationError(error) # type: ignore + return UnknownError(error) # type: ignore diff --git a/.venv/lib/python3.12/site-packages/huggingface_hub/inference/_generated/__init__.py b/.venv/lib/python3.12/site-packages/huggingface_hub/inference/_generated/__init__.py new file mode 100644 index 00000000..e69de29b --- /dev/null +++ b/.venv/lib/python3.12/site-packages/huggingface_hub/inference/_generated/__init__.py diff --git a/.venv/lib/python3.12/site-packages/huggingface_hub/inference/_generated/_async_client.py b/.venv/lib/python3.12/site-packages/huggingface_hub/inference/_generated/_async_client.py new file mode 100644 index 00000000..df7bf4ea --- /dev/null +++ b/.venv/lib/python3.12/site-packages/huggingface_hub/inference/_generated/_async_client.py @@ -0,0 +1,3628 @@ +# coding=utf-8 +# Copyright 2023-present, the HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# +# WARNING +# This entire file has been adapted from the sync-client code in `src/huggingface_hub/inference/_client.py`. +# Any change in InferenceClient will be automatically reflected in AsyncInferenceClient. +# To re-generate the code, run `make style` or `python ./utils/generate_async_inference_client.py --update`. +# WARNING +import asyncio +import base64 +import logging +import re +import warnings +from typing import TYPE_CHECKING, Any, AsyncIterable, Dict, List, Literal, Optional, Set, Union, overload + +from huggingface_hub import constants +from huggingface_hub.errors import InferenceTimeoutError +from huggingface_hub.inference._common import ( + TASKS_EXPECTING_IMAGES, + ContentT, + ModelStatus, + RequestParameters, + _async_stream_chat_completion_response, + _async_stream_text_generation_response, + _b64_encode, + _b64_to_image, + _bytes_to_dict, + _bytes_to_image, + _bytes_to_list, + _get_unsupported_text_generation_kwargs, + _import_numpy, + _open_as_binary, + _set_unsupported_text_generation_kwargs, + raise_text_generation_error, +) +from huggingface_hub.inference._generated.types import ( + AudioClassificationOutputElement, + AudioClassificationOutputTransform, + AudioToAudioOutputElement, + AutomaticSpeechRecognitionOutput, + ChatCompletionInputGrammarType, + ChatCompletionInputStreamOptions, + ChatCompletionInputTool, + ChatCompletionInputToolChoiceClass, + ChatCompletionInputToolChoiceEnum, + ChatCompletionOutput, + ChatCompletionStreamOutput, + DocumentQuestionAnsweringOutputElement, + FillMaskOutputElement, + ImageClassificationOutputElement, + ImageClassificationOutputTransform, + ImageSegmentationOutputElement, + ImageSegmentationSubtask, + ImageToImageTargetSize, + ImageToTextOutput, + ObjectDetectionOutputElement, + Padding, + QuestionAnsweringOutputElement, + SummarizationOutput, + SummarizationTruncationStrategy, + TableQuestionAnsweringOutputElement, + TextClassificationOutputElement, + TextClassificationOutputTransform, + TextGenerationInputGrammarType, + TextGenerationOutput, + TextGenerationStreamOutput, + TextToSpeechEarlyStoppingEnum, + TokenClassificationAggregationStrategy, + TokenClassificationOutputElement, + TranslationOutput, + TranslationTruncationStrategy, + VisualQuestionAnsweringOutputElement, + ZeroShotClassificationOutputElement, + ZeroShotImageClassificationOutputElement, +) +from huggingface_hub.inference._providers import PROVIDER_T, HFInferenceTask, get_provider_helper +from huggingface_hub.utils import build_hf_headers, get_session, hf_raise_for_status +from huggingface_hub.utils._deprecation import _deprecate_arguments, _deprecate_method + +from .._common import _async_yield_from, _import_aiohttp + + +if TYPE_CHECKING: + import numpy as np + from aiohttp import ClientResponse, ClientSession + from PIL.Image import Image + +logger = logging.getLogger(__name__) + + +MODEL_KWARGS_NOT_USED_REGEX = re.compile(r"The following `model_kwargs` are not used by the model: \[(.*?)\]") + + +class AsyncInferenceClient: + """ + Initialize a new Inference Client. + + [`InferenceClient`] aims to provide a unified experience to perform inference. The client can be used + seamlessly with either the (free) Inference API, self-hosted Inference Endpoints, or third-party Inference Providers. + + Args: + model (`str`, `optional`): + The model to run inference with. Can be a model id hosted on the Hugging Face Hub, e.g. `meta-llama/Meta-Llama-3-8B-Instruct` + or a URL to a deployed Inference Endpoint. Defaults to None, in which case a recommended model is + automatically selected for the task. + Note: for better compatibility with OpenAI's client, `model` has been aliased as `base_url`. Those 2 + arguments are mutually exclusive. If using `base_url` for chat completion, the `/chat/completions` suffix + path will be appended to the base URL (see the [TGI Messages API](https://huggingface.co/docs/text-generation-inference/en/messages_api) + documentation for details). When passing a URL as `model`, the client will not append any suffix path to it. + provider (`str`, *optional*): + Name of the provider to use for inference. Can be `"black-forest-labs"`, `"cerebras"`, `"cohere"`, `"fal-ai"`, `"fireworks-ai"`, `"hf-inference"`, `"hyperbolic"`, `"nebius"`, `"novita"`, `"replicate"`, "sambanova"` or `"together"`. + defaults to hf-inference (Hugging Face Serverless Inference API). + If model is a URL or `base_url` is passed, then `provider` is not used. + token (`str` or `bool`, *optional*): + Hugging Face token. Will default to the locally saved token if not provided. + Pass `token=False` if you don't want to send your token to the server. + Note: for better compatibility with OpenAI's client, `token` has been aliased as `api_key`. Those 2 + arguments are mutually exclusive and have the exact same behavior. + timeout (`float`, `optional`): + The maximum number of seconds to wait for a response from the server. Loading a new model in Inference + API can take up to several minutes. Defaults to None, meaning it will loop until the server is available. + headers (`Dict[str, str]`, `optional`): + Additional headers to send to the server. By default only the authorization and user-agent headers are sent. + Values in this dictionary will override the default values. + cookies (`Dict[str, str]`, `optional`): + Additional cookies to send to the server. + trust_env ('bool', 'optional'): + Trust environment settings for proxy configuration if the parameter is `True` (`False` by default). + proxies (`Any`, `optional`): + Proxies to use for the request. + base_url (`str`, `optional`): + Base URL to run inference. This is a duplicated argument from `model` to make [`InferenceClient`] + follow the same pattern as `openai.OpenAI` client. Cannot be used if `model` is set. Defaults to None. + api_key (`str`, `optional`): + Token to use for authentication. This is a duplicated argument from `token` to make [`InferenceClient`] + follow the same pattern as `openai.OpenAI` client. Cannot be used if `token` is set. Defaults to None. + """ + + def __init__( + self, + model: Optional[str] = None, + *, + provider: Optional[PROVIDER_T] = None, + token: Optional[str] = None, + timeout: Optional[float] = None, + headers: Optional[Dict[str, str]] = None, + cookies: Optional[Dict[str, str]] = None, + trust_env: bool = False, + proxies: Optional[Any] = None, + # OpenAI compatibility + base_url: Optional[str] = None, + api_key: Optional[str] = None, + ) -> None: + if model is not None and base_url is not None: + raise ValueError( + "Received both `model` and `base_url` arguments. Please provide only one of them." + " `base_url` is an alias for `model` to make the API compatible with OpenAI's client." + " If using `base_url` for chat completion, the `/chat/completions` suffix path will be appended to the base url." + " When passing a URL as `model`, the client will not append any suffix path to it." + ) + if token is not None and api_key is not None: + raise ValueError( + "Received both `token` and `api_key` arguments. Please provide only one of them." + " `api_key` is an alias for `token` to make the API compatible with OpenAI's client." + " It has the exact same behavior as `token`." + ) + + self.model: Optional[str] = base_url or model + self.token: Optional[str] = token if token is not None else api_key + self.headers = headers if headers is not None else {} + + # Configure provider + self.provider = provider if provider is not None else "hf-inference" + + self.cookies = cookies + self.timeout = timeout + self.trust_env = trust_env + self.proxies = proxies + + # Keep track of the sessions to close them properly + self._sessions: Dict["ClientSession", Set["ClientResponse"]] = dict() + + def __repr__(self): + return f"<InferenceClient(model='{self.model if self.model else ''}', timeout={self.timeout})>" + + @overload + async def post( # type: ignore[misc] + self, + *, + json: Optional[Union[str, Dict, List]] = None, + data: Optional[ContentT] = None, + model: Optional[str] = None, + task: Optional[str] = None, + stream: Literal[False] = ..., + ) -> bytes: ... + + @overload + async def post( # type: ignore[misc] + self, + *, + json: Optional[Union[str, Dict, List]] = None, + data: Optional[ContentT] = None, + model: Optional[str] = None, + task: Optional[str] = None, + stream: Literal[True] = ..., + ) -> AsyncIterable[bytes]: ... + + @overload + async def post( + self, + *, + json: Optional[Union[str, Dict, List]] = None, + data: Optional[ContentT] = None, + model: Optional[str] = None, + task: Optional[str] = None, + stream: bool = False, + ) -> Union[bytes, AsyncIterable[bytes]]: ... + + @_deprecate_method( + version="0.31.0", + message=( + "Making direct POST requests to the inference server is not supported anymore. " + "Please use task methods instead (e.g. `InferenceClient.chat_completion`). " + "If your use case is not supported, please open an issue in https://github.com/huggingface/huggingface_hub." + ), + ) + async def post( + self, + *, + json: Optional[Union[str, Dict, List]] = None, + data: Optional[ContentT] = None, + model: Optional[str] = None, + task: Optional[str] = None, + stream: bool = False, + ) -> Union[bytes, AsyncIterable[bytes]]: + """ + Make a POST request to the inference server. + + This method is deprecated and will be removed in the future. + Please use task methods instead (e.g. `InferenceClient.chat_completion`). + """ + if self.provider != "hf-inference": + raise ValueError( + "Cannot use `post` with another provider than `hf-inference`. " + "`InferenceClient.post` is deprecated and should not be used directly anymore." + ) + provider_helper = HFInferenceTask(task or "unknown") + mapped_model = provider_helper._prepare_mapped_model(model or self.model) + url = provider_helper._prepare_url(self.token, mapped_model) # type: ignore[arg-type] + headers = provider_helper._prepare_headers(self.headers, self.token) # type: ignore[arg-type] + return await self._inner_post( + request_parameters=RequestParameters( + url=url, + task=task or "unknown", + model=model or "unknown", + json=json, + data=data, + headers=headers, + ), + stream=stream, + ) + + @overload + async def _inner_post( # type: ignore[misc] + self, request_parameters: RequestParameters, *, stream: Literal[False] = ... + ) -> bytes: ... + + @overload + async def _inner_post( # type: ignore[misc] + self, request_parameters: RequestParameters, *, stream: Literal[True] = ... + ) -> AsyncIterable[bytes]: ... + + @overload + async def _inner_post( + self, request_parameters: RequestParameters, *, stream: bool = False + ) -> Union[bytes, AsyncIterable[bytes]]: ... + + async def _inner_post( + self, request_parameters: RequestParameters, *, stream: bool = False + ) -> Union[bytes, AsyncIterable[bytes]]: + """Make a request to the inference server.""" + + aiohttp = _import_aiohttp() + + # TODO: this should be handled in provider helpers directly + if request_parameters.task in TASKS_EXPECTING_IMAGES and "Accept" not in request_parameters.headers: + request_parameters.headers["Accept"] = "image/png" + + while True: + with _open_as_binary(request_parameters.data) as data_as_binary: + # Do not use context manager as we don't want to close the connection immediately when returning + # a stream + session = self._get_client_session(headers=request_parameters.headers) + + try: + response = await session.post( + request_parameters.url, json=request_parameters.json, data=data_as_binary, proxy=self.proxies + ) + response_error_payload = None + if response.status != 200: + try: + response_error_payload = await response.json() # get payload before connection closed + except Exception: + pass + response.raise_for_status() + if stream: + return _async_yield_from(session, response) + else: + content = await response.read() + await session.close() + return content + except asyncio.TimeoutError as error: + await session.close() + # Convert any `TimeoutError` to a `InferenceTimeoutError` + raise InferenceTimeoutError(f"Inference call timed out: {request_parameters.url}") from error # type: ignore + except aiohttp.ClientResponseError as error: + error.response_error_payload = response_error_payload + await session.close() + raise error + except Exception: + await session.close() + raise + + async def __aenter__(self): + return self + + async def __aexit__(self, exc_type, exc_value, traceback): + await self.close() + + def __del__(self): + if len(self._sessions) > 0: + warnings.warn( + "Deleting 'AsyncInferenceClient' client but some sessions are still open. " + "This can happen if you've stopped streaming data from the server before the stream was complete. " + "To close the client properly, you must call `await client.close()` " + "or use an async context (e.g. `async with AsyncInferenceClient(): ...`." + ) + + async def close(self): + """Close all open sessions. + + By default, 'aiohttp.ClientSession' objects are closed automatically when a call is completed. However, if you + are streaming data from the server and you stop before the stream is complete, you must call this method to + close the session properly. + + Another possibility is to use an async context (e.g. `async with AsyncInferenceClient(): ...`). + """ + await asyncio.gather(*[session.close() for session in self._sessions.keys()]) + + async def audio_classification( + self, + audio: ContentT, + *, + model: Optional[str] = None, + top_k: Optional[int] = None, + function_to_apply: Optional["AudioClassificationOutputTransform"] = None, + ) -> List[AudioClassificationOutputElement]: + """ + Perform audio classification on the provided audio content. + + Args: + audio (Union[str, Path, bytes, BinaryIO]): + The audio content to classify. It can be raw audio bytes, a local audio file, or a URL pointing to an + audio file. + model (`str`, *optional*): + The model to use for audio classification. Can be a model ID hosted on the Hugging Face Hub + or a URL to a deployed Inference Endpoint. If not provided, the default recommended model for + audio classification will be used. + top_k (`int`, *optional*): + When specified, limits the output to the top K most probable classes. + function_to_apply (`"AudioClassificationOutputTransform"`, *optional*): + The function to apply to the model outputs in order to retrieve the scores. + + Returns: + `List[AudioClassificationOutputElement]`: List of [`AudioClassificationOutputElement`] items containing the predicted labels and their confidence. + + Raises: + [`InferenceTimeoutError`]: + If the model is unavailable or the request times out. + `aiohttp.ClientResponseError`: + If the request fails with an HTTP error status code other than HTTP 503. + + Example: + ```py + # Must be run in an async context + >>> from huggingface_hub import AsyncInferenceClient + >>> client = AsyncInferenceClient() + >>> await client.audio_classification("audio.flac") + [ + AudioClassificationOutputElement(score=0.4976358711719513, label='hap'), + AudioClassificationOutputElement(score=0.3677836060523987, label='neu'), + ... + ] + ``` + """ + provider_helper = get_provider_helper(self.provider, task="audio-classification") + request_parameters = provider_helper.prepare_request( + inputs=audio, + parameters={"function_to_apply": function_to_apply, "top_k": top_k}, + headers=self.headers, + model=model or self.model, + api_key=self.token, + ) + response = await self._inner_post(request_parameters) + return AudioClassificationOutputElement.parse_obj_as_list(response) + + async def audio_to_audio( + self, + audio: ContentT, + *, + model: Optional[str] = None, + ) -> List[AudioToAudioOutputElement]: + """ + Performs multiple tasks related to audio-to-audio depending on the model (eg: speech enhancement, source separation). + + Args: + audio (Union[str, Path, bytes, BinaryIO]): + The audio content for the model. It can be raw audio bytes, a local audio file, or a URL pointing to an + audio file. + model (`str`, *optional*): + The model can be any model which takes an audio file and returns another audio file. Can be a model ID hosted on the Hugging Face Hub + or a URL to a deployed Inference Endpoint. If not provided, the default recommended model for + audio_to_audio will be used. + + Returns: + `List[AudioToAudioOutputElement]`: A list of [`AudioToAudioOutputElement`] items containing audios label, content-type, and audio content in blob. + + Raises: + `InferenceTimeoutError`: + If the model is unavailable or the request times out. + `aiohttp.ClientResponseError`: + If the request fails with an HTTP error status code other than HTTP 503. + + Example: + ```py + # Must be run in an async context + >>> from huggingface_hub import AsyncInferenceClient + >>> client = AsyncInferenceClient() + >>> audio_output = await client.audio_to_audio("audio.flac") + >>> async for i, item in enumerate(audio_output): + >>> with open(f"output_{i}.flac", "wb") as f: + f.write(item.blob) + ``` + """ + provider_helper = get_provider_helper(self.provider, task="audio-to-audio") + request_parameters = provider_helper.prepare_request( + inputs=audio, + parameters={}, + headers=self.headers, + model=model or self.model, + api_key=self.token, + ) + response = await self._inner_post(request_parameters) + audio_output = AudioToAudioOutputElement.parse_obj_as_list(response) + for item in audio_output: + item.blob = base64.b64decode(item.blob) + return audio_output + + async def automatic_speech_recognition( + self, + audio: ContentT, + *, + model: Optional[str] = None, + extra_body: Optional[Dict] = None, + ) -> AutomaticSpeechRecognitionOutput: + """ + Perform automatic speech recognition (ASR or audio-to-text) on the given audio content. + + Args: + audio (Union[str, Path, bytes, BinaryIO]): + The content to transcribe. It can be raw audio bytes, local audio file, or a URL to an audio file. + model (`str`, *optional*): + The model to use for ASR. Can be a model ID hosted on the Hugging Face Hub or a URL to a deployed + Inference Endpoint. If not provided, the default recommended model for ASR will be used. + extra_body (`Dict`, *optional*): + Additional provider-specific parameters to pass to the model. Refer to the provider's documentation + for supported parameters. + Returns: + [`AutomaticSpeechRecognitionOutput`]: An item containing the transcribed text and optionally the timestamp chunks. + + Raises: + [`InferenceTimeoutError`]: + If the model is unavailable or the request times out. + `aiohttp.ClientResponseError`: + If the request fails with an HTTP error status code other than HTTP 503. + + Example: + ```py + # Must be run in an async context + >>> from huggingface_hub import AsyncInferenceClient + >>> client = AsyncInferenceClient() + >>> await client.automatic_speech_recognition("hello_world.flac").text + "hello world" + ``` + """ + provider_helper = get_provider_helper(self.provider, task="automatic-speech-recognition") + request_parameters = provider_helper.prepare_request( + inputs=audio, + parameters={**(extra_body or {})}, + headers=self.headers, + model=model or self.model, + api_key=self.token, + ) + response = await self._inner_post(request_parameters) + return AutomaticSpeechRecognitionOutput.parse_obj_as_instance(response) + + @overload + async def chat_completion( # type: ignore + self, + messages: List[Dict], + *, + model: Optional[str] = None, + stream: Literal[False] = False, + frequency_penalty: Optional[float] = None, + logit_bias: Optional[List[float]] = None, + logprobs: Optional[bool] = None, + max_tokens: Optional[int] = None, + n: Optional[int] = None, + presence_penalty: Optional[float] = None, + response_format: Optional[ChatCompletionInputGrammarType] = None, + seed: Optional[int] = None, + stop: Optional[List[str]] = None, + stream_options: Optional[ChatCompletionInputStreamOptions] = None, + temperature: Optional[float] = None, + tool_choice: Optional[Union[ChatCompletionInputToolChoiceClass, "ChatCompletionInputToolChoiceEnum"]] = None, + tool_prompt: Optional[str] = None, + tools: Optional[List[ChatCompletionInputTool]] = None, + top_logprobs: Optional[int] = None, + top_p: Optional[float] = None, + extra_body: Optional[Dict] = None, + ) -> ChatCompletionOutput: ... + + @overload + async def chat_completion( # type: ignore + self, + messages: List[Dict], + *, + model: Optional[str] = None, + stream: Literal[True] = True, + frequency_penalty: Optional[float] = None, + logit_bias: Optional[List[float]] = None, + logprobs: Optional[bool] = None, + max_tokens: Optional[int] = None, + n: Optional[int] = None, + presence_penalty: Optional[float] = None, + response_format: Optional[ChatCompletionInputGrammarType] = None, + seed: Optional[int] = None, + stop: Optional[List[str]] = None, + stream_options: Optional[ChatCompletionInputStreamOptions] = None, + temperature: Optional[float] = None, + tool_choice: Optional[Union[ChatCompletionInputToolChoiceClass, "ChatCompletionInputToolChoiceEnum"]] = None, + tool_prompt: Optional[str] = None, + tools: Optional[List[ChatCompletionInputTool]] = None, + top_logprobs: Optional[int] = None, + top_p: Optional[float] = None, + extra_body: Optional[Dict] = None, + ) -> AsyncIterable[ChatCompletionStreamOutput]: ... + + @overload + async def chat_completion( + self, + messages: List[Dict], + *, + model: Optional[str] = None, + stream: bool = False, + frequency_penalty: Optional[float] = None, + logit_bias: Optional[List[float]] = None, + logprobs: Optional[bool] = None, + max_tokens: Optional[int] = None, + n: Optional[int] = None, + presence_penalty: Optional[float] = None, + response_format: Optional[ChatCompletionInputGrammarType] = None, + seed: Optional[int] = None, + stop: Optional[List[str]] = None, + stream_options: Optional[ChatCompletionInputStreamOptions] = None, + temperature: Optional[float] = None, + tool_choice: Optional[Union[ChatCompletionInputToolChoiceClass, "ChatCompletionInputToolChoiceEnum"]] = None, + tool_prompt: Optional[str] = None, + tools: Optional[List[ChatCompletionInputTool]] = None, + top_logprobs: Optional[int] = None, + top_p: Optional[float] = None, + extra_body: Optional[Dict] = None, + ) -> Union[ChatCompletionOutput, AsyncIterable[ChatCompletionStreamOutput]]: ... + + async def chat_completion( + self, + messages: List[Dict], + *, + model: Optional[str] = None, + stream: bool = False, + # Parameters from ChatCompletionInput (handled manually) + frequency_penalty: Optional[float] = None, + logit_bias: Optional[List[float]] = None, + logprobs: Optional[bool] = None, + max_tokens: Optional[int] = None, + n: Optional[int] = None, + presence_penalty: Optional[float] = None, + response_format: Optional[ChatCompletionInputGrammarType] = None, + seed: Optional[int] = None, + stop: Optional[List[str]] = None, + stream_options: Optional[ChatCompletionInputStreamOptions] = None, + temperature: Optional[float] = None, + tool_choice: Optional[Union[ChatCompletionInputToolChoiceClass, "ChatCompletionInputToolChoiceEnum"]] = None, + tool_prompt: Optional[str] = None, + tools: Optional[List[ChatCompletionInputTool]] = None, + top_logprobs: Optional[int] = None, + top_p: Optional[float] = None, + extra_body: Optional[Dict] = None, + ) -> Union[ChatCompletionOutput, AsyncIterable[ChatCompletionStreamOutput]]: + """ + A method for completing conversations using a specified language model. + + <Tip> + + The `client.chat_completion` method is aliased as `client.chat.completions.create` for compatibility with OpenAI's client. + Inputs and outputs are strictly the same and using either syntax will yield the same results. + Check out the [Inference guide](https://huggingface.co/docs/huggingface_hub/guides/inference#openai-compatibility) + for more details about OpenAI's compatibility. + + </Tip> + + <Tip> + You can pass provider-specific parameters to the model by using the `extra_body` argument. + </Tip> + + Args: + messages (List of [`ChatCompletionInputMessage`]): + Conversation history consisting of roles and content pairs. + model (`str`, *optional*): + The model to use for chat-completion. Can be a model ID hosted on the Hugging Face Hub or a URL to a deployed + Inference Endpoint. If not provided, the default recommended model for chat-based text-generation will be used. + See https://huggingface.co/tasks/text-generation for more details. + If `model` is a model ID, it is passed to the server as the `model` parameter. If you want to define a + custom URL while setting `model` in the request payload, you must set `base_url` when initializing [`InferenceClient`]. + frequency_penalty (`float`, *optional*): + Penalizes new tokens based on their existing frequency + in the text so far. Range: [-2.0, 2.0]. Defaults to 0.0. + logit_bias (`List[float]`, *optional*): + Adjusts the likelihood of specific tokens appearing in the generated output. + logprobs (`bool`, *optional*): + Whether to return log probabilities of the output tokens or not. If true, returns the log + probabilities of each output token returned in the content of message. + max_tokens (`int`, *optional*): + Maximum number of tokens allowed in the response. Defaults to 100. + n (`int`, *optional*): + The number of completions to generate for each prompt. + presence_penalty (`float`, *optional*): + Number between -2.0 and 2.0. Positive values penalize new tokens based on whether they appear in the + text so far, increasing the model's likelihood to talk about new topics. + response_format ([`ChatCompletionInputGrammarType`], *optional*): + Grammar constraints. Can be either a JSONSchema or a regex. + seed (Optional[`int`], *optional*): + Seed for reproducible control flow. Defaults to None. + stop (`List[str]`, *optional*): + Up to four strings which trigger the end of the response. + Defaults to None. + stream (`bool`, *optional*): + Enable realtime streaming of responses. Defaults to False. + stream_options ([`ChatCompletionInputStreamOptions`], *optional*): + Options for streaming completions. + temperature (`float`, *optional*): + Controls randomness of the generations. Lower values ensure + less random completions. Range: [0, 2]. Defaults to 1.0. + top_logprobs (`int`, *optional*): + An integer between 0 and 5 specifying the number of most likely tokens to return at each token + position, each with an associated log probability. logprobs must be set to true if this parameter is + used. + top_p (`float`, *optional*): + Fraction of the most likely next words to sample from. + Must be between 0 and 1. Defaults to 1.0. + tool_choice ([`ChatCompletionInputToolChoiceClass`] or [`ChatCompletionInputToolChoiceEnum`], *optional*): + The tool to use for the completion. Defaults to "auto". + tool_prompt (`str`, *optional*): + A prompt to be appended before the tools. + tools (List of [`ChatCompletionInputTool`], *optional*): + A list of tools the model may call. Currently, only functions are supported as a tool. Use this to + provide a list of functions the model may generate JSON inputs for. + extra_body (`Dict`, *optional*): + Additional provider-specific parameters to pass to the model. Refer to the provider's documentation + for supported parameters. + Returns: + [`ChatCompletionOutput`] or Iterable of [`ChatCompletionStreamOutput`]: + Generated text returned from the server: + - if `stream=False`, the generated text is returned as a [`ChatCompletionOutput`] (default). + - if `stream=True`, the generated text is returned token by token as a sequence of [`ChatCompletionStreamOutput`]. + + Raises: + [`InferenceTimeoutError`]: + If the model is unavailable or the request times out. + `aiohttp.ClientResponseError`: + If the request fails with an HTTP error status code other than HTTP 503. + + Example: + + ```py + # Must be run in an async context + >>> from huggingface_hub import AsyncInferenceClient + >>> messages = [{"role": "user", "content": "What is the capital of France?"}] + >>> client = AsyncInferenceClient("meta-llama/Meta-Llama-3-8B-Instruct") + >>> await client.chat_completion(messages, max_tokens=100) + ChatCompletionOutput( + choices=[ + ChatCompletionOutputComplete( + finish_reason='eos_token', + index=0, + message=ChatCompletionOutputMessage( + role='assistant', + content='The capital of France is Paris.', + name=None, + tool_calls=None + ), + logprobs=None + ) + ], + created=1719907176, + id='', + model='meta-llama/Meta-Llama-3-8B-Instruct', + object='text_completion', + system_fingerprint='2.0.4-sha-f426a33', + usage=ChatCompletionOutputUsage( + completion_tokens=8, + prompt_tokens=17, + total_tokens=25 + ) + ) + ``` + + Example using streaming: + ```py + # Must be run in an async context + >>> from huggingface_hub import AsyncInferenceClient + >>> messages = [{"role": "user", "content": "What is the capital of France?"}] + >>> client = AsyncInferenceClient("meta-llama/Meta-Llama-3-8B-Instruct") + >>> async for token in await client.chat_completion(messages, max_tokens=10, stream=True): + ... print(token) + ChatCompletionStreamOutput(choices=[ChatCompletionStreamOutputChoice(delta=ChatCompletionStreamOutputDelta(content='The', role='assistant'), index=0, finish_reason=None)], created=1710498504) + ChatCompletionStreamOutput(choices=[ChatCompletionStreamOutputChoice(delta=ChatCompletionStreamOutputDelta(content=' capital', role='assistant'), index=0, finish_reason=None)], created=1710498504) + (...) + ChatCompletionStreamOutput(choices=[ChatCompletionStreamOutputChoice(delta=ChatCompletionStreamOutputDelta(content=' may', role='assistant'), index=0, finish_reason=None)], created=1710498504) + ``` + + Example using OpenAI's syntax: + ```py + # Must be run in an async context + # instead of `from openai import OpenAI` + from huggingface_hub import AsyncInferenceClient + + # instead of `client = OpenAI(...)` + client = AsyncInferenceClient( + base_url=..., + api_key=..., + ) + + output = await client.chat.completions.create( + model="meta-llama/Meta-Llama-3-8B-Instruct", + messages=[ + {"role": "system", "content": "You are a helpful assistant."}, + {"role": "user", "content": "Count to 10"}, + ], + stream=True, + max_tokens=1024, + ) + + for chunk in output: + print(chunk.choices[0].delta.content) + ``` + + Example using a third-party provider directly with extra (provider-specific) parameters. Usage will be billed on your Together AI account. + ```py + >>> from huggingface_hub import InferenceClient + >>> client = InferenceClient( + ... provider="together", # Use Together AI provider + ... api_key="<together_api_key>", # Pass your Together API key directly + ... ) + >>> client.chat_completion( + ... model="meta-llama/Meta-Llama-3-8B-Instruct", + ... messages=[{"role": "user", "content": "What is the capital of France?"}], + ... extra_body={"safety_model": "Meta-Llama/Llama-Guard-7b"}, + ... ) + ``` + + Example using a third-party provider through Hugging Face Routing. Usage will be billed on your Hugging Face account. + ```py + >>> from huggingface_hub import InferenceClient + >>> client = InferenceClient( + ... provider="sambanova", # Use Sambanova provider + ... api_key="hf_...", # Pass your HF token + ... ) + >>> client.chat_completion( + ... model="meta-llama/Meta-Llama-3-8B-Instruct", + ... messages=[{"role": "user", "content": "What is the capital of France?"}], + ... ) + ``` + + Example using Image + Text as input: + ```py + # Must be run in an async context + >>> from huggingface_hub import AsyncInferenceClient + + # provide a remote URL + >>> image_url ="https://cdn.britannica.com/61/93061-050-99147DCE/Statue-of-Liberty-Island-New-York-Bay.jpg" + # or a base64-encoded image + >>> image_path = "/path/to/image.jpeg" + >>> with open(image_path, "rb") as f: + ... base64_image = base64.b64encode(f.read()).decode("utf-8") + >>> image_url = f"data:image/jpeg;base64,{base64_image}" + + >>> client = AsyncInferenceClient("meta-llama/Llama-3.2-11B-Vision-Instruct") + >>> output = await client.chat.completions.create( + ... messages=[ + ... { + ... "role": "user", + ... "content": [ + ... { + ... "type": "image_url", + ... "image_url": {"url": image_url}, + ... }, + ... { + ... "type": "text", + ... "text": "Describe this image in one sentence.", + ... }, + ... ], + ... }, + ... ], + ... ) + >>> output + The image depicts the iconic Statue of Liberty situated in New York Harbor, New York, on a clear day. + ``` + + Example using tools: + ```py + # Must be run in an async context + >>> client = AsyncInferenceClient("meta-llama/Meta-Llama-3-70B-Instruct") + >>> messages = [ + ... { + ... "role": "system", + ... "content": "Don't make assumptions about what values to plug into functions. Ask for clarification if a user request is ambiguous.", + ... }, + ... { + ... "role": "user", + ... "content": "What's the weather like the next 3 days in San Francisco, CA?", + ... }, + ... ] + >>> tools = [ + ... { + ... "type": "function", + ... "function": { + ... "name": "get_current_weather", + ... "description": "Get the current weather", + ... "parameters": { + ... "type": "object", + ... "properties": { + ... "location": { + ... "type": "string", + ... "description": "The city and state, e.g. San Francisco, CA", + ... }, + ... "format": { + ... "type": "string", + ... "enum": ["celsius", "fahrenheit"], + ... "description": "The temperature unit to use. Infer this from the users location.", + ... }, + ... }, + ... "required": ["location", "format"], + ... }, + ... }, + ... }, + ... { + ... "type": "function", + ... "function": { + ... "name": "get_n_day_weather_forecast", + ... "description": "Get an N-day weather forecast", + ... "parameters": { + ... "type": "object", + ... "properties": { + ... "location": { + ... "type": "string", + ... "description": "The city and state, e.g. San Francisco, CA", + ... }, + ... "format": { + ... "type": "string", + ... "enum": ["celsius", "fahrenheit"], + ... "description": "The temperature unit to use. Infer this from the users location.", + ... }, + ... "num_days": { + ... "type": "integer", + ... "description": "The number of days to forecast", + ... }, + ... }, + ... "required": ["location", "format", "num_days"], + ... }, + ... }, + ... }, + ... ] + + >>> response = await client.chat_completion( + ... model="meta-llama/Meta-Llama-3-70B-Instruct", + ... messages=messages, + ... tools=tools, + ... tool_choice="auto", + ... max_tokens=500, + ... ) + >>> response.choices[0].message.tool_calls[0].function + ChatCompletionOutputFunctionDefinition( + arguments={ + 'location': 'San Francisco, CA', + 'format': 'fahrenheit', + 'num_days': 3 + }, + name='get_n_day_weather_forecast', + description=None + ) + ``` + + Example using response_format: + ```py + # Must be run in an async context + >>> from huggingface_hub import AsyncInferenceClient + >>> client = AsyncInferenceClient("meta-llama/Meta-Llama-3-70B-Instruct") + >>> messages = [ + ... { + ... "role": "user", + ... "content": "I saw a puppy a cat and a raccoon during my bike ride in the park. What did I saw and when?", + ... }, + ... ] + >>> response_format = { + ... "type": "json", + ... "value": { + ... "properties": { + ... "location": {"type": "string"}, + ... "activity": {"type": "string"}, + ... "animals_seen": {"type": "integer", "minimum": 1, "maximum": 5}, + ... "animals": {"type": "array", "items": {"type": "string"}}, + ... }, + ... "required": ["location", "activity", "animals_seen", "animals"], + ... }, + ... } + >>> response = await client.chat_completion( + ... messages=messages, + ... response_format=response_format, + ... max_tokens=500, + ) + >>> response.choices[0].message.content + '{\n\n"activity": "bike ride",\n"animals": ["puppy", "cat", "raccoon"],\n"animals_seen": 3,\n"location": "park"}' + ``` + """ + # Get the provider helper + provider_helper = get_provider_helper(self.provider, task="conversational") + + # Since `chat_completion(..., model=xxx)` is also a payload parameter for the server, we need to handle 'model' differently. + # `self.model` takes precedence over 'model' argument for building URL. + # `model` takes precedence for payload value. + model_id_or_url = self.model or model + payload_model = model or self.model + + # Prepare the payload + parameters = { + "model": payload_model, + "frequency_penalty": frequency_penalty, + "logit_bias": logit_bias, + "logprobs": logprobs, + "max_tokens": max_tokens, + "n": n, + "presence_penalty": presence_penalty, + "response_format": response_format, + "seed": seed, + "stop": stop, + "temperature": temperature, + "tool_choice": tool_choice, + "tool_prompt": tool_prompt, + "tools": tools, + "top_logprobs": top_logprobs, + "top_p": top_p, + "stream": stream, + "stream_options": stream_options, + **(extra_body or {}), + } + request_parameters = provider_helper.prepare_request( + inputs=messages, + parameters=parameters, + headers=self.headers, + model=model_id_or_url, + api_key=self.token, + ) + data = await self._inner_post(request_parameters, stream=stream) + + if stream: + return _async_stream_chat_completion_response(data) # type: ignore[arg-type] + + return ChatCompletionOutput.parse_obj_as_instance(data) # type: ignore[arg-type] + + async def document_question_answering( + self, + image: ContentT, + question: str, + *, + model: Optional[str] = None, + doc_stride: Optional[int] = None, + handle_impossible_answer: Optional[bool] = None, + lang: Optional[str] = None, + max_answer_len: Optional[int] = None, + max_question_len: Optional[int] = None, + max_seq_len: Optional[int] = None, + top_k: Optional[int] = None, + word_boxes: Optional[List[Union[List[float], str]]] = None, + ) -> List[DocumentQuestionAnsweringOutputElement]: + """ + Answer questions on document images. + + Args: + image (`Union[str, Path, bytes, BinaryIO]`): + The input image for the context. It can be raw bytes, an image file, or a URL to an online image. + question (`str`): + Question to be answered. + model (`str`, *optional*): + The model to use for the document question answering task. Can be a model ID hosted on the Hugging Face Hub or a URL to + a deployed Inference Endpoint. If not provided, the default recommended document question answering model will be used. + Defaults to None. + doc_stride (`int`, *optional*): + If the words in the document are too long to fit with the question for the model, it will be split in + several chunks with some overlap. This argument controls the size of that overlap. + handle_impossible_answer (`bool`, *optional*): + Whether to accept impossible as an answer + lang (`str`, *optional*): + Language to use while running OCR. Defaults to english. + max_answer_len (`int`, *optional*): + The maximum length of predicted answers (e.g., only answers with a shorter length are considered). + max_question_len (`int`, *optional*): + The maximum length of the question after tokenization. It will be truncated if needed. + max_seq_len (`int`, *optional*): + The maximum length of the total sentence (context + question) in tokens of each chunk passed to the + model. The context will be split in several chunks (using doc_stride as overlap) if needed. + top_k (`int`, *optional*): + The number of answers to return (will be chosen by order of likelihood). Can return less than top_k + answers if there are not enough options available within the context. + word_boxes (`List[Union[List[float], str`, *optional*): + A list of words and bounding boxes (normalized 0->1000). If provided, the inference will skip the OCR + step and use the provided bounding boxes instead. + Returns: + `List[DocumentQuestionAnsweringOutputElement]`: a list of [`DocumentQuestionAnsweringOutputElement`] items containing the predicted label, associated probability, word ids, and page number. + + Raises: + [`InferenceTimeoutError`]: + If the model is unavailable or the request times out. + `aiohttp.ClientResponseError`: + If the request fails with an HTTP error status code other than HTTP 503. + + + Example: + ```py + # Must be run in an async context + >>> from huggingface_hub import AsyncInferenceClient + >>> client = AsyncInferenceClient() + >>> await client.document_question_answering(image="https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png", question="What is the invoice number?") + [DocumentQuestionAnsweringOutputElement(answer='us-001', end=16, score=0.9999666213989258, start=16)] + ``` + """ + inputs: Dict[str, Any] = {"question": question, "image": _b64_encode(image)} + provider_helper = get_provider_helper(self.provider, task="document-question-answering") + request_parameters = provider_helper.prepare_request( + inputs=inputs, + parameters={ + "doc_stride": doc_stride, + "handle_impossible_answer": handle_impossible_answer, + "lang": lang, + "max_answer_len": max_answer_len, + "max_question_len": max_question_len, + "max_seq_len": max_seq_len, + "top_k": top_k, + "word_boxes": word_boxes, + }, + headers=self.headers, + model=model or self.model, + api_key=self.token, + ) + response = await self._inner_post(request_parameters) + return DocumentQuestionAnsweringOutputElement.parse_obj_as_list(response) + + async def feature_extraction( + self, + text: str, + *, + normalize: Optional[bool] = None, + prompt_name: Optional[str] = None, + truncate: Optional[bool] = None, + truncation_direction: Optional[Literal["Left", "Right"]] = None, + model: Optional[str] = None, + ) -> "np.ndarray": + """ + Generate embeddings for a given text. + + Args: + text (`str`): + The text to embed. + model (`str`, *optional*): + The model to use for the conversational task. Can be a model ID hosted on the Hugging Face Hub or a URL to + a deployed Inference Endpoint. If not provided, the default recommended conversational model will be used. + Defaults to None. + normalize (`bool`, *optional*): + Whether to normalize the embeddings or not. + Only available on server powered by Text-Embedding-Inference. + prompt_name (`str`, *optional*): + The name of the prompt that should be used by for encoding. If not set, no prompt will be applied. + Must be a key in the `Sentence Transformers` configuration `prompts` dictionary. + For example if ``prompt_name`` is "query" and the ``prompts`` is {"query": "query: ",...}, + then the sentence "What is the capital of France?" will be encoded as "query: What is the capital of France?" + because the prompt text will be prepended before any text to encode. + truncate (`bool`, *optional*): + Whether to truncate the embeddings or not. + Only available on server powered by Text-Embedding-Inference. + truncation_direction (`Literal["Left", "Right"]`, *optional*): + Which side of the input should be truncated when `truncate=True` is passed. + + Returns: + `np.ndarray`: The embedding representing the input text as a float32 numpy array. + + Raises: + [`InferenceTimeoutError`]: + If the model is unavailable or the request times out. + `aiohttp.ClientResponseError`: + If the request fails with an HTTP error status code other than HTTP 503. + + Example: + ```py + # Must be run in an async context + >>> from huggingface_hub import AsyncInferenceClient + >>> client = AsyncInferenceClient() + >>> await client.feature_extraction("Hi, who are you?") + array([[ 2.424802 , 2.93384 , 1.1750331 , ..., 1.240499, -0.13776633, -0.7889173 ], + [-0.42943227, -0.6364878 , -1.693462 , ..., 0.41978157, -2.4336355 , 0.6162071 ], + ..., + [ 0.28552425, -0.928395 , -1.2077185 , ..., 0.76810825, -2.1069427 , 0.6236161 ]], dtype=float32) + ``` + """ + provider_helper = get_provider_helper(self.provider, task="feature-extraction") + request_parameters = provider_helper.prepare_request( + inputs=text, + parameters={ + "normalize": normalize, + "prompt_name": prompt_name, + "truncate": truncate, + "truncation_direction": truncation_direction, + }, + headers=self.headers, + model=model or self.model, + api_key=self.token, + ) + response = await self._inner_post(request_parameters) + np = _import_numpy() + return np.array(_bytes_to_dict(response), dtype="float32") + + async def fill_mask( + self, + text: str, + *, + model: Optional[str] = None, + targets: Optional[List[str]] = None, + top_k: Optional[int] = None, + ) -> List[FillMaskOutputElement]: + """ + Fill in a hole with a missing word (token to be precise). + + Args: + text (`str`): + a string to be filled from, must contain the [MASK] token (check model card for exact name of the mask). + model (`str`, *optional*): + The model to use for the fill mask task. Can be a model ID hosted on the Hugging Face Hub or a URL to + a deployed Inference Endpoint. If not provided, the default recommended fill mask model will be used. + targets (`List[str`, *optional*): + When passed, the model will limit the scores to the passed targets instead of looking up in the whole + vocabulary. If the provided targets are not in the model vocab, they will be tokenized and the first + resulting token will be used (with a warning, and that might be slower). + top_k (`int`, *optional*): + When passed, overrides the number of predictions to return. + Returns: + `List[FillMaskOutputElement]`: a list of [`FillMaskOutputElement`] items containing the predicted label, associated + probability, token reference, and completed text. + + Raises: + [`InferenceTimeoutError`]: + If the model is unavailable or the request times out. + `aiohttp.ClientResponseError`: + If the request fails with an HTTP error status code other than HTTP 503. + + Example: + ```py + # Must be run in an async context + >>> from huggingface_hub import AsyncInferenceClient + >>> client = AsyncInferenceClient() + >>> await client.fill_mask("The goal of life is <mask>.") + [ + FillMaskOutputElement(score=0.06897063553333282, token=11098, token_str=' happiness', sequence='The goal of life is happiness.'), + FillMaskOutputElement(score=0.06554922461509705, token=45075, token_str=' immortality', sequence='The goal of life is immortality.') + ] + ``` + """ + provider_helper = get_provider_helper(self.provider, task="fill-mask") + request_parameters = provider_helper.prepare_request( + inputs=text, + parameters={"targets": targets, "top_k": top_k}, + headers=self.headers, + model=model or self.model, + api_key=self.token, + ) + response = await self._inner_post(request_parameters) + return FillMaskOutputElement.parse_obj_as_list(response) + + async def image_classification( + self, + image: ContentT, + *, + model: Optional[str] = None, + function_to_apply: Optional["ImageClassificationOutputTransform"] = None, + top_k: Optional[int] = None, + ) -> List[ImageClassificationOutputElement]: + """ + Perform image classification on the given image using the specified model. + + Args: + image (`Union[str, Path, bytes, BinaryIO]`): + The image to classify. It can be raw bytes, an image file, or a URL to an online image. + model (`str`, *optional*): + The model to use for image classification. Can be a model ID hosted on the Hugging Face Hub or a URL to a + deployed Inference Endpoint. If not provided, the default recommended model for image classification will be used. + function_to_apply (`"ImageClassificationOutputTransform"`, *optional*): + The function to apply to the model outputs in order to retrieve the scores. + top_k (`int`, *optional*): + When specified, limits the output to the top K most probable classes. + Returns: + `List[ImageClassificationOutputElement]`: a list of [`ImageClassificationOutputElement`] items containing the predicted label and associated probability. + + Raises: + [`InferenceTimeoutError`]: + If the model is unavailable or the request times out. + `aiohttp.ClientResponseError`: + If the request fails with an HTTP error status code other than HTTP 503. + + Example: + ```py + # Must be run in an async context + >>> from huggingface_hub import AsyncInferenceClient + >>> client = AsyncInferenceClient() + >>> await client.image_classification("https://upload.wikimedia.org/wikipedia/commons/thumb/4/43/Cute_dog.jpg/320px-Cute_dog.jpg") + [ImageClassificationOutputElement(label='Blenheim spaniel', score=0.9779096841812134), ...] + ``` + """ + provider_helper = get_provider_helper(self.provider, task="image-classification") + request_parameters = provider_helper.prepare_request( + inputs=image, + parameters={"function_to_apply": function_to_apply, "top_k": top_k}, + headers=self.headers, + model=model or self.model, + api_key=self.token, + ) + response = await self._inner_post(request_parameters) + return ImageClassificationOutputElement.parse_obj_as_list(response) + + async def image_segmentation( + self, + image: ContentT, + *, + model: Optional[str] = None, + mask_threshold: Optional[float] = None, + overlap_mask_area_threshold: Optional[float] = None, + subtask: Optional["ImageSegmentationSubtask"] = None, + threshold: Optional[float] = None, + ) -> List[ImageSegmentationOutputElement]: + """ + Perform image segmentation on the given image using the specified model. + + <Tip warning={true}> + + You must have `PIL` installed if you want to work with images (`pip install Pillow`). + + </Tip> + + Args: + image (`Union[str, Path, bytes, BinaryIO]`): + The image to segment. It can be raw bytes, an image file, or a URL to an online image. + model (`str`, *optional*): + The model to use for image segmentation. Can be a model ID hosted on the Hugging Face Hub or a URL to a + deployed Inference Endpoint. If not provided, the default recommended model for image segmentation will be used. + mask_threshold (`float`, *optional*): + Threshold to use when turning the predicted masks into binary values. + overlap_mask_area_threshold (`float`, *optional*): + Mask overlap threshold to eliminate small, disconnected segments. + subtask (`"ImageSegmentationSubtask"`, *optional*): + Segmentation task to be performed, depending on model capabilities. + threshold (`float`, *optional*): + Probability threshold to filter out predicted masks. + Returns: + `List[ImageSegmentationOutputElement]`: A list of [`ImageSegmentationOutputElement`] items containing the segmented masks and associated attributes. + + Raises: + [`InferenceTimeoutError`]: + If the model is unavailable or the request times out. + `aiohttp.ClientResponseError`: + If the request fails with an HTTP error status code other than HTTP 503. + + Example: + ```py + # Must be run in an async context + >>> from huggingface_hub import AsyncInferenceClient + >>> client = AsyncInferenceClient() + >>> await client.image_segmentation("cat.jpg") + [ImageSegmentationOutputElement(score=0.989008, label='LABEL_184', mask=<PIL.PngImagePlugin.PngImageFile image mode=L size=400x300 at 0x7FDD2B129CC0>), ...] + ``` + """ + provider_helper = get_provider_helper(self.provider, task="audio-classification") + request_parameters = provider_helper.prepare_request( + inputs=image, + parameters={ + "mask_threshold": mask_threshold, + "overlap_mask_area_threshold": overlap_mask_area_threshold, + "subtask": subtask, + "threshold": threshold, + }, + headers=self.headers, + model=model or self.model, + api_key=self.token, + ) + response = await self._inner_post(request_parameters) + output = ImageSegmentationOutputElement.parse_obj_as_list(response) + for item in output: + item.mask = _b64_to_image(item.mask) # type: ignore [assignment] + return output + + async def image_to_image( + self, + image: ContentT, + prompt: Optional[str] = None, + *, + negative_prompt: Optional[str] = None, + num_inference_steps: Optional[int] = None, + guidance_scale: Optional[float] = None, + model: Optional[str] = None, + target_size: Optional[ImageToImageTargetSize] = None, + **kwargs, + ) -> "Image": + """ + Perform image-to-image translation using a specified model. + + <Tip warning={true}> + + You must have `PIL` installed if you want to work with images (`pip install Pillow`). + + </Tip> + + Args: + image (`Union[str, Path, bytes, BinaryIO]`): + The input image for translation. It can be raw bytes, an image file, or a URL to an online image. + prompt (`str`, *optional*): + The text prompt to guide the image generation. + negative_prompt (`str`, *optional*): + One prompt to guide what NOT to include in image generation. + num_inference_steps (`int`, *optional*): + For diffusion models. The number of denoising steps. More denoising steps usually lead to a higher + quality image at the expense of slower inference. + guidance_scale (`float`, *optional*): + For diffusion models. A higher guidance scale value encourages the model to generate images closely + linked to the text prompt at the expense of lower image quality. + model (`str`, *optional*): + The model to use for inference. Can be a model ID hosted on the Hugging Face Hub or a URL to a deployed + Inference Endpoint. This parameter overrides the model defined at the instance level. Defaults to None. + target_size (`ImageToImageTargetSize`, *optional*): + The size in pixel of the output image. + + Returns: + `Image`: The translated image. + + Raises: + [`InferenceTimeoutError`]: + If the model is unavailable or the request times out. + `aiohttp.ClientResponseError`: + If the request fails with an HTTP error status code other than HTTP 503. + + Example: + ```py + # Must be run in an async context + >>> from huggingface_hub import AsyncInferenceClient + >>> client = AsyncInferenceClient() + >>> image = await client.image_to_image("cat.jpg", prompt="turn the cat into a tiger") + >>> image.save("tiger.jpg") + ``` + """ + provider_helper = get_provider_helper(self.provider, task="image-to-image") + request_parameters = provider_helper.prepare_request( + inputs=image, + parameters={ + "prompt": prompt, + "negative_prompt": negative_prompt, + "target_size": target_size, + "num_inference_steps": num_inference_steps, + "guidance_scale": guidance_scale, + **kwargs, + }, + headers=self.headers, + model=model or self.model, + api_key=self.token, + ) + response = await self._inner_post(request_parameters) + return _bytes_to_image(response) + + async def image_to_text(self, image: ContentT, *, model: Optional[str] = None) -> ImageToTextOutput: + """ + Takes an input image and return text. + + Models can have very different outputs depending on your use case (image captioning, optical character recognition + (OCR), Pix2Struct, etc). Please have a look to the model card to learn more about a model's specificities. + + Args: + image (`Union[str, Path, bytes, BinaryIO]`): + The input image to caption. It can be raw bytes, an image file, or a URL to an online image.. + model (`str`, *optional*): + The model to use for inference. Can be a model ID hosted on the Hugging Face Hub or a URL to a deployed + Inference Endpoint. This parameter overrides the model defined at the instance level. Defaults to None. + + Returns: + [`ImageToTextOutput`]: The generated text. + + Raises: + [`InferenceTimeoutError`]: + If the model is unavailable or the request times out. + `aiohttp.ClientResponseError`: + If the request fails with an HTTP error status code other than HTTP 503. + + Example: + ```py + # Must be run in an async context + >>> from huggingface_hub import AsyncInferenceClient + >>> client = AsyncInferenceClient() + >>> await client.image_to_text("cat.jpg") + 'a cat standing in a grassy field ' + >>> await client.image_to_text("https://upload.wikimedia.org/wikipedia/commons/thumb/4/43/Cute_dog.jpg/320px-Cute_dog.jpg") + 'a dog laying on the grass next to a flower pot ' + ``` + """ + provider_helper = get_provider_helper(self.provider, task="image-to-text") + request_parameters = provider_helper.prepare_request( + inputs=image, + parameters={}, + headers=self.headers, + model=model or self.model, + api_key=self.token, + ) + response = await self._inner_post(request_parameters) + output = ImageToTextOutput.parse_obj(response) + return output[0] if isinstance(output, list) else output + + async def object_detection( + self, image: ContentT, *, model: Optional[str] = None, threshold: Optional[float] = None + ) -> List[ObjectDetectionOutputElement]: + """ + Perform object detection on the given image using the specified model. + + <Tip warning={true}> + + You must have `PIL` installed if you want to work with images (`pip install Pillow`). + + </Tip> + + Args: + image (`Union[str, Path, bytes, BinaryIO]`): + The image to detect objects on. It can be raw bytes, an image file, or a URL to an online image. + model (`str`, *optional*): + The model to use for object detection. Can be a model ID hosted on the Hugging Face Hub or a URL to a + deployed Inference Endpoint. If not provided, the default recommended model for object detection (DETR) will be used. + threshold (`float`, *optional*): + The probability necessary to make a prediction. + Returns: + `List[ObjectDetectionOutputElement]`: A list of [`ObjectDetectionOutputElement`] items containing the bounding boxes and associated attributes. + + Raises: + [`InferenceTimeoutError`]: + If the model is unavailable or the request times out. + `aiohttp.ClientResponseError`: + If the request fails with an HTTP error status code other than HTTP 503. + `ValueError`: + If the request output is not a List. + + Example: + ```py + # Must be run in an async context + >>> from huggingface_hub import AsyncInferenceClient + >>> client = AsyncInferenceClient() + >>> await client.object_detection("people.jpg") + [ObjectDetectionOutputElement(score=0.9486683011054993, label='person', box=ObjectDetectionBoundingBox(xmin=59, ymin=39, xmax=420, ymax=510)), ...] + ``` + """ + provider_helper = get_provider_helper(self.provider, task="object-detection") + request_parameters = provider_helper.prepare_request( + inputs=image, + parameters={"threshold": threshold}, + headers=self.headers, + model=model or self.model, + api_key=self.token, + ) + response = await self._inner_post(request_parameters) + return ObjectDetectionOutputElement.parse_obj_as_list(response) + + async def question_answering( + self, + question: str, + context: str, + *, + model: Optional[str] = None, + align_to_words: Optional[bool] = None, + doc_stride: Optional[int] = None, + handle_impossible_answer: Optional[bool] = None, + max_answer_len: Optional[int] = None, + max_question_len: Optional[int] = None, + max_seq_len: Optional[int] = None, + top_k: Optional[int] = None, + ) -> Union[QuestionAnsweringOutputElement, List[QuestionAnsweringOutputElement]]: + """ + Retrieve the answer to a question from a given text. + + Args: + question (`str`): + Question to be answered. + context (`str`): + The context of the question. + model (`str`): + The model to use for the question answering task. Can be a model ID hosted on the Hugging Face Hub or a URL to + a deployed Inference Endpoint. + align_to_words (`bool`, *optional*): + Attempts to align the answer to real words. Improves quality on space separated languages. Might hurt + on non-space-separated languages (like Japanese or Chinese) + doc_stride (`int`, *optional*): + If the context is too long to fit with the question for the model, it will be split in several chunks + with some overlap. This argument controls the size of that overlap. + handle_impossible_answer (`bool`, *optional*): + Whether to accept impossible as an answer. + max_answer_len (`int`, *optional*): + The maximum length of predicted answers (e.g., only answers with a shorter length are considered). + max_question_len (`int`, *optional*): + The maximum length of the question after tokenization. It will be truncated if needed. + max_seq_len (`int`, *optional*): + The maximum length of the total sentence (context + question) in tokens of each chunk passed to the + model. The context will be split in several chunks (using docStride as overlap) if needed. + top_k (`int`, *optional*): + The number of answers to return (will be chosen by order of likelihood). Note that we return less than + topk answers if there are not enough options available within the context. + + Returns: + Union[`QuestionAnsweringOutputElement`, List[`QuestionAnsweringOutputElement`]]: + When top_k is 1 or not provided, it returns a single `QuestionAnsweringOutputElement`. + When top_k is greater than 1, it returns a list of `QuestionAnsweringOutputElement`. + Raises: + [`InferenceTimeoutError`]: + If the model is unavailable or the request times out. + `aiohttp.ClientResponseError`: + If the request fails with an HTTP error status code other than HTTP 503. + + Example: + ```py + # Must be run in an async context + >>> from huggingface_hub import AsyncInferenceClient + >>> client = AsyncInferenceClient() + >>> await client.question_answering(question="What's my name?", context="My name is Clara and I live in Berkeley.") + QuestionAnsweringOutputElement(answer='Clara', end=16, score=0.9326565265655518, start=11) + ``` + """ + provider_helper = get_provider_helper(self.provider, task="question-answering") + request_parameters = provider_helper.prepare_request( + inputs=None, + parameters={ + "align_to_words": align_to_words, + "doc_stride": doc_stride, + "handle_impossible_answer": handle_impossible_answer, + "max_answer_len": max_answer_len, + "max_question_len": max_question_len, + "max_seq_len": max_seq_len, + "top_k": top_k, + }, + extra_payload={"question": question, "context": context}, + headers=self.headers, + model=model or self.model, + api_key=self.token, + ) + response = await self._inner_post(request_parameters) + # Parse the response as a single `QuestionAnsweringOutputElement` when top_k is 1 or not provided, or a list of `QuestionAnsweringOutputElement` to ensure backward compatibility. + output = QuestionAnsweringOutputElement.parse_obj(response) + return output + + async def sentence_similarity( + self, sentence: str, other_sentences: List[str], *, model: Optional[str] = None + ) -> List[float]: + """ + Compute the semantic similarity between a sentence and a list of other sentences by comparing their embeddings. + + Args: + sentence (`str`): + The main sentence to compare to others. + other_sentences (`List[str]`): + The list of sentences to compare to. + model (`str`, *optional*): + The model to use for the conversational task. Can be a model ID hosted on the Hugging Face Hub or a URL to + a deployed Inference Endpoint. If not provided, the default recommended conversational model will be used. + Defaults to None. + + Returns: + `List[float]`: The embedding representing the input text. + + Raises: + [`InferenceTimeoutError`]: + If the model is unavailable or the request times out. + `aiohttp.ClientResponseError`: + If the request fails with an HTTP error status code other than HTTP 503. + + Example: + ```py + # Must be run in an async context + >>> from huggingface_hub import AsyncInferenceClient + >>> client = AsyncInferenceClient() + >>> await client.sentence_similarity( + ... "Machine learning is so easy.", + ... other_sentences=[ + ... "Deep learning is so straightforward.", + ... "This is so difficult, like rocket science.", + ... "I can't believe how much I struggled with this.", + ... ], + ... ) + [0.7785726189613342, 0.45876261591911316, 0.2906220555305481] + ``` + """ + provider_helper = get_provider_helper(self.provider, task="sentence-similarity") + request_parameters = provider_helper.prepare_request( + inputs=None, + parameters={}, + extra_payload={"source_sentence": sentence, "sentences": other_sentences}, + headers=self.headers, + model=model or self.model, + api_key=self.token, + ) + response = await self._inner_post(request_parameters) + return _bytes_to_list(response) + + async def summarization( + self, + text: str, + *, + model: Optional[str] = None, + clean_up_tokenization_spaces: Optional[bool] = None, + generate_parameters: Optional[Dict[str, Any]] = None, + truncation: Optional["SummarizationTruncationStrategy"] = None, + ) -> SummarizationOutput: + """ + Generate a summary of a given text using a specified model. + + Args: + text (`str`): + The input text to summarize. + model (`str`, *optional*): + The model to use for inference. Can be a model ID hosted on the Hugging Face Hub or a URL to a deployed + Inference Endpoint. If not provided, the default recommended model for summarization will be used. + clean_up_tokenization_spaces (`bool`, *optional*): + Whether to clean up the potential extra spaces in the text output. + generate_parameters (`Dict[str, Any]`, *optional*): + Additional parametrization of the text generation algorithm. + truncation (`"SummarizationTruncationStrategy"`, *optional*): + The truncation strategy to use. + Returns: + [`SummarizationOutput`]: The generated summary text. + + Raises: + [`InferenceTimeoutError`]: + If the model is unavailable or the request times out. + `aiohttp.ClientResponseError`: + If the request fails with an HTTP error status code other than HTTP 503. + + Example: + ```py + # Must be run in an async context + >>> from huggingface_hub import AsyncInferenceClient + >>> client = AsyncInferenceClient() + >>> await client.summarization("The Eiffel tower...") + SummarizationOutput(generated_text="The Eiffel tower is one of the most famous landmarks in the world....") + ``` + """ + parameters = { + "clean_up_tokenization_spaces": clean_up_tokenization_spaces, + "generate_parameters": generate_parameters, + "truncation": truncation, + } + provider_helper = get_provider_helper(self.provider, task="summarization") + request_parameters = provider_helper.prepare_request( + inputs=text, + parameters=parameters, + headers=self.headers, + model=model or self.model, + api_key=self.token, + ) + response = await self._inner_post(request_parameters) + return SummarizationOutput.parse_obj_as_list(response)[0] + + async def table_question_answering( + self, + table: Dict[str, Any], + query: str, + *, + model: Optional[str] = None, + padding: Optional["Padding"] = None, + sequential: Optional[bool] = None, + truncation: Optional[bool] = None, + ) -> TableQuestionAnsweringOutputElement: + """ + Retrieve the answer to a question from information given in a table. + + Args: + table (`str`): + A table of data represented as a dict of lists where entries are headers and the lists are all the + values, all lists must have the same size. + query (`str`): + The query in plain text that you want to ask the table. + model (`str`): + The model to use for the table-question-answering task. Can be a model ID hosted on the Hugging Face + Hub or a URL to a deployed Inference Endpoint. + padding (`"Padding"`, *optional*): + Activates and controls padding. + sequential (`bool`, *optional*): + Whether to do inference sequentially or as a batch. Batching is faster, but models like SQA require the + inference to be done sequentially to extract relations within sequences, given their conversational + nature. + truncation (`bool`, *optional*): + Activates and controls truncation. + + Returns: + [`TableQuestionAnsweringOutputElement`]: a table question answering output containing the answer, coordinates, cells and the aggregator used. + + Raises: + [`InferenceTimeoutError`]: + If the model is unavailable or the request times out. + `aiohttp.ClientResponseError`: + If the request fails with an HTTP error status code other than HTTP 503. + + Example: + ```py + # Must be run in an async context + >>> from huggingface_hub import AsyncInferenceClient + >>> client = AsyncInferenceClient() + >>> query = "How many stars does the transformers repository have?" + >>> table = {"Repository": ["Transformers", "Datasets", "Tokenizers"], "Stars": ["36542", "4512", "3934"]} + >>> await client.table_question_answering(table, query, model="google/tapas-base-finetuned-wtq") + TableQuestionAnsweringOutputElement(answer='36542', coordinates=[[0, 1]], cells=['36542'], aggregator='AVERAGE') + ``` + """ + provider_helper = get_provider_helper(self.provider, task="table-question-answering") + request_parameters = provider_helper.prepare_request( + inputs=None, + parameters={"model": model, "padding": padding, "sequential": sequential, "truncation": truncation}, + extra_payload={"query": query, "table": table}, + headers=self.headers, + model=model or self.model, + api_key=self.token, + ) + response = await self._inner_post(request_parameters) + return TableQuestionAnsweringOutputElement.parse_obj_as_instance(response) + + async def tabular_classification(self, table: Dict[str, Any], *, model: Optional[str] = None) -> List[str]: + """ + Classifying a target category (a group) based on a set of attributes. + + Args: + table (`Dict[str, Any]`): + Set of attributes to classify. + model (`str`, *optional*): + The model to use for the tabular classification task. Can be a model ID hosted on the Hugging Face Hub or a URL to + a deployed Inference Endpoint. If not provided, the default recommended tabular classification model will be used. + Defaults to None. + + Returns: + `List`: a list of labels, one per row in the initial table. + + Raises: + [`InferenceTimeoutError`]: + If the model is unavailable or the request times out. + `aiohttp.ClientResponseError`: + If the request fails with an HTTP error status code other than HTTP 503. + + Example: + ```py + # Must be run in an async context + >>> from huggingface_hub import AsyncInferenceClient + >>> client = AsyncInferenceClient() + >>> table = { + ... "fixed_acidity": ["7.4", "7.8", "10.3"], + ... "volatile_acidity": ["0.7", "0.88", "0.32"], + ... "citric_acid": ["0", "0", "0.45"], + ... "residual_sugar": ["1.9", "2.6", "6.4"], + ... "chlorides": ["0.076", "0.098", "0.073"], + ... "free_sulfur_dioxide": ["11", "25", "5"], + ... "total_sulfur_dioxide": ["34", "67", "13"], + ... "density": ["0.9978", "0.9968", "0.9976"], + ... "pH": ["3.51", "3.2", "3.23"], + ... "sulphates": ["0.56", "0.68", "0.82"], + ... "alcohol": ["9.4", "9.8", "12.6"], + ... } + >>> await client.tabular_classification(table=table, model="julien-c/wine-quality") + ["5", "5", "5"] + ``` + """ + provider_helper = get_provider_helper(self.provider, task="tabular-classification") + request_parameters = provider_helper.prepare_request( + inputs=None, + extra_payload={"table": table}, + parameters={}, + headers=self.headers, + model=model or self.model, + api_key=self.token, + ) + response = await self._inner_post(request_parameters) + return _bytes_to_list(response) + + async def tabular_regression(self, table: Dict[str, Any], *, model: Optional[str] = None) -> List[float]: + """ + Predicting a numerical target value given a set of attributes/features in a table. + + Args: + table (`Dict[str, Any]`): + Set of attributes stored in a table. The attributes used to predict the target can be both numerical and categorical. + model (`str`, *optional*): + The model to use for the tabular regression task. Can be a model ID hosted on the Hugging Face Hub or a URL to + a deployed Inference Endpoint. If not provided, the default recommended tabular regression model will be used. + Defaults to None. + + Returns: + `List`: a list of predicted numerical target values. + + Raises: + [`InferenceTimeoutError`]: + If the model is unavailable or the request times out. + `aiohttp.ClientResponseError`: + If the request fails with an HTTP error status code other than HTTP 503. + + Example: + ```py + # Must be run in an async context + >>> from huggingface_hub import AsyncInferenceClient + >>> client = AsyncInferenceClient() + >>> table = { + ... "Height": ["11.52", "12.48", "12.3778"], + ... "Length1": ["23.2", "24", "23.9"], + ... "Length2": ["25.4", "26.3", "26.5"], + ... "Length3": ["30", "31.2", "31.1"], + ... "Species": ["Bream", "Bream", "Bream"], + ... "Width": ["4.02", "4.3056", "4.6961"], + ... } + >>> await client.tabular_regression(table, model="scikit-learn/Fish-Weight") + [110, 120, 130] + ``` + """ + provider_helper = get_provider_helper(self.provider, task="tabular-regression") + request_parameters = provider_helper.prepare_request( + inputs=None, + parameters={}, + extra_payload={"table": table}, + headers=self.headers, + model=model or self.model, + api_key=self.token, + ) + response = await self._inner_post(request_parameters) + return _bytes_to_list(response) + + async def text_classification( + self, + text: str, + *, + model: Optional[str] = None, + top_k: Optional[int] = None, + function_to_apply: Optional["TextClassificationOutputTransform"] = None, + ) -> List[TextClassificationOutputElement]: + """ + Perform text classification (e.g. sentiment-analysis) on the given text. + + Args: + text (`str`): + A string to be classified. + model (`str`, *optional*): + The model to use for the text classification task. Can be a model ID hosted on the Hugging Face Hub or a URL to + a deployed Inference Endpoint. If not provided, the default recommended text classification model will be used. + Defaults to None. + top_k (`int`, *optional*): + When specified, limits the output to the top K most probable classes. + function_to_apply (`"TextClassificationOutputTransform"`, *optional*): + The function to apply to the model outputs in order to retrieve the scores. + + Returns: + `List[TextClassificationOutputElement]`: a list of [`TextClassificationOutputElement`] items containing the predicted label and associated probability. + + Raises: + [`InferenceTimeoutError`]: + If the model is unavailable or the request times out. + `aiohttp.ClientResponseError`: + If the request fails with an HTTP error status code other than HTTP 503. + + Example: + ```py + # Must be run in an async context + >>> from huggingface_hub import AsyncInferenceClient + >>> client = AsyncInferenceClient() + >>> await client.text_classification("I like you") + [ + TextClassificationOutputElement(label='POSITIVE', score=0.9998695850372314), + TextClassificationOutputElement(label='NEGATIVE', score=0.0001304351753788069), + ] + ``` + """ + provider_helper = get_provider_helper(self.provider, task="text-classification") + request_parameters = provider_helper.prepare_request( + inputs=text, + parameters={ + "function_to_apply": function_to_apply, + "top_k": top_k, + }, + headers=self.headers, + model=model or self.model, + api_key=self.token, + ) + response = await self._inner_post(request_parameters) + return TextClassificationOutputElement.parse_obj_as_list(response)[0] # type: ignore [return-value] + + @overload + async def text_generation( # type: ignore + self, + prompt: str, + *, + details: Literal[False] = ..., + stream: Literal[False] = ..., + model: Optional[str] = None, + # Parameters from `TextGenerationInputGenerateParameters` (maintained manually) + adapter_id: Optional[str] = None, + best_of: Optional[int] = None, + decoder_input_details: Optional[bool] = None, + do_sample: Optional[bool] = False, # Manual default value + frequency_penalty: Optional[float] = None, + grammar: Optional[TextGenerationInputGrammarType] = None, + max_new_tokens: Optional[int] = None, + repetition_penalty: Optional[float] = None, + return_full_text: Optional[bool] = False, # Manual default value + seed: Optional[int] = None, + stop: Optional[List[str]] = None, + stop_sequences: Optional[List[str]] = None, # Deprecated, use `stop` instead + temperature: Optional[float] = None, + top_k: Optional[int] = None, + top_n_tokens: Optional[int] = None, + top_p: Optional[float] = None, + truncate: Optional[int] = None, + typical_p: Optional[float] = None, + watermark: Optional[bool] = None, + ) -> str: ... + + @overload + async def text_generation( # type: ignore + self, + prompt: str, + *, + details: Literal[True] = ..., + stream: Literal[False] = ..., + model: Optional[str] = None, + # Parameters from `TextGenerationInputGenerateParameters` (maintained manually) + adapter_id: Optional[str] = None, + best_of: Optional[int] = None, + decoder_input_details: Optional[bool] = None, + do_sample: Optional[bool] = False, # Manual default value + frequency_penalty: Optional[float] = None, + grammar: Optional[TextGenerationInputGrammarType] = None, + max_new_tokens: Optional[int] = None, + repetition_penalty: Optional[float] = None, + return_full_text: Optional[bool] = False, # Manual default value + seed: Optional[int] = None, + stop: Optional[List[str]] = None, + stop_sequences: Optional[List[str]] = None, # Deprecated, use `stop` instead + temperature: Optional[float] = None, + top_k: Optional[int] = None, + top_n_tokens: Optional[int] = None, + top_p: Optional[float] = None, + truncate: Optional[int] = None, + typical_p: Optional[float] = None, + watermark: Optional[bool] = None, + ) -> TextGenerationOutput: ... + + @overload + async def text_generation( # type: ignore + self, + prompt: str, + *, + details: Literal[False] = ..., + stream: Literal[True] = ..., + model: Optional[str] = None, + # Parameters from `TextGenerationInputGenerateParameters` (maintained manually) + adapter_id: Optional[str] = None, + best_of: Optional[int] = None, + decoder_input_details: Optional[bool] = None, + do_sample: Optional[bool] = False, # Manual default value + frequency_penalty: Optional[float] = None, + grammar: Optional[TextGenerationInputGrammarType] = None, + max_new_tokens: Optional[int] = None, + repetition_penalty: Optional[float] = None, + return_full_text: Optional[bool] = False, # Manual default value + seed: Optional[int] = None, + stop: Optional[List[str]] = None, + stop_sequences: Optional[List[str]] = None, # Deprecated, use `stop` instead + temperature: Optional[float] = None, + top_k: Optional[int] = None, + top_n_tokens: Optional[int] = None, + top_p: Optional[float] = None, + truncate: Optional[int] = None, + typical_p: Optional[float] = None, + watermark: Optional[bool] = None, + ) -> AsyncIterable[str]: ... + + @overload + async def text_generation( # type: ignore + self, + prompt: str, + *, + details: Literal[True] = ..., + stream: Literal[True] = ..., + model: Optional[str] = None, + # Parameters from `TextGenerationInputGenerateParameters` (maintained manually) + adapter_id: Optional[str] = None, + best_of: Optional[int] = None, + decoder_input_details: Optional[bool] = None, + do_sample: Optional[bool] = False, # Manual default value + frequency_penalty: Optional[float] = None, + grammar: Optional[TextGenerationInputGrammarType] = None, + max_new_tokens: Optional[int] = None, + repetition_penalty: Optional[float] = None, + return_full_text: Optional[bool] = False, # Manual default value + seed: Optional[int] = None, + stop: Optional[List[str]] = None, + stop_sequences: Optional[List[str]] = None, # Deprecated, use `stop` instead + temperature: Optional[float] = None, + top_k: Optional[int] = None, + top_n_tokens: Optional[int] = None, + top_p: Optional[float] = None, + truncate: Optional[int] = None, + typical_p: Optional[float] = None, + watermark: Optional[bool] = None, + ) -> AsyncIterable[TextGenerationStreamOutput]: ... + + @overload + async def text_generation( + self, + prompt: str, + *, + details: Literal[True] = ..., + stream: bool = ..., + model: Optional[str] = None, + # Parameters from `TextGenerationInputGenerateParameters` (maintained manually) + adapter_id: Optional[str] = None, + best_of: Optional[int] = None, + decoder_input_details: Optional[bool] = None, + do_sample: Optional[bool] = False, # Manual default value + frequency_penalty: Optional[float] = None, + grammar: Optional[TextGenerationInputGrammarType] = None, + max_new_tokens: Optional[int] = None, + repetition_penalty: Optional[float] = None, + return_full_text: Optional[bool] = False, # Manual default value + seed: Optional[int] = None, + stop: Optional[List[str]] = None, + stop_sequences: Optional[List[str]] = None, # Deprecated, use `stop` instead + temperature: Optional[float] = None, + top_k: Optional[int] = None, + top_n_tokens: Optional[int] = None, + top_p: Optional[float] = None, + truncate: Optional[int] = None, + typical_p: Optional[float] = None, + watermark: Optional[bool] = None, + ) -> Union[TextGenerationOutput, AsyncIterable[TextGenerationStreamOutput]]: ... + + async def text_generation( + self, + prompt: str, + *, + details: bool = False, + stream: bool = False, + model: Optional[str] = None, + # Parameters from `TextGenerationInputGenerateParameters` (maintained manually) + adapter_id: Optional[str] = None, + best_of: Optional[int] = None, + decoder_input_details: Optional[bool] = None, + do_sample: Optional[bool] = False, # Manual default value + frequency_penalty: Optional[float] = None, + grammar: Optional[TextGenerationInputGrammarType] = None, + max_new_tokens: Optional[int] = None, + repetition_penalty: Optional[float] = None, + return_full_text: Optional[bool] = False, # Manual default value + seed: Optional[int] = None, + stop: Optional[List[str]] = None, + stop_sequences: Optional[List[str]] = None, # Deprecated, use `stop` instead + temperature: Optional[float] = None, + top_k: Optional[int] = None, + top_n_tokens: Optional[int] = None, + top_p: Optional[float] = None, + truncate: Optional[int] = None, + typical_p: Optional[float] = None, + watermark: Optional[bool] = None, + ) -> Union[str, TextGenerationOutput, AsyncIterable[str], AsyncIterable[TextGenerationStreamOutput]]: + """ + Given a prompt, generate the following text. + + <Tip> + + If you want to generate a response from chat messages, you should use the [`InferenceClient.chat_completion`] method. + It accepts a list of messages instead of a single text prompt and handles the chat templating for you. + + </Tip> + + Args: + prompt (`str`): + Input text. + details (`bool`, *optional*): + By default, text_generation returns a string. Pass `details=True` if you want a detailed output (tokens, + probabilities, seed, finish reason, etc.). Only available for models running on with the + `text-generation-inference` backend. + stream (`bool`, *optional*): + By default, text_generation returns the full generated text. Pass `stream=True` if you want a stream of + tokens to be returned. Only available for models running on with the `text-generation-inference` + backend. + model (`str`, *optional*): + The model to use for inference. Can be a model ID hosted on the Hugging Face Hub or a URL to a deployed + Inference Endpoint. This parameter overrides the model defined at the instance level. Defaults to None. + adapter_id (`str`, *optional*): + Lora adapter id. + best_of (`int`, *optional*): + Generate best_of sequences and return the one if the highest token logprobs. + decoder_input_details (`bool`, *optional*): + Return the decoder input token logprobs and ids. You must set `details=True` as well for it to be taken + into account. Defaults to `False`. + do_sample (`bool`, *optional*): + Activate logits sampling + frequency_penalty (`float`, *optional*): + Number between -2.0 and 2.0. Positive values penalize new tokens based on their existing frequency in + the text so far, decreasing the model's likelihood to repeat the same line verbatim. + grammar ([`TextGenerationInputGrammarType`], *optional*): + Grammar constraints. Can be either a JSONSchema or a regex. + max_new_tokens (`int`, *optional*): + Maximum number of generated tokens. Defaults to 100. + repetition_penalty (`float`, *optional*): + The parameter for repetition penalty. 1.0 means no penalty. See [this + paper](https://arxiv.org/pdf/1909.05858.pdf) for more details. + return_full_text (`bool`, *optional*): + Whether to prepend the prompt to the generated text + seed (`int`, *optional*): + Random sampling seed + stop (`List[str]`, *optional*): + Stop generating tokens if a member of `stop` is generated. + stop_sequences (`List[str]`, *optional*): + Deprecated argument. Use `stop` instead. + temperature (`float`, *optional*): + The value used to module the logits distribution. + top_n_tokens (`int`, *optional*): + Return information about the `top_n_tokens` most likely tokens at each generation step, instead of + just the sampled token. + top_k (`int`, *optional`): + The number of highest probability vocabulary tokens to keep for top-k-filtering. + top_p (`float`, *optional`): + If set to < 1, only the smallest set of most probable tokens with probabilities that add up to `top_p` or + higher are kept for generation. + truncate (`int`, *optional`): + Truncate inputs tokens to the given size. + typical_p (`float`, *optional`): + Typical Decoding mass + See [Typical Decoding for Natural Language Generation](https://arxiv.org/abs/2202.00666) for more information + watermark (`bool`, *optional`): + Watermarking with [A Watermark for Large Language Models](https://arxiv.org/abs/2301.10226) + + Returns: + `Union[str, TextGenerationOutput, Iterable[str], Iterable[TextGenerationStreamOutput]]`: + Generated text returned from the server: + - if `stream=False` and `details=False`, the generated text is returned as a `str` (default) + - if `stream=True` and `details=False`, the generated text is returned token by token as a `Iterable[str]` + - if `stream=False` and `details=True`, the generated text is returned with more details as a [`~huggingface_hub.TextGenerationOutput`] + - if `details=True` and `stream=True`, the generated text is returned token by token as a iterable of [`~huggingface_hub.TextGenerationStreamOutput`] + + Raises: + `ValidationError`: + If input values are not valid. No HTTP call is made to the server. + [`InferenceTimeoutError`]: + If the model is unavailable or the request times out. + `aiohttp.ClientResponseError`: + If the request fails with an HTTP error status code other than HTTP 503. + + Example: + ```py + # Must be run in an async context + >>> from huggingface_hub import AsyncInferenceClient + >>> client = AsyncInferenceClient() + + # Case 1: generate text + >>> await client.text_generation("The huggingface_hub library is ", max_new_tokens=12) + '100% open source and built to be easy to use.' + + # Case 2: iterate over the generated tokens. Useful for large generation. + >>> async for token in await client.text_generation("The huggingface_hub library is ", max_new_tokens=12, stream=True): + ... print(token) + 100 + % + open + source + and + built + to + be + easy + to + use + . + + # Case 3: get more details about the generation process. + >>> await client.text_generation("The huggingface_hub library is ", max_new_tokens=12, details=True) + TextGenerationOutput( + generated_text='100% open source and built to be easy to use.', + details=TextGenerationDetails( + finish_reason='length', + generated_tokens=12, + seed=None, + prefill=[ + TextGenerationPrefillOutputToken(id=487, text='The', logprob=None), + TextGenerationPrefillOutputToken(id=53789, text=' hugging', logprob=-13.171875), + (...) + TextGenerationPrefillOutputToken(id=204, text=' ', logprob=-7.0390625) + ], + tokens=[ + TokenElement(id=1425, text='100', logprob=-1.0175781, special=False), + TokenElement(id=16, text='%', logprob=-0.0463562, special=False), + (...) + TokenElement(id=25, text='.', logprob=-0.5703125, special=False) + ], + best_of_sequences=None + ) + ) + + # Case 4: iterate over the generated tokens with more details. + # Last object is more complete, containing the full generated text and the finish reason. + >>> async for details in await client.text_generation("The huggingface_hub library is ", max_new_tokens=12, details=True, stream=True): + ... print(details) + ... + TextGenerationStreamOutput(token=TokenElement(id=1425, text='100', logprob=-1.0175781, special=False), generated_text=None, details=None) + TextGenerationStreamOutput(token=TokenElement(id=16, text='%', logprob=-0.0463562, special=False), generated_text=None, details=None) + TextGenerationStreamOutput(token=TokenElement(id=1314, text=' open', logprob=-1.3359375, special=False), generated_text=None, details=None) + TextGenerationStreamOutput(token=TokenElement(id=3178, text=' source', logprob=-0.28100586, special=False), generated_text=None, details=None) + TextGenerationStreamOutput(token=TokenElement(id=273, text=' and', logprob=-0.5961914, special=False), generated_text=None, details=None) + TextGenerationStreamOutput(token=TokenElement(id=3426, text=' built', logprob=-1.9423828, special=False), generated_text=None, details=None) + TextGenerationStreamOutput(token=TokenElement(id=271, text=' to', logprob=-1.4121094, special=False), generated_text=None, details=None) + TextGenerationStreamOutput(token=TokenElement(id=314, text=' be', logprob=-1.5224609, special=False), generated_text=None, details=None) + TextGenerationStreamOutput(token=TokenElement(id=1833, text=' easy', logprob=-2.1132812, special=False), generated_text=None, details=None) + TextGenerationStreamOutput(token=TokenElement(id=271, text=' to', logprob=-0.08520508, special=False), generated_text=None, details=None) + TextGenerationStreamOutput(token=TokenElement(id=745, text=' use', logprob=-0.39453125, special=False), generated_text=None, details=None) + TextGenerationStreamOutput(token=TokenElement( + id=25, + text='.', + logprob=-0.5703125, + special=False), + generated_text='100% open source and built to be easy to use.', + details=TextGenerationStreamOutputStreamDetails(finish_reason='length', generated_tokens=12, seed=None) + ) + + # Case 5: generate constrained output using grammar + >>> response = await client.text_generation( + ... prompt="I saw a puppy a cat and a raccoon during my bike ride in the park", + ... model="HuggingFaceH4/zephyr-orpo-141b-A35b-v0.1", + ... max_new_tokens=100, + ... repetition_penalty=1.3, + ... grammar={ + ... "type": "json", + ... "value": { + ... "properties": { + ... "location": {"type": "string"}, + ... "activity": {"type": "string"}, + ... "animals_seen": {"type": "integer", "minimum": 1, "maximum": 5}, + ... "animals": {"type": "array", "items": {"type": "string"}}, + ... }, + ... "required": ["location", "activity", "animals_seen", "animals"], + ... }, + ... }, + ... ) + >>> json.loads(response) + { + "activity": "bike riding", + "animals": ["puppy", "cat", "raccoon"], + "animals_seen": 3, + "location": "park" + } + ``` + """ + if decoder_input_details and not details: + warnings.warn( + "`decoder_input_details=True` has been passed to the server but `details=False` is set meaning that" + " the output from the server will be truncated." + ) + decoder_input_details = False + + if stop_sequences is not None: + warnings.warn( + "`stop_sequences` is a deprecated argument for `text_generation` task" + " and will be removed in version '0.28.0'. Use `stop` instead.", + FutureWarning, + ) + if stop is None: + stop = stop_sequences # use deprecated arg if provided + + # Build payload + parameters = { + "adapter_id": adapter_id, + "best_of": best_of, + "decoder_input_details": decoder_input_details, + "details": details, + "do_sample": do_sample, + "frequency_penalty": frequency_penalty, + "grammar": grammar, + "max_new_tokens": max_new_tokens, + "repetition_penalty": repetition_penalty, + "return_full_text": return_full_text, + "seed": seed, + "stop": stop if stop is not None else [], + "temperature": temperature, + "top_k": top_k, + "top_n_tokens": top_n_tokens, + "top_p": top_p, + "truncate": truncate, + "typical_p": typical_p, + "watermark": watermark, + } + + # Remove some parameters if not a TGI server + unsupported_kwargs = _get_unsupported_text_generation_kwargs(model) + if len(unsupported_kwargs) > 0: + # The server does not support some parameters + # => means it is not a TGI server + # => remove unsupported parameters and warn the user + + ignored_parameters = [] + for key in unsupported_kwargs: + if parameters.get(key): + ignored_parameters.append(key) + parameters.pop(key, None) + if len(ignored_parameters) > 0: + warnings.warn( + "API endpoint/model for text-generation is not served via TGI. Ignoring following parameters:" + f" {', '.join(ignored_parameters)}.", + UserWarning, + ) + if details: + warnings.warn( + "API endpoint/model for text-generation is not served via TGI. Parameter `details=True` will" + " be ignored meaning only the generated text will be returned.", + UserWarning, + ) + details = False + if stream: + raise ValueError( + "API endpoint/model for text-generation is not served via TGI. Cannot return output as a stream." + " Please pass `stream=False` as input." + ) + + provider_helper = get_provider_helper(self.provider, task="text-generation") + request_parameters = provider_helper.prepare_request( + inputs=prompt, + parameters=parameters, + extra_payload={"stream": stream}, + headers=self.headers, + model=model or self.model, + api_key=self.token, + ) + + # Handle errors separately for more precise error messages + try: + bytes_output = await self._inner_post(request_parameters, stream=stream) + except _import_aiohttp().ClientResponseError as e: + match = MODEL_KWARGS_NOT_USED_REGEX.search(e.response_error_payload["error"]) + if e.status == 400 and match: + unused_params = [kwarg.strip("' ") for kwarg in match.group(1).split(",")] + _set_unsupported_text_generation_kwargs(model, unused_params) + return await self.text_generation( # type: ignore + prompt=prompt, + details=details, + stream=stream, + model=model or self.model, + adapter_id=adapter_id, + best_of=best_of, + decoder_input_details=decoder_input_details, + do_sample=do_sample, + frequency_penalty=frequency_penalty, + grammar=grammar, + max_new_tokens=max_new_tokens, + repetition_penalty=repetition_penalty, + return_full_text=return_full_text, + seed=seed, + stop=stop, + temperature=temperature, + top_k=top_k, + top_n_tokens=top_n_tokens, + top_p=top_p, + truncate=truncate, + typical_p=typical_p, + watermark=watermark, + ) + raise_text_generation_error(e) + + # Parse output + if stream: + return _async_stream_text_generation_response(bytes_output, details) # type: ignore + + data = _bytes_to_dict(bytes_output) # type: ignore[arg-type] + + # Data can be a single element (dict) or an iterable of dicts where we select the first element of. + if isinstance(data, list): + data = data[0] + + return TextGenerationOutput.parse_obj_as_instance(data) if details else data["generated_text"] + + async def text_to_image( + self, + prompt: str, + *, + negative_prompt: Optional[str] = None, + height: Optional[int] = None, + width: Optional[int] = None, + num_inference_steps: Optional[int] = None, + guidance_scale: Optional[float] = None, + model: Optional[str] = None, + scheduler: Optional[str] = None, + seed: Optional[int] = None, + extra_body: Optional[Dict[str, Any]] = None, + ) -> "Image": + """ + Generate an image based on a given text using a specified model. + + <Tip warning={true}> + + You must have `PIL` installed if you want to work with images (`pip install Pillow`). + + </Tip> + + <Tip> + You can pass provider-specific parameters to the model by using the `extra_body` argument. + </Tip> + + Args: + prompt (`str`): + The prompt to generate an image from. + negative_prompt (`str`, *optional*): + One prompt to guide what NOT to include in image generation. + height (`int`, *optional*): + The height in pixels of the output image + width (`int`, *optional*): + The width in pixels of the output image + num_inference_steps (`int`, *optional*): + The number of denoising steps. More denoising steps usually lead to a higher quality image at the + expense of slower inference. + guidance_scale (`float`, *optional*): + A higher guidance scale value encourages the model to generate images closely linked to the text + prompt, but values too high may cause saturation and other artifacts. + model (`str`, *optional*): + The model to use for inference. Can be a model ID hosted on the Hugging Face Hub or a URL to a deployed + Inference Endpoint. If not provided, the default recommended text-to-image model will be used. + Defaults to None. + scheduler (`str`, *optional*): + Override the scheduler with a compatible one. + seed (`int`, *optional*): + Seed for the random number generator. + extra_body (`Dict[str, Any]`, *optional*): + Additional provider-specific parameters to pass to the model. Refer to the provider's documentation + for supported parameters. + + Returns: + `Image`: The generated image. + + Raises: + [`InferenceTimeoutError`]: + If the model is unavailable or the request times out. + `aiohttp.ClientResponseError`: + If the request fails with an HTTP error status code other than HTTP 503. + + Example: + ```py + # Must be run in an async context + >>> from huggingface_hub import AsyncInferenceClient + >>> client = AsyncInferenceClient() + + >>> image = await client.text_to_image("An astronaut riding a horse on the moon.") + >>> image.save("astronaut.png") + + >>> image = await client.text_to_image( + ... "An astronaut riding a horse on the moon.", + ... negative_prompt="low resolution, blurry", + ... model="stabilityai/stable-diffusion-2-1", + ... ) + >>> image.save("better_astronaut.png") + ``` + Example using a third-party provider directly. Usage will be billed on your fal.ai account. + ```py + >>> from huggingface_hub import InferenceClient + >>> client = InferenceClient( + ... provider="fal-ai", # Use fal.ai provider + ... api_key="fal-ai-api-key", # Pass your fal.ai API key + ... ) + >>> image = client.text_to_image( + ... "A majestic lion in a fantasy forest", + ... model="black-forest-labs/FLUX.1-schnell", + ... ) + >>> image.save("lion.png") + ``` + + Example using a third-party provider through Hugging Face Routing. Usage will be billed on your Hugging Face account. + ```py + >>> from huggingface_hub import InferenceClient + >>> client = InferenceClient( + ... provider="replicate", # Use replicate provider + ... api_key="hf_...", # Pass your HF token + ... ) + >>> image = client.text_to_image( + ... "An astronaut riding a horse on the moon.", + ... model="black-forest-labs/FLUX.1-dev", + ... ) + >>> image.save("astronaut.png") + ``` + + Example using Replicate provider with extra parameters + ```py + >>> from huggingface_hub import InferenceClient + >>> client = InferenceClient( + ... provider="replicate", # Use replicate provider + ... api_key="hf_...", # Pass your HF token + ... ) + >>> image = client.text_to_image( + ... "An astronaut riding a horse on the moon.", + ... model="black-forest-labs/FLUX.1-schnell", + ... extra_body={"output_quality": 100}, + ... ) + >>> image.save("astronaut.png") + ``` + """ + provider_helper = get_provider_helper(self.provider, task="text-to-image") + request_parameters = provider_helper.prepare_request( + inputs=prompt, + parameters={ + "negative_prompt": negative_prompt, + "height": height, + "width": width, + "num_inference_steps": num_inference_steps, + "guidance_scale": guidance_scale, + "scheduler": scheduler, + "seed": seed, + **(extra_body or {}), + }, + headers=self.headers, + model=model or self.model, + api_key=self.token, + ) + response = await self._inner_post(request_parameters) + response = provider_helper.get_response(response) + return _bytes_to_image(response) + + async def text_to_video( + self, + prompt: str, + *, + model: Optional[str] = None, + guidance_scale: Optional[float] = None, + negative_prompt: Optional[List[str]] = None, + num_frames: Optional[float] = None, + num_inference_steps: Optional[int] = None, + seed: Optional[int] = None, + extra_body: Optional[Dict[str, Any]] = None, + ) -> bytes: + """ + Generate a video based on a given text. + + <Tip> + You can pass provider-specific parameters to the model by using the `extra_body` argument. + </Tip> + + Args: + prompt (`str`): + The prompt to generate a video from. + model (`str`, *optional*): + The model to use for inference. Can be a model ID hosted on the Hugging Face Hub or a URL to a deployed + Inference Endpoint. If not provided, the default recommended text-to-video model will be used. + Defaults to None. + guidance_scale (`float`, *optional*): + A higher guidance scale value encourages the model to generate videos closely linked to the text + prompt, but values too high may cause saturation and other artifacts. + negative_prompt (`List[str]`, *optional*): + One or several prompt to guide what NOT to include in video generation. + num_frames (`float`, *optional*): + The num_frames parameter determines how many video frames are generated. + num_inference_steps (`int`, *optional*): + The number of denoising steps. More denoising steps usually lead to a higher quality video at the + expense of slower inference. + seed (`int`, *optional*): + Seed for the random number generator. + extra_body (`Dict[str, Any]`, *optional*): + Additional provider-specific parameters to pass to the model. Refer to the provider's documentation + for supported parameters. + + Returns: + `bytes`: The generated video. + + Example: + + Example using a third-party provider directly. Usage will be billed on your fal.ai account. + ```py + >>> from huggingface_hub import InferenceClient + >>> client = InferenceClient( + ... provider="fal-ai", # Using fal.ai provider + ... api_key="fal-ai-api-key", # Pass your fal.ai API key + ... ) + >>> video = client.text_to_video( + ... "A majestic lion running in a fantasy forest", + ... model="tencent/HunyuanVideo", + ... ) + >>> with open("lion.mp4", "wb") as file: + ... file.write(video) + ``` + + Example using a third-party provider through Hugging Face Routing. Usage will be billed on your Hugging Face account. + ```py + >>> from huggingface_hub import InferenceClient + >>> client = InferenceClient( + ... provider="replicate", # Using replicate provider + ... api_key="hf_...", # Pass your HF token + ... ) + >>> video = client.text_to_video( + ... "A cat running in a park", + ... model="genmo/mochi-1-preview", + ... ) + >>> with open("cat.mp4", "wb") as file: + ... file.write(video) + ``` + """ + provider_helper = get_provider_helper(self.provider, task="text-to-video") + request_parameters = provider_helper.prepare_request( + inputs=prompt, + parameters={ + "guidance_scale": guidance_scale, + "negative_prompt": negative_prompt, + "num_frames": num_frames, + "num_inference_steps": num_inference_steps, + "seed": seed, + **(extra_body or {}), + }, + headers=self.headers, + model=model or self.model, + api_key=self.token, + ) + response = await self._inner_post(request_parameters) + response = provider_helper.get_response(response) + return response + + async def text_to_speech( + self, + text: str, + *, + model: Optional[str] = None, + do_sample: Optional[bool] = None, + early_stopping: Optional[Union[bool, "TextToSpeechEarlyStoppingEnum"]] = None, + epsilon_cutoff: Optional[float] = None, + eta_cutoff: Optional[float] = None, + max_length: Optional[int] = None, + max_new_tokens: Optional[int] = None, + min_length: Optional[int] = None, + min_new_tokens: Optional[int] = None, + num_beam_groups: Optional[int] = None, + num_beams: Optional[int] = None, + penalty_alpha: Optional[float] = None, + temperature: Optional[float] = None, + top_k: Optional[int] = None, + top_p: Optional[float] = None, + typical_p: Optional[float] = None, + use_cache: Optional[bool] = None, + extra_body: Optional[Dict[str, Any]] = None, + ) -> bytes: + """ + Synthesize an audio of a voice pronouncing a given text. + + <Tip> + You can pass provider-specific parameters to the model by using the `extra_body` argument. + </Tip> + + Args: + text (`str`): + The text to synthesize. + model (`str`, *optional*): + The model to use for inference. Can be a model ID hosted on the Hugging Face Hub or a URL to a deployed + Inference Endpoint. If not provided, the default recommended text-to-speech model will be used. + Defaults to None. + do_sample (`bool`, *optional*): + Whether to use sampling instead of greedy decoding when generating new tokens. + early_stopping (`Union[bool, "TextToSpeechEarlyStoppingEnum"]`, *optional*): + Controls the stopping condition for beam-based methods. + epsilon_cutoff (`float`, *optional*): + If set to float strictly between 0 and 1, only tokens with a conditional probability greater than + epsilon_cutoff will be sampled. In the paper, suggested values range from 3e-4 to 9e-4, depending on + the size of the model. See [Truncation Sampling as Language Model + Desmoothing](https://hf.co/papers/2210.15191) for more details. + eta_cutoff (`float`, *optional*): + Eta sampling is a hybrid of locally typical sampling and epsilon sampling. If set to float strictly + between 0 and 1, a token is only considered if it is greater than either eta_cutoff or sqrt(eta_cutoff) + * exp(-entropy(softmax(next_token_logits))). The latter term is intuitively the expected next token + probability, scaled by sqrt(eta_cutoff). In the paper, suggested values range from 3e-4 to 2e-3, + depending on the size of the model. See [Truncation Sampling as Language Model + Desmoothing](https://hf.co/papers/2210.15191) for more details. + max_length (`int`, *optional*): + The maximum length (in tokens) of the generated text, including the input. + max_new_tokens (`int`, *optional*): + The maximum number of tokens to generate. Takes precedence over max_length. + min_length (`int`, *optional*): + The minimum length (in tokens) of the generated text, including the input. + min_new_tokens (`int`, *optional*): + The minimum number of tokens to generate. Takes precedence over min_length. + num_beam_groups (`int`, *optional*): + Number of groups to divide num_beams into in order to ensure diversity among different groups of beams. + See [this paper](https://hf.co/papers/1610.02424) for more details. + num_beams (`int`, *optional*): + Number of beams to use for beam search. + penalty_alpha (`float`, *optional*): + The value balances the model confidence and the degeneration penalty in contrastive search decoding. + temperature (`float`, *optional*): + The value used to modulate the next token probabilities. + top_k (`int`, *optional*): + The number of highest probability vocabulary tokens to keep for top-k-filtering. + top_p (`float`, *optional*): + If set to float < 1, only the smallest set of most probable tokens with probabilities that add up to + top_p or higher are kept for generation. + typical_p (`float`, *optional*): + Local typicality measures how similar the conditional probability of predicting a target token next is + to the expected conditional probability of predicting a random token next, given the partial text + already generated. If set to float < 1, the smallest set of the most locally typical tokens with + probabilities that add up to typical_p or higher are kept for generation. See [this + paper](https://hf.co/papers/2202.00666) for more details. + use_cache (`bool`, *optional*): + Whether the model should use the past last key/values attentions to speed up decoding + extra_body (`Dict[str, Any]`, *optional*): + Additional provider-specific parameters to pass to the model. Refer to the provider's documentation + for supported parameters. + Returns: + `bytes`: The generated audio. + + Raises: + [`InferenceTimeoutError`]: + If the model is unavailable or the request times out. + `aiohttp.ClientResponseError`: + If the request fails with an HTTP error status code other than HTTP 503. + + Example: + ```py + # Must be run in an async context + >>> from pathlib import Path + >>> from huggingface_hub import AsyncInferenceClient + >>> client = AsyncInferenceClient() + + >>> audio = await client.text_to_speech("Hello world") + >>> Path("hello_world.flac").write_bytes(audio) + ``` + + Example using a third-party provider directly. Usage will be billed on your Replicate account. + ```py + >>> from huggingface_hub import InferenceClient + >>> client = InferenceClient( + ... provider="replicate", + ... api_key="your-replicate-api-key", # Pass your Replicate API key directly + ... ) + >>> audio = client.text_to_speech( + ... text="Hello world", + ... model="OuteAI/OuteTTS-0.3-500M", + ... ) + >>> Path("hello_world.flac").write_bytes(audio) + ``` + + Example using a third-party provider through Hugging Face Routing. Usage will be billed on your Hugging Face account. + ```py + >>> from huggingface_hub import InferenceClient + >>> client = InferenceClient( + ... provider="replicate", + ... api_key="hf_...", # Pass your HF token + ... ) + >>> audio =client.text_to_speech( + ... text="Hello world", + ... model="OuteAI/OuteTTS-0.3-500M", + ... ) + >>> Path("hello_world.flac").write_bytes(audio) + ``` + Example using Replicate provider with extra parameters + ```py + >>> from huggingface_hub import InferenceClient + >>> client = InferenceClient( + ... provider="replicate", # Use replicate provider + ... api_key="hf_...", # Pass your HF token + ... ) + >>> audio = client.text_to_speech( + ... "Hello, my name is Kororo, an awesome text-to-speech model.", + ... model="hexgrad/Kokoro-82M", + ... extra_body={"voice": "af_nicole"}, + ... ) + >>> Path("hello.flac").write_bytes(audio) + ``` + + Example music-gen using "YuE-s1-7B-anneal-en-cot" on fal.ai + ```py + >>> from huggingface_hub import InferenceClient + >>> lyrics = ''' + ... [verse] + ... In the town where I was born + ... Lived a man who sailed to sea + ... And he told us of his life + ... In the land of submarines + ... So we sailed on to the sun + ... 'Til we found a sea of green + ... And we lived beneath the waves + ... In our yellow submarine + + ... [chorus] + ... We all live in a yellow submarine + ... Yellow submarine, yellow submarine + ... We all live in a yellow submarine + ... Yellow submarine, yellow submarine + ... ''' + >>> genres = "pavarotti-style tenor voice" + >>> client = InferenceClient( + ... provider="fal-ai", + ... model="m-a-p/YuE-s1-7B-anneal-en-cot", + ... api_key=..., + ... ) + >>> audio = client.text_to_speech(lyrics, extra_body={"genres": genres}) + >>> with open("output.mp3", "wb") as f: + ... f.write(audio) + ``` + """ + provider_helper = get_provider_helper(self.provider, task="text-to-speech") + request_parameters = provider_helper.prepare_request( + inputs=text, + parameters={ + "do_sample": do_sample, + "early_stopping": early_stopping, + "epsilon_cutoff": epsilon_cutoff, + "eta_cutoff": eta_cutoff, + "max_length": max_length, + "max_new_tokens": max_new_tokens, + "min_length": min_length, + "min_new_tokens": min_new_tokens, + "num_beam_groups": num_beam_groups, + "num_beams": num_beams, + "penalty_alpha": penalty_alpha, + "temperature": temperature, + "top_k": top_k, + "top_p": top_p, + "typical_p": typical_p, + "use_cache": use_cache, + **(extra_body or {}), + }, + headers=self.headers, + model=model or self.model, + api_key=self.token, + ) + response = await self._inner_post(request_parameters) + response = provider_helper.get_response(response) + return response + + async def token_classification( + self, + text: str, + *, + model: Optional[str] = None, + aggregation_strategy: Optional["TokenClassificationAggregationStrategy"] = None, + ignore_labels: Optional[List[str]] = None, + stride: Optional[int] = None, + ) -> List[TokenClassificationOutputElement]: + """ + Perform token classification on the given text. + Usually used for sentence parsing, either grammatical, or Named Entity Recognition (NER) to understand keywords contained within text. + + Args: + text (`str`): + A string to be classified. + model (`str`, *optional*): + The model to use for the token classification task. Can be a model ID hosted on the Hugging Face Hub or a URL to + a deployed Inference Endpoint. If not provided, the default recommended token classification model will be used. + Defaults to None. + aggregation_strategy (`"TokenClassificationAggregationStrategy"`, *optional*): + The strategy used to fuse tokens based on model predictions + ignore_labels (`List[str`, *optional*): + A list of labels to ignore + stride (`int`, *optional*): + The number of overlapping tokens between chunks when splitting the input text. + + Returns: + `List[TokenClassificationOutputElement]`: List of [`TokenClassificationOutputElement`] items containing the entity group, confidence score, word, start and end index. + + Raises: + [`InferenceTimeoutError`]: + If the model is unavailable or the request times out. + `aiohttp.ClientResponseError`: + If the request fails with an HTTP error status code other than HTTP 503. + + Example: + ```py + # Must be run in an async context + >>> from huggingface_hub import AsyncInferenceClient + >>> client = AsyncInferenceClient() + >>> await client.token_classification("My name is Sarah Jessica Parker but you can call me Jessica") + [ + TokenClassificationOutputElement( + entity_group='PER', + score=0.9971321225166321, + word='Sarah Jessica Parker', + start=11, + end=31, + ), + TokenClassificationOutputElement( + entity_group='PER', + score=0.9773476123809814, + word='Jessica', + start=52, + end=59, + ) + ] + ``` + """ + provider_helper = get_provider_helper(self.provider, task="token-classification") + request_parameters = provider_helper.prepare_request( + inputs=text, + parameters={ + "aggregation_strategy": aggregation_strategy, + "ignore_labels": ignore_labels, + "stride": stride, + }, + headers=self.headers, + model=model or self.model, + api_key=self.token, + ) + response = await self._inner_post(request_parameters) + return TokenClassificationOutputElement.parse_obj_as_list(response) + + async def translation( + self, + text: str, + *, + model: Optional[str] = None, + src_lang: Optional[str] = None, + tgt_lang: Optional[str] = None, + clean_up_tokenization_spaces: Optional[bool] = None, + truncation: Optional["TranslationTruncationStrategy"] = None, + generate_parameters: Optional[Dict[str, Any]] = None, + ) -> TranslationOutput: + """ + Convert text from one language to another. + + Check out https://huggingface.co/tasks/translation for more information on how to choose the best model for + your specific use case. Source and target languages usually depend on the model. + However, it is possible to specify source and target languages for certain models. If you are working with one of these models, + you can use `src_lang` and `tgt_lang` arguments to pass the relevant information. + + Args: + text (`str`): + A string to be translated. + model (`str`, *optional*): + The model to use for the translation task. Can be a model ID hosted on the Hugging Face Hub or a URL to + a deployed Inference Endpoint. If not provided, the default recommended translation model will be used. + Defaults to None. + src_lang (`str`, *optional*): + The source language of the text. Required for models that can translate from multiple languages. + tgt_lang (`str`, *optional*): + Target language to translate to. Required for models that can translate to multiple languages. + clean_up_tokenization_spaces (`bool`, *optional*): + Whether to clean up the potential extra spaces in the text output. + truncation (`"TranslationTruncationStrategy"`, *optional*): + The truncation strategy to use. + generate_parameters (`Dict[str, Any]`, *optional*): + Additional parametrization of the text generation algorithm. + + Returns: + [`TranslationOutput`]: The generated translated text. + + Raises: + [`InferenceTimeoutError`]: + If the model is unavailable or the request times out. + `aiohttp.ClientResponseError`: + If the request fails with an HTTP error status code other than HTTP 503. + `ValueError`: + If only one of the `src_lang` and `tgt_lang` arguments are provided. + + Example: + ```py + # Must be run in an async context + >>> from huggingface_hub import AsyncInferenceClient + >>> client = AsyncInferenceClient() + >>> await client.translation("My name is Wolfgang and I live in Berlin") + 'Mein Name ist Wolfgang und ich lebe in Berlin.' + >>> await client.translation("My name is Wolfgang and I live in Berlin", model="Helsinki-NLP/opus-mt-en-fr") + TranslationOutput(translation_text='Je m'appelle Wolfgang et je vis à Berlin.') + ``` + + Specifying languages: + ```py + >>> client.translation("My name is Sarah Jessica Parker but you can call me Jessica", model="facebook/mbart-large-50-many-to-many-mmt", src_lang="en_XX", tgt_lang="fr_XX") + "Mon nom est Sarah Jessica Parker mais vous pouvez m'appeler Jessica" + ``` + """ + # Throw error if only one of `src_lang` and `tgt_lang` was given + if src_lang is not None and tgt_lang is None: + raise ValueError("You cannot specify `src_lang` without specifying `tgt_lang`.") + + if src_lang is None and tgt_lang is not None: + raise ValueError("You cannot specify `tgt_lang` without specifying `src_lang`.") + + provider_helper = get_provider_helper(self.provider, task="translation") + request_parameters = provider_helper.prepare_request( + inputs=text, + parameters={ + "src_lang": src_lang, + "tgt_lang": tgt_lang, + "clean_up_tokenization_spaces": clean_up_tokenization_spaces, + "truncation": truncation, + "generate_parameters": generate_parameters, + }, + headers=self.headers, + model=model or self.model, + api_key=self.token, + ) + response = await self._inner_post(request_parameters) + return TranslationOutput.parse_obj_as_list(response)[0] + + async def visual_question_answering( + self, + image: ContentT, + question: str, + *, + model: Optional[str] = None, + top_k: Optional[int] = None, + ) -> List[VisualQuestionAnsweringOutputElement]: + """ + Answering open-ended questions based on an image. + + Args: + image (`Union[str, Path, bytes, BinaryIO]`): + The input image for the context. It can be raw bytes, an image file, or a URL to an online image. + question (`str`): + Question to be answered. + model (`str`, *optional*): + The model to use for the visual question answering task. Can be a model ID hosted on the Hugging Face Hub or a URL to + a deployed Inference Endpoint. If not provided, the default recommended visual question answering model will be used. + Defaults to None. + top_k (`int`, *optional*): + The number of answers to return (will be chosen by order of likelihood). Note that we return less than + topk answers if there are not enough options available within the context. + Returns: + `List[VisualQuestionAnsweringOutputElement]`: a list of [`VisualQuestionAnsweringOutputElement`] items containing the predicted label and associated probability. + + Raises: + `InferenceTimeoutError`: + If the model is unavailable or the request times out. + `aiohttp.ClientResponseError`: + If the request fails with an HTTP error status code other than HTTP 503. + + Example: + ```py + # Must be run in an async context + >>> from huggingface_hub import AsyncInferenceClient + >>> client = AsyncInferenceClient() + >>> await client.visual_question_answering( + ... image="https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg", + ... question="What is the animal doing?" + ... ) + [ + VisualQuestionAnsweringOutputElement(score=0.778609573841095, answer='laying down'), + VisualQuestionAnsweringOutputElement(score=0.6957435607910156, answer='sitting'), + ] + ``` + """ + provider_helper = get_provider_helper(self.provider, task="visual-question-answering") + request_parameters = provider_helper.prepare_request( + inputs=image, + parameters={"top_k": top_k}, + headers=self.headers, + model=model or self.model, + api_key=self.token, + extra_payload={"question": question, "image": _b64_encode(image)}, + ) + response = await self._inner_post(request_parameters) + return VisualQuestionAnsweringOutputElement.parse_obj_as_list(response) + + @_deprecate_arguments( + version="0.30.0", + deprecated_args=["labels"], + custom_message="`labels`has been renamed to `candidate_labels` and will be removed in huggingface_hub>=0.30.0.", + ) + async def zero_shot_classification( + self, + text: str, + # temporarily keeping it optional for backward compatibility. + candidate_labels: List[str] = None, # type: ignore + *, + multi_label: Optional[bool] = False, + hypothesis_template: Optional[str] = None, + model: Optional[str] = None, + # deprecated argument + labels: List[str] = None, # type: ignore + ) -> List[ZeroShotClassificationOutputElement]: + """ + Provide as input a text and a set of candidate labels to classify the input text. + + Args: + text (`str`): + The input text to classify. + candidate_labels (`List[str]`): + The set of possible class labels to classify the text into. + labels (`List[str]`, *optional*): + (deprecated) List of strings. Each string is the verbalization of a possible label for the input text. + multi_label (`bool`, *optional*): + Whether multiple candidate labels can be true. If false, the scores are normalized such that the sum of + the label likelihoods for each sequence is 1. If true, the labels are considered independent and + probabilities are normalized for each candidate. + hypothesis_template (`str`, *optional*): + The sentence used in conjunction with `candidate_labels` to attempt the text classification by + replacing the placeholder with the candidate labels. + model (`str`, *optional*): + The model to use for inference. Can be a model ID hosted on the Hugging Face Hub or a URL to a deployed + Inference Endpoint. This parameter overrides the model defined at the instance level. If not provided, the default recommended zero-shot classification model will be used. + + + Returns: + `List[ZeroShotClassificationOutputElement]`: List of [`ZeroShotClassificationOutputElement`] items containing the predicted labels and their confidence. + + Raises: + [`InferenceTimeoutError`]: + If the model is unavailable or the request times out. + `aiohttp.ClientResponseError`: + If the request fails with an HTTP error status code other than HTTP 503. + + Example with `multi_label=False`: + ```py + # Must be run in an async context + >>> from huggingface_hub import AsyncInferenceClient + >>> client = AsyncInferenceClient() + >>> text = ( + ... "A new model offers an explanation for how the Galilean satellites formed around the solar system's" + ... "largest world. Konstantin Batygin did not set out to solve one of the solar system's most puzzling" + ... " mysteries when he went for a run up a hill in Nice, France." + ... ) + >>> labels = ["space & cosmos", "scientific discovery", "microbiology", "robots", "archeology"] + >>> await client.zero_shot_classification(text, labels) + [ + ZeroShotClassificationOutputElement(label='scientific discovery', score=0.7961668968200684), + ZeroShotClassificationOutputElement(label='space & cosmos', score=0.18570658564567566), + ZeroShotClassificationOutputElement(label='microbiology', score=0.00730885099619627), + ZeroShotClassificationOutputElement(label='archeology', score=0.006258360575884581), + ZeroShotClassificationOutputElement(label='robots', score=0.004559356719255447), + ] + >>> await client.zero_shot_classification(text, labels, multi_label=True) + [ + ZeroShotClassificationOutputElement(label='scientific discovery', score=0.9829297661781311), + ZeroShotClassificationOutputElement(label='space & cosmos', score=0.755190908908844), + ZeroShotClassificationOutputElement(label='microbiology', score=0.0005462635890580714), + ZeroShotClassificationOutputElement(label='archeology', score=0.00047131875180639327), + ZeroShotClassificationOutputElement(label='robots', score=0.00030448526376858354), + ] + ``` + + Example with `multi_label=True` and a custom `hypothesis_template`: + ```py + # Must be run in an async context + >>> from huggingface_hub import AsyncInferenceClient + >>> client = AsyncInferenceClient() + >>> await client.zero_shot_classification( + ... text="I really like our dinner and I'm very happy. I don't like the weather though.", + ... labels=["positive", "negative", "pessimistic", "optimistic"], + ... multi_label=True, + ... hypothesis_template="This text is {} towards the weather" + ... ) + [ + ZeroShotClassificationOutputElement(label='negative', score=0.9231801629066467), + ZeroShotClassificationOutputElement(label='pessimistic', score=0.8760990500450134), + ZeroShotClassificationOutputElement(label='optimistic', score=0.0008674879791215062), + ZeroShotClassificationOutputElement(label='positive', score=0.0005250611575320363) + ] + ``` + """ + # handle deprecation + if labels is not None: + if candidate_labels is not None: + raise ValueError( + "Cannot specify both `labels` and `candidate_labels`. Use `candidate_labels` instead." + ) + candidate_labels = labels + elif candidate_labels is None: + raise ValueError("Must specify `candidate_labels`") + + provider_helper = get_provider_helper(self.provider, task="zero-shot-classification") + request_parameters = provider_helper.prepare_request( + inputs=text, + parameters={ + "candidate_labels": candidate_labels, + "multi_label": multi_label, + "hypothesis_template": hypothesis_template, + }, + headers=self.headers, + model=model or self.model, + api_key=self.token, + ) + response = await self._inner_post(request_parameters) + output = _bytes_to_dict(response) + return [ + ZeroShotClassificationOutputElement.parse_obj_as_instance({"label": label, "score": score}) + for label, score in zip(output["labels"], output["scores"]) + ] + + @_deprecate_arguments( + version="0.30.0", + deprecated_args=["labels"], + custom_message="`labels`has been renamed to `candidate_labels` and will be removed in huggingface_hub>=0.30.0.", + ) + async def zero_shot_image_classification( + self, + image: ContentT, + # temporarily keeping it optional for backward compatibility. + candidate_labels: List[str] = None, # type: ignore + *, + model: Optional[str] = None, + hypothesis_template: Optional[str] = None, + # deprecated argument + labels: List[str] = None, # type: ignore + ) -> List[ZeroShotImageClassificationOutputElement]: + """ + Provide input image and text labels to predict text labels for the image. + + Args: + image (`Union[str, Path, bytes, BinaryIO]`): + The input image to caption. It can be raw bytes, an image file, or a URL to an online image. + candidate_labels (`List[str]`): + The candidate labels for this image + labels (`List[str]`, *optional*): + (deprecated) List of string possible labels. There must be at least 2 labels. + model (`str`, *optional*): + The model to use for inference. Can be a model ID hosted on the Hugging Face Hub or a URL to a deployed + Inference Endpoint. This parameter overrides the model defined at the instance level. If not provided, the default recommended zero-shot image classification model will be used. + hypothesis_template (`str`, *optional*): + The sentence used in conjunction with `candidate_labels` to attempt the image classification by + replacing the placeholder with the candidate labels. + + Returns: + `List[ZeroShotImageClassificationOutputElement]`: List of [`ZeroShotImageClassificationOutputElement`] items containing the predicted labels and their confidence. + + Raises: + [`InferenceTimeoutError`]: + If the model is unavailable or the request times out. + `aiohttp.ClientResponseError`: + If the request fails with an HTTP error status code other than HTTP 503. + + Example: + ```py + # Must be run in an async context + >>> from huggingface_hub import AsyncInferenceClient + >>> client = AsyncInferenceClient() + + >>> await client.zero_shot_image_classification( + ... "https://upload.wikimedia.org/wikipedia/commons/thumb/4/43/Cute_dog.jpg/320px-Cute_dog.jpg", + ... labels=["dog", "cat", "horse"], + ... ) + [ZeroShotImageClassificationOutputElement(label='dog', score=0.956),...] + ``` + """ + # handle deprecation + if labels is not None: + if candidate_labels is not None: + raise ValueError( + "Cannot specify both `labels` and `candidate_labels`. Use `candidate_labels` instead." + ) + candidate_labels = labels + elif candidate_labels is None: + raise ValueError("Must specify `candidate_labels`") + # Raise ValueError if input is less than 2 labels + if len(candidate_labels) < 2: + raise ValueError("You must specify at least 2 classes to compare.") + + provider_helper = get_provider_helper(self.provider, task="zero-shot-image-classification") + request_parameters = provider_helper.prepare_request( + inputs=image, + parameters={ + "candidate_labels": candidate_labels, + "hypothesis_template": hypothesis_template, + }, + headers=self.headers, + model=model or self.model, + api_key=self.token, + ) + response = await self._inner_post(request_parameters) + return ZeroShotImageClassificationOutputElement.parse_obj_as_list(response) + + @_deprecate_method( + version="0.33.0", + message=( + "HF Inference API is getting revamped and will only support warm models in the future (no cold start allowed)." + " Use `HfApi.list_models(..., inference_provider='...')` to list warm models per provider." + ), + ) + async def list_deployed_models( + self, frameworks: Union[None, str, Literal["all"], List[str]] = None + ) -> Dict[str, List[str]]: + """ + List models deployed on the HF Serverless Inference API service. + + This helper checks deployed models framework by framework. By default, it will check the 4 main frameworks that + are supported and account for 95% of the hosted models. However, if you want a complete list of models you can + specify `frameworks="all"` as input. Alternatively, if you know before-hand which framework you are interested + in, you can also restrict to search to this one (e.g. `frameworks="text-generation-inference"`). The more + frameworks are checked, the more time it will take. + + <Tip warning={true}> + + This endpoint method does not return a live list of all models available for the HF Inference API service. + It searches over a cached list of models that were recently available and the list may not be up to date. + If you want to know the live status of a specific model, use [`~InferenceClient.get_model_status`]. + + </Tip> + + <Tip> + + This endpoint method is mostly useful for discoverability. If you already know which model you want to use and want to + check its availability, you can directly use [`~InferenceClient.get_model_status`]. + + </Tip> + + Args: + frameworks (`Literal["all"]` or `List[str]` or `str`, *optional*): + The frameworks to filter on. By default only a subset of the available frameworks are tested. If set to + "all", all available frameworks will be tested. It is also possible to provide a single framework or a + custom set of frameworks to check. + + Returns: + `Dict[str, List[str]]`: A dictionary mapping task names to a sorted list of model IDs. + + Example: + ```py + # Must be run in an async contextthon + >>> from huggingface_hub import AsyncInferenceClient + >>> client = AsyncInferenceClient() + + # Discover zero-shot-classification models currently deployed + >>> models = await client.list_deployed_models() + >>> models["zero-shot-classification"] + ['Narsil/deberta-large-mnli-zero-cls', 'facebook/bart-large-mnli', ...] + + # List from only 1 framework + >>> await client.list_deployed_models("text-generation-inference") + {'text-generation': ['bigcode/starcoder', 'meta-llama/Llama-2-70b-chat-hf', ...], ...} + ``` + """ + if self.provider != "hf-inference": + raise ValueError(f"Listing deployed models is not supported on '{self.provider}'.") + + # Resolve which frameworks to check + if frameworks is None: + frameworks = constants.MAIN_INFERENCE_API_FRAMEWORKS + elif frameworks == "all": + frameworks = constants.ALL_INFERENCE_API_FRAMEWORKS + elif isinstance(frameworks, str): + frameworks = [frameworks] + frameworks = list(set(frameworks)) + + # Fetch them iteratively + models_by_task: Dict[str, List[str]] = {} + + def _unpack_response(framework: str, items: List[Dict]) -> None: + for model in items: + if framework == "sentence-transformers": + # Model running with the `sentence-transformers` framework can work with both tasks even if not + # branded as such in the API response + models_by_task.setdefault("feature-extraction", []).append(model["model_id"]) + models_by_task.setdefault("sentence-similarity", []).append(model["model_id"]) + else: + models_by_task.setdefault(model["task"], []).append(model["model_id"]) + + for framework in frameworks: + response = get_session().get( + f"{constants.INFERENCE_ENDPOINT}/framework/{framework}", headers=build_hf_headers(token=self.token) + ) + hf_raise_for_status(response) + _unpack_response(framework, response.json()) + + # Sort alphabetically for discoverability and return + for task, models in models_by_task.items(): + models_by_task[task] = sorted(set(models), key=lambda x: x.lower()) + return models_by_task + + def _get_client_session(self, headers: Optional[Dict] = None) -> "ClientSession": + aiohttp = _import_aiohttp() + client_headers = self.headers.copy() + if headers is not None: + client_headers.update(headers) + + # Return a new aiohttp ClientSession with correct settings. + session = aiohttp.ClientSession( + headers=client_headers, + cookies=self.cookies, + timeout=aiohttp.ClientTimeout(self.timeout), + trust_env=self.trust_env, + ) + + # Keep track of sessions to close them later + self._sessions[session] = set() + + # Override the `._request` method to register responses to be closed + session._wrapped_request = session._request + + async def _request(method, url, **kwargs): + response = await session._wrapped_request(method, url, **kwargs) + self._sessions[session].add(response) + return response + + session._request = _request + + # Override the 'close' method to + # 1. close ongoing responses + # 2. deregister the session when closed + session._close = session.close + + async def close_session(): + for response in self._sessions[session]: + response.close() + await session._close() + self._sessions.pop(session, None) + + session.close = close_session + return session + + async def get_endpoint_info(self, *, model: Optional[str] = None) -> Dict[str, Any]: + """ + Get information about the deployed endpoint. + + This endpoint is only available on endpoints powered by Text-Generation-Inference (TGI) or Text-Embedding-Inference (TEI). + Endpoints powered by `transformers` return an empty payload. + + Args: + model (`str`, *optional*): + The model to use for inference. Can be a model ID hosted on the Hugging Face Hub or a URL to a deployed + Inference Endpoint. This parameter overrides the model defined at the instance level. Defaults to None. + + Returns: + `Dict[str, Any]`: Information about the endpoint. + + Example: + ```py + # Must be run in an async context + >>> from huggingface_hub import AsyncInferenceClient + >>> client = AsyncInferenceClient("meta-llama/Meta-Llama-3-70B-Instruct") + >>> await client.get_endpoint_info() + { + 'model_id': 'meta-llama/Meta-Llama-3-70B-Instruct', + 'model_sha': None, + 'model_dtype': 'torch.float16', + 'model_device_type': 'cuda', + 'model_pipeline_tag': None, + 'max_concurrent_requests': 128, + 'max_best_of': 2, + 'max_stop_sequences': 4, + 'max_input_length': 8191, + 'max_total_tokens': 8192, + 'waiting_served_ratio': 0.3, + 'max_batch_total_tokens': 1259392, + 'max_waiting_tokens': 20, + 'max_batch_size': None, + 'validation_workers': 32, + 'max_client_batch_size': 4, + 'version': '2.0.2', + 'sha': 'dccab72549635c7eb5ddb17f43f0b7cdff07c214', + 'docker_label': 'sha-dccab72' + } + ``` + """ + if self.provider != "hf-inference": + raise ValueError(f"Getting endpoint info is not supported on '{self.provider}'.") + + model = model or self.model + if model is None: + raise ValueError("Model id not provided.") + if model.startswith(("http://", "https://")): + url = model.rstrip("/") + "/info" + else: + url = f"{constants.INFERENCE_ENDPOINT}/models/{model}/info" + + async with self._get_client_session(headers=build_hf_headers(token=self.token)) as client: + response = await client.get(url, proxy=self.proxies) + response.raise_for_status() + return await response.json() + + async def health_check(self, model: Optional[str] = None) -> bool: + """ + Check the health of the deployed endpoint. + + Health check is only available with Inference Endpoints powered by Text-Generation-Inference (TGI) or Text-Embedding-Inference (TEI). + For Inference API, please use [`InferenceClient.get_model_status`] instead. + + Args: + model (`str`, *optional*): + URL of the Inference Endpoint. This parameter overrides the model defined at the instance level. Defaults to None. + + Returns: + `bool`: True if everything is working fine. + + Example: + ```py + # Must be run in an async context + >>> from huggingface_hub import AsyncInferenceClient + >>> client = AsyncInferenceClient("https://jzgu0buei5.us-east-1.aws.endpoints.huggingface.cloud") + >>> await client.health_check() + True + ``` + """ + if self.provider != "hf-inference": + raise ValueError(f"Health check is not supported on '{self.provider}'.") + + model = model or self.model + if model is None: + raise ValueError("Model id not provided.") + if not model.startswith(("http://", "https://")): + raise ValueError( + "Model must be an Inference Endpoint URL. For serverless Inference API, please use `InferenceClient.get_model_status`." + ) + url = model.rstrip("/") + "/health" + + async with self._get_client_session(headers=build_hf_headers(token=self.token)) as client: + response = await client.get(url, proxy=self.proxies) + return response.status == 200 + + @_deprecate_method( + version="0.33.0", + message=( + "HF Inference API is getting revamped and will only support warm models in the future (no cold start allowed)." + " Use `HfApi.model_info` to get the model status both with HF Inference API and external providers." + ), + ) + async def get_model_status(self, model: Optional[str] = None) -> ModelStatus: + """ + Get the status of a model hosted on the HF Inference API. + + <Tip> + + This endpoint is mostly useful when you already know which model you want to use and want to check its + availability. If you want to discover already deployed models, you should rather use [`~InferenceClient.list_deployed_models`]. + + </Tip> + + Args: + model (`str`, *optional*): + Identifier of the model for witch the status gonna be checked. If model is not provided, + the model associated with this instance of [`InferenceClient`] will be used. Only HF Inference API service can be checked so the + identifier cannot be a URL. + + + Returns: + [`ModelStatus`]: An instance of ModelStatus dataclass, containing information, + about the state of the model: load, state, compute type and framework. + + Example: + ```py + # Must be run in an async context + >>> from huggingface_hub import AsyncInferenceClient + >>> client = AsyncInferenceClient() + >>> await client.get_model_status("meta-llama/Meta-Llama-3-8B-Instruct") + ModelStatus(loaded=True, state='Loaded', compute_type='gpu', framework='text-generation-inference') + ``` + """ + if self.provider != "hf-inference": + raise ValueError(f"Getting model status is not supported on '{self.provider}'.") + + model = model or self.model + if model is None: + raise ValueError("Model id not provided.") + if model.startswith("https://"): + raise NotImplementedError("Model status is only available for Inference API endpoints.") + url = f"{constants.INFERENCE_ENDPOINT}/status/{model}" + + async with self._get_client_session(headers=build_hf_headers(token=self.token)) as client: + response = await client.get(url, proxy=self.proxies) + response.raise_for_status() + response_data = await response.json() + + if "error" in response_data: + raise ValueError(response_data["error"]) + + return ModelStatus( + loaded=response_data["loaded"], + state=response_data["state"], + compute_type=response_data["compute_type"], + framework=response_data["framework"], + ) + + @property + def chat(self) -> "ProxyClientChat": + return ProxyClientChat(self) + + +class _ProxyClient: + """Proxy class to be able to call `client.chat.completion.create(...)` as OpenAI client.""" + + def __init__(self, client: AsyncInferenceClient): + self._client = client + + +class ProxyClientChat(_ProxyClient): + """Proxy class to be able to call `client.chat.completion.create(...)` as OpenAI client.""" + + @property + def completions(self) -> "ProxyClientChatCompletions": + return ProxyClientChatCompletions(self._client) + + +class ProxyClientChatCompletions(_ProxyClient): + """Proxy class to be able to call `client.chat.completion.create(...)` as OpenAI client.""" + + @property + def create(self): + return self._client.chat_completion diff --git a/.venv/lib/python3.12/site-packages/huggingface_hub/inference/_generated/types/__init__.py b/.venv/lib/python3.12/site-packages/huggingface_hub/inference/_generated/types/__init__.py new file mode 100644 index 00000000..edbc967c --- /dev/null +++ b/.venv/lib/python3.12/site-packages/huggingface_hub/inference/_generated/types/__init__.py @@ -0,0 +1,187 @@ +# This file is auto-generated by `utils/generate_inference_types.py`. +# Do not modify it manually. +# +# ruff: noqa: F401 + +from .audio_classification import ( + AudioClassificationInput, + AudioClassificationOutputElement, + AudioClassificationOutputTransform, + AudioClassificationParameters, +) +from .audio_to_audio import AudioToAudioInput, AudioToAudioOutputElement +from .automatic_speech_recognition import ( + AutomaticSpeechRecognitionEarlyStoppingEnum, + AutomaticSpeechRecognitionGenerationParameters, + AutomaticSpeechRecognitionInput, + AutomaticSpeechRecognitionOutput, + AutomaticSpeechRecognitionOutputChunk, + AutomaticSpeechRecognitionParameters, +) +from .base import BaseInferenceType +from .chat_completion import ( + ChatCompletionInput, + ChatCompletionInputFunctionDefinition, + ChatCompletionInputFunctionName, + ChatCompletionInputGrammarType, + ChatCompletionInputGrammarTypeType, + ChatCompletionInputMessage, + ChatCompletionInputMessageChunk, + ChatCompletionInputMessageChunkType, + ChatCompletionInputStreamOptions, + ChatCompletionInputTool, + ChatCompletionInputToolChoiceClass, + ChatCompletionInputToolChoiceEnum, + ChatCompletionInputURL, + ChatCompletionOutput, + ChatCompletionOutputComplete, + ChatCompletionOutputFunctionDefinition, + ChatCompletionOutputLogprob, + ChatCompletionOutputLogprobs, + ChatCompletionOutputMessage, + ChatCompletionOutputToolCall, + ChatCompletionOutputTopLogprob, + ChatCompletionOutputUsage, + ChatCompletionStreamOutput, + ChatCompletionStreamOutputChoice, + ChatCompletionStreamOutputDelta, + ChatCompletionStreamOutputDeltaToolCall, + ChatCompletionStreamOutputFunction, + ChatCompletionStreamOutputLogprob, + ChatCompletionStreamOutputLogprobs, + ChatCompletionStreamOutputTopLogprob, + ChatCompletionStreamOutputUsage, +) +from .depth_estimation import DepthEstimationInput, DepthEstimationOutput +from .document_question_answering import ( + DocumentQuestionAnsweringInput, + DocumentQuestionAnsweringInputData, + DocumentQuestionAnsweringOutputElement, + DocumentQuestionAnsweringParameters, +) +from .feature_extraction import FeatureExtractionInput, FeatureExtractionInputTruncationDirection +from .fill_mask import FillMaskInput, FillMaskOutputElement, FillMaskParameters +from .image_classification import ( + ImageClassificationInput, + ImageClassificationOutputElement, + ImageClassificationOutputTransform, + ImageClassificationParameters, +) +from .image_segmentation import ( + ImageSegmentationInput, + ImageSegmentationOutputElement, + ImageSegmentationParameters, + ImageSegmentationSubtask, +) +from .image_to_image import ImageToImageInput, ImageToImageOutput, ImageToImageParameters, ImageToImageTargetSize +from .image_to_text import ( + ImageToTextEarlyStoppingEnum, + ImageToTextGenerationParameters, + ImageToTextInput, + ImageToTextOutput, + ImageToTextParameters, +) +from .object_detection import ( + ObjectDetectionBoundingBox, + ObjectDetectionInput, + ObjectDetectionOutputElement, + ObjectDetectionParameters, +) +from .question_answering import ( + QuestionAnsweringInput, + QuestionAnsweringInputData, + QuestionAnsweringOutputElement, + QuestionAnsweringParameters, +) +from .sentence_similarity import SentenceSimilarityInput, SentenceSimilarityInputData +from .summarization import ( + SummarizationInput, + SummarizationOutput, + SummarizationParameters, + SummarizationTruncationStrategy, +) +from .table_question_answering import ( + Padding, + TableQuestionAnsweringInput, + TableQuestionAnsweringInputData, + TableQuestionAnsweringOutputElement, + TableQuestionAnsweringParameters, +) +from .text2text_generation import ( + Text2TextGenerationInput, + Text2TextGenerationOutput, + Text2TextGenerationParameters, + Text2TextGenerationTruncationStrategy, +) +from .text_classification import ( + TextClassificationInput, + TextClassificationOutputElement, + TextClassificationOutputTransform, + TextClassificationParameters, +) +from .text_generation import ( + TextGenerationInput, + TextGenerationInputGenerateParameters, + TextGenerationInputGrammarType, + TextGenerationOutput, + TextGenerationOutputBestOfSequence, + TextGenerationOutputDetails, + TextGenerationOutputFinishReason, + TextGenerationOutputPrefillToken, + TextGenerationOutputToken, + TextGenerationStreamOutput, + TextGenerationStreamOutputStreamDetails, + TextGenerationStreamOutputToken, + TypeEnum, +) +from .text_to_audio import ( + TextToAudioEarlyStoppingEnum, + TextToAudioGenerationParameters, + TextToAudioInput, + TextToAudioOutput, + TextToAudioParameters, +) +from .text_to_image import TextToImageInput, TextToImageOutput, TextToImageParameters +from .text_to_speech import ( + TextToSpeechEarlyStoppingEnum, + TextToSpeechGenerationParameters, + TextToSpeechInput, + TextToSpeechOutput, + TextToSpeechParameters, +) +from .text_to_video import TextToVideoInput, TextToVideoOutput, TextToVideoParameters +from .token_classification import ( + TokenClassificationAggregationStrategy, + TokenClassificationInput, + TokenClassificationOutputElement, + TokenClassificationParameters, +) +from .translation import TranslationInput, TranslationOutput, TranslationParameters, TranslationTruncationStrategy +from .video_classification import ( + VideoClassificationInput, + VideoClassificationOutputElement, + VideoClassificationOutputTransform, + VideoClassificationParameters, +) +from .visual_question_answering import ( + VisualQuestionAnsweringInput, + VisualQuestionAnsweringInputData, + VisualQuestionAnsweringOutputElement, + VisualQuestionAnsweringParameters, +) +from .zero_shot_classification import ( + ZeroShotClassificationInput, + ZeroShotClassificationOutputElement, + ZeroShotClassificationParameters, +) +from .zero_shot_image_classification import ( + ZeroShotImageClassificationInput, + ZeroShotImageClassificationOutputElement, + ZeroShotImageClassificationParameters, +) +from .zero_shot_object_detection import ( + ZeroShotObjectDetectionBoundingBox, + ZeroShotObjectDetectionInput, + ZeroShotObjectDetectionOutputElement, + ZeroShotObjectDetectionParameters, +) diff --git a/.venv/lib/python3.12/site-packages/huggingface_hub/inference/_generated/types/audio_classification.py b/.venv/lib/python3.12/site-packages/huggingface_hub/inference/_generated/types/audio_classification.py new file mode 100644 index 00000000..05305578 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/huggingface_hub/inference/_generated/types/audio_classification.py @@ -0,0 +1,43 @@ +# Inference code generated from the JSON schema spec in @huggingface/tasks. +# +# See: +# - script: https://github.com/huggingface/huggingface.js/blob/main/packages/tasks/scripts/inference-codegen.ts +# - specs: https://github.com/huggingface/huggingface.js/tree/main/packages/tasks/src/tasks. +from typing import Literal, Optional + +from .base import BaseInferenceType, dataclass_with_extra + + +AudioClassificationOutputTransform = Literal["sigmoid", "softmax", "none"] + + +@dataclass_with_extra +class AudioClassificationParameters(BaseInferenceType): + """Additional inference parameters for Audio Classification""" + + function_to_apply: Optional["AudioClassificationOutputTransform"] = None + """The function to apply to the model outputs in order to retrieve the scores.""" + top_k: Optional[int] = None + """When specified, limits the output to the top K most probable classes.""" + + +@dataclass_with_extra +class AudioClassificationInput(BaseInferenceType): + """Inputs for Audio Classification inference""" + + inputs: str + """The input audio data as a base64-encoded string. If no `parameters` are provided, you can + also provide the audio data as a raw bytes payload. + """ + parameters: Optional[AudioClassificationParameters] = None + """Additional inference parameters for Audio Classification""" + + +@dataclass_with_extra +class AudioClassificationOutputElement(BaseInferenceType): + """Outputs for Audio Classification inference""" + + label: str + """The predicted class label.""" + score: float + """The corresponding probability.""" diff --git a/.venv/lib/python3.12/site-packages/huggingface_hub/inference/_generated/types/audio_to_audio.py b/.venv/lib/python3.12/site-packages/huggingface_hub/inference/_generated/types/audio_to_audio.py new file mode 100644 index 00000000..43f376b5 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/huggingface_hub/inference/_generated/types/audio_to_audio.py @@ -0,0 +1,30 @@ +# Inference code generated from the JSON schema spec in @huggingface/tasks. +# +# See: +# - script: https://github.com/huggingface/huggingface.js/blob/main/packages/tasks/scripts/inference-codegen.ts +# - specs: https://github.com/huggingface/huggingface.js/tree/main/packages/tasks/src/tasks. +from typing import Any + +from .base import BaseInferenceType, dataclass_with_extra + + +@dataclass_with_extra +class AudioToAudioInput(BaseInferenceType): + """Inputs for Audio to Audio inference""" + + inputs: Any + """The input audio data""" + + +@dataclass_with_extra +class AudioToAudioOutputElement(BaseInferenceType): + """Outputs of inference for the Audio To Audio task + A generated audio file with its label. + """ + + blob: Any + """The generated audio file.""" + content_type: str + """The content type of audio file.""" + label: str + """The label of the audio file.""" diff --git a/.venv/lib/python3.12/site-packages/huggingface_hub/inference/_generated/types/automatic_speech_recognition.py b/.venv/lib/python3.12/site-packages/huggingface_hub/inference/_generated/types/automatic_speech_recognition.py new file mode 100644 index 00000000..1e885b6c --- /dev/null +++ b/.venv/lib/python3.12/site-packages/huggingface_hub/inference/_generated/types/automatic_speech_recognition.py @@ -0,0 +1,114 @@ +# Inference code generated from the JSON schema spec in @huggingface/tasks. +# +# See: +# - script: https://github.com/huggingface/huggingface.js/blob/main/packages/tasks/scripts/inference-codegen.ts +# - specs: https://github.com/huggingface/huggingface.js/tree/main/packages/tasks/src/tasks. +from typing import List, Literal, Optional, Union + +from .base import BaseInferenceType, dataclass_with_extra + + +AutomaticSpeechRecognitionEarlyStoppingEnum = Literal["never"] + + +@dataclass_with_extra +class AutomaticSpeechRecognitionGenerationParameters(BaseInferenceType): + """Parametrization of the text generation process""" + + do_sample: Optional[bool] = None + """Whether to use sampling instead of greedy decoding when generating new tokens.""" + early_stopping: Optional[Union[bool, "AutomaticSpeechRecognitionEarlyStoppingEnum"]] = None + """Controls the stopping condition for beam-based methods.""" + epsilon_cutoff: Optional[float] = None + """If set to float strictly between 0 and 1, only tokens with a conditional probability + greater than epsilon_cutoff will be sampled. In the paper, suggested values range from + 3e-4 to 9e-4, depending on the size of the model. See [Truncation Sampling as Language + Model Desmoothing](https://hf.co/papers/2210.15191) for more details. + """ + eta_cutoff: Optional[float] = None + """Eta sampling is a hybrid of locally typical sampling and epsilon sampling. If set to + float strictly between 0 and 1, a token is only considered if it is greater than either + eta_cutoff or sqrt(eta_cutoff) * exp(-entropy(softmax(next_token_logits))). The latter + term is intuitively the expected next token probability, scaled by sqrt(eta_cutoff). In + the paper, suggested values range from 3e-4 to 2e-3, depending on the size of the model. + See [Truncation Sampling as Language Model Desmoothing](https://hf.co/papers/2210.15191) + for more details. + """ + max_length: Optional[int] = None + """The maximum length (in tokens) of the generated text, including the input.""" + max_new_tokens: Optional[int] = None + """The maximum number of tokens to generate. Takes precedence over max_length.""" + min_length: Optional[int] = None + """The minimum length (in tokens) of the generated text, including the input.""" + min_new_tokens: Optional[int] = None + """The minimum number of tokens to generate. Takes precedence over min_length.""" + num_beam_groups: Optional[int] = None + """Number of groups to divide num_beams into in order to ensure diversity among different + groups of beams. See [this paper](https://hf.co/papers/1610.02424) for more details. + """ + num_beams: Optional[int] = None + """Number of beams to use for beam search.""" + penalty_alpha: Optional[float] = None + """The value balances the model confidence and the degeneration penalty in contrastive + search decoding. + """ + temperature: Optional[float] = None + """The value used to modulate the next token probabilities.""" + top_k: Optional[int] = None + """The number of highest probability vocabulary tokens to keep for top-k-filtering.""" + top_p: Optional[float] = None + """If set to float < 1, only the smallest set of most probable tokens with probabilities + that add up to top_p or higher are kept for generation. + """ + typical_p: Optional[float] = None + """Local typicality measures how similar the conditional probability of predicting a target + token next is to the expected conditional probability of predicting a random token next, + given the partial text already generated. If set to float < 1, the smallest set of the + most locally typical tokens with probabilities that add up to typical_p or higher are + kept for generation. See [this paper](https://hf.co/papers/2202.00666) for more details. + """ + use_cache: Optional[bool] = None + """Whether the model should use the past last key/values attentions to speed up decoding""" + + +@dataclass_with_extra +class AutomaticSpeechRecognitionParameters(BaseInferenceType): + """Additional inference parameters for Automatic Speech Recognition""" + + return_timestamps: Optional[bool] = None + """Whether to output corresponding timestamps with the generated text""" + # Will be deprecated in the future when the renaming to `generation_parameters` is implemented in transformers + generate_kwargs: Optional[AutomaticSpeechRecognitionGenerationParameters] = None + """Parametrization of the text generation process""" + + +@dataclass_with_extra +class AutomaticSpeechRecognitionInput(BaseInferenceType): + """Inputs for Automatic Speech Recognition inference""" + + inputs: str + """The input audio data as a base64-encoded string. If no `parameters` are provided, you can + also provide the audio data as a raw bytes payload. + """ + parameters: Optional[AutomaticSpeechRecognitionParameters] = None + """Additional inference parameters for Automatic Speech Recognition""" + + +@dataclass_with_extra +class AutomaticSpeechRecognitionOutputChunk(BaseInferenceType): + text: str + """A chunk of text identified by the model""" + timestamp: List[float] + """The start and end timestamps corresponding with the text""" + + +@dataclass_with_extra +class AutomaticSpeechRecognitionOutput(BaseInferenceType): + """Outputs of inference for the Automatic Speech Recognition task""" + + text: str + """The recognized text.""" + chunks: Optional[List[AutomaticSpeechRecognitionOutputChunk]] = None + """When returnTimestamps is enabled, chunks contains a list of audio chunks identified by + the model. + """ diff --git a/.venv/lib/python3.12/site-packages/huggingface_hub/inference/_generated/types/base.py b/.venv/lib/python3.12/site-packages/huggingface_hub/inference/_generated/types/base.py new file mode 100644 index 00000000..1f0c4687 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/huggingface_hub/inference/_generated/types/base.py @@ -0,0 +1,161 @@ +# Copyright 2024 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Contains a base class for all inference types.""" + +import inspect +import json +from dataclasses import asdict, dataclass +from typing import Any, Dict, List, Type, TypeVar, Union, get_args + + +T = TypeVar("T", bound="BaseInferenceType") + + +def _repr_with_extra(self): + fields = list(self.__dataclass_fields__.keys()) + other_fields = list(k for k in self.__dict__ if k not in fields) + return f"{self.__class__.__name__}({', '.join(f'{k}={self.__dict__[k]!r}' for k in fields + other_fields)})" + + +def dataclass_with_extra(cls: Type[T]) -> Type[T]: + """Decorator to add a custom __repr__ method to a dataclass, showing all fields, including extra ones. + + This decorator only works with dataclasses that inherit from `BaseInferenceType`. + """ + cls = dataclass(cls) + cls.__repr__ = _repr_with_extra # type: ignore[method-assign] + return cls + + +@dataclass +class BaseInferenceType(dict): + """Base class for all inference types. + + Object is a dataclass and a dict for backward compatibility but plan is to remove the dict part in the future. + + Handle parsing from dict, list and json strings in a permissive way to ensure future-compatibility (e.g. all fields + are made optional, and non-expected fields are added as dict attributes). + """ + + @classmethod + def parse_obj_as_list(cls: Type[T], data: Union[bytes, str, List, Dict]) -> List[T]: + """Alias to parse server response and return a single instance. + + See `parse_obj` for more details. + """ + output = cls.parse_obj(data) + if not isinstance(output, list): + raise ValueError(f"Invalid input data for {cls}. Expected a list, but got {type(output)}.") + return output + + @classmethod + def parse_obj_as_instance(cls: Type[T], data: Union[bytes, str, List, Dict]) -> T: + """Alias to parse server response and return a single instance. + + See `parse_obj` for more details. + """ + output = cls.parse_obj(data) + if isinstance(output, list): + raise ValueError(f"Invalid input data for {cls}. Expected a single instance, but got a list.") + return output + + @classmethod + def parse_obj(cls: Type[T], data: Union[bytes, str, List, Dict]) -> Union[List[T], T]: + """Parse server response as a dataclass or list of dataclasses. + + To enable future-compatibility, we want to handle cases where the server return more fields than expected. + In such cases, we don't want to raise an error but still create the dataclass object. Remaining fields are + added as dict attributes. + """ + # Parse server response (from bytes) + if isinstance(data, bytes): + data = data.decode() + if isinstance(data, str): + data = json.loads(data) + + # If a list, parse each item individually + if isinstance(data, List): + return [cls.parse_obj(d) for d in data] # type: ignore [misc] + + # At this point, we expect a dict + if not isinstance(data, dict): + raise ValueError(f"Invalid data type: {type(data)}") + + init_values = {} + other_values = {} + for key, value in data.items(): + key = normalize_key(key) + if key in cls.__dataclass_fields__ and cls.__dataclass_fields__[key].init: + if isinstance(value, dict) or isinstance(value, list): + field_type = cls.__dataclass_fields__[key].type + + # if `field_type` is a `BaseInferenceType`, parse it + if inspect.isclass(field_type) and issubclass(field_type, BaseInferenceType): + value = field_type.parse_obj(value) + + # otherwise, recursively parse nested dataclasses (if possible) + # `get_args` returns handle Union and Optional for us + else: + expected_types = get_args(field_type) + for expected_type in expected_types: + if getattr(expected_type, "_name", None) == "List": + expected_type = get_args(expected_type)[ + 0 + ] # assume same type for all items in the list + if inspect.isclass(expected_type) and issubclass(expected_type, BaseInferenceType): + value = expected_type.parse_obj(value) + break + init_values[key] = value + else: + other_values[key] = value + + # Make all missing fields default to None + # => ensure that dataclass initialization will never fail even if the server does not return all fields. + for key in cls.__dataclass_fields__: + if key not in init_values: + init_values[key] = None + + # Initialize dataclass with expected values + item = cls(**init_values) + + # Add remaining fields as dict attributes + item.update(other_values) + + # Add remaining fields as extra dataclass fields. + # They won't be part of the dataclass fields but will be accessible as attributes. + # Use @dataclass_with_extra to show them in __repr__. + item.__dict__.update(other_values) + return item + + def __post_init__(self): + self.update(asdict(self)) + + def __setitem__(self, __key: Any, __value: Any) -> None: + # Hacky way to keep dataclass values in sync when dict is updated + super().__setitem__(__key, __value) + if __key in self.__dataclass_fields__ and getattr(self, __key, None) != __value: + self.__setattr__(__key, __value) + return + + def __setattr__(self, __name: str, __value: Any) -> None: + # Hacky way to keep dict values is sync when dataclass is updated + super().__setattr__(__name, __value) + if self.get(__name) != __value: + self[__name] = __value + return + + +def normalize_key(key: str) -> str: + # e.g "content-type" -> "content_type", "Accept" -> "accept" + return key.replace("-", "_").replace(" ", "_").lower() diff --git a/.venv/lib/python3.12/site-packages/huggingface_hub/inference/_generated/types/chat_completion.py b/.venv/lib/python3.12/site-packages/huggingface_hub/inference/_generated/types/chat_completion.py new file mode 100644 index 00000000..a817d3f8 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/huggingface_hub/inference/_generated/types/chat_completion.py @@ -0,0 +1,301 @@ +# Inference code generated from the JSON schema spec in @huggingface/tasks. +# +# See: +# - script: https://github.com/huggingface/huggingface.js/blob/main/packages/tasks/scripts/inference-codegen.ts +# - specs: https://github.com/huggingface/huggingface.js/tree/main/packages/tasks/src/tasks. +from typing import Any, List, Literal, Optional, Union + +from .base import BaseInferenceType, dataclass_with_extra + + +@dataclass_with_extra +class ChatCompletionInputURL(BaseInferenceType): + url: str + + +ChatCompletionInputMessageChunkType = Literal["text", "image_url"] + + +@dataclass_with_extra +class ChatCompletionInputMessageChunk(BaseInferenceType): + type: "ChatCompletionInputMessageChunkType" + image_url: Optional[ChatCompletionInputURL] = None + text: Optional[str] = None + + +@dataclass_with_extra +class ChatCompletionInputMessage(BaseInferenceType): + content: Union[List[ChatCompletionInputMessageChunk], str] + role: str + name: Optional[str] = None + + +ChatCompletionInputGrammarTypeType = Literal["json", "regex"] + + +@dataclass_with_extra +class ChatCompletionInputGrammarType(BaseInferenceType): + type: "ChatCompletionInputGrammarTypeType" + value: Any + """A string that represents a [JSON Schema](https://json-schema.org/). + JSON Schema is a declarative language that allows to annotate JSON documents + with types and descriptions. + """ + + +@dataclass_with_extra +class ChatCompletionInputStreamOptions(BaseInferenceType): + include_usage: bool + """If set, an additional chunk will be streamed before the data: [DONE] message. The usage + field on this chunk shows the token usage statistics for the entire request, and the + choices field will always be an empty array. All other chunks will also include a usage + field, but with a null value. + """ + + +@dataclass_with_extra +class ChatCompletionInputFunctionName(BaseInferenceType): + name: str + + +@dataclass_with_extra +class ChatCompletionInputToolChoiceClass(BaseInferenceType): + function: ChatCompletionInputFunctionName + + +ChatCompletionInputToolChoiceEnum = Literal["auto", "none", "required"] + + +@dataclass_with_extra +class ChatCompletionInputFunctionDefinition(BaseInferenceType): + arguments: Any + name: str + description: Optional[str] = None + + +@dataclass_with_extra +class ChatCompletionInputTool(BaseInferenceType): + function: ChatCompletionInputFunctionDefinition + type: str + + +@dataclass_with_extra +class ChatCompletionInput(BaseInferenceType): + """Chat Completion Input. + Auto-generated from TGI specs. + For more details, check out + https://github.com/huggingface/huggingface.js/blob/main/packages/tasks/scripts/inference-tgi-import.ts. + """ + + messages: List[ChatCompletionInputMessage] + """A list of messages comprising the conversation so far.""" + frequency_penalty: Optional[float] = None + """Number between -2.0 and 2.0. Positive values penalize new tokens based on their existing + frequency in the text so far, + decreasing the model's likelihood to repeat the same line verbatim. + """ + logit_bias: Optional[List[float]] = None + """UNUSED + Modify the likelihood of specified tokens appearing in the completion. Accepts a JSON + object that maps tokens + (specified by their token ID in the tokenizer) to an associated bias value from -100 to + 100. Mathematically, + the bias is added to the logits generated by the model prior to sampling. The exact + effect will vary per model, + but values between -1 and 1 should decrease or increase likelihood of selection; values + like -100 or 100 should + result in a ban or exclusive selection of the relevant token. + """ + logprobs: Optional[bool] = None + """Whether to return log probabilities of the output tokens or not. If true, returns the log + probabilities of each + output token returned in the content of message. + """ + max_tokens: Optional[int] = None + """The maximum number of tokens that can be generated in the chat completion.""" + model: Optional[str] = None + """[UNUSED] ID of the model to use. See the model endpoint compatibility table for details + on which models work with the Chat API. + """ + n: Optional[int] = None + """UNUSED + How many chat completion choices to generate for each input message. Note that you will + be charged based on the + number of generated tokens across all of the choices. Keep n as 1 to minimize costs. + """ + presence_penalty: Optional[float] = None + """Number between -2.0 and 2.0. Positive values penalize new tokens based on whether they + appear in the text so far, + increasing the model's likelihood to talk about new topics + """ + response_format: Optional[ChatCompletionInputGrammarType] = None + seed: Optional[int] = None + stop: Optional[List[str]] = None + """Up to 4 sequences where the API will stop generating further tokens.""" + stream: Optional[bool] = None + stream_options: Optional[ChatCompletionInputStreamOptions] = None + temperature: Optional[float] = None + """What sampling temperature to use, between 0 and 2. Higher values like 0.8 will make the + output more random, while + lower values like 0.2 will make it more focused and deterministic. + We generally recommend altering this or `top_p` but not both. + """ + tool_choice: Optional[Union[ChatCompletionInputToolChoiceClass, "ChatCompletionInputToolChoiceEnum"]] = None + tool_prompt: Optional[str] = None + """A prompt to be appended before the tools""" + tools: Optional[List[ChatCompletionInputTool]] = None + """A list of tools the model may call. Currently, only functions are supported as a tool. + Use this to provide a list of + functions the model may generate JSON inputs for. + """ + top_logprobs: Optional[int] = None + """An integer between 0 and 5 specifying the number of most likely tokens to return at each + token position, each with + an associated log probability. logprobs must be set to true if this parameter is used. + """ + top_p: Optional[float] = None + """An alternative to sampling with temperature, called nucleus sampling, where the model + considers the results of the + tokens with top_p probability mass. So 0.1 means only the tokens comprising the top 10% + probability mass are considered. + """ + + +@dataclass_with_extra +class ChatCompletionOutputTopLogprob(BaseInferenceType): + logprob: float + token: str + + +@dataclass_with_extra +class ChatCompletionOutputLogprob(BaseInferenceType): + logprob: float + token: str + top_logprobs: List[ChatCompletionOutputTopLogprob] + + +@dataclass_with_extra +class ChatCompletionOutputLogprobs(BaseInferenceType): + content: List[ChatCompletionOutputLogprob] + + +@dataclass_with_extra +class ChatCompletionOutputFunctionDefinition(BaseInferenceType): + arguments: Any + name: str + description: Optional[str] = None + + +@dataclass_with_extra +class ChatCompletionOutputToolCall(BaseInferenceType): + function: ChatCompletionOutputFunctionDefinition + id: str + type: str + + +@dataclass_with_extra +class ChatCompletionOutputMessage(BaseInferenceType): + role: str + content: Optional[str] = None + tool_calls: Optional[List[ChatCompletionOutputToolCall]] = None + + +@dataclass_with_extra +class ChatCompletionOutputComplete(BaseInferenceType): + finish_reason: str + index: int + message: ChatCompletionOutputMessage + logprobs: Optional[ChatCompletionOutputLogprobs] = None + + +@dataclass_with_extra +class ChatCompletionOutputUsage(BaseInferenceType): + completion_tokens: int + prompt_tokens: int + total_tokens: int + + +@dataclass_with_extra +class ChatCompletionOutput(BaseInferenceType): + """Chat Completion Output. + Auto-generated from TGI specs. + For more details, check out + https://github.com/huggingface/huggingface.js/blob/main/packages/tasks/scripts/inference-tgi-import.ts. + """ + + choices: List[ChatCompletionOutputComplete] + created: int + id: str + model: str + system_fingerprint: str + usage: ChatCompletionOutputUsage + + +@dataclass_with_extra +class ChatCompletionStreamOutputFunction(BaseInferenceType): + arguments: str + name: Optional[str] = None + + +@dataclass_with_extra +class ChatCompletionStreamOutputDeltaToolCall(BaseInferenceType): + function: ChatCompletionStreamOutputFunction + id: str + index: int + type: str + + +@dataclass_with_extra +class ChatCompletionStreamOutputDelta(BaseInferenceType): + role: str + content: Optional[str] = None + tool_calls: Optional[ChatCompletionStreamOutputDeltaToolCall] = None + + +@dataclass_with_extra +class ChatCompletionStreamOutputTopLogprob(BaseInferenceType): + logprob: float + token: str + + +@dataclass_with_extra +class ChatCompletionStreamOutputLogprob(BaseInferenceType): + logprob: float + token: str + top_logprobs: List[ChatCompletionStreamOutputTopLogprob] + + +@dataclass_with_extra +class ChatCompletionStreamOutputLogprobs(BaseInferenceType): + content: List[ChatCompletionStreamOutputLogprob] + + +@dataclass_with_extra +class ChatCompletionStreamOutputChoice(BaseInferenceType): + delta: ChatCompletionStreamOutputDelta + index: int + finish_reason: Optional[str] = None + logprobs: Optional[ChatCompletionStreamOutputLogprobs] = None + + +@dataclass_with_extra +class ChatCompletionStreamOutputUsage(BaseInferenceType): + completion_tokens: int + prompt_tokens: int + total_tokens: int + + +@dataclass_with_extra +class ChatCompletionStreamOutput(BaseInferenceType): + """Chat Completion Stream Output. + Auto-generated from TGI specs. + For more details, check out + https://github.com/huggingface/huggingface.js/blob/main/packages/tasks/scripts/inference-tgi-import.ts. + """ + + choices: List[ChatCompletionStreamOutputChoice] + created: int + id: str + model: str + system_fingerprint: str + usage: Optional[ChatCompletionStreamOutputUsage] = None diff --git a/.venv/lib/python3.12/site-packages/huggingface_hub/inference/_generated/types/depth_estimation.py b/.venv/lib/python3.12/site-packages/huggingface_hub/inference/_generated/types/depth_estimation.py new file mode 100644 index 00000000..1e09bdff --- /dev/null +++ b/.venv/lib/python3.12/site-packages/huggingface_hub/inference/_generated/types/depth_estimation.py @@ -0,0 +1,28 @@ +# Inference code generated from the JSON schema spec in @huggingface/tasks. +# +# See: +# - script: https://github.com/huggingface/huggingface.js/blob/main/packages/tasks/scripts/inference-codegen.ts +# - specs: https://github.com/huggingface/huggingface.js/tree/main/packages/tasks/src/tasks. +from typing import Any, Dict, Optional + +from .base import BaseInferenceType, dataclass_with_extra + + +@dataclass_with_extra +class DepthEstimationInput(BaseInferenceType): + """Inputs for Depth Estimation inference""" + + inputs: Any + """The input image data""" + parameters: Optional[Dict[str, Any]] = None + """Additional inference parameters for Depth Estimation""" + + +@dataclass_with_extra +class DepthEstimationOutput(BaseInferenceType): + """Outputs of inference for the Depth Estimation task""" + + depth: Any + """The predicted depth as an image""" + predicted_depth: Any + """The predicted depth as a tensor""" diff --git a/.venv/lib/python3.12/site-packages/huggingface_hub/inference/_generated/types/document_question_answering.py b/.venv/lib/python3.12/site-packages/huggingface_hub/inference/_generated/types/document_question_answering.py new file mode 100644 index 00000000..2457d2c8 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/huggingface_hub/inference/_generated/types/document_question_answering.py @@ -0,0 +1,80 @@ +# Inference code generated from the JSON schema spec in @huggingface/tasks. +# +# See: +# - script: https://github.com/huggingface/huggingface.js/blob/main/packages/tasks/scripts/inference-codegen.ts +# - specs: https://github.com/huggingface/huggingface.js/tree/main/packages/tasks/src/tasks. +from typing import Any, List, Optional, Union + +from .base import BaseInferenceType, dataclass_with_extra + + +@dataclass_with_extra +class DocumentQuestionAnsweringInputData(BaseInferenceType): + """One (document, question) pair to answer""" + + image: Any + """The image on which the question is asked""" + question: str + """A question to ask of the document""" + + +@dataclass_with_extra +class DocumentQuestionAnsweringParameters(BaseInferenceType): + """Additional inference parameters for Document Question Answering""" + + doc_stride: Optional[int] = None + """If the words in the document are too long to fit with the question for the model, it will + be split in several chunks with some overlap. This argument controls the size of that + overlap. + """ + handle_impossible_answer: Optional[bool] = None + """Whether to accept impossible as an answer""" + lang: Optional[str] = None + """Language to use while running OCR. Defaults to english.""" + max_answer_len: Optional[int] = None + """The maximum length of predicted answers (e.g., only answers with a shorter length are + considered). + """ + max_question_len: Optional[int] = None + """The maximum length of the question after tokenization. It will be truncated if needed.""" + max_seq_len: Optional[int] = None + """The maximum length of the total sentence (context + question) in tokens of each chunk + passed to the model. The context will be split in several chunks (using doc_stride as + overlap) if needed. + """ + top_k: Optional[int] = None + """The number of answers to return (will be chosen by order of likelihood). Can return less + than top_k answers if there are not enough options available within the context. + """ + word_boxes: Optional[List[Union[List[float], str]]] = None + """A list of words and bounding boxes (normalized 0->1000). If provided, the inference will + skip the OCR step and use the provided bounding boxes instead. + """ + + +@dataclass_with_extra +class DocumentQuestionAnsweringInput(BaseInferenceType): + """Inputs for Document Question Answering inference""" + + inputs: DocumentQuestionAnsweringInputData + """One (document, question) pair to answer""" + parameters: Optional[DocumentQuestionAnsweringParameters] = None + """Additional inference parameters for Document Question Answering""" + + +@dataclass_with_extra +class DocumentQuestionAnsweringOutputElement(BaseInferenceType): + """Outputs of inference for the Document Question Answering task""" + + answer: str + """The answer to the question.""" + end: int + """The end word index of the answer (in the OCR’d version of the input or provided word + boxes). + """ + score: float + """The probability associated to the answer.""" + start: int + """The start word index of the answer (in the OCR’d version of the input or provided word + boxes). + """ diff --git a/.venv/lib/python3.12/site-packages/huggingface_hub/inference/_generated/types/feature_extraction.py b/.venv/lib/python3.12/site-packages/huggingface_hub/inference/_generated/types/feature_extraction.py new file mode 100644 index 00000000..e965ddba --- /dev/null +++ b/.venv/lib/python3.12/site-packages/huggingface_hub/inference/_generated/types/feature_extraction.py @@ -0,0 +1,36 @@ +# Inference code generated from the JSON schema spec in @huggingface/tasks. +# +# See: +# - script: https://github.com/huggingface/huggingface.js/blob/main/packages/tasks/scripts/inference-codegen.ts +# - specs: https://github.com/huggingface/huggingface.js/tree/main/packages/tasks/src/tasks. +from typing import List, Literal, Optional, Union + +from .base import BaseInferenceType, dataclass_with_extra + + +FeatureExtractionInputTruncationDirection = Literal["Left", "Right"] + + +@dataclass_with_extra +class FeatureExtractionInput(BaseInferenceType): + """Feature Extraction Input. + Auto-generated from TEI specs. + For more details, check out + https://github.com/huggingface/huggingface.js/blob/main/packages/tasks/scripts/inference-tei-import.ts. + """ + + inputs: Union[List[str], str] + """The text or list of texts to embed.""" + normalize: Optional[bool] = None + prompt_name: Optional[str] = None + """The name of the prompt that should be used by for encoding. If not set, no prompt + will be applied. + Must be a key in the `sentence-transformers` configuration `prompts` dictionary. + For example if ``prompt_name`` is "query" and the ``prompts`` is {"query": "query: ", + ...}, + then the sentence "What is the capital of France?" will be encoded as + "query: What is the capital of France?" because the prompt text will be prepended before + any text to encode. + """ + truncate: Optional[bool] = None + truncation_direction: Optional["FeatureExtractionInputTruncationDirection"] = None diff --git a/.venv/lib/python3.12/site-packages/huggingface_hub/inference/_generated/types/fill_mask.py b/.venv/lib/python3.12/site-packages/huggingface_hub/inference/_generated/types/fill_mask.py new file mode 100644 index 00000000..dfcdc56b --- /dev/null +++ b/.venv/lib/python3.12/site-packages/huggingface_hub/inference/_generated/types/fill_mask.py @@ -0,0 +1,47 @@ +# Inference code generated from the JSON schema spec in @huggingface/tasks. +# +# See: +# - script: https://github.com/huggingface/huggingface.js/blob/main/packages/tasks/scripts/inference-codegen.ts +# - specs: https://github.com/huggingface/huggingface.js/tree/main/packages/tasks/src/tasks. +from typing import Any, List, Optional + +from .base import BaseInferenceType, dataclass_with_extra + + +@dataclass_with_extra +class FillMaskParameters(BaseInferenceType): + """Additional inference parameters for Fill Mask""" + + targets: Optional[List[str]] = None + """When passed, the model will limit the scores to the passed targets instead of looking up + in the whole vocabulary. If the provided targets are not in the model vocab, they will be + tokenized and the first resulting token will be used (with a warning, and that might be + slower). + """ + top_k: Optional[int] = None + """When passed, overrides the number of predictions to return.""" + + +@dataclass_with_extra +class FillMaskInput(BaseInferenceType): + """Inputs for Fill Mask inference""" + + inputs: str + """The text with masked tokens""" + parameters: Optional[FillMaskParameters] = None + """Additional inference parameters for Fill Mask""" + + +@dataclass_with_extra +class FillMaskOutputElement(BaseInferenceType): + """Outputs of inference for the Fill Mask task""" + + score: float + """The corresponding probability""" + sequence: str + """The corresponding input with the mask token prediction.""" + token: int + """The predicted token id (to replace the masked one).""" + token_str: Any + fill_mask_output_token_str: Optional[str] = None + """The predicted token (to replace the masked one).""" diff --git a/.venv/lib/python3.12/site-packages/huggingface_hub/inference/_generated/types/image_classification.py b/.venv/lib/python3.12/site-packages/huggingface_hub/inference/_generated/types/image_classification.py new file mode 100644 index 00000000..0fdda6c8 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/huggingface_hub/inference/_generated/types/image_classification.py @@ -0,0 +1,43 @@ +# Inference code generated from the JSON schema spec in @huggingface/tasks. +# +# See: +# - script: https://github.com/huggingface/huggingface.js/blob/main/packages/tasks/scripts/inference-codegen.ts +# - specs: https://github.com/huggingface/huggingface.js/tree/main/packages/tasks/src/tasks. +from typing import Literal, Optional + +from .base import BaseInferenceType, dataclass_with_extra + + +ImageClassificationOutputTransform = Literal["sigmoid", "softmax", "none"] + + +@dataclass_with_extra +class ImageClassificationParameters(BaseInferenceType): + """Additional inference parameters for Image Classification""" + + function_to_apply: Optional["ImageClassificationOutputTransform"] = None + """The function to apply to the model outputs in order to retrieve the scores.""" + top_k: Optional[int] = None + """When specified, limits the output to the top K most probable classes.""" + + +@dataclass_with_extra +class ImageClassificationInput(BaseInferenceType): + """Inputs for Image Classification inference""" + + inputs: str + """The input image data as a base64-encoded string. If no `parameters` are provided, you can + also provide the image data as a raw bytes payload. + """ + parameters: Optional[ImageClassificationParameters] = None + """Additional inference parameters for Image Classification""" + + +@dataclass_with_extra +class ImageClassificationOutputElement(BaseInferenceType): + """Outputs of inference for the Image Classification task""" + + label: str + """The predicted class label.""" + score: float + """The corresponding probability.""" diff --git a/.venv/lib/python3.12/site-packages/huggingface_hub/inference/_generated/types/image_segmentation.py b/.venv/lib/python3.12/site-packages/huggingface_hub/inference/_generated/types/image_segmentation.py new file mode 100644 index 00000000..3dbf61db --- /dev/null +++ b/.venv/lib/python3.12/site-packages/huggingface_hub/inference/_generated/types/image_segmentation.py @@ -0,0 +1,51 @@ +# Inference code generated from the JSON schema spec in @huggingface/tasks. +# +# See: +# - script: https://github.com/huggingface/huggingface.js/blob/main/packages/tasks/scripts/inference-codegen.ts +# - specs: https://github.com/huggingface/huggingface.js/tree/main/packages/tasks/src/tasks. +from typing import Literal, Optional + +from .base import BaseInferenceType, dataclass_with_extra + + +ImageSegmentationSubtask = Literal["instance", "panoptic", "semantic"] + + +@dataclass_with_extra +class ImageSegmentationParameters(BaseInferenceType): + """Additional inference parameters for Image Segmentation""" + + mask_threshold: Optional[float] = None + """Threshold to use when turning the predicted masks into binary values.""" + overlap_mask_area_threshold: Optional[float] = None + """Mask overlap threshold to eliminate small, disconnected segments.""" + subtask: Optional["ImageSegmentationSubtask"] = None + """Segmentation task to be performed, depending on model capabilities.""" + threshold: Optional[float] = None + """Probability threshold to filter out predicted masks.""" + + +@dataclass_with_extra +class ImageSegmentationInput(BaseInferenceType): + """Inputs for Image Segmentation inference""" + + inputs: str + """The input image data as a base64-encoded string. If no `parameters` are provided, you can + also provide the image data as a raw bytes payload. + """ + parameters: Optional[ImageSegmentationParameters] = None + """Additional inference parameters for Image Segmentation""" + + +@dataclass_with_extra +class ImageSegmentationOutputElement(BaseInferenceType): + """Outputs of inference for the Image Segmentation task + A predicted mask / segment + """ + + label: str + """The label of the predicted segment.""" + mask: str + """The corresponding mask as a black-and-white image (base64-encoded).""" + score: Optional[float] = None + """The score or confidence degree the model has.""" diff --git a/.venv/lib/python3.12/site-packages/huggingface_hub/inference/_generated/types/image_to_image.py b/.venv/lib/python3.12/site-packages/huggingface_hub/inference/_generated/types/image_to_image.py new file mode 100644 index 00000000..0deb0374 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/huggingface_hub/inference/_generated/types/image_to_image.py @@ -0,0 +1,54 @@ +# Inference code generated from the JSON schema spec in @huggingface/tasks. +# +# See: +# - script: https://github.com/huggingface/huggingface.js/blob/main/packages/tasks/scripts/inference-codegen.ts +# - specs: https://github.com/huggingface/huggingface.js/tree/main/packages/tasks/src/tasks. +from typing import Any, Optional + +from .base import BaseInferenceType, dataclass_with_extra + + +@dataclass_with_extra +class ImageToImageTargetSize(BaseInferenceType): + """The size in pixel of the output image.""" + + height: int + width: int + + +@dataclass_with_extra +class ImageToImageParameters(BaseInferenceType): + """Additional inference parameters for Image To Image""" + + guidance_scale: Optional[float] = None + """For diffusion models. A higher guidance scale value encourages the model to generate + images closely linked to the text prompt at the expense of lower image quality. + """ + negative_prompt: Optional[str] = None + """One prompt to guide what NOT to include in image generation.""" + num_inference_steps: Optional[int] = None + """For diffusion models. The number of denoising steps. More denoising steps usually lead to + a higher quality image at the expense of slower inference. + """ + target_size: Optional[ImageToImageTargetSize] = None + """The size in pixel of the output image.""" + + +@dataclass_with_extra +class ImageToImageInput(BaseInferenceType): + """Inputs for Image To Image inference""" + + inputs: str + """The input image data as a base64-encoded string. If no `parameters` are provided, you can + also provide the image data as a raw bytes payload. + """ + parameters: Optional[ImageToImageParameters] = None + """Additional inference parameters for Image To Image""" + + +@dataclass_with_extra +class ImageToImageOutput(BaseInferenceType): + """Outputs of inference for the Image To Image task""" + + image: Any + """The output image returned as raw bytes in the payload.""" diff --git a/.venv/lib/python3.12/site-packages/huggingface_hub/inference/_generated/types/image_to_text.py b/.venv/lib/python3.12/site-packages/huggingface_hub/inference/_generated/types/image_to_text.py new file mode 100644 index 00000000..550d95e1 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/huggingface_hub/inference/_generated/types/image_to_text.py @@ -0,0 +1,101 @@ +# Inference code generated from the JSON schema spec in @huggingface/tasks. +# +# See: +# - script: https://github.com/huggingface/huggingface.js/blob/main/packages/tasks/scripts/inference-codegen.ts +# - specs: https://github.com/huggingface/huggingface.js/tree/main/packages/tasks/src/tasks. +from typing import Any, Literal, Optional, Union + +from .base import BaseInferenceType, dataclass_with_extra + + +ImageToTextEarlyStoppingEnum = Literal["never"] + + +@dataclass_with_extra +class ImageToTextGenerationParameters(BaseInferenceType): + """Parametrization of the text generation process""" + + do_sample: Optional[bool] = None + """Whether to use sampling instead of greedy decoding when generating new tokens.""" + early_stopping: Optional[Union[bool, "ImageToTextEarlyStoppingEnum"]] = None + """Controls the stopping condition for beam-based methods.""" + epsilon_cutoff: Optional[float] = None + """If set to float strictly between 0 and 1, only tokens with a conditional probability + greater than epsilon_cutoff will be sampled. In the paper, suggested values range from + 3e-4 to 9e-4, depending on the size of the model. See [Truncation Sampling as Language + Model Desmoothing](https://hf.co/papers/2210.15191) for more details. + """ + eta_cutoff: Optional[float] = None + """Eta sampling is a hybrid of locally typical sampling and epsilon sampling. If set to + float strictly between 0 and 1, a token is only considered if it is greater than either + eta_cutoff or sqrt(eta_cutoff) * exp(-entropy(softmax(next_token_logits))). The latter + term is intuitively the expected next token probability, scaled by sqrt(eta_cutoff). In + the paper, suggested values range from 3e-4 to 2e-3, depending on the size of the model. + See [Truncation Sampling as Language Model Desmoothing](https://hf.co/papers/2210.15191) + for more details. + """ + max_length: Optional[int] = None + """The maximum length (in tokens) of the generated text, including the input.""" + max_new_tokens: Optional[int] = None + """The maximum number of tokens to generate. Takes precedence over max_length.""" + min_length: Optional[int] = None + """The minimum length (in tokens) of the generated text, including the input.""" + min_new_tokens: Optional[int] = None + """The minimum number of tokens to generate. Takes precedence over min_length.""" + num_beam_groups: Optional[int] = None + """Number of groups to divide num_beams into in order to ensure diversity among different + groups of beams. See [this paper](https://hf.co/papers/1610.02424) for more details. + """ + num_beams: Optional[int] = None + """Number of beams to use for beam search.""" + penalty_alpha: Optional[float] = None + """The value balances the model confidence and the degeneration penalty in contrastive + search decoding. + """ + temperature: Optional[float] = None + """The value used to modulate the next token probabilities.""" + top_k: Optional[int] = None + """The number of highest probability vocabulary tokens to keep for top-k-filtering.""" + top_p: Optional[float] = None + """If set to float < 1, only the smallest set of most probable tokens with probabilities + that add up to top_p or higher are kept for generation. + """ + typical_p: Optional[float] = None + """Local typicality measures how similar the conditional probability of predicting a target + token next is to the expected conditional probability of predicting a random token next, + given the partial text already generated. If set to float < 1, the smallest set of the + most locally typical tokens with probabilities that add up to typical_p or higher are + kept for generation. See [this paper](https://hf.co/papers/2202.00666) for more details. + """ + use_cache: Optional[bool] = None + """Whether the model should use the past last key/values attentions to speed up decoding""" + + +@dataclass_with_extra +class ImageToTextParameters(BaseInferenceType): + """Additional inference parameters for Image To Text""" + + max_new_tokens: Optional[int] = None + """The amount of maximum tokens to generate.""" + # Will be deprecated in the future when the renaming to `generation_parameters` is implemented in transformers + generate_kwargs: Optional[ImageToTextGenerationParameters] = None + """Parametrization of the text generation process""" + + +@dataclass_with_extra +class ImageToTextInput(BaseInferenceType): + """Inputs for Image To Text inference""" + + inputs: Any + """The input image data""" + parameters: Optional[ImageToTextParameters] = None + """Additional inference parameters for Image To Text""" + + +@dataclass_with_extra +class ImageToTextOutput(BaseInferenceType): + """Outputs of inference for the Image To Text task""" + + generated_text: Any + image_to_text_output_generated_text: Optional[str] = None + """The generated text.""" diff --git a/.venv/lib/python3.12/site-packages/huggingface_hub/inference/_generated/types/object_detection.py b/.venv/lib/python3.12/site-packages/huggingface_hub/inference/_generated/types/object_detection.py new file mode 100644 index 00000000..75f3ebcf --- /dev/null +++ b/.venv/lib/python3.12/site-packages/huggingface_hub/inference/_generated/types/object_detection.py @@ -0,0 +1,58 @@ +# Inference code generated from the JSON schema spec in @huggingface/tasks. +# +# See: +# - script: https://github.com/huggingface/huggingface.js/blob/main/packages/tasks/scripts/inference-codegen.ts +# - specs: https://github.com/huggingface/huggingface.js/tree/main/packages/tasks/src/tasks. +from typing import Optional + +from .base import BaseInferenceType, dataclass_with_extra + + +@dataclass_with_extra +class ObjectDetectionParameters(BaseInferenceType): + """Additional inference parameters for Object Detection""" + + threshold: Optional[float] = None + """The probability necessary to make a prediction.""" + + +@dataclass_with_extra +class ObjectDetectionInput(BaseInferenceType): + """Inputs for Object Detection inference""" + + inputs: str + """The input image data as a base64-encoded string. If no `parameters` are provided, you can + also provide the image data as a raw bytes payload. + """ + parameters: Optional[ObjectDetectionParameters] = None + """Additional inference parameters for Object Detection""" + + +@dataclass_with_extra +class ObjectDetectionBoundingBox(BaseInferenceType): + """The predicted bounding box. Coordinates are relative to the top left corner of the input + image. + """ + + xmax: int + """The x-coordinate of the bottom-right corner of the bounding box.""" + xmin: int + """The x-coordinate of the top-left corner of the bounding box.""" + ymax: int + """The y-coordinate of the bottom-right corner of the bounding box.""" + ymin: int + """The y-coordinate of the top-left corner of the bounding box.""" + + +@dataclass_with_extra +class ObjectDetectionOutputElement(BaseInferenceType): + """Outputs of inference for the Object Detection task""" + + box: ObjectDetectionBoundingBox + """The predicted bounding box. Coordinates are relative to the top left corner of the input + image. + """ + label: str + """The predicted label for the bounding box.""" + score: float + """The associated score / probability.""" diff --git a/.venv/lib/python3.12/site-packages/huggingface_hub/inference/_generated/types/question_answering.py b/.venv/lib/python3.12/site-packages/huggingface_hub/inference/_generated/types/question_answering.py new file mode 100644 index 00000000..014ab418 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/huggingface_hub/inference/_generated/types/question_answering.py @@ -0,0 +1,74 @@ +# Inference code generated from the JSON schema spec in @huggingface/tasks. +# +# See: +# - script: https://github.com/huggingface/huggingface.js/blob/main/packages/tasks/scripts/inference-codegen.ts +# - specs: https://github.com/huggingface/huggingface.js/tree/main/packages/tasks/src/tasks. +from typing import Optional + +from .base import BaseInferenceType, dataclass_with_extra + + +@dataclass_with_extra +class QuestionAnsweringInputData(BaseInferenceType): + """One (context, question) pair to answer""" + + context: str + """The context to be used for answering the question""" + question: str + """The question to be answered""" + + +@dataclass_with_extra +class QuestionAnsweringParameters(BaseInferenceType): + """Additional inference parameters for Question Answering""" + + align_to_words: Optional[bool] = None + """Attempts to align the answer to real words. Improves quality on space separated + languages. Might hurt on non-space-separated languages (like Japanese or Chinese) + """ + doc_stride: Optional[int] = None + """If the context is too long to fit with the question for the model, it will be split in + several chunks with some overlap. This argument controls the size of that overlap. + """ + handle_impossible_answer: Optional[bool] = None + """Whether to accept impossible as an answer.""" + max_answer_len: Optional[int] = None + """The maximum length of predicted answers (e.g., only answers with a shorter length are + considered). + """ + max_question_len: Optional[int] = None + """The maximum length of the question after tokenization. It will be truncated if needed.""" + max_seq_len: Optional[int] = None + """The maximum length of the total sentence (context + question) in tokens of each chunk + passed to the model. The context will be split in several chunks (using docStride as + overlap) if needed. + """ + top_k: Optional[int] = None + """The number of answers to return (will be chosen by order of likelihood). Note that we + return less than topk answers if there are not enough options available within the + context. + """ + + +@dataclass_with_extra +class QuestionAnsweringInput(BaseInferenceType): + """Inputs for Question Answering inference""" + + inputs: QuestionAnsweringInputData + """One (context, question) pair to answer""" + parameters: Optional[QuestionAnsweringParameters] = None + """Additional inference parameters for Question Answering""" + + +@dataclass_with_extra +class QuestionAnsweringOutputElement(BaseInferenceType): + """Outputs of inference for the Question Answering task""" + + answer: str + """The answer to the question.""" + end: int + """The character position in the input where the answer ends.""" + score: float + """The probability associated to the answer.""" + start: int + """The character position in the input where the answer begins.""" diff --git a/.venv/lib/python3.12/site-packages/huggingface_hub/inference/_generated/types/sentence_similarity.py b/.venv/lib/python3.12/site-packages/huggingface_hub/inference/_generated/types/sentence_similarity.py new file mode 100644 index 00000000..66e8bb4d --- /dev/null +++ b/.venv/lib/python3.12/site-packages/huggingface_hub/inference/_generated/types/sentence_similarity.py @@ -0,0 +1,27 @@ +# Inference code generated from the JSON schema spec in @huggingface/tasks. +# +# See: +# - script: https://github.com/huggingface/huggingface.js/blob/main/packages/tasks/scripts/inference-codegen.ts +# - specs: https://github.com/huggingface/huggingface.js/tree/main/packages/tasks/src/tasks. +from typing import Any, Dict, List, Optional + +from .base import BaseInferenceType, dataclass_with_extra + + +@dataclass_with_extra +class SentenceSimilarityInputData(BaseInferenceType): + sentences: List[str] + """A list of strings which will be compared against the source_sentence.""" + source_sentence: str + """The string that you wish to compare the other strings with. This can be a phrase, + sentence, or longer passage, depending on the model being used. + """ + + +@dataclass_with_extra +class SentenceSimilarityInput(BaseInferenceType): + """Inputs for Sentence similarity inference""" + + inputs: SentenceSimilarityInputData + parameters: Optional[Dict[str, Any]] = None + """Additional inference parameters for Sentence Similarity""" diff --git a/.venv/lib/python3.12/site-packages/huggingface_hub/inference/_generated/types/summarization.py b/.venv/lib/python3.12/site-packages/huggingface_hub/inference/_generated/types/summarization.py new file mode 100644 index 00000000..33eae6fc --- /dev/null +++ b/.venv/lib/python3.12/site-packages/huggingface_hub/inference/_generated/types/summarization.py @@ -0,0 +1,41 @@ +# Inference code generated from the JSON schema spec in @huggingface/tasks. +# +# See: +# - script: https://github.com/huggingface/huggingface.js/blob/main/packages/tasks/scripts/inference-codegen.ts +# - specs: https://github.com/huggingface/huggingface.js/tree/main/packages/tasks/src/tasks. +from typing import Any, Dict, Literal, Optional + +from .base import BaseInferenceType, dataclass_with_extra + + +SummarizationTruncationStrategy = Literal["do_not_truncate", "longest_first", "only_first", "only_second"] + + +@dataclass_with_extra +class SummarizationParameters(BaseInferenceType): + """Additional inference parameters for summarization.""" + + clean_up_tokenization_spaces: Optional[bool] = None + """Whether to clean up the potential extra spaces in the text output.""" + generate_parameters: Optional[Dict[str, Any]] = None + """Additional parametrization of the text generation algorithm.""" + truncation: Optional["SummarizationTruncationStrategy"] = None + """The truncation strategy to use.""" + + +@dataclass_with_extra +class SummarizationInput(BaseInferenceType): + """Inputs for Summarization inference""" + + inputs: str + """The input text to summarize.""" + parameters: Optional[SummarizationParameters] = None + """Additional inference parameters for summarization.""" + + +@dataclass_with_extra +class SummarizationOutput(BaseInferenceType): + """Outputs of inference for the Summarization task""" + + summary_text: str + """The summarized text.""" diff --git a/.venv/lib/python3.12/site-packages/huggingface_hub/inference/_generated/types/table_question_answering.py b/.venv/lib/python3.12/site-packages/huggingface_hub/inference/_generated/types/table_question_answering.py new file mode 100644 index 00000000..10e208ee --- /dev/null +++ b/.venv/lib/python3.12/site-packages/huggingface_hub/inference/_generated/types/table_question_answering.py @@ -0,0 +1,62 @@ +# Inference code generated from the JSON schema spec in @huggingface/tasks. +# +# See: +# - script: https://github.com/huggingface/huggingface.js/blob/main/packages/tasks/scripts/inference-codegen.ts +# - specs: https://github.com/huggingface/huggingface.js/tree/main/packages/tasks/src/tasks. +from typing import Dict, List, Literal, Optional + +from .base import BaseInferenceType, dataclass_with_extra + + +@dataclass_with_extra +class TableQuestionAnsweringInputData(BaseInferenceType): + """One (table, question) pair to answer""" + + question: str + """The question to be answered about the table""" + table: Dict[str, List[str]] + """The table to serve as context for the questions""" + + +Padding = Literal["do_not_pad", "longest", "max_length"] + + +@dataclass_with_extra +class TableQuestionAnsweringParameters(BaseInferenceType): + """Additional inference parameters for Table Question Answering""" + + padding: Optional["Padding"] = None + """Activates and controls padding.""" + sequential: Optional[bool] = None + """Whether to do inference sequentially or as a batch. Batching is faster, but models like + SQA require the inference to be done sequentially to extract relations within sequences, + given their conversational nature. + """ + truncation: Optional[bool] = None + """Activates and controls truncation.""" + + +@dataclass_with_extra +class TableQuestionAnsweringInput(BaseInferenceType): + """Inputs for Table Question Answering inference""" + + inputs: TableQuestionAnsweringInputData + """One (table, question) pair to answer""" + parameters: Optional[TableQuestionAnsweringParameters] = None + """Additional inference parameters for Table Question Answering""" + + +@dataclass_with_extra +class TableQuestionAnsweringOutputElement(BaseInferenceType): + """Outputs of inference for the Table Question Answering task""" + + answer: str + """The answer of the question given the table. If there is an aggregator, the answer will be + preceded by `AGGREGATOR >`. + """ + cells: List[str] + """List of strings made up of the answer cell values.""" + coordinates: List[List[int]] + """Coordinates of the cells of the answers.""" + aggregator: Optional[str] = None + """If the model has an aggregator, this returns the aggregator.""" diff --git a/.venv/lib/python3.12/site-packages/huggingface_hub/inference/_generated/types/text2text_generation.py b/.venv/lib/python3.12/site-packages/huggingface_hub/inference/_generated/types/text2text_generation.py new file mode 100644 index 00000000..34ac74e2 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/huggingface_hub/inference/_generated/types/text2text_generation.py @@ -0,0 +1,42 @@ +# Inference code generated from the JSON schema spec in @huggingface/tasks. +# +# See: +# - script: https://github.com/huggingface/huggingface.js/blob/main/packages/tasks/scripts/inference-codegen.ts +# - specs: https://github.com/huggingface/huggingface.js/tree/main/packages/tasks/src/tasks. +from typing import Any, Dict, Literal, Optional + +from .base import BaseInferenceType, dataclass_with_extra + + +Text2TextGenerationTruncationStrategy = Literal["do_not_truncate", "longest_first", "only_first", "only_second"] + + +@dataclass_with_extra +class Text2TextGenerationParameters(BaseInferenceType): + """Additional inference parameters for Text2text Generation""" + + clean_up_tokenization_spaces: Optional[bool] = None + """Whether to clean up the potential extra spaces in the text output.""" + generate_parameters: Optional[Dict[str, Any]] = None + """Additional parametrization of the text generation algorithm""" + truncation: Optional["Text2TextGenerationTruncationStrategy"] = None + """The truncation strategy to use""" + + +@dataclass_with_extra +class Text2TextGenerationInput(BaseInferenceType): + """Inputs for Text2text Generation inference""" + + inputs: str + """The input text data""" + parameters: Optional[Text2TextGenerationParameters] = None + """Additional inference parameters for Text2text Generation""" + + +@dataclass_with_extra +class Text2TextGenerationOutput(BaseInferenceType): + """Outputs of inference for the Text2text Generation task""" + + generated_text: Any + text2_text_generation_output_generated_text: Optional[str] = None + """The generated text.""" diff --git a/.venv/lib/python3.12/site-packages/huggingface_hub/inference/_generated/types/text_classification.py b/.venv/lib/python3.12/site-packages/huggingface_hub/inference/_generated/types/text_classification.py new file mode 100644 index 00000000..9a172b23 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/huggingface_hub/inference/_generated/types/text_classification.py @@ -0,0 +1,41 @@ +# Inference code generated from the JSON schema spec in @huggingface/tasks. +# +# See: +# - script: https://github.com/huggingface/huggingface.js/blob/main/packages/tasks/scripts/inference-codegen.ts +# - specs: https://github.com/huggingface/huggingface.js/tree/main/packages/tasks/src/tasks. +from typing import Literal, Optional + +from .base import BaseInferenceType, dataclass_with_extra + + +TextClassificationOutputTransform = Literal["sigmoid", "softmax", "none"] + + +@dataclass_with_extra +class TextClassificationParameters(BaseInferenceType): + """Additional inference parameters for Text Classification""" + + function_to_apply: Optional["TextClassificationOutputTransform"] = None + """The function to apply to the model outputs in order to retrieve the scores.""" + top_k: Optional[int] = None + """When specified, limits the output to the top K most probable classes.""" + + +@dataclass_with_extra +class TextClassificationInput(BaseInferenceType): + """Inputs for Text Classification inference""" + + inputs: str + """The text to classify""" + parameters: Optional[TextClassificationParameters] = None + """Additional inference parameters for Text Classification""" + + +@dataclass_with_extra +class TextClassificationOutputElement(BaseInferenceType): + """Outputs of inference for the Text Classification task""" + + label: str + """The predicted class label.""" + score: float + """The corresponding probability.""" diff --git a/.venv/lib/python3.12/site-packages/huggingface_hub/inference/_generated/types/text_generation.py b/.venv/lib/python3.12/site-packages/huggingface_hub/inference/_generated/types/text_generation.py new file mode 100644 index 00000000..7ad5c039 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/huggingface_hub/inference/_generated/types/text_generation.py @@ -0,0 +1,168 @@ +# Inference code generated from the JSON schema spec in @huggingface/tasks. +# +# See: +# - script: https://github.com/huggingface/huggingface.js/blob/main/packages/tasks/scripts/inference-codegen.ts +# - specs: https://github.com/huggingface/huggingface.js/tree/main/packages/tasks/src/tasks. +from typing import Any, List, Literal, Optional + +from .base import BaseInferenceType, dataclass_with_extra + + +TypeEnum = Literal["json", "regex"] + + +@dataclass_with_extra +class TextGenerationInputGrammarType(BaseInferenceType): + type: "TypeEnum" + value: Any + """A string that represents a [JSON Schema](https://json-schema.org/). + JSON Schema is a declarative language that allows to annotate JSON documents + with types and descriptions. + """ + + +@dataclass_with_extra +class TextGenerationInputGenerateParameters(BaseInferenceType): + adapter_id: Optional[str] = None + """Lora adapter id""" + best_of: Optional[int] = None + """Generate best_of sequences and return the one if the highest token logprobs.""" + decoder_input_details: Optional[bool] = None + """Whether to return decoder input token logprobs and ids.""" + details: Optional[bool] = None + """Whether to return generation details.""" + do_sample: Optional[bool] = None + """Activate logits sampling.""" + frequency_penalty: Optional[float] = None + """The parameter for frequency penalty. 1.0 means no penalty + Penalize new tokens based on their existing frequency in the text so far, + decreasing the model's likelihood to repeat the same line verbatim. + """ + grammar: Optional[TextGenerationInputGrammarType] = None + max_new_tokens: Optional[int] = None + """Maximum number of tokens to generate.""" + repetition_penalty: Optional[float] = None + """The parameter for repetition penalty. 1.0 means no penalty. + See [this paper](https://arxiv.org/pdf/1909.05858.pdf) for more details. + """ + return_full_text: Optional[bool] = None + """Whether to prepend the prompt to the generated text""" + seed: Optional[int] = None + """Random sampling seed.""" + stop: Optional[List[str]] = None + """Stop generating tokens if a member of `stop` is generated.""" + temperature: Optional[float] = None + """The value used to module the logits distribution.""" + top_k: Optional[int] = None + """The number of highest probability vocabulary tokens to keep for top-k-filtering.""" + top_n_tokens: Optional[int] = None + """The number of highest probability vocabulary tokens to keep for top-n-filtering.""" + top_p: Optional[float] = None + """Top-p value for nucleus sampling.""" + truncate: Optional[int] = None + """Truncate inputs tokens to the given size.""" + typical_p: Optional[float] = None + """Typical Decoding mass + See [Typical Decoding for Natural Language Generation](https://arxiv.org/abs/2202.00666) + for more information. + """ + watermark: Optional[bool] = None + """Watermarking with [A Watermark for Large Language + Models](https://arxiv.org/abs/2301.10226). + """ + + +@dataclass_with_extra +class TextGenerationInput(BaseInferenceType): + """Text Generation Input. + Auto-generated from TGI specs. + For more details, check out + https://github.com/huggingface/huggingface.js/blob/main/packages/tasks/scripts/inference-tgi-import.ts. + """ + + inputs: str + parameters: Optional[TextGenerationInputGenerateParameters] = None + stream: Optional[bool] = None + + +TextGenerationOutputFinishReason = Literal["length", "eos_token", "stop_sequence"] + + +@dataclass_with_extra +class TextGenerationOutputPrefillToken(BaseInferenceType): + id: int + logprob: float + text: str + + +@dataclass_with_extra +class TextGenerationOutputToken(BaseInferenceType): + id: int + logprob: float + special: bool + text: str + + +@dataclass_with_extra +class TextGenerationOutputBestOfSequence(BaseInferenceType): + finish_reason: "TextGenerationOutputFinishReason" + generated_text: str + generated_tokens: int + prefill: List[TextGenerationOutputPrefillToken] + tokens: List[TextGenerationOutputToken] + seed: Optional[int] = None + top_tokens: Optional[List[List[TextGenerationOutputToken]]] = None + + +@dataclass_with_extra +class TextGenerationOutputDetails(BaseInferenceType): + finish_reason: "TextGenerationOutputFinishReason" + generated_tokens: int + prefill: List[TextGenerationOutputPrefillToken] + tokens: List[TextGenerationOutputToken] + best_of_sequences: Optional[List[TextGenerationOutputBestOfSequence]] = None + seed: Optional[int] = None + top_tokens: Optional[List[List[TextGenerationOutputToken]]] = None + + +@dataclass_with_extra +class TextGenerationOutput(BaseInferenceType): + """Text Generation Output. + Auto-generated from TGI specs. + For more details, check out + https://github.com/huggingface/huggingface.js/blob/main/packages/tasks/scripts/inference-tgi-import.ts. + """ + + generated_text: str + details: Optional[TextGenerationOutputDetails] = None + + +@dataclass_with_extra +class TextGenerationStreamOutputStreamDetails(BaseInferenceType): + finish_reason: "TextGenerationOutputFinishReason" + generated_tokens: int + input_length: int + seed: Optional[int] = None + + +@dataclass_with_extra +class TextGenerationStreamOutputToken(BaseInferenceType): + id: int + logprob: float + special: bool + text: str + + +@dataclass_with_extra +class TextGenerationStreamOutput(BaseInferenceType): + """Text Generation Stream Output. + Auto-generated from TGI specs. + For more details, check out + https://github.com/huggingface/huggingface.js/blob/main/packages/tasks/scripts/inference-tgi-import.ts. + """ + + index: int + token: TextGenerationStreamOutputToken + details: Optional[TextGenerationStreamOutputStreamDetails] = None + generated_text: Optional[str] = None + top_tokens: Optional[List[TextGenerationStreamOutputToken]] = None diff --git a/.venv/lib/python3.12/site-packages/huggingface_hub/inference/_generated/types/text_to_audio.py b/.venv/lib/python3.12/site-packages/huggingface_hub/inference/_generated/types/text_to_audio.py new file mode 100644 index 00000000..963b4406 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/huggingface_hub/inference/_generated/types/text_to_audio.py @@ -0,0 +1,100 @@ +# Inference code generated from the JSON schema spec in @huggingface/tasks. +# +# See: +# - script: https://github.com/huggingface/huggingface.js/blob/main/packages/tasks/scripts/inference-codegen.ts +# - specs: https://github.com/huggingface/huggingface.js/tree/main/packages/tasks/src/tasks. +from typing import Any, Literal, Optional, Union + +from .base import BaseInferenceType, dataclass_with_extra + + +TextToAudioEarlyStoppingEnum = Literal["never"] + + +@dataclass_with_extra +class TextToAudioGenerationParameters(BaseInferenceType): + """Parametrization of the text generation process""" + + do_sample: Optional[bool] = None + """Whether to use sampling instead of greedy decoding when generating new tokens.""" + early_stopping: Optional[Union[bool, "TextToAudioEarlyStoppingEnum"]] = None + """Controls the stopping condition for beam-based methods.""" + epsilon_cutoff: Optional[float] = None + """If set to float strictly between 0 and 1, only tokens with a conditional probability + greater than epsilon_cutoff will be sampled. In the paper, suggested values range from + 3e-4 to 9e-4, depending on the size of the model. See [Truncation Sampling as Language + Model Desmoothing](https://hf.co/papers/2210.15191) for more details. + """ + eta_cutoff: Optional[float] = None + """Eta sampling is a hybrid of locally typical sampling and epsilon sampling. If set to + float strictly between 0 and 1, a token is only considered if it is greater than either + eta_cutoff or sqrt(eta_cutoff) * exp(-entropy(softmax(next_token_logits))). The latter + term is intuitively the expected next token probability, scaled by sqrt(eta_cutoff). In + the paper, suggested values range from 3e-4 to 2e-3, depending on the size of the model. + See [Truncation Sampling as Language Model Desmoothing](https://hf.co/papers/2210.15191) + for more details. + """ + max_length: Optional[int] = None + """The maximum length (in tokens) of the generated text, including the input.""" + max_new_tokens: Optional[int] = None + """The maximum number of tokens to generate. Takes precedence over max_length.""" + min_length: Optional[int] = None + """The minimum length (in tokens) of the generated text, including the input.""" + min_new_tokens: Optional[int] = None + """The minimum number of tokens to generate. Takes precedence over min_length.""" + num_beam_groups: Optional[int] = None + """Number of groups to divide num_beams into in order to ensure diversity among different + groups of beams. See [this paper](https://hf.co/papers/1610.02424) for more details. + """ + num_beams: Optional[int] = None + """Number of beams to use for beam search.""" + penalty_alpha: Optional[float] = None + """The value balances the model confidence and the degeneration penalty in contrastive + search decoding. + """ + temperature: Optional[float] = None + """The value used to modulate the next token probabilities.""" + top_k: Optional[int] = None + """The number of highest probability vocabulary tokens to keep for top-k-filtering.""" + top_p: Optional[float] = None + """If set to float < 1, only the smallest set of most probable tokens with probabilities + that add up to top_p or higher are kept for generation. + """ + typical_p: Optional[float] = None + """Local typicality measures how similar the conditional probability of predicting a target + token next is to the expected conditional probability of predicting a random token next, + given the partial text already generated. If set to float < 1, the smallest set of the + most locally typical tokens with probabilities that add up to typical_p or higher are + kept for generation. See [this paper](https://hf.co/papers/2202.00666) for more details. + """ + use_cache: Optional[bool] = None + """Whether the model should use the past last key/values attentions to speed up decoding""" + + +@dataclass_with_extra +class TextToAudioParameters(BaseInferenceType): + """Additional inference parameters for Text To Audio""" + + # Will be deprecated in the future when the renaming to `generation_parameters` is implemented in transformers + generate_kwargs: Optional[TextToAudioGenerationParameters] = None + """Parametrization of the text generation process""" + + +@dataclass_with_extra +class TextToAudioInput(BaseInferenceType): + """Inputs for Text To Audio inference""" + + inputs: str + """The input text data""" + parameters: Optional[TextToAudioParameters] = None + """Additional inference parameters for Text To Audio""" + + +@dataclass_with_extra +class TextToAudioOutput(BaseInferenceType): + """Outputs of inference for the Text To Audio task""" + + audio: Any + """The generated audio waveform.""" + sampling_rate: float + """The sampling rate of the generated audio waveform.""" diff --git a/.venv/lib/python3.12/site-packages/huggingface_hub/inference/_generated/types/text_to_image.py b/.venv/lib/python3.12/site-packages/huggingface_hub/inference/_generated/types/text_to_image.py new file mode 100644 index 00000000..20c96373 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/huggingface_hub/inference/_generated/types/text_to_image.py @@ -0,0 +1,50 @@ +# Inference code generated from the JSON schema spec in @huggingface/tasks. +# +# See: +# - script: https://github.com/huggingface/huggingface.js/blob/main/packages/tasks/scripts/inference-codegen.ts +# - specs: https://github.com/huggingface/huggingface.js/tree/main/packages/tasks/src/tasks. +from typing import Any, Optional + +from .base import BaseInferenceType, dataclass_with_extra + + +@dataclass_with_extra +class TextToImageParameters(BaseInferenceType): + """Additional inference parameters for Text To Image""" + + guidance_scale: Optional[float] = None + """A higher guidance scale value encourages the model to generate images closely linked to + the text prompt, but values too high may cause saturation and other artifacts. + """ + height: Optional[int] = None + """The height in pixels of the output image""" + negative_prompt: Optional[str] = None + """One prompt to guide what NOT to include in image generation.""" + num_inference_steps: Optional[int] = None + """The number of denoising steps. More denoising steps usually lead to a higher quality + image at the expense of slower inference. + """ + scheduler: Optional[str] = None + """Override the scheduler with a compatible one.""" + seed: Optional[int] = None + """Seed for the random number generator.""" + width: Optional[int] = None + """The width in pixels of the output image""" + + +@dataclass_with_extra +class TextToImageInput(BaseInferenceType): + """Inputs for Text To Image inference""" + + inputs: str + """The input text data (sometimes called "prompt")""" + parameters: Optional[TextToImageParameters] = None + """Additional inference parameters for Text To Image""" + + +@dataclass_with_extra +class TextToImageOutput(BaseInferenceType): + """Outputs of inference for the Text To Image task""" + + image: Any + """The generated image returned as raw bytes in the payload.""" diff --git a/.venv/lib/python3.12/site-packages/huggingface_hub/inference/_generated/types/text_to_speech.py b/.venv/lib/python3.12/site-packages/huggingface_hub/inference/_generated/types/text_to_speech.py new file mode 100644 index 00000000..4399e2ae --- /dev/null +++ b/.venv/lib/python3.12/site-packages/huggingface_hub/inference/_generated/types/text_to_speech.py @@ -0,0 +1,100 @@ +# Inference code generated from the JSON schema spec in @huggingface/tasks. +# +# See: +# - script: https://github.com/huggingface/huggingface.js/blob/main/packages/tasks/scripts/inference-codegen.ts +# - specs: https://github.com/huggingface/huggingface.js/tree/main/packages/tasks/src/tasks. +from typing import Any, Literal, Optional, Union + +from .base import BaseInferenceType, dataclass_with_extra + + +TextToSpeechEarlyStoppingEnum = Literal["never"] + + +@dataclass_with_extra +class TextToSpeechGenerationParameters(BaseInferenceType): + """Parametrization of the text generation process""" + + do_sample: Optional[bool] = None + """Whether to use sampling instead of greedy decoding when generating new tokens.""" + early_stopping: Optional[Union[bool, "TextToSpeechEarlyStoppingEnum"]] = None + """Controls the stopping condition for beam-based methods.""" + epsilon_cutoff: Optional[float] = None + """If set to float strictly between 0 and 1, only tokens with a conditional probability + greater than epsilon_cutoff will be sampled. In the paper, suggested values range from + 3e-4 to 9e-4, depending on the size of the model. See [Truncation Sampling as Language + Model Desmoothing](https://hf.co/papers/2210.15191) for more details. + """ + eta_cutoff: Optional[float] = None + """Eta sampling is a hybrid of locally typical sampling and epsilon sampling. If set to + float strictly between 0 and 1, a token is only considered if it is greater than either + eta_cutoff or sqrt(eta_cutoff) * exp(-entropy(softmax(next_token_logits))). The latter + term is intuitively the expected next token probability, scaled by sqrt(eta_cutoff). In + the paper, suggested values range from 3e-4 to 2e-3, depending on the size of the model. + See [Truncation Sampling as Language Model Desmoothing](https://hf.co/papers/2210.15191) + for more details. + """ + max_length: Optional[int] = None + """The maximum length (in tokens) of the generated text, including the input.""" + max_new_tokens: Optional[int] = None + """The maximum number of tokens to generate. Takes precedence over max_length.""" + min_length: Optional[int] = None + """The minimum length (in tokens) of the generated text, including the input.""" + min_new_tokens: Optional[int] = None + """The minimum number of tokens to generate. Takes precedence over min_length.""" + num_beam_groups: Optional[int] = None + """Number of groups to divide num_beams into in order to ensure diversity among different + groups of beams. See [this paper](https://hf.co/papers/1610.02424) for more details. + """ + num_beams: Optional[int] = None + """Number of beams to use for beam search.""" + penalty_alpha: Optional[float] = None + """The value balances the model confidence and the degeneration penalty in contrastive + search decoding. + """ + temperature: Optional[float] = None + """The value used to modulate the next token probabilities.""" + top_k: Optional[int] = None + """The number of highest probability vocabulary tokens to keep for top-k-filtering.""" + top_p: Optional[float] = None + """If set to float < 1, only the smallest set of most probable tokens with probabilities + that add up to top_p or higher are kept for generation. + """ + typical_p: Optional[float] = None + """Local typicality measures how similar the conditional probability of predicting a target + token next is to the expected conditional probability of predicting a random token next, + given the partial text already generated. If set to float < 1, the smallest set of the + most locally typical tokens with probabilities that add up to typical_p or higher are + kept for generation. See [this paper](https://hf.co/papers/2202.00666) for more details. + """ + use_cache: Optional[bool] = None + """Whether the model should use the past last key/values attentions to speed up decoding""" + + +@dataclass_with_extra +class TextToSpeechParameters(BaseInferenceType): + """Additional inference parameters for Text To Speech""" + + # Will be deprecated in the future when the renaming to `generation_parameters` is implemented in transformers + generate_kwargs: Optional[TextToSpeechGenerationParameters] = None + """Parametrization of the text generation process""" + + +@dataclass_with_extra +class TextToSpeechInput(BaseInferenceType): + """Inputs for Text To Speech inference""" + + inputs: str + """The input text data""" + parameters: Optional[TextToSpeechParameters] = None + """Additional inference parameters for Text To Speech""" + + +@dataclass_with_extra +class TextToSpeechOutput(BaseInferenceType): + """Outputs of inference for the Text To Speech task""" + + audio: Any + """The generated audio""" + sampling_rate: Optional[float] = None + """The sampling rate of the generated audio waveform.""" diff --git a/.venv/lib/python3.12/site-packages/huggingface_hub/inference/_generated/types/text_to_video.py b/.venv/lib/python3.12/site-packages/huggingface_hub/inference/_generated/types/text_to_video.py new file mode 100644 index 00000000..e54a1bc0 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/huggingface_hub/inference/_generated/types/text_to_video.py @@ -0,0 +1,46 @@ +# Inference code generated from the JSON schema spec in @huggingface/tasks. +# +# See: +# - script: https://github.com/huggingface/huggingface.js/blob/main/packages/tasks/scripts/inference-codegen.ts +# - specs: https://github.com/huggingface/huggingface.js/tree/main/packages/tasks/src/tasks. +from typing import Any, List, Optional + +from .base import BaseInferenceType, dataclass_with_extra + + +@dataclass_with_extra +class TextToVideoParameters(BaseInferenceType): + """Additional inference parameters for Text To Video""" + + guidance_scale: Optional[float] = None + """A higher guidance scale value encourages the model to generate videos closely linked to + the text prompt, but values too high may cause saturation and other artifacts. + """ + negative_prompt: Optional[List[str]] = None + """One or several prompt to guide what NOT to include in video generation.""" + num_frames: Optional[float] = None + """The num_frames parameter determines how many video frames are generated.""" + num_inference_steps: Optional[int] = None + """The number of denoising steps. More denoising steps usually lead to a higher quality + video at the expense of slower inference. + """ + seed: Optional[int] = None + """Seed for the random number generator.""" + + +@dataclass_with_extra +class TextToVideoInput(BaseInferenceType): + """Inputs for Text To Video inference""" + + inputs: str + """The input text data (sometimes called "prompt")""" + parameters: Optional[TextToVideoParameters] = None + """Additional inference parameters for Text To Video""" + + +@dataclass_with_extra +class TextToVideoOutput(BaseInferenceType): + """Outputs of inference for the Text To Video task""" + + video: Any + """The generated video returned as raw bytes in the payload.""" diff --git a/.venv/lib/python3.12/site-packages/huggingface_hub/inference/_generated/types/token_classification.py b/.venv/lib/python3.12/site-packages/huggingface_hub/inference/_generated/types/token_classification.py new file mode 100644 index 00000000..e039b6a1 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/huggingface_hub/inference/_generated/types/token_classification.py @@ -0,0 +1,51 @@ +# Inference code generated from the JSON schema spec in @huggingface/tasks. +# +# See: +# - script: https://github.com/huggingface/huggingface.js/blob/main/packages/tasks/scripts/inference-codegen.ts +# - specs: https://github.com/huggingface/huggingface.js/tree/main/packages/tasks/src/tasks. +from typing import List, Literal, Optional + +from .base import BaseInferenceType, dataclass_with_extra + + +TokenClassificationAggregationStrategy = Literal["none", "simple", "first", "average", "max"] + + +@dataclass_with_extra +class TokenClassificationParameters(BaseInferenceType): + """Additional inference parameters for Token Classification""" + + aggregation_strategy: Optional["TokenClassificationAggregationStrategy"] = None + """The strategy used to fuse tokens based on model predictions""" + ignore_labels: Optional[List[str]] = None + """A list of labels to ignore""" + stride: Optional[int] = None + """The number of overlapping tokens between chunks when splitting the input text.""" + + +@dataclass_with_extra +class TokenClassificationInput(BaseInferenceType): + """Inputs for Token Classification inference""" + + inputs: str + """The input text data""" + parameters: Optional[TokenClassificationParameters] = None + """Additional inference parameters for Token Classification""" + + +@dataclass_with_extra +class TokenClassificationOutputElement(BaseInferenceType): + """Outputs of inference for the Token Classification task""" + + end: int + """The character position in the input where this group ends.""" + score: float + """The associated score / probability""" + start: int + """The character position in the input where this group begins.""" + word: str + """The corresponding text""" + entity: Optional[str] = None + """The predicted label for a single token""" + entity_group: Optional[str] = None + """The predicted label for a group of one or more tokens""" diff --git a/.venv/lib/python3.12/site-packages/huggingface_hub/inference/_generated/types/translation.py b/.venv/lib/python3.12/site-packages/huggingface_hub/inference/_generated/types/translation.py new file mode 100644 index 00000000..df95b7db --- /dev/null +++ b/.venv/lib/python3.12/site-packages/huggingface_hub/inference/_generated/types/translation.py @@ -0,0 +1,49 @@ +# Inference code generated from the JSON schema spec in @huggingface/tasks. +# +# See: +# - script: https://github.com/huggingface/huggingface.js/blob/main/packages/tasks/scripts/inference-codegen.ts +# - specs: https://github.com/huggingface/huggingface.js/tree/main/packages/tasks/src/tasks. +from typing import Any, Dict, Literal, Optional + +from .base import BaseInferenceType, dataclass_with_extra + + +TranslationTruncationStrategy = Literal["do_not_truncate", "longest_first", "only_first", "only_second"] + + +@dataclass_with_extra +class TranslationParameters(BaseInferenceType): + """Additional inference parameters for Translation""" + + clean_up_tokenization_spaces: Optional[bool] = None + """Whether to clean up the potential extra spaces in the text output.""" + generate_parameters: Optional[Dict[str, Any]] = None + """Additional parametrization of the text generation algorithm.""" + src_lang: Optional[str] = None + """The source language of the text. Required for models that can translate from multiple + languages. + """ + tgt_lang: Optional[str] = None + """Target language to translate to. Required for models that can translate to multiple + languages. + """ + truncation: Optional["TranslationTruncationStrategy"] = None + """The truncation strategy to use.""" + + +@dataclass_with_extra +class TranslationInput(BaseInferenceType): + """Inputs for Translation inference""" + + inputs: str + """The text to translate.""" + parameters: Optional[TranslationParameters] = None + """Additional inference parameters for Translation""" + + +@dataclass_with_extra +class TranslationOutput(BaseInferenceType): + """Outputs of inference for the Translation task""" + + translation_text: str + """The translated text.""" diff --git a/.venv/lib/python3.12/site-packages/huggingface_hub/inference/_generated/types/video_classification.py b/.venv/lib/python3.12/site-packages/huggingface_hub/inference/_generated/types/video_classification.py new file mode 100644 index 00000000..e1d7a15b --- /dev/null +++ b/.venv/lib/python3.12/site-packages/huggingface_hub/inference/_generated/types/video_classification.py @@ -0,0 +1,45 @@ +# Inference code generated from the JSON schema spec in @huggingface/tasks. +# +# See: +# - script: https://github.com/huggingface/huggingface.js/blob/main/packages/tasks/scripts/inference-codegen.ts +# - specs: https://github.com/huggingface/huggingface.js/tree/main/packages/tasks/src/tasks. +from typing import Any, Literal, Optional + +from .base import BaseInferenceType, dataclass_with_extra + + +VideoClassificationOutputTransform = Literal["sigmoid", "softmax", "none"] + + +@dataclass_with_extra +class VideoClassificationParameters(BaseInferenceType): + """Additional inference parameters for Video Classification""" + + frame_sampling_rate: Optional[int] = None + """The sampling rate used to select frames from the video.""" + function_to_apply: Optional["VideoClassificationOutputTransform"] = None + """The function to apply to the model outputs in order to retrieve the scores.""" + num_frames: Optional[int] = None + """The number of sampled frames to consider for classification.""" + top_k: Optional[int] = None + """When specified, limits the output to the top K most probable classes.""" + + +@dataclass_with_extra +class VideoClassificationInput(BaseInferenceType): + """Inputs for Video Classification inference""" + + inputs: Any + """The input video data""" + parameters: Optional[VideoClassificationParameters] = None + """Additional inference parameters for Video Classification""" + + +@dataclass_with_extra +class VideoClassificationOutputElement(BaseInferenceType): + """Outputs of inference for the Video Classification task""" + + label: str + """The predicted class label.""" + score: float + """The corresponding probability.""" diff --git a/.venv/lib/python3.12/site-packages/huggingface_hub/inference/_generated/types/visual_question_answering.py b/.venv/lib/python3.12/site-packages/huggingface_hub/inference/_generated/types/visual_question_answering.py new file mode 100644 index 00000000..d368f162 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/huggingface_hub/inference/_generated/types/visual_question_answering.py @@ -0,0 +1,49 @@ +# Inference code generated from the JSON schema spec in @huggingface/tasks. +# +# See: +# - script: https://github.com/huggingface/huggingface.js/blob/main/packages/tasks/scripts/inference-codegen.ts +# - specs: https://github.com/huggingface/huggingface.js/tree/main/packages/tasks/src/tasks. +from typing import Any, Optional + +from .base import BaseInferenceType, dataclass_with_extra + + +@dataclass_with_extra +class VisualQuestionAnsweringInputData(BaseInferenceType): + """One (image, question) pair to answer""" + + image: Any + """The image.""" + question: str + """The question to answer based on the image.""" + + +@dataclass_with_extra +class VisualQuestionAnsweringParameters(BaseInferenceType): + """Additional inference parameters for Visual Question Answering""" + + top_k: Optional[int] = None + """The number of answers to return (will be chosen by order of likelihood). Note that we + return less than topk answers if there are not enough options available within the + context. + """ + + +@dataclass_with_extra +class VisualQuestionAnsweringInput(BaseInferenceType): + """Inputs for Visual Question Answering inference""" + + inputs: VisualQuestionAnsweringInputData + """One (image, question) pair to answer""" + parameters: Optional[VisualQuestionAnsweringParameters] = None + """Additional inference parameters for Visual Question Answering""" + + +@dataclass_with_extra +class VisualQuestionAnsweringOutputElement(BaseInferenceType): + """Outputs of inference for the Visual Question Answering task""" + + score: float + """The associated score / probability""" + answer: Optional[str] = None + """The answer to the question""" diff --git a/.venv/lib/python3.12/site-packages/huggingface_hub/inference/_generated/types/zero_shot_classification.py b/.venv/lib/python3.12/site-packages/huggingface_hub/inference/_generated/types/zero_shot_classification.py new file mode 100644 index 00000000..47b32492 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/huggingface_hub/inference/_generated/types/zero_shot_classification.py @@ -0,0 +1,45 @@ +# Inference code generated from the JSON schema spec in @huggingface/tasks. +# +# See: +# - script: https://github.com/huggingface/huggingface.js/blob/main/packages/tasks/scripts/inference-codegen.ts +# - specs: https://github.com/huggingface/huggingface.js/tree/main/packages/tasks/src/tasks. +from typing import List, Optional + +from .base import BaseInferenceType, dataclass_with_extra + + +@dataclass_with_extra +class ZeroShotClassificationParameters(BaseInferenceType): + """Additional inference parameters for Zero Shot Classification""" + + candidate_labels: List[str] + """The set of possible class labels to classify the text into.""" + hypothesis_template: Optional[str] = None + """The sentence used in conjunction with `candidate_labels` to attempt the text + classification by replacing the placeholder with the candidate labels. + """ + multi_label: Optional[bool] = None + """Whether multiple candidate labels can be true. If false, the scores are normalized such + that the sum of the label likelihoods for each sequence is 1. If true, the labels are + considered independent and probabilities are normalized for each candidate. + """ + + +@dataclass_with_extra +class ZeroShotClassificationInput(BaseInferenceType): + """Inputs for Zero Shot Classification inference""" + + inputs: str + """The text to classify""" + parameters: ZeroShotClassificationParameters + """Additional inference parameters for Zero Shot Classification""" + + +@dataclass_with_extra +class ZeroShotClassificationOutputElement(BaseInferenceType): + """Outputs of inference for the Zero Shot Classification task""" + + label: str + """The predicted class label.""" + score: float + """The corresponding probability.""" diff --git a/.venv/lib/python3.12/site-packages/huggingface_hub/inference/_generated/types/zero_shot_image_classification.py b/.venv/lib/python3.12/site-packages/huggingface_hub/inference/_generated/types/zero_shot_image_classification.py new file mode 100644 index 00000000..998d66b6 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/huggingface_hub/inference/_generated/types/zero_shot_image_classification.py @@ -0,0 +1,40 @@ +# Inference code generated from the JSON schema spec in @huggingface/tasks. +# +# See: +# - script: https://github.com/huggingface/huggingface.js/blob/main/packages/tasks/scripts/inference-codegen.ts +# - specs: https://github.com/huggingface/huggingface.js/tree/main/packages/tasks/src/tasks. +from typing import List, Optional + +from .base import BaseInferenceType, dataclass_with_extra + + +@dataclass_with_extra +class ZeroShotImageClassificationParameters(BaseInferenceType): + """Additional inference parameters for Zero Shot Image Classification""" + + candidate_labels: List[str] + """The candidate labels for this image""" + hypothesis_template: Optional[str] = None + """The sentence used in conjunction with `candidate_labels` to attempt the image + classification by replacing the placeholder with the candidate labels. + """ + + +@dataclass_with_extra +class ZeroShotImageClassificationInput(BaseInferenceType): + """Inputs for Zero Shot Image Classification inference""" + + inputs: str + """The input image data to classify as a base64-encoded string.""" + parameters: ZeroShotImageClassificationParameters + """Additional inference parameters for Zero Shot Image Classification""" + + +@dataclass_with_extra +class ZeroShotImageClassificationOutputElement(BaseInferenceType): + """Outputs of inference for the Zero Shot Image Classification task""" + + label: str + """The predicted class label.""" + score: float + """The corresponding probability.""" diff --git a/.venv/lib/python3.12/site-packages/huggingface_hub/inference/_generated/types/zero_shot_object_detection.py b/.venv/lib/python3.12/site-packages/huggingface_hub/inference/_generated/types/zero_shot_object_detection.py new file mode 100644 index 00000000..8ef76b5f --- /dev/null +++ b/.venv/lib/python3.12/site-packages/huggingface_hub/inference/_generated/types/zero_shot_object_detection.py @@ -0,0 +1,52 @@ +# Inference code generated from the JSON schema spec in @huggingface/tasks. +# +# See: +# - script: https://github.com/huggingface/huggingface.js/blob/main/packages/tasks/scripts/inference-codegen.ts +# - specs: https://github.com/huggingface/huggingface.js/tree/main/packages/tasks/src/tasks. +from typing import List + +from .base import BaseInferenceType, dataclass_with_extra + + +@dataclass_with_extra +class ZeroShotObjectDetectionParameters(BaseInferenceType): + """Additional inference parameters for Zero Shot Object Detection""" + + candidate_labels: List[str] + """The candidate labels for this image""" + + +@dataclass_with_extra +class ZeroShotObjectDetectionInput(BaseInferenceType): + """Inputs for Zero Shot Object Detection inference""" + + inputs: str + """The input image data as a base64-encoded string.""" + parameters: ZeroShotObjectDetectionParameters + """Additional inference parameters for Zero Shot Object Detection""" + + +@dataclass_with_extra +class ZeroShotObjectDetectionBoundingBox(BaseInferenceType): + """The predicted bounding box. Coordinates are relative to the top left corner of the input + image. + """ + + xmax: int + xmin: int + ymax: int + ymin: int + + +@dataclass_with_extra +class ZeroShotObjectDetectionOutputElement(BaseInferenceType): + """Outputs of inference for the Zero Shot Object Detection task""" + + box: ZeroShotObjectDetectionBoundingBox + """The predicted bounding box. Coordinates are relative to the top left corner of the input + image. + """ + label: str + """A candidate label""" + score: float + """The associated score / probability""" diff --git a/.venv/lib/python3.12/site-packages/huggingface_hub/inference/_providers/__init__.py b/.venv/lib/python3.12/site-packages/huggingface_hub/inference/_providers/__init__.py new file mode 100644 index 00000000..34003125 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/huggingface_hub/inference/_providers/__init__.py @@ -0,0 +1,135 @@ +from typing import Dict, Literal + +from ._common import TaskProviderHelper +from .black_forest_labs import BlackForestLabsTextToImageTask +from .cerebras import CerebrasConversationalTask +from .cohere import CohereConversationalTask +from .fal_ai import ( + FalAIAutomaticSpeechRecognitionTask, + FalAITextToImageTask, + FalAITextToSpeechTask, + FalAITextToVideoTask, +) +from .fireworks_ai import FireworksAIConversationalTask +from .hf_inference import HFInferenceBinaryInputTask, HFInferenceConversational, HFInferenceTask +from .hyperbolic import HyperbolicTextGenerationTask, HyperbolicTextToImageTask +from .nebius import NebiusConversationalTask, NebiusTextGenerationTask, NebiusTextToImageTask +from .novita import NovitaConversationalTask, NovitaTextGenerationTask +from .replicate import ReplicateTask, ReplicateTextToSpeechTask +from .sambanova import SambanovaConversationalTask +from .together import TogetherConversationalTask, TogetherTextGenerationTask, TogetherTextToImageTask + + +PROVIDER_T = Literal[ + "black-forest-labs", + "cerebras", + "cohere", + "fal-ai", + "fireworks-ai", + "hf-inference", + "hyperbolic", + "nebius", + "novita", + "replicate", + "sambanova", + "together", +] + +PROVIDERS: Dict[PROVIDER_T, Dict[str, TaskProviderHelper]] = { + "black-forest-labs": { + "text-to-image": BlackForestLabsTextToImageTask(), + }, + "cerebras": { + "conversational": CerebrasConversationalTask(), + }, + "cohere": { + "conversational": CohereConversationalTask(), + }, + "fal-ai": { + "automatic-speech-recognition": FalAIAutomaticSpeechRecognitionTask(), + "text-to-image": FalAITextToImageTask(), + "text-to-speech": FalAITextToSpeechTask(), + "text-to-video": FalAITextToVideoTask(), + }, + "fireworks-ai": { + "conversational": FireworksAIConversationalTask(), + }, + "hf-inference": { + "text-to-image": HFInferenceTask("text-to-image"), + "conversational": HFInferenceConversational(), + "text-generation": HFInferenceTask("text-generation"), + "text-classification": HFInferenceTask("text-classification"), + "question-answering": HFInferenceTask("question-answering"), + "audio-classification": HFInferenceBinaryInputTask("audio-classification"), + "automatic-speech-recognition": HFInferenceBinaryInputTask("automatic-speech-recognition"), + "fill-mask": HFInferenceTask("fill-mask"), + "feature-extraction": HFInferenceTask("feature-extraction"), + "image-classification": HFInferenceBinaryInputTask("image-classification"), + "image-segmentation": HFInferenceBinaryInputTask("image-segmentation"), + "document-question-answering": HFInferenceTask("document-question-answering"), + "image-to-text": HFInferenceBinaryInputTask("image-to-text"), + "object-detection": HFInferenceBinaryInputTask("object-detection"), + "audio-to-audio": HFInferenceBinaryInputTask("audio-to-audio"), + "zero-shot-image-classification": HFInferenceBinaryInputTask("zero-shot-image-classification"), + "zero-shot-classification": HFInferenceTask("zero-shot-classification"), + "image-to-image": HFInferenceBinaryInputTask("image-to-image"), + "sentence-similarity": HFInferenceTask("sentence-similarity"), + "table-question-answering": HFInferenceTask("table-question-answering"), + "tabular-classification": HFInferenceTask("tabular-classification"), + "text-to-speech": HFInferenceTask("text-to-speech"), + "token-classification": HFInferenceTask("token-classification"), + "translation": HFInferenceTask("translation"), + "summarization": HFInferenceTask("summarization"), + "visual-question-answering": HFInferenceBinaryInputTask("visual-question-answering"), + }, + "hyperbolic": { + "text-to-image": HyperbolicTextToImageTask(), + "conversational": HyperbolicTextGenerationTask("conversational"), + "text-generation": HyperbolicTextGenerationTask("text-generation"), + }, + "nebius": { + "text-to-image": NebiusTextToImageTask(), + "conversational": NebiusConversationalTask(), + "text-generation": NebiusTextGenerationTask(), + }, + "novita": { + "text-generation": NovitaTextGenerationTask(), + "conversational": NovitaConversationalTask(), + }, + "replicate": { + "text-to-image": ReplicateTask("text-to-image"), + "text-to-speech": ReplicateTextToSpeechTask(), + "text-to-video": ReplicateTask("text-to-video"), + }, + "sambanova": { + "conversational": SambanovaConversationalTask(), + }, + "together": { + "text-to-image": TogetherTextToImageTask(), + "conversational": TogetherConversationalTask(), + "text-generation": TogetherTextGenerationTask(), + }, +} + + +def get_provider_helper(provider: PROVIDER_T, task: str) -> TaskProviderHelper: + """Get provider helper instance by name and task. + + Args: + provider (str): Name of the provider + task (str): Name of the task + + Returns: + TaskProviderHelper: Helper instance for the specified provider and task + + Raises: + ValueError: If provider or task is not supported + """ + if provider not in PROVIDERS: + raise ValueError(f"Provider '{provider}' not supported. Available providers: {list(PROVIDERS.keys())}") + if task not in PROVIDERS[provider]: + raise ValueError( + f"Task '{task}' not supported for provider '{provider}'. " + f"Available tasks: {list(PROVIDERS[provider].keys())}" + ) + return PROVIDERS[provider][task] diff --git a/.venv/lib/python3.12/site-packages/huggingface_hub/inference/_providers/_common.py b/.venv/lib/python3.12/site-packages/huggingface_hub/inference/_providers/_common.py new file mode 100644 index 00000000..a30b5cf3 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/huggingface_hub/inference/_providers/_common.py @@ -0,0 +1,241 @@ +from functools import lru_cache +from typing import Any, Dict, Optional, Union + +from huggingface_hub import constants +from huggingface_hub.inference._common import RequestParameters +from huggingface_hub.utils import build_hf_headers, get_token, logging + + +logger = logging.get_logger(__name__) + + +# Dev purposes only. +# If you want to try to run inference for a new model locally before it's registered on huggingface.co +# for a given Inference Provider, you can add it to the following dictionary. +HARDCODED_MODEL_ID_MAPPING: Dict[str, Dict[str, str]] = { + # "HF model ID" => "Model ID on Inference Provider's side" + # + # Example: + # "Qwen/Qwen2.5-Coder-32B-Instruct": "Qwen2.5-Coder-32B-Instruct", + "cerebras": {}, + "cohere": {}, + "fal-ai": {}, + "fireworks-ai": {}, + "hf-inference": {}, + "hyperbolic": {}, + "nebius": {}, + "replicate": {}, + "sambanova": {}, + "together": {}, +} + + +def filter_none(d: Dict[str, Any]) -> Dict[str, Any]: + return {k: v for k, v in d.items() if v is not None} + + +class TaskProviderHelper: + """Base class for task-specific provider helpers.""" + + def __init__(self, provider: str, base_url: str, task: str) -> None: + self.provider = provider + self.task = task + self.base_url = base_url + + def prepare_request( + self, + *, + inputs: Any, + parameters: Dict[str, Any], + headers: Dict, + model: Optional[str], + api_key: Optional[str], + extra_payload: Optional[Dict[str, Any]] = None, + ) -> RequestParameters: + """ + Prepare the request to be sent to the provider. + + Each step (api_key, model, headers, url, payload) can be customized in subclasses. + """ + # api_key from user, or local token, or raise error + api_key = self._prepare_api_key(api_key) + + # mapped model from HF model ID + mapped_model = self._prepare_mapped_model(model) + + # default HF headers + user headers (to customize in subclasses) + headers = self._prepare_headers(headers, api_key) + + # routed URL if HF token, or direct URL (to customize in '_prepare_route' in subclasses) + url = self._prepare_url(api_key, mapped_model) + + # prepare payload (to customize in subclasses) + payload = self._prepare_payload_as_dict(inputs, parameters, mapped_model=mapped_model) + if payload is not None: + payload = recursive_merge(payload, extra_payload or {}) + + # body data (to customize in subclasses) + data = self._prepare_payload_as_bytes(inputs, parameters, mapped_model, extra_payload) + + # check if both payload and data are set and return + if payload is not None and data is not None: + raise ValueError("Both payload and data cannot be set in the same request.") + if payload is None and data is None: + raise ValueError("Either payload or data must be set in the request.") + return RequestParameters(url=url, task=self.task, model=mapped_model, json=payload, data=data, headers=headers) + + def get_response(self, response: Union[bytes, Dict]) -> Any: + """ + Return the response in the expected format. + + Override this method in subclasses for customized response handling.""" + return response + + def _prepare_api_key(self, api_key: Optional[str]) -> str: + """Return the API key to use for the request. + + Usually not overwritten in subclasses.""" + if api_key is None: + api_key = get_token() + if api_key is None: + raise ValueError( + f"You must provide an api_key to work with {self.provider} API or log in with `huggingface-cli login`." + ) + return api_key + + def _prepare_mapped_model(self, model: Optional[str]) -> str: + """Return the mapped model ID to use for the request. + + Usually not overwritten in subclasses.""" + if model is None: + raise ValueError(f"Please provide an HF model ID supported by {self.provider}.") + + # hardcoded mapping for local testing + if HARDCODED_MODEL_ID_MAPPING.get(self.provider, {}).get(model): + return HARDCODED_MODEL_ID_MAPPING[self.provider][model] + + provider_mapping = _fetch_inference_provider_mapping(model).get(self.provider) + if provider_mapping is None: + raise ValueError(f"Model {model} is not supported by provider {self.provider}.") + + if provider_mapping.task != self.task: + raise ValueError( + f"Model {model} is not supported for task {self.task} and provider {self.provider}. " + f"Supported task: {provider_mapping.task}." + ) + + if provider_mapping.status == "staging": + logger.warning( + f"Model {model} is in staging mode for provider {self.provider}. Meant for test purposes only." + ) + return provider_mapping.provider_id + + def _prepare_headers(self, headers: Dict, api_key: str) -> Dict: + """Return the headers to use for the request. + + Override this method in subclasses for customized headers. + """ + return {**build_hf_headers(token=api_key), **headers} + + def _prepare_url(self, api_key: str, mapped_model: str) -> str: + """Return the URL to use for the request. + + Usually not overwritten in subclasses.""" + base_url = self._prepare_base_url(api_key) + route = self._prepare_route(mapped_model) + return f"{base_url.rstrip('/')}/{route.lstrip('/')}" + + def _prepare_base_url(self, api_key: str) -> str: + """Return the base URL to use for the request. + + Usually not overwritten in subclasses.""" + # Route to the proxy if the api_key is a HF TOKEN + if api_key.startswith("hf_"): + logger.info(f"Calling '{self.provider}' provider through Hugging Face router.") + return constants.INFERENCE_PROXY_TEMPLATE.format(provider=self.provider) + else: + logger.info(f"Calling '{self.provider}' provider directly.") + return self.base_url + + def _prepare_route(self, mapped_model: str) -> str: + """Return the route to use for the request. + + Override this method in subclasses for customized routes. + """ + return "" + + def _prepare_payload_as_dict(self, inputs: Any, parameters: Dict, mapped_model: str) -> Optional[Dict]: + """Return the payload to use for the request, as a dict. + + Override this method in subclasses for customized payloads. + Only one of `_prepare_payload_as_dict` and `_prepare_payload_as_bytes` should return a value. + """ + return None + + def _prepare_payload_as_bytes( + self, inputs: Any, parameters: Dict, mapped_model: str, extra_payload: Optional[Dict] + ) -> Optional[bytes]: + """Return the body to use for the request, as bytes. + + Override this method in subclasses for customized body data. + Only one of `_prepare_payload_as_dict` and `_prepare_payload_as_bytes` should return a value. + """ + return None + + +class BaseConversationalTask(TaskProviderHelper): + """ + Base class for conversational (chat completion) tasks. + The schema follows the OpenAI API format defined here: https://platform.openai.com/docs/api-reference/chat + """ + + def __init__(self, provider: str, base_url: str): + super().__init__(provider=provider, base_url=base_url, task="conversational") + + def _prepare_route(self, mapped_model: str) -> str: + return "/v1/chat/completions" + + def _prepare_payload_as_dict(self, inputs: Any, parameters: Dict, mapped_model: str) -> Optional[Dict]: + return {"messages": inputs, **filter_none(parameters), "model": mapped_model} + + +class BaseTextGenerationTask(TaskProviderHelper): + """ + Base class for text-generation (completion) tasks. + The schema follows the OpenAI API format defined here: https://platform.openai.com/docs/api-reference/completions + """ + + def __init__(self, provider: str, base_url: str): + super().__init__(provider=provider, base_url=base_url, task="text-generation") + + def _prepare_route(self, mapped_model: str) -> str: + return "/v1/completions" + + def _prepare_payload_as_dict(self, inputs: Any, parameters: Dict, mapped_model: str) -> Optional[Dict]: + return {"prompt": inputs, **filter_none(parameters), "model": mapped_model} + + +@lru_cache(maxsize=None) +def _fetch_inference_provider_mapping(model: str) -> Dict: + """ + Fetch provider mappings for a model from the Hub. + """ + from huggingface_hub.hf_api import HfApi + + info = HfApi().model_info(model, expand=["inferenceProviderMapping"]) + provider_mapping = info.inference_provider_mapping + if provider_mapping is None: + raise ValueError(f"No provider mapping found for model {model}") + return provider_mapping + + +def recursive_merge(dict1: Dict, dict2: Dict) -> Dict: + return { + **dict1, + **{ + key: recursive_merge(dict1[key], value) + if (key in dict1 and isinstance(dict1[key], dict) and isinstance(value, dict)) + else value + for key, value in dict2.items() + }, + } diff --git a/.venv/lib/python3.12/site-packages/huggingface_hub/inference/_providers/black_forest_labs.py b/.venv/lib/python3.12/site-packages/huggingface_hub/inference/_providers/black_forest_labs.py new file mode 100644 index 00000000..14d8eb3d --- /dev/null +++ b/.venv/lib/python3.12/site-packages/huggingface_hub/inference/_providers/black_forest_labs.py @@ -0,0 +1,66 @@ +import time +from typing import Any, Dict, Optional, Union + +from huggingface_hub.inference._common import _as_dict +from huggingface_hub.inference._providers._common import TaskProviderHelper, filter_none +from huggingface_hub.utils import logging +from huggingface_hub.utils._http import get_session + + +logger = logging.get_logger(__name__) + +MAX_POLLING_ATTEMPTS = 6 +POLLING_INTERVAL = 1.0 + + +class BlackForestLabsTextToImageTask(TaskProviderHelper): + def __init__(self): + super().__init__(provider="black-forest-labs", base_url="https://api.us1.bfl.ai/v1", task="text-to-image") + + def _prepare_headers(self, headers: Dict, api_key: str) -> Dict: + headers = super()._prepare_headers(headers, api_key) + if not api_key.startswith("hf_"): + _ = headers.pop("authorization") + headers["X-Key"] = api_key + return headers + + def _prepare_route(self, mapped_model: str) -> str: + return mapped_model + + def _prepare_payload_as_dict(self, inputs: Any, parameters: Dict, mapped_model: str) -> Optional[Dict]: + parameters = filter_none(parameters) + if "num_inference_steps" in parameters: + parameters["steps"] = parameters.pop("num_inference_steps") + if "guidance_scale" in parameters: + parameters["guidance"] = parameters.pop("guidance_scale") + + return {"prompt": inputs, **parameters} + + def get_response(self, response: Union[bytes, Dict]) -> Any: + """ + Polling mechanism for Black Forest Labs since the API is asynchronous. + """ + url = _as_dict(response).get("polling_url") + session = get_session() + for _ in range(MAX_POLLING_ATTEMPTS): + time.sleep(POLLING_INTERVAL) + + response = session.get(url, headers={"Content-Type": "application/json"}) # type: ignore + response.raise_for_status() # type: ignore + response_json: Dict = response.json() # type: ignore + status = response_json.get("status") + logger.info( + f"Polling generation result from {url}. Current status: {status}. " + f"Will retry after {POLLING_INTERVAL} seconds if not ready." + ) + + if ( + status == "Ready" + and isinstance(response_json.get("result"), dict) + and (sample_url := response_json["result"].get("sample")) + ): + image_resp = session.get(sample_url) + image_resp.raise_for_status() + return image_resp.content + + raise TimeoutError(f"Failed to get the image URL after {MAX_POLLING_ATTEMPTS} attempts.") diff --git a/.venv/lib/python3.12/site-packages/huggingface_hub/inference/_providers/cerebras.py b/.venv/lib/python3.12/site-packages/huggingface_hub/inference/_providers/cerebras.py new file mode 100644 index 00000000..12b18158 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/huggingface_hub/inference/_providers/cerebras.py @@ -0,0 +1,6 @@ +from huggingface_hub.inference._providers._common import BaseConversationalTask + + +class CerebrasConversationalTask(BaseConversationalTask): + def __init__(self): + super().__init__(provider="cerebras", base_url="https://api.cerebras.ai") diff --git a/.venv/lib/python3.12/site-packages/huggingface_hub/inference/_providers/cohere.py b/.venv/lib/python3.12/site-packages/huggingface_hub/inference/_providers/cohere.py new file mode 100644 index 00000000..2fbe6fbf --- /dev/null +++ b/.venv/lib/python3.12/site-packages/huggingface_hub/inference/_providers/cohere.py @@ -0,0 +1,15 @@ +from huggingface_hub.inference._providers._common import ( + BaseConversationalTask, +) + + +_PROVIDER = "cohere" +_BASE_URL = "https://api.cohere.com" + + +class CohereConversationalTask(BaseConversationalTask): + def __init__(self): + super().__init__(provider=_PROVIDER, base_url=_BASE_URL) + + def _prepare_route(self, mapped_model: str) -> str: + return "/compatibility/v1/chat/completions" diff --git a/.venv/lib/python3.12/site-packages/huggingface_hub/inference/_providers/fal_ai.py b/.venv/lib/python3.12/site-packages/huggingface_hub/inference/_providers/fal_ai.py new file mode 100644 index 00000000..e6d2e4bd --- /dev/null +++ b/.venv/lib/python3.12/site-packages/huggingface_hub/inference/_providers/fal_ai.py @@ -0,0 +1,90 @@ +import base64 +from abc import ABC +from typing import Any, Dict, Optional, Union + +from huggingface_hub.inference._common import _as_dict +from huggingface_hub.inference._providers._common import TaskProviderHelper, filter_none +from huggingface_hub.utils import get_session + + +class FalAITask(TaskProviderHelper, ABC): + def __init__(self, task: str): + super().__init__(provider="fal-ai", base_url="https://fal.run", task=task) + + def _prepare_headers(self, headers: Dict, api_key: str) -> Dict: + headers = super()._prepare_headers(headers, api_key) + if not api_key.startswith("hf_"): + headers["authorization"] = f"Key {api_key}" + return headers + + def _prepare_route(self, mapped_model: str) -> str: + return f"/{mapped_model}" + + +class FalAIAutomaticSpeechRecognitionTask(FalAITask): + def __init__(self): + super().__init__("automatic-speech-recognition") + + def _prepare_payload_as_dict(self, inputs: Any, parameters: Dict, mapped_model: str) -> Optional[Dict]: + if isinstance(inputs, str) and inputs.startswith(("http://", "https://")): + # If input is a URL, pass it directly + audio_url = inputs + else: + # If input is a file path, read it first + if isinstance(inputs, str): + with open(inputs, "rb") as f: + inputs = f.read() + + audio_b64 = base64.b64encode(inputs).decode() + content_type = "audio/mpeg" + audio_url = f"data:{content_type};base64,{audio_b64}" + + return {"audio_url": audio_url, **filter_none(parameters)} + + def get_response(self, response: Union[bytes, Dict]) -> Any: + text = _as_dict(response)["text"] + if not isinstance(text, str): + raise ValueError(f"Unexpected output format from FalAI API. Expected string, got {type(text)}.") + return text + + +class FalAITextToImageTask(FalAITask): + def __init__(self): + super().__init__("text-to-image") + + def _prepare_payload_as_dict(self, inputs: Any, parameters: Dict, mapped_model: str) -> Optional[Dict]: + parameters = filter_none(parameters) + if "width" in parameters and "height" in parameters: + parameters["image_size"] = { + "width": parameters.pop("width"), + "height": parameters.pop("height"), + } + return {"prompt": inputs, **parameters} + + def get_response(self, response: Union[bytes, Dict]) -> Any: + url = _as_dict(response)["images"][0]["url"] + return get_session().get(url).content + + +class FalAITextToSpeechTask(FalAITask): + def __init__(self): + super().__init__("text-to-speech") + + def _prepare_payload_as_dict(self, inputs: Any, parameters: Dict, mapped_model: str) -> Optional[Dict]: + return {"lyrics": inputs, **filter_none(parameters)} + + def get_response(self, response: Union[bytes, Dict]) -> Any: + url = _as_dict(response)["audio"]["url"] + return get_session().get(url).content + + +class FalAITextToVideoTask(FalAITask): + def __init__(self): + super().__init__("text-to-video") + + def _prepare_payload_as_dict(self, inputs: Any, parameters: Dict, mapped_model: str) -> Optional[Dict]: + return {"prompt": inputs, **filter_none(parameters)} + + def get_response(self, response: Union[bytes, Dict]) -> Any: + url = _as_dict(response)["video"]["url"] + return get_session().get(url).content diff --git a/.venv/lib/python3.12/site-packages/huggingface_hub/inference/_providers/fireworks_ai.py b/.venv/lib/python3.12/site-packages/huggingface_hub/inference/_providers/fireworks_ai.py new file mode 100644 index 00000000..bac95c29 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/huggingface_hub/inference/_providers/fireworks_ai.py @@ -0,0 +1,6 @@ +from ._common import BaseConversationalTask + + +class FireworksAIConversationalTask(BaseConversationalTask): + def __init__(self): + super().__init__(provider="fireworks-ai", base_url="https://api.fireworks.ai/inference") diff --git a/.venv/lib/python3.12/site-packages/huggingface_hub/inference/_providers/hf_inference.py b/.venv/lib/python3.12/site-packages/huggingface_hub/inference/_providers/hf_inference.py new file mode 100644 index 00000000..2377f91b --- /dev/null +++ b/.venv/lib/python3.12/site-packages/huggingface_hub/inference/_providers/hf_inference.py @@ -0,0 +1,122 @@ +import json +from functools import lru_cache +from pathlib import Path +from typing import Any, Dict, Optional + +from huggingface_hub import constants +from huggingface_hub.inference._common import _b64_encode, _open_as_binary +from huggingface_hub.inference._providers._common import TaskProviderHelper, filter_none +from huggingface_hub.utils import build_hf_headers, get_session, get_token, hf_raise_for_status + + +class HFInferenceTask(TaskProviderHelper): + """Base class for HF Inference API tasks.""" + + def __init__(self, task: str): + super().__init__( + provider="hf-inference", + base_url=constants.INFERENCE_PROXY_TEMPLATE.format(provider="hf-inference"), + task=task, + ) + + def _prepare_api_key(self, api_key: Optional[str]) -> str: + # special case: for HF Inference we allow not providing an API key + return api_key or get_token() # type: ignore[return-value] + + def _prepare_mapped_model(self, model: Optional[str]) -> str: + if model is not None: + return model + model = _fetch_recommended_models().get(self.task) + if model is None: + raise ValueError( + f"Task {self.task} has no recommended model for HF Inference. Please specify a model" + " explicitly. Visit https://huggingface.co/tasks for more info." + ) + return model + + def _prepare_url(self, api_key: str, mapped_model: str) -> str: + # hf-inference provider can handle URLs (e.g. Inference Endpoints or TGI deployment) + if mapped_model.startswith(("http://", "https://")): + return mapped_model + return ( + # Feature-extraction and sentence-similarity are the only cases where we handle models with several tasks. + f"{self.base_url}/pipeline/{self.task}/{mapped_model}" + if self.task in ("feature-extraction", "sentence-similarity") + # Otherwise, we use the default endpoint + else f"{self.base_url}/models/{mapped_model}" + ) + + def _prepare_payload_as_dict(self, inputs: Any, parameters: Dict, mapped_model: str) -> Optional[Dict]: + if isinstance(inputs, bytes): + raise ValueError(f"Unexpected binary input for task {self.task}.") + if isinstance(inputs, Path): + raise ValueError(f"Unexpected path input for task {self.task} (got {inputs})") + return {"inputs": inputs, "parameters": filter_none(parameters)} + + +class HFInferenceBinaryInputTask(HFInferenceTask): + def _prepare_payload_as_dict(self, inputs: Any, parameters: Dict, mapped_model: str) -> Optional[Dict]: + return None + + def _prepare_payload_as_bytes( + self, inputs: Any, parameters: Dict, mapped_model: str, extra_payload: Optional[Dict] + ) -> Optional[bytes]: + parameters = filter_none({k: v for k, v in parameters.items() if v is not None}) + extra_payload = extra_payload or {} + has_parameters = len(parameters) > 0 or len(extra_payload) > 0 + + # Raise if not a binary object or a local path or a URL. + if not isinstance(inputs, (bytes, Path)) and not isinstance(inputs, str): + raise ValueError(f"Expected binary inputs or a local path or a URL. Got {inputs}") + + # Send inputs as raw content when no parameters are provided + if not has_parameters: + with _open_as_binary(inputs) as data: + data_as_bytes = data if isinstance(data, bytes) else data.read() + return data_as_bytes + + # Otherwise encode as b64 + return json.dumps({"inputs": _b64_encode(inputs), "parameters": parameters, **extra_payload}).encode("utf-8") + + +class HFInferenceConversational(HFInferenceTask): + def __init__(self): + super().__init__("text-generation") + + def _prepare_payload_as_dict(self, inputs: Any, parameters: Dict, mapped_model: str) -> Optional[Dict]: + payload_model = parameters.get("model") or mapped_model + + if payload_model is None or payload_model.startswith(("http://", "https://")): + payload_model = "dummy" + + return {**filter_none(parameters), "model": payload_model, "messages": inputs} + + def _prepare_url(self, api_key: str, mapped_model: str) -> str: + base_url = ( + mapped_model + if mapped_model.startswith(("http://", "https://")) + else f"{constants.INFERENCE_PROXY_TEMPLATE.format(provider='hf-inference')}/models/{mapped_model}" + ) + return _build_chat_completion_url(base_url) + + +def _build_chat_completion_url(model_url: str) -> str: + # Strip trailing / + model_url = model_url.rstrip("/") + + # Append /chat/completions if not already present + if model_url.endswith("/v1"): + model_url += "/chat/completions" + + # Append /v1/chat/completions if not already present + if not model_url.endswith("/chat/completions"): + model_url += "/v1/chat/completions" + + return model_url + + +@lru_cache(maxsize=1) +def _fetch_recommended_models() -> Dict[str, Optional[str]]: + response = get_session().get(f"{constants.ENDPOINT}/api/tasks", headers=build_hf_headers()) + hf_raise_for_status(response) + return {task: next(iter(details["widgetModels"]), None) for task, details in response.json().items()} diff --git a/.venv/lib/python3.12/site-packages/huggingface_hub/inference/_providers/hyperbolic.py b/.venv/lib/python3.12/site-packages/huggingface_hub/inference/_providers/hyperbolic.py new file mode 100644 index 00000000..919a3818 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/huggingface_hub/inference/_providers/hyperbolic.py @@ -0,0 +1,43 @@ +import base64 +from typing import Any, Dict, Optional, Union + +from huggingface_hub.inference._common import _as_dict +from huggingface_hub.inference._providers._common import BaseConversationalTask, TaskProviderHelper, filter_none + + +class HyperbolicTextToImageTask(TaskProviderHelper): + def __init__(self): + super().__init__(provider="hyperbolic", base_url="https://api.hyperbolic.xyz", task="text-to-image") + + def _prepare_route(self, mapped_model: str) -> str: + return "/v1/images/generations" + + def _prepare_payload_as_dict(self, inputs: Any, parameters: Dict, mapped_model: str) -> Optional[Dict]: + parameters = filter_none(parameters) + if "num_inference_steps" in parameters: + parameters["steps"] = parameters.pop("num_inference_steps") + if "guidance_scale" in parameters: + parameters["cfg_scale"] = parameters.pop("guidance_scale") + # For Hyperbolic, the width and height are required parameters + if "width" not in parameters: + parameters["width"] = 512 + if "height" not in parameters: + parameters["height"] = 512 + return {"prompt": inputs, "model_name": mapped_model, **parameters} + + def get_response(self, response: Union[bytes, Dict]) -> Any: + response_dict = _as_dict(response) + return base64.b64decode(response_dict["images"][0]["image"]) + + +class HyperbolicTextGenerationTask(BaseConversationalTask): + """ + Special case for Hyperbolic, where text-generation task is handled as a conversational task. + """ + + def __init__(self, task: str): + super().__init__( + provider="hyperbolic", + base_url="https://api.hyperbolic.xyz", + ) + self.task = task diff --git a/.venv/lib/python3.12/site-packages/huggingface_hub/inference/_providers/nebius.py b/.venv/lib/python3.12/site-packages/huggingface_hub/inference/_providers/nebius.py new file mode 100644 index 00000000..d6b37356 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/huggingface_hub/inference/_providers/nebius.py @@ -0,0 +1,41 @@ +import base64 +from typing import Any, Dict, Optional, Union + +from huggingface_hub.inference._common import _as_dict +from huggingface_hub.inference._providers._common import ( + BaseConversationalTask, + BaseTextGenerationTask, + TaskProviderHelper, + filter_none, +) + + +class NebiusTextGenerationTask(BaseTextGenerationTask): + def __init__(self): + super().__init__(provider="nebius", base_url="https://api.studio.nebius.ai") + + +class NebiusConversationalTask(BaseConversationalTask): + def __init__(self): + super().__init__(provider="nebius", base_url="https://api.studio.nebius.ai") + + +class NebiusTextToImageTask(TaskProviderHelper): + def __init__(self): + super().__init__(task="text-to-image", provider="nebius", base_url="https://api.studio.nebius.ai") + + def _prepare_route(self, mapped_model: str) -> str: + return "/v1/images/generations" + + def _prepare_payload_as_dict(self, inputs: Any, parameters: Dict, mapped_model: str) -> Optional[Dict]: + parameters = filter_none(parameters) + if "guidance_scale" in parameters: + parameters.pop("guidance_scale") + if parameters.get("response_format") not in ("b64_json", "url"): + parameters["response_format"] = "b64_json" + + return {"prompt": inputs, **parameters, "model": mapped_model} + + def get_response(self, response: Union[bytes, Dict]) -> Any: + response_dict = _as_dict(response) + return base64.b64decode(response_dict["data"][0]["b64_json"]) diff --git a/.venv/lib/python3.12/site-packages/huggingface_hub/inference/_providers/novita.py b/.venv/lib/python3.12/site-packages/huggingface_hub/inference/_providers/novita.py new file mode 100644 index 00000000..3fc836a3 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/huggingface_hub/inference/_providers/novita.py @@ -0,0 +1,26 @@ +from huggingface_hub.inference._providers._common import ( + BaseConversationalTask, + BaseTextGenerationTask, +) + + +_PROVIDER = "novita" +_BASE_URL = "https://api.novita.ai/v3/openai" + + +class NovitaTextGenerationTask(BaseTextGenerationTask): + def __init__(self): + super().__init__(provider=_PROVIDER, base_url=_BASE_URL) + + def _prepare_route(self, mapped_model: str) -> str: + # there is no v1/ route for novita + return "/completions" + + +class NovitaConversationalTask(BaseConversationalTask): + def __init__(self): + super().__init__(provider=_PROVIDER, base_url=_BASE_URL) + + def _prepare_route(self, mapped_model: str) -> str: + # there is no v1/ route for novita + return "/chat/completions" diff --git a/.venv/lib/python3.12/site-packages/huggingface_hub/inference/_providers/replicate.py b/.venv/lib/python3.12/site-packages/huggingface_hub/inference/_providers/replicate.py new file mode 100644 index 00000000..dc84f69f --- /dev/null +++ b/.venv/lib/python3.12/site-packages/huggingface_hub/inference/_providers/replicate.py @@ -0,0 +1,53 @@ +from typing import Any, Dict, Optional, Union + +from huggingface_hub.inference._common import _as_dict +from huggingface_hub.inference._providers._common import TaskProviderHelper, filter_none +from huggingface_hub.utils import get_session + + +_PROVIDER = "replicate" +_BASE_URL = "https://api.replicate.com" + + +class ReplicateTask(TaskProviderHelper): + def __init__(self, task: str): + super().__init__(provider=_PROVIDER, base_url=_BASE_URL, task=task) + + def _prepare_headers(self, headers: Dict, api_key: str) -> Dict: + headers = super()._prepare_headers(headers, api_key) + headers["Prefer"] = "wait" + return headers + + def _prepare_route(self, mapped_model: str) -> str: + if ":" in mapped_model: + return "/v1/predictions" + return f"/v1/models/{mapped_model}/predictions" + + def _prepare_payload_as_dict(self, inputs: Any, parameters: Dict, mapped_model: str) -> Optional[Dict]: + payload: Dict[str, Any] = {"input": {"prompt": inputs, **filter_none(parameters)}} + if ":" in mapped_model: + version = mapped_model.split(":", 1)[1] + payload["version"] = version + return payload + + def get_response(self, response: Union[bytes, Dict]) -> Any: + response_dict = _as_dict(response) + if response_dict.get("output") is None: + raise TimeoutError( + f"Inference request timed out after 60 seconds. No output generated for model {response_dict.get('model')}" + "The model might be in cold state or starting up. Please try again later." + ) + output_url = ( + response_dict["output"] if isinstance(response_dict["output"], str) else response_dict["output"][0] + ) + return get_session().get(output_url).content + + +class ReplicateTextToSpeechTask(ReplicateTask): + def __init__(self): + super().__init__("text-to-speech") + + def _prepare_payload_as_dict(self, inputs: Any, parameters: Dict, mapped_model: str) -> Optional[Dict]: + payload: Dict = super()._prepare_payload_as_dict(inputs, parameters, mapped_model) # type: ignore[assignment] + payload["input"]["text"] = payload["input"].pop("prompt") # rename "prompt" to "text" for TTS + return payload diff --git a/.venv/lib/python3.12/site-packages/huggingface_hub/inference/_providers/sambanova.py b/.venv/lib/python3.12/site-packages/huggingface_hub/inference/_providers/sambanova.py new file mode 100644 index 00000000..3678e942 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/huggingface_hub/inference/_providers/sambanova.py @@ -0,0 +1,6 @@ +from huggingface_hub.inference._providers._common import BaseConversationalTask + + +class SambanovaConversationalTask(BaseConversationalTask): + def __init__(self): + super().__init__(provider="sambanova", base_url="https://api.sambanova.ai") diff --git a/.venv/lib/python3.12/site-packages/huggingface_hub/inference/_providers/together.py b/.venv/lib/python3.12/site-packages/huggingface_hub/inference/_providers/together.py new file mode 100644 index 00000000..6e2c1eb4 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/huggingface_hub/inference/_providers/together.py @@ -0,0 +1,59 @@ +import base64 +from abc import ABC +from typing import Any, Dict, Optional, Union + +from huggingface_hub.inference._common import _as_dict +from huggingface_hub.inference._providers._common import ( + BaseConversationalTask, + BaseTextGenerationTask, + TaskProviderHelper, + filter_none, +) + + +_PROVIDER = "together" +_BASE_URL = "https://api.together.xyz" + + +class TogetherTask(TaskProviderHelper, ABC): + """Base class for Together API tasks.""" + + def __init__(self, task: str): + super().__init__(provider=_PROVIDER, base_url=_BASE_URL, task=task) + + def _prepare_route(self, mapped_model: str) -> str: + if self.task == "text-to-image": + return "/v1/images/generations" + elif self.task == "conversational": + return "/v1/chat/completions" + elif self.task == "text-generation": + return "/v1/completions" + raise ValueError(f"Unsupported task '{self.task}' for Together API.") + + +class TogetherTextGenerationTask(BaseTextGenerationTask): + def __init__(self): + super().__init__(provider=_PROVIDER, base_url=_BASE_URL) + + +class TogetherConversationalTask(BaseConversationalTask): + def __init__(self): + super().__init__(provider=_PROVIDER, base_url=_BASE_URL) + + +class TogetherTextToImageTask(TogetherTask): + def __init__(self): + super().__init__("text-to-image") + + def _prepare_payload_as_dict(self, inputs: Any, parameters: Dict, mapped_model: str) -> Optional[Dict]: + parameters = filter_none(parameters) + if "num_inference_steps" in parameters: + parameters["steps"] = parameters.pop("num_inference_steps") + if "guidance_scale" in parameters: + parameters["guidance"] = parameters.pop("guidance_scale") + + return {"prompt": inputs, "response_format": "base64", **parameters, "model": mapped_model} + + def get_response(self, response: Union[bytes, Dict]) -> Any: + response_dict = _as_dict(response) + return base64.b64decode(response_dict["data"][0]["b64_json"]) diff --git a/.venv/lib/python3.12/site-packages/huggingface_hub/inference_api.py b/.venv/lib/python3.12/site-packages/huggingface_hub/inference_api.py new file mode 100644 index 00000000..f895fcc6 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/huggingface_hub/inference_api.py @@ -0,0 +1,217 @@ +import io +from typing import Any, Dict, List, Optional, Union + +from . import constants +from .hf_api import HfApi +from .utils import build_hf_headers, get_session, is_pillow_available, logging, validate_hf_hub_args +from .utils._deprecation import _deprecate_method + + +logger = logging.get_logger(__name__) + + +ALL_TASKS = [ + # NLP + "text-classification", + "token-classification", + "table-question-answering", + "question-answering", + "zero-shot-classification", + "translation", + "summarization", + "conversational", + "feature-extraction", + "text-generation", + "text2text-generation", + "fill-mask", + "sentence-similarity", + # Audio + "text-to-speech", + "automatic-speech-recognition", + "audio-to-audio", + "audio-classification", + "voice-activity-detection", + # Computer vision + "image-classification", + "object-detection", + "image-segmentation", + "text-to-image", + "image-to-image", + # Others + "tabular-classification", + "tabular-regression", +] + + +class InferenceApi: + """Client to configure requests and make calls to the HuggingFace Inference API. + + Example: + + ```python + >>> from huggingface_hub.inference_api import InferenceApi + + >>> # Mask-fill example + >>> inference = InferenceApi("bert-base-uncased") + >>> inference(inputs="The goal of life is [MASK].") + [{'sequence': 'the goal of life is life.', 'score': 0.10933292657136917, 'token': 2166, 'token_str': 'life'}] + + >>> # Question Answering example + >>> inference = InferenceApi("deepset/roberta-base-squad2") + >>> inputs = { + ... "question": "What's my name?", + ... "context": "My name is Clara and I live in Berkeley.", + ... } + >>> inference(inputs) + {'score': 0.9326569437980652, 'start': 11, 'end': 16, 'answer': 'Clara'} + + >>> # Zero-shot example + >>> inference = InferenceApi("typeform/distilbert-base-uncased-mnli") + >>> inputs = "Hi, I recently bought a device from your company but it is not working as advertised and I would like to get reimbursed!" + >>> params = {"candidate_labels": ["refund", "legal", "faq"]} + >>> inference(inputs, params) + {'sequence': 'Hi, I recently bought a device from your company but it is not working as advertised and I would like to get reimbursed!', 'labels': ['refund', 'faq', 'legal'], 'scores': [0.9378499388694763, 0.04914155602455139, 0.013008488342165947]} + + >>> # Overriding configured task + >>> inference = InferenceApi("bert-base-uncased", task="feature-extraction") + + >>> # Text-to-image + >>> inference = InferenceApi("stabilityai/stable-diffusion-2-1") + >>> inference("cat") + <PIL.PngImagePlugin.PngImageFile image (...)> + + >>> # Return as raw response to parse the output yourself + >>> inference = InferenceApi("mio/amadeus") + >>> response = inference("hello world", raw_response=True) + >>> response.headers + {"Content-Type": "audio/flac", ...} + >>> response.content # raw bytes from server + b'(...)' + ``` + """ + + @validate_hf_hub_args + @_deprecate_method( + version="1.0", + message=( + "`InferenceApi` client is deprecated in favor of the more feature-complete `InferenceClient`. Check out" + " this guide to learn how to convert your script to use it:" + " https://huggingface.co/docs/huggingface_hub/guides/inference#legacy-inferenceapi-client." + ), + ) + def __init__( + self, + repo_id: str, + task: Optional[str] = None, + token: Optional[str] = None, + gpu: bool = False, + ): + """Inits headers and API call information. + + Args: + repo_id (``str``): + Id of repository (e.g. `user/bert-base-uncased`). + task (``str``, `optional`, defaults ``None``): + Whether to force a task instead of using task specified in the + repository. + token (`str`, `optional`): + The API token to use as HTTP bearer authorization. This is not + the authentication token. You can find the token in + https://huggingface.co/settings/token. Alternatively, you can + find both your organizations and personal API tokens using + `HfApi().whoami(token)`. + gpu (`bool`, `optional`, defaults `False`): + Whether to use GPU instead of CPU for inference(requires Startup + plan at least). + """ + self.options = {"wait_for_model": True, "use_gpu": gpu} + self.headers = build_hf_headers(token=token) + + # Configure task + model_info = HfApi(token=token).model_info(repo_id=repo_id) + if not model_info.pipeline_tag and not task: + raise ValueError( + "Task not specified in the repository. Please add it to the model card" + " using pipeline_tag" + " (https://huggingface.co/docs#how-is-a-models-type-of-inference-api-and-widget-determined)" + ) + + if task and task != model_info.pipeline_tag: + if task not in ALL_TASKS: + raise ValueError(f"Invalid task {task}. Make sure it's valid.") + + logger.warning( + "You're using a different task than the one specified in the" + " repository. Be sure to know what you're doing :)" + ) + self.task = task + else: + assert model_info.pipeline_tag is not None, "Pipeline tag cannot be None" + self.task = model_info.pipeline_tag + + self.api_url = f"{constants.INFERENCE_ENDPOINT}/pipeline/{self.task}/{repo_id}" + + def __repr__(self): + # Do not add headers to repr to avoid leaking token. + return f"InferenceAPI(api_url='{self.api_url}', task='{self.task}', options={self.options})" + + def __call__( + self, + inputs: Optional[Union[str, Dict, List[str], List[List[str]]]] = None, + params: Optional[Dict] = None, + data: Optional[bytes] = None, + raw_response: bool = False, + ) -> Any: + """Make a call to the Inference API. + + Args: + inputs (`str` or `Dict` or `List[str]` or `List[List[str]]`, *optional*): + Inputs for the prediction. + params (`Dict`, *optional*): + Additional parameters for the models. Will be sent as `parameters` in the + payload. + data (`bytes`, *optional*): + Bytes content of the request. In this case, leave `inputs` and `params` empty. + raw_response (`bool`, defaults to `False`): + If `True`, the raw `Response` object is returned. You can parse its content + as preferred. By default, the content is parsed into a more practical format + (json dictionary or PIL Image for example). + """ + # Build payload + payload: Dict[str, Any] = { + "options": self.options, + } + if inputs: + payload["inputs"] = inputs + if params: + payload["parameters"] = params + + # Make API call + response = get_session().post(self.api_url, headers=self.headers, json=payload, data=data) + + # Let the user handle the response + if raw_response: + return response + + # By default, parse the response for the user. + content_type = response.headers.get("Content-Type") or "" + if content_type.startswith("image"): + if not is_pillow_available(): + raise ImportError( + f"Task '{self.task}' returned as image but Pillow is not installed." + " Please install it (`pip install Pillow`) or pass" + " `raw_response=True` to get the raw `Response` object and parse" + " the image by yourself." + ) + + from PIL import Image + + return Image.open(io.BytesIO(response.content)) + elif content_type == "application/json": + return response.json() + else: + raise NotImplementedError( + f"{content_type} output type is not implemented yet. You can pass" + " `raw_response=True` to get the raw `Response` object and parse the" + " output by yourself." + ) diff --git a/.venv/lib/python3.12/site-packages/huggingface_hub/keras_mixin.py b/.venv/lib/python3.12/site-packages/huggingface_hub/keras_mixin.py new file mode 100644 index 00000000..e1c7ad50 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/huggingface_hub/keras_mixin.py @@ -0,0 +1,500 @@ +import collections.abc as collections +import json +import os +import warnings +from functools import wraps +from pathlib import Path +from shutil import copytree +from typing import Any, Dict, List, Optional, Union + +from huggingface_hub import ModelHubMixin, snapshot_download +from huggingface_hub.utils import ( + get_tf_version, + is_graphviz_available, + is_pydot_available, + is_tf_available, + yaml_dump, +) + +from . import constants +from .hf_api import HfApi +from .utils import SoftTemporaryDirectory, logging, validate_hf_hub_args +from .utils._typing import CallableT + + +logger = logging.get_logger(__name__) + +keras = None +if is_tf_available(): + # Depending on which version of TensorFlow is installed, we need to import + # keras from the correct location. + # See https://github.com/tensorflow/tensorflow/releases/tag/v2.16.1. + # Note: saving a keras model only works with Keras<3.0. + try: + import tf_keras as keras # type: ignore + except ImportError: + import tensorflow as tf # type: ignore + + keras = tf.keras + + +def _requires_keras_2_model(fn: CallableT) -> CallableT: + # Wrapper to raise if user tries to save a Keras 3.x model + @wraps(fn) + def _inner(model, *args, **kwargs): + if not hasattr(model, "history"): # hacky way to check if model is Keras 2.x + raise NotImplementedError( + f"Cannot use '{fn.__name__}': Keras 3.x is not supported." + " Please save models manually and upload them using `upload_folder` or `huggingface-cli upload`." + ) + return fn(model, *args, **kwargs) + + return _inner # type: ignore [return-value] + + +def _flatten_dict(dictionary, parent_key=""): + """Flatten a nested dictionary. + Reference: https://stackoverflow.com/a/6027615/10319735 + + Args: + dictionary (`dict`): + The nested dictionary to be flattened. + parent_key (`str`): + The parent key to be prefixed to the children keys. + Necessary for recursing over the nested dictionary. + + Returns: + The flattened dictionary. + """ + items = [] + for key, value in dictionary.items(): + new_key = f"{parent_key}.{key}" if parent_key else key + if isinstance(value, collections.MutableMapping): + items.extend( + _flatten_dict( + value, + new_key, + ).items() + ) + else: + items.append((new_key, value)) + return dict(items) + + +def _create_hyperparameter_table(model): + """Parse hyperparameter dictionary into a markdown table.""" + table = None + if model.optimizer is not None: + optimizer_params = model.optimizer.get_config() + # flatten the configuration + optimizer_params = _flatten_dict(optimizer_params) + optimizer_params["training_precision"] = keras.mixed_precision.global_policy().name + table = "| Hyperparameters | Value |\n| :-- | :-- |\n" + for key, value in optimizer_params.items(): + table += f"| {key} | {value} |\n" + return table + + +def _plot_network(model, save_directory): + keras.utils.plot_model( + model, + to_file=f"{save_directory}/model.png", + show_shapes=False, + show_dtype=False, + show_layer_names=True, + rankdir="TB", + expand_nested=False, + dpi=96, + layer_range=None, + ) + + +def _create_model_card( + model, + repo_dir: Path, + plot_model: bool = True, + metadata: Optional[dict] = None, +): + """ + Creates a model card for the repository. + + Do not overwrite an existing README.md file. + """ + readme_path = repo_dir / "README.md" + if readme_path.exists(): + return + + hyperparameters = _create_hyperparameter_table(model) + if plot_model and is_graphviz_available() and is_pydot_available(): + _plot_network(model, repo_dir) + if metadata is None: + metadata = {} + metadata["library_name"] = "keras" + model_card: str = "---\n" + model_card += yaml_dump(metadata, default_flow_style=False) + model_card += "---\n" + model_card += "\n## Model description\n\nMore information needed\n" + model_card += "\n## Intended uses & limitations\n\nMore information needed\n" + model_card += "\n## Training and evaluation data\n\nMore information needed\n" + if hyperparameters is not None: + model_card += "\n## Training procedure\n" + model_card += "\n### Training hyperparameters\n" + model_card += "\nThe following hyperparameters were used during training:\n\n" + model_card += hyperparameters + model_card += "\n" + if plot_model and os.path.exists(f"{repo_dir}/model.png"): + model_card += "\n ## Model Plot\n" + model_card += "\n<details>" + model_card += "\n<summary>View Model Plot</summary>\n" + path_to_plot = "./model.png" + model_card += f"\n\n" + model_card += "\n</details>" + + readme_path.write_text(model_card) + + +@_requires_keras_2_model +def save_pretrained_keras( + model, + save_directory: Union[str, Path], + config: Optional[Dict[str, Any]] = None, + include_optimizer: bool = False, + plot_model: bool = True, + tags: Optional[Union[list, str]] = None, + **model_save_kwargs, +): + """ + Saves a Keras model to save_directory in SavedModel format. Use this if + you're using the Functional or Sequential APIs. + + Args: + model (`Keras.Model`): + The [Keras + model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) + you'd like to save. The model must be compiled and built. + save_directory (`str` or `Path`): + Specify directory in which you want to save the Keras model. + config (`dict`, *optional*): + Configuration object to be saved alongside the model weights. + include_optimizer(`bool`, *optional*, defaults to `False`): + Whether or not to include optimizer in serialization. + plot_model (`bool`, *optional*, defaults to `True`): + Setting this to `True` will plot the model and put it in the model + card. Requires graphviz and pydot to be installed. + tags (Union[`str`,`list`], *optional*): + List of tags that are related to model or string of a single tag. See example tags + [here](https://github.com/huggingface/hub-docs/blob/main/modelcard.md?plain=1). + model_save_kwargs(`dict`, *optional*): + model_save_kwargs will be passed to + [`tf.keras.models.save_model()`](https://www.tensorflow.org/api_docs/python/tf/keras/models/save_model). + """ + if keras is None: + raise ImportError("Called a Tensorflow-specific function but could not import it.") + + if not model.built: + raise ValueError("Model should be built before trying to save") + + save_directory = Path(save_directory) + save_directory.mkdir(parents=True, exist_ok=True) + + # saving config + if config: + if not isinstance(config, dict): + raise RuntimeError(f"Provided config to save_pretrained_keras should be a dict. Got: '{type(config)}'") + + with (save_directory / constants.CONFIG_NAME).open("w") as f: + json.dump(config, f) + + metadata = {} + if isinstance(tags, list): + metadata["tags"] = tags + elif isinstance(tags, str): + metadata["tags"] = [tags] + + task_name = model_save_kwargs.pop("task_name", None) + if task_name is not None: + warnings.warn( + "`task_name` input argument is deprecated. Pass `tags` instead.", + FutureWarning, + ) + if "tags" in metadata: + metadata["tags"].append(task_name) + else: + metadata["tags"] = [task_name] + + if model.history is not None: + if model.history.history != {}: + path = save_directory / "history.json" + if path.exists(): + warnings.warn( + "`history.json` file already exists, it will be overwritten by the history of this version.", + UserWarning, + ) + with path.open("w", encoding="utf-8") as f: + json.dump(model.history.history, f, indent=2, sort_keys=True) + + _create_model_card(model, save_directory, plot_model, metadata) + keras.models.save_model(model, save_directory, include_optimizer=include_optimizer, **model_save_kwargs) + + +def from_pretrained_keras(*args, **kwargs) -> "KerasModelHubMixin": + r""" + Instantiate a pretrained Keras model from a pre-trained model from the Hub. + The model is expected to be in `SavedModel` format. + + Args: + pretrained_model_name_or_path (`str` or `os.PathLike`): + Can be either: + - A string, the `model id` of a pretrained model hosted inside a + model repo on huggingface.co. Valid model ids can be located + at the root-level, like `bert-base-uncased`, or namespaced + under a user or organization name, like + `dbmdz/bert-base-german-cased`. + - You can add `revision` by appending `@` at the end of model_id + simply like this: `dbmdz/bert-base-german-cased@main` Revision + is the specific model version to use. It can be a branch name, + a tag name, or a commit id, since we use a git-based system + for storing models and other artifacts on huggingface.co, so + `revision` can be any identifier allowed by git. + - A path to a `directory` containing model weights saved using + [`~transformers.PreTrainedModel.save_pretrained`], e.g., + `./my_model_directory/`. + - `None` if you are both providing the configuration and state + dictionary (resp. with keyword arguments `config` and + `state_dict`). + force_download (`bool`, *optional*, defaults to `False`): + Whether to force the (re-)download of the model weights and + configuration files, overriding the cached versions if they exist. + proxies (`Dict[str, str]`, *optional*): + A dictionary of proxy servers to use by protocol or endpoint, e.g., + `{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}`. The + proxies are used on each request. + token (`str` or `bool`, *optional*): + The token to use as HTTP bearer authorization for remote files. If + `True`, will use the token generated when running `transformers-cli + login` (stored in `~/.huggingface`). + cache_dir (`Union[str, os.PathLike]`, *optional*): + Path to a directory in which a downloaded pretrained model + configuration should be cached if the standard cache should not be + used. + local_files_only(`bool`, *optional*, defaults to `False`): + Whether to only look at local files (i.e., do not try to download + the model). + model_kwargs (`Dict`, *optional*): + model_kwargs will be passed to the model during initialization + + <Tip> + + Passing `token=True` is required when you want to use a private + model. + + </Tip> + """ + return KerasModelHubMixin.from_pretrained(*args, **kwargs) + + +@validate_hf_hub_args +@_requires_keras_2_model +def push_to_hub_keras( + model, + repo_id: str, + *, + config: Optional[dict] = None, + commit_message: str = "Push Keras model using huggingface_hub.", + private: Optional[bool] = None, + api_endpoint: Optional[str] = None, + token: Optional[str] = None, + branch: Optional[str] = None, + create_pr: Optional[bool] = None, + allow_patterns: Optional[Union[List[str], str]] = None, + ignore_patterns: Optional[Union[List[str], str]] = None, + delete_patterns: Optional[Union[List[str], str]] = None, + log_dir: Optional[str] = None, + include_optimizer: bool = False, + tags: Optional[Union[list, str]] = None, + plot_model: bool = True, + **model_save_kwargs, +): + """ + Upload model checkpoint to the Hub. + + Use `allow_patterns` and `ignore_patterns` to precisely filter which files should be pushed to the hub. Use + `delete_patterns` to delete existing remote files in the same commit. See [`upload_folder`] reference for more + details. + + Args: + model (`Keras.Model`): + The [Keras model](`https://www.tensorflow.org/api_docs/python/tf/keras/Model`) you'd like to push to the + Hub. The model must be compiled and built. + repo_id (`str`): + ID of the repository to push to (example: `"username/my-model"`). + commit_message (`str`, *optional*, defaults to "Add Keras model"): + Message to commit while pushing. + private (`bool`, *optional*): + Whether the repository created should be private. + If `None` (default), the repo will be public unless the organization's default is private. + api_endpoint (`str`, *optional*): + The API endpoint to use when pushing the model to the hub. + token (`str`, *optional*): + The token to use as HTTP bearer authorization for remote files. If + not set, will use the token set when logging in with + `huggingface-cli login` (stored in `~/.huggingface`). + branch (`str`, *optional*): + The git branch on which to push the model. This defaults to + the default branch as specified in your repository, which + defaults to `"main"`. + create_pr (`boolean`, *optional*): + Whether or not to create a Pull Request from `branch` with that commit. + Defaults to `False`. + config (`dict`, *optional*): + Configuration object to be saved alongside the model weights. + allow_patterns (`List[str]` or `str`, *optional*): + If provided, only files matching at least one pattern are pushed. + ignore_patterns (`List[str]` or `str`, *optional*): + If provided, files matching any of the patterns are not pushed. + delete_patterns (`List[str]` or `str`, *optional*): + If provided, remote files matching any of the patterns will be deleted from the repo. + log_dir (`str`, *optional*): + TensorBoard logging directory to be pushed. The Hub automatically + hosts and displays a TensorBoard instance if log files are included + in the repository. + include_optimizer (`bool`, *optional*, defaults to `False`): + Whether or not to include optimizer during serialization. + tags (Union[`list`, `str`], *optional*): + List of tags that are related to model or string of a single tag. See example tags + [here](https://github.com/huggingface/hub-docs/blob/main/modelcard.md?plain=1). + plot_model (`bool`, *optional*, defaults to `True`): + Setting this to `True` will plot the model and put it in the model + card. Requires graphviz and pydot to be installed. + model_save_kwargs(`dict`, *optional*): + model_save_kwargs will be passed to + [`tf.keras.models.save_model()`](https://www.tensorflow.org/api_docs/python/tf/keras/models/save_model). + + Returns: + The url of the commit of your model in the given repository. + """ + api = HfApi(endpoint=api_endpoint) + repo_id = api.create_repo(repo_id=repo_id, token=token, private=private, exist_ok=True).repo_id + + # Push the files to the repo in a single commit + with SoftTemporaryDirectory() as tmp: + saved_path = Path(tmp) / repo_id + save_pretrained_keras( + model, + saved_path, + config=config, + include_optimizer=include_optimizer, + tags=tags, + plot_model=plot_model, + **model_save_kwargs, + ) + + # If `log_dir` provided, delete remote logs and upload new ones + if log_dir is not None: + delete_patterns = ( + [] + if delete_patterns is None + else ( + [delete_patterns] # convert `delete_patterns` to a list + if isinstance(delete_patterns, str) + else delete_patterns + ) + ) + delete_patterns.append("logs/*") + copytree(log_dir, saved_path / "logs") + + return api.upload_folder( + repo_type="model", + repo_id=repo_id, + folder_path=saved_path, + commit_message=commit_message, + token=token, + revision=branch, + create_pr=create_pr, + allow_patterns=allow_patterns, + ignore_patterns=ignore_patterns, + delete_patterns=delete_patterns, + ) + + +class KerasModelHubMixin(ModelHubMixin): + """ + Implementation of [`ModelHubMixin`] to provide model Hub upload/download + capabilities to Keras models. + + + ```python + >>> import tensorflow as tf + >>> from huggingface_hub import KerasModelHubMixin + + + >>> class MyModel(tf.keras.Model, KerasModelHubMixin): + ... def __init__(self, **kwargs): + ... super().__init__() + ... self.config = kwargs.pop("config", None) + ... self.dummy_inputs = ... + ... self.layer = ... + + ... def call(self, *args): + ... return ... + + + >>> # Initialize and compile the model as you normally would + >>> model = MyModel() + >>> model.compile(...) + >>> # Build the graph by training it or passing dummy inputs + >>> _ = model(model.dummy_inputs) + >>> # Save model weights to local directory + >>> model.save_pretrained("my-awesome-model") + >>> # Push model weights to the Hub + >>> model.push_to_hub("my-awesome-model") + >>> # Download and initialize weights from the Hub + >>> model = MyModel.from_pretrained("username/super-cool-model") + ``` + """ + + def _save_pretrained(self, save_directory): + save_pretrained_keras(self, save_directory) + + @classmethod + def _from_pretrained( + cls, + model_id, + revision, + cache_dir, + force_download, + proxies, + resume_download, + local_files_only, + token, + config: Optional[Dict[str, Any]] = None, + **model_kwargs, + ): + """Here we just call [`from_pretrained_keras`] function so both the mixin and + functional APIs stay in sync. + + TODO - Some args above aren't used since we are calling + snapshot_download instead of hf_hub_download. + """ + if keras is None: + raise ImportError("Called a TensorFlow-specific function but could not import it.") + + # Root is either a local filepath matching model_id or a cached snapshot + if not os.path.isdir(model_id): + storage_folder = snapshot_download( + repo_id=model_id, + revision=revision, + cache_dir=cache_dir, + library_name="keras", + library_version=get_tf_version(), + ) + else: + storage_folder = model_id + + # TODO: change this in a future PR. We are not returning a KerasModelHubMixin instance here... + model = keras.models.load_model(storage_folder) + + # For now, we add a new attribute, config, to store the config loaded from the hub/a local dir. + model.config = config + + return model diff --git a/.venv/lib/python3.12/site-packages/huggingface_hub/lfs.py b/.venv/lib/python3.12/site-packages/huggingface_hub/lfs.py new file mode 100644 index 00000000..c2d4f368 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/huggingface_hub/lfs.py @@ -0,0 +1,460 @@ +# coding=utf-8 +# Copyright 2019-present, the HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Git LFS related type definitions and utilities""" + +import inspect +import io +import re +import warnings +from dataclasses import dataclass +from math import ceil +from os.path import getsize +from pathlib import Path +from typing import TYPE_CHECKING, BinaryIO, Dict, Iterable, List, Optional, Tuple, TypedDict +from urllib.parse import unquote + +from huggingface_hub import constants + +from .utils import ( + build_hf_headers, + fix_hf_endpoint_in_url, + get_session, + hf_raise_for_status, + http_backoff, + logging, + tqdm, + validate_hf_hub_args, +) +from .utils._lfs import SliceFileObj +from .utils.sha import sha256, sha_fileobj +from .utils.tqdm import is_tqdm_disabled + + +if TYPE_CHECKING: + from ._commit_api import CommitOperationAdd + +logger = logging.get_logger(__name__) + +OID_REGEX = re.compile(r"^[0-9a-f]{40}$") + +LFS_MULTIPART_UPLOAD_COMMAND = "lfs-multipart-upload" + +LFS_HEADERS = { + "Accept": "application/vnd.git-lfs+json", + "Content-Type": "application/vnd.git-lfs+json", +} + + +@dataclass +class UploadInfo: + """ + Dataclass holding required information to determine whether a blob + should be uploaded to the hub using the LFS protocol or the regular protocol + + Args: + sha256 (`bytes`): + SHA256 hash of the blob + size (`int`): + Size in bytes of the blob + sample (`bytes`): + First 512 bytes of the blob + """ + + sha256: bytes + size: int + sample: bytes + + @classmethod + def from_path(cls, path: str): + size = getsize(path) + with io.open(path, "rb") as file: + sample = file.peek(512)[:512] + sha = sha_fileobj(file) + return cls(size=size, sha256=sha, sample=sample) + + @classmethod + def from_bytes(cls, data: bytes): + sha = sha256(data).digest() + return cls(size=len(data), sample=data[:512], sha256=sha) + + @classmethod + def from_fileobj(cls, fileobj: BinaryIO): + sample = fileobj.read(512) + fileobj.seek(0, io.SEEK_SET) + sha = sha_fileobj(fileobj) + size = fileobj.tell() + fileobj.seek(0, io.SEEK_SET) + return cls(size=size, sha256=sha, sample=sample) + + +@validate_hf_hub_args +def post_lfs_batch_info( + upload_infos: Iterable[UploadInfo], + token: Optional[str], + repo_type: str, + repo_id: str, + revision: Optional[str] = None, + endpoint: Optional[str] = None, + headers: Optional[Dict[str, str]] = None, +) -> Tuple[List[dict], List[dict]]: + """ + Requests the LFS batch endpoint to retrieve upload instructions + + Learn more: https://github.com/git-lfs/git-lfs/blob/main/docs/api/batch.md + + Args: + upload_infos (`Iterable` of `UploadInfo`): + `UploadInfo` for the files that are being uploaded, typically obtained + from `CommitOperationAdd.upload_info` + repo_type (`str`): + Type of the repo to upload to: `"model"`, `"dataset"` or `"space"`. + repo_id (`str`): + A namespace (user or an organization) and a repo name separated + by a `/`. + revision (`str`, *optional*): + The git revision to upload to. + headers (`dict`, *optional*): + Additional headers to include in the request + + Returns: + `LfsBatchInfo`: 2-tuple: + - First element is the list of upload instructions from the server + - Second element is an list of errors, if any + + Raises: + [`ValueError`](https://docs.python.org/3/library/exceptions.html#ValueError) + If an argument is invalid or the server response is malformed. + [`HTTPError`](https://requests.readthedocs.io/en/latest/api/#requests.HTTPError) + If the server returned an error. + """ + endpoint = endpoint if endpoint is not None else constants.ENDPOINT + url_prefix = "" + if repo_type in constants.REPO_TYPES_URL_PREFIXES: + url_prefix = constants.REPO_TYPES_URL_PREFIXES[repo_type] + batch_url = f"{endpoint}/{url_prefix}{repo_id}.git/info/lfs/objects/batch" + payload: Dict = { + "operation": "upload", + "transfers": ["basic", "multipart"], + "objects": [ + { + "oid": upload.sha256.hex(), + "size": upload.size, + } + for upload in upload_infos + ], + "hash_algo": "sha256", + } + if revision is not None: + payload["ref"] = {"name": unquote(revision)} # revision has been previously 'quoted' + + headers = { + **LFS_HEADERS, + **build_hf_headers(token=token), + **(headers or {}), + } + resp = get_session().post(batch_url, headers=headers, json=payload) + hf_raise_for_status(resp) + batch_info = resp.json() + + objects = batch_info.get("objects", None) + if not isinstance(objects, list): + raise ValueError("Malformed response from server") + + return ( + [_validate_batch_actions(obj) for obj in objects if "error" not in obj], + [_validate_batch_error(obj) for obj in objects if "error" in obj], + ) + + +class PayloadPartT(TypedDict): + partNumber: int + etag: str + + +class CompletionPayloadT(TypedDict): + """Payload that will be sent to the Hub when uploading multi-part.""" + + oid: str + parts: List[PayloadPartT] + + +def lfs_upload( + operation: "CommitOperationAdd", + lfs_batch_action: Dict, + token: Optional[str] = None, + headers: Optional[Dict[str, str]] = None, + endpoint: Optional[str] = None, +) -> None: + """ + Handles uploading a given object to the Hub with the LFS protocol. + + Can be a No-op if the content of the file is already present on the hub large file storage. + + Args: + operation (`CommitOperationAdd`): + The add operation triggering this upload. + lfs_batch_action (`dict`): + Upload instructions from the LFS batch endpoint for this object. See [`~utils.lfs.post_lfs_batch_info`] for + more details. + headers (`dict`, *optional*): + Headers to include in the request, including authentication and user agent headers. + + Raises: + [`ValueError`](https://docs.python.org/3/library/exceptions.html#ValueError) + If `lfs_batch_action` is improperly formatted + [`HTTPError`](https://requests.readthedocs.io/en/latest/api/#requests.HTTPError) + If the upload resulted in an error + """ + # 0. If LFS file is already present, skip upload + _validate_batch_actions(lfs_batch_action) + actions = lfs_batch_action.get("actions") + if actions is None: + # The file was already uploaded + logger.debug(f"Content of file {operation.path_in_repo} is already present upstream - skipping upload") + return + + # 1. Validate server response (check required keys in dict) + upload_action = lfs_batch_action["actions"]["upload"] + _validate_lfs_action(upload_action) + verify_action = lfs_batch_action["actions"].get("verify") + if verify_action is not None: + _validate_lfs_action(verify_action) + + # 2. Upload file (either single part or multi-part) + header = upload_action.get("header", {}) + chunk_size = header.get("chunk_size") + upload_url = fix_hf_endpoint_in_url(upload_action["href"], endpoint=endpoint) + if chunk_size is not None: + try: + chunk_size = int(chunk_size) + except (ValueError, TypeError): + raise ValueError( + f"Malformed response from LFS batch endpoint: `chunk_size` should be an integer. Got '{chunk_size}'." + ) + _upload_multi_part(operation=operation, header=header, chunk_size=chunk_size, upload_url=upload_url) + else: + _upload_single_part(operation=operation, upload_url=upload_url) + + # 3. Verify upload went well + if verify_action is not None: + _validate_lfs_action(verify_action) + verify_url = fix_hf_endpoint_in_url(verify_action["href"], endpoint) + verify_resp = get_session().post( + verify_url, + headers=build_hf_headers(token=token, headers=headers), + json={"oid": operation.upload_info.sha256.hex(), "size": operation.upload_info.size}, + ) + hf_raise_for_status(verify_resp) + logger.debug(f"{operation.path_in_repo}: Upload successful") + + +def _validate_lfs_action(lfs_action: dict): + """validates response from the LFS batch endpoint""" + if not ( + isinstance(lfs_action.get("href"), str) + and (lfs_action.get("header") is None or isinstance(lfs_action.get("header"), dict)) + ): + raise ValueError("lfs_action is improperly formatted") + return lfs_action + + +def _validate_batch_actions(lfs_batch_actions: dict): + """validates response from the LFS batch endpoint""" + if not (isinstance(lfs_batch_actions.get("oid"), str) and isinstance(lfs_batch_actions.get("size"), int)): + raise ValueError("lfs_batch_actions is improperly formatted") + + upload_action = lfs_batch_actions.get("actions", {}).get("upload") + verify_action = lfs_batch_actions.get("actions", {}).get("verify") + if upload_action is not None: + _validate_lfs_action(upload_action) + if verify_action is not None: + _validate_lfs_action(verify_action) + return lfs_batch_actions + + +def _validate_batch_error(lfs_batch_error: dict): + """validates response from the LFS batch endpoint""" + if not (isinstance(lfs_batch_error.get("oid"), str) and isinstance(lfs_batch_error.get("size"), int)): + raise ValueError("lfs_batch_error is improperly formatted") + error_info = lfs_batch_error.get("error") + if not ( + isinstance(error_info, dict) + and isinstance(error_info.get("message"), str) + and isinstance(error_info.get("code"), int) + ): + raise ValueError("lfs_batch_error is improperly formatted") + return lfs_batch_error + + +def _upload_single_part(operation: "CommitOperationAdd", upload_url: str) -> None: + """ + Uploads `fileobj` as a single PUT HTTP request (basic LFS transfer protocol) + + Args: + upload_url (`str`): + The URL to PUT the file to. + fileobj: + The file-like object holding the data to upload. + + Returns: `requests.Response` + + Raises: + [`HTTPError`](https://requests.readthedocs.io/en/latest/api/#requests.HTTPError) + If the upload resulted in an error. + """ + with operation.as_file(with_tqdm=True) as fileobj: + # S3 might raise a transient 500 error -> let's retry if that happens + response = http_backoff("PUT", upload_url, data=fileobj, retry_on_status_codes=(500, 502, 503, 504)) + hf_raise_for_status(response) + + +def _upload_multi_part(operation: "CommitOperationAdd", header: Dict, chunk_size: int, upload_url: str) -> None: + """ + Uploads file using HF multipart LFS transfer protocol. + """ + # 1. Get upload URLs for each part + sorted_parts_urls = _get_sorted_parts_urls(header=header, upload_info=operation.upload_info, chunk_size=chunk_size) + + # 2. Upload parts (either with hf_transfer or in pure Python) + use_hf_transfer = constants.HF_HUB_ENABLE_HF_TRANSFER + if ( + constants.HF_HUB_ENABLE_HF_TRANSFER + and not isinstance(operation.path_or_fileobj, str) + and not isinstance(operation.path_or_fileobj, Path) + ): + warnings.warn( + "hf_transfer is enabled but does not support uploading from bytes or BinaryIO, falling back to regular" + " upload" + ) + use_hf_transfer = False + + response_headers = ( + _upload_parts_hf_transfer(operation=operation, sorted_parts_urls=sorted_parts_urls, chunk_size=chunk_size) + if use_hf_transfer + else _upload_parts_iteratively(operation=operation, sorted_parts_urls=sorted_parts_urls, chunk_size=chunk_size) + ) + + # 3. Send completion request + completion_res = get_session().post( + upload_url, + json=_get_completion_payload(response_headers, operation.upload_info.sha256.hex()), + headers=LFS_HEADERS, + ) + hf_raise_for_status(completion_res) + + +def _get_sorted_parts_urls(header: Dict, upload_info: UploadInfo, chunk_size: int) -> List[str]: + sorted_part_upload_urls = [ + upload_url + for _, upload_url in sorted( + [ + (int(part_num, 10), upload_url) + for part_num, upload_url in header.items() + if part_num.isdigit() and len(part_num) > 0 + ], + key=lambda t: t[0], + ) + ] + num_parts = len(sorted_part_upload_urls) + if num_parts != ceil(upload_info.size / chunk_size): + raise ValueError("Invalid server response to upload large LFS file") + return sorted_part_upload_urls + + +def _get_completion_payload(response_headers: List[Dict], oid: str) -> CompletionPayloadT: + parts: List[PayloadPartT] = [] + for part_number, header in enumerate(response_headers): + etag = header.get("etag") + if etag is None or etag == "": + raise ValueError(f"Invalid etag (`{etag}`) returned for part {part_number + 1}") + parts.append( + { + "partNumber": part_number + 1, + "etag": etag, + } + ) + return {"oid": oid, "parts": parts} + + +def _upload_parts_iteratively( + operation: "CommitOperationAdd", sorted_parts_urls: List[str], chunk_size: int +) -> List[Dict]: + headers = [] + with operation.as_file(with_tqdm=True) as fileobj: + for part_idx, part_upload_url in enumerate(sorted_parts_urls): + with SliceFileObj( + fileobj, + seek_from=chunk_size * part_idx, + read_limit=chunk_size, + ) as fileobj_slice: + # S3 might raise a transient 500 error -> let's retry if that happens + part_upload_res = http_backoff( + "PUT", part_upload_url, data=fileobj_slice, retry_on_status_codes=(500, 502, 503, 504) + ) + hf_raise_for_status(part_upload_res) + headers.append(part_upload_res.headers) + return headers # type: ignore + + +def _upload_parts_hf_transfer( + operation: "CommitOperationAdd", sorted_parts_urls: List[str], chunk_size: int +) -> List[Dict]: + # Upload file using an external Rust-based package. Upload is faster but support less features (no progress bars). + try: + from hf_transfer import multipart_upload + except ImportError: + raise ValueError( + "Fast uploading using 'hf_transfer' is enabled (HF_HUB_ENABLE_HF_TRANSFER=1) but 'hf_transfer' package is" + " not available in your environment. Try `pip install hf_transfer`." + ) + + supports_callback = "callback" in inspect.signature(multipart_upload).parameters + if not supports_callback: + warnings.warn( + "You are using an outdated version of `hf_transfer`. Consider upgrading to latest version to enable progress bars using `pip install -U hf_transfer`." + ) + + total = operation.upload_info.size + desc = operation.path_in_repo + if len(desc) > 40: + desc = f"(…){desc[-40:]}" + + with tqdm( + unit="B", + unit_scale=True, + total=total, + initial=0, + desc=desc, + disable=is_tqdm_disabled(logger.getEffectiveLevel()), + name="huggingface_hub.lfs_upload", + ) as progress: + try: + output = multipart_upload( + file_path=operation.path_or_fileobj, + parts_urls=sorted_parts_urls, + chunk_size=chunk_size, + max_files=128, + parallel_failures=127, # could be removed + max_retries=5, + **({"callback": progress.update} if supports_callback else {}), + ) + except Exception as e: + raise RuntimeError( + "An error occurred while uploading using `hf_transfer`. Consider disabling HF_HUB_ENABLE_HF_TRANSFER for" + " better error handling." + ) from e + if not supports_callback: + progress.update(total) + return output diff --git a/.venv/lib/python3.12/site-packages/huggingface_hub/py.typed b/.venv/lib/python3.12/site-packages/huggingface_hub/py.typed new file mode 100644 index 00000000..e69de29b --- /dev/null +++ b/.venv/lib/python3.12/site-packages/huggingface_hub/py.typed diff --git a/.venv/lib/python3.12/site-packages/huggingface_hub/repocard.py b/.venv/lib/python3.12/site-packages/huggingface_hub/repocard.py new file mode 100644 index 00000000..83b22b2b --- /dev/null +++ b/.venv/lib/python3.12/site-packages/huggingface_hub/repocard.py @@ -0,0 +1,830 @@ +import os +import re +from pathlib import Path +from typing import Any, Dict, Literal, Optional, Type, Union + +import requests +import yaml + +from huggingface_hub.file_download import hf_hub_download +from huggingface_hub.hf_api import upload_file +from huggingface_hub.repocard_data import ( + CardData, + DatasetCardData, + EvalResult, + ModelCardData, + SpaceCardData, + eval_results_to_model_index, + model_index_to_eval_results, +) +from huggingface_hub.utils import get_session, is_jinja_available, yaml_dump + +from . import constants +from .errors import EntryNotFoundError +from .utils import SoftTemporaryDirectory, logging, validate_hf_hub_args + + +logger = logging.get_logger(__name__) + + +TEMPLATE_MODELCARD_PATH = Path(__file__).parent / "templates" / "modelcard_template.md" +TEMPLATE_DATASETCARD_PATH = Path(__file__).parent / "templates" / "datasetcard_template.md" + +# exact same regex as in the Hub server. Please keep in sync. +# See https://github.com/huggingface/moon-landing/blob/main/server/lib/ViewMarkdown.ts#L18 +REGEX_YAML_BLOCK = re.compile(r"^(\s*---[\r\n]+)([\S\s]*?)([\r\n]+---(\r\n|\n|$))") + + +class RepoCard: + card_data_class = CardData + default_template_path = TEMPLATE_MODELCARD_PATH + repo_type = "model" + + def __init__(self, content: str, ignore_metadata_errors: bool = False): + """Initialize a RepoCard from string content. The content should be a + Markdown file with a YAML block at the beginning and a Markdown body. + + Args: + content (`str`): The content of the Markdown file. + + Example: + ```python + >>> from huggingface_hub.repocard import RepoCard + >>> text = ''' + ... --- + ... language: en + ... license: mit + ... --- + ... + ... # My repo + ... ''' + >>> card = RepoCard(text) + >>> card.data.to_dict() + {'language': 'en', 'license': 'mit'} + >>> card.text + '\\n# My repo\\n' + + ``` + <Tip> + Raises the following error: + + - [`ValueError`](https://docs.python.org/3/library/exceptions.html#ValueError) + when the content of the repo card metadata is not a dictionary. + + </Tip> + """ + + # Set the content of the RepoCard, as well as underlying .data and .text attributes. + # See the `content` property setter for more details. + self.ignore_metadata_errors = ignore_metadata_errors + self.content = content + + @property + def content(self): + """The content of the RepoCard, including the YAML block and the Markdown body.""" + line_break = _detect_line_ending(self._content) or "\n" + return f"---{line_break}{self.data.to_yaml(line_break=line_break, original_order=self._original_order)}{line_break}---{line_break}{self.text}" + + @content.setter + def content(self, content: str): + """Set the content of the RepoCard.""" + self._content = content + + match = REGEX_YAML_BLOCK.search(content) + if match: + # Metadata found in the YAML block + yaml_block = match.group(2) + self.text = content[match.end() :] + data_dict = yaml.safe_load(yaml_block) + + if data_dict is None: + data_dict = {} + + # The YAML block's data should be a dictionary + if not isinstance(data_dict, dict): + raise ValueError("repo card metadata block should be a dict") + else: + # Model card without metadata... create empty metadata + logger.warning("Repo card metadata block was not found. Setting CardData to empty.") + data_dict = {} + self.text = content + + self.data = self.card_data_class(**data_dict, ignore_metadata_errors=self.ignore_metadata_errors) + self._original_order = list(data_dict.keys()) + + def __str__(self): + return self.content + + def save(self, filepath: Union[Path, str]): + r"""Save a RepoCard to a file. + + Args: + filepath (`Union[Path, str]`): Filepath to the markdown file to save. + + Example: + ```python + >>> from huggingface_hub.repocard import RepoCard + >>> card = RepoCard("---\nlanguage: en\n---\n# This is a test repo card") + >>> card.save("/tmp/test.md") + + ``` + """ + filepath = Path(filepath) + filepath.parent.mkdir(parents=True, exist_ok=True) + # Preserve newlines as in the existing file. + with open(filepath, mode="w", newline="", encoding="utf-8") as f: + f.write(str(self)) + + @classmethod + def load( + cls, + repo_id_or_path: Union[str, Path], + repo_type: Optional[str] = None, + token: Optional[str] = None, + ignore_metadata_errors: bool = False, + ): + """Initialize a RepoCard from a Hugging Face Hub repo's README.md or a local filepath. + + Args: + repo_id_or_path (`Union[str, Path]`): + The repo ID associated with a Hugging Face Hub repo or a local filepath. + repo_type (`str`, *optional*): + The type of Hugging Face repo to push to. Defaults to None, which will use use "model". Other options + are "dataset" and "space". Not used when loading from a local filepath. If this is called from a child + class, the default value will be the child class's `repo_type`. + token (`str`, *optional*): + Authentication token, obtained with `huggingface_hub.HfApi.login` method. Will default to the stored token. + ignore_metadata_errors (`str`): + If True, errors while parsing the metadata section will be ignored. Some information might be lost during + the process. Use it at your own risk. + + Returns: + [`huggingface_hub.repocard.RepoCard`]: The RepoCard (or subclass) initialized from the repo's + README.md file or filepath. + + Example: + ```python + >>> from huggingface_hub.repocard import RepoCard + >>> card = RepoCard.load("nateraw/food") + >>> assert card.data.tags == ["generated_from_trainer", "image-classification", "pytorch"] + + ``` + """ + + if Path(repo_id_or_path).is_file(): + card_path = Path(repo_id_or_path) + elif isinstance(repo_id_or_path, str): + card_path = Path( + hf_hub_download( + repo_id_or_path, + constants.REPOCARD_NAME, + repo_type=repo_type or cls.repo_type, + token=token, + ) + ) + else: + raise ValueError(f"Cannot load RepoCard: path not found on disk ({repo_id_or_path}).") + + # Preserve newlines in the existing file. + with card_path.open(mode="r", newline="", encoding="utf-8") as f: + return cls(f.read(), ignore_metadata_errors=ignore_metadata_errors) + + def validate(self, repo_type: Optional[str] = None): + """Validates card against Hugging Face Hub's card validation logic. + Using this function requires access to the internet, so it is only called + internally by [`huggingface_hub.repocard.RepoCard.push_to_hub`]. + + Args: + repo_type (`str`, *optional*, defaults to "model"): + The type of Hugging Face repo to push to. Options are "model", "dataset", and "space". + If this function is called from a child class, the default will be the child class's `repo_type`. + + <Tip> + Raises the following errors: + + - [`ValueError`](https://docs.python.org/3/library/exceptions.html#ValueError) + if the card fails validation checks. + - [`HTTPError`](https://requests.readthedocs.io/en/latest/api/#requests.HTTPError) + if the request to the Hub API fails for any other reason. + + </Tip> + """ + + # If repo type is provided, otherwise, use the repo type of the card. + repo_type = repo_type or self.repo_type + + body = { + "repoType": repo_type, + "content": str(self), + } + headers = {"Accept": "text/plain"} + + try: + r = get_session().post("https://huggingface.co/api/validate-yaml", body, headers=headers) + r.raise_for_status() + except requests.exceptions.HTTPError as exc: + if r.status_code == 400: + raise ValueError(r.text) + else: + raise exc + + def push_to_hub( + self, + repo_id: str, + token: Optional[str] = None, + repo_type: Optional[str] = None, + commit_message: Optional[str] = None, + commit_description: Optional[str] = None, + revision: Optional[str] = None, + create_pr: Optional[bool] = None, + parent_commit: Optional[str] = None, + ): + """Push a RepoCard to a Hugging Face Hub repo. + + Args: + repo_id (`str`): + The repo ID of the Hugging Face Hub repo to push to. Example: "nateraw/food". + token (`str`, *optional*): + Authentication token, obtained with `huggingface_hub.HfApi.login` method. Will default to + the stored token. + repo_type (`str`, *optional*, defaults to "model"): + The type of Hugging Face repo to push to. Options are "model", "dataset", and "space". If this + function is called by a child class, it will default to the child class's `repo_type`. + commit_message (`str`, *optional*): + The summary / title / first line of the generated commit. + commit_description (`str`, *optional*) + The description of the generated commit. + revision (`str`, *optional*): + The git revision to commit from. Defaults to the head of the `"main"` branch. + create_pr (`bool`, *optional*): + Whether or not to create a Pull Request with this commit. Defaults to `False`. + parent_commit (`str`, *optional*): + The OID / SHA of the parent commit, as a hexadecimal string. Shorthands (7 first characters) are also supported. + If specified and `create_pr` is `False`, the commit will fail if `revision` does not point to `parent_commit`. + If specified and `create_pr` is `True`, the pull request will be created from `parent_commit`. + Specifying `parent_commit` ensures the repo has not changed before committing the changes, and can be + especially useful if the repo is updated / committed to concurrently. + Returns: + `str`: URL of the commit which updated the card metadata. + """ + + # If repo type is provided, otherwise, use the repo type of the card. + repo_type = repo_type or self.repo_type + + # Validate card before pushing to hub + self.validate(repo_type=repo_type) + + with SoftTemporaryDirectory() as tmpdir: + tmp_path = Path(tmpdir) / constants.REPOCARD_NAME + tmp_path.write_text(str(self)) + url = upload_file( + path_or_fileobj=str(tmp_path), + path_in_repo=constants.REPOCARD_NAME, + repo_id=repo_id, + token=token, + repo_type=repo_type, + commit_message=commit_message, + commit_description=commit_description, + create_pr=create_pr, + revision=revision, + parent_commit=parent_commit, + ) + return url + + @classmethod + def from_template( + cls, + card_data: CardData, + template_path: Optional[str] = None, + template_str: Optional[str] = None, + **template_kwargs, + ): + """Initialize a RepoCard from a template. By default, it uses the default template. + + Templates are Jinja2 templates that can be customized by passing keyword arguments. + + Args: + card_data (`huggingface_hub.CardData`): + A huggingface_hub.CardData instance containing the metadata you want to include in the YAML + header of the repo card on the Hugging Face Hub. + template_path (`str`, *optional*): + A path to a markdown file with optional Jinja template variables that can be filled + in with `template_kwargs`. Defaults to the default template. + + Returns: + [`huggingface_hub.repocard.RepoCard`]: A RepoCard instance with the specified card data and content from the + template. + """ + if is_jinja_available(): + import jinja2 + else: + raise ImportError( + "Using RepoCard.from_template requires Jinja2 to be installed. Please" + " install it with `pip install Jinja2`." + ) + + kwargs = card_data.to_dict().copy() + kwargs.update(template_kwargs) # Template_kwargs have priority + + if template_path is not None: + template_str = Path(template_path).read_text() + if template_str is None: + template_str = Path(cls.default_template_path).read_text() + template = jinja2.Template(template_str) + content = template.render(card_data=card_data.to_yaml(), **kwargs) + return cls(content) + + +class ModelCard(RepoCard): + card_data_class = ModelCardData + default_template_path = TEMPLATE_MODELCARD_PATH + repo_type = "model" + + @classmethod + def from_template( # type: ignore # violates Liskov property but easier to use + cls, + card_data: ModelCardData, + template_path: Optional[str] = None, + template_str: Optional[str] = None, + **template_kwargs, + ): + """Initialize a ModelCard from a template. By default, it uses the default template, which can be found here: + https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md + + Templates are Jinja2 templates that can be customized by passing keyword arguments. + + Args: + card_data (`huggingface_hub.ModelCardData`): + A huggingface_hub.ModelCardData instance containing the metadata you want to include in the YAML + header of the model card on the Hugging Face Hub. + template_path (`str`, *optional*): + A path to a markdown file with optional Jinja template variables that can be filled + in with `template_kwargs`. Defaults to the default template. + + Returns: + [`huggingface_hub.ModelCard`]: A ModelCard instance with the specified card data and content from the + template. + + Example: + ```python + >>> from huggingface_hub import ModelCard, ModelCardData, EvalResult + + >>> # Using the Default Template + >>> card_data = ModelCardData( + ... language='en', + ... license='mit', + ... library_name='timm', + ... tags=['image-classification', 'resnet'], + ... datasets=['beans'], + ... metrics=['accuracy'], + ... ) + >>> card = ModelCard.from_template( + ... card_data, + ... model_description='This model does x + y...' + ... ) + + >>> # Including Evaluation Results + >>> card_data = ModelCardData( + ... language='en', + ... tags=['image-classification', 'resnet'], + ... eval_results=[ + ... EvalResult( + ... task_type='image-classification', + ... dataset_type='beans', + ... dataset_name='Beans', + ... metric_type='accuracy', + ... metric_value=0.9, + ... ), + ... ], + ... model_name='my-cool-model', + ... ) + >>> card = ModelCard.from_template(card_data) + + >>> # Using a Custom Template + >>> card_data = ModelCardData( + ... language='en', + ... tags=['image-classification', 'resnet'] + ... ) + >>> card = ModelCard.from_template( + ... card_data=card_data, + ... template_path='./src/huggingface_hub/templates/modelcard_template.md', + ... custom_template_var='custom value', # will be replaced in template if it exists + ... ) + + ``` + """ + return super().from_template(card_data, template_path, template_str, **template_kwargs) + + +class DatasetCard(RepoCard): + card_data_class = DatasetCardData + default_template_path = TEMPLATE_DATASETCARD_PATH + repo_type = "dataset" + + @classmethod + def from_template( # type: ignore # violates Liskov property but easier to use + cls, + card_data: DatasetCardData, + template_path: Optional[str] = None, + template_str: Optional[str] = None, + **template_kwargs, + ): + """Initialize a DatasetCard from a template. By default, it uses the default template, which can be found here: + https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/datasetcard_template.md + + Templates are Jinja2 templates that can be customized by passing keyword arguments. + + Args: + card_data (`huggingface_hub.DatasetCardData`): + A huggingface_hub.DatasetCardData instance containing the metadata you want to include in the YAML + header of the dataset card on the Hugging Face Hub. + template_path (`str`, *optional*): + A path to a markdown file with optional Jinja template variables that can be filled + in with `template_kwargs`. Defaults to the default template. + + Returns: + [`huggingface_hub.DatasetCard`]: A DatasetCard instance with the specified card data and content from the + template. + + Example: + ```python + >>> from huggingface_hub import DatasetCard, DatasetCardData + + >>> # Using the Default Template + >>> card_data = DatasetCardData( + ... language='en', + ... license='mit', + ... annotations_creators='crowdsourced', + ... task_categories=['text-classification'], + ... task_ids=['sentiment-classification', 'text-scoring'], + ... multilinguality='monolingual', + ... pretty_name='My Text Classification Dataset', + ... ) + >>> card = DatasetCard.from_template( + ... card_data, + ... pretty_name=card_data.pretty_name, + ... ) + + >>> # Using a Custom Template + >>> card_data = DatasetCardData( + ... language='en', + ... license='mit', + ... ) + >>> card = DatasetCard.from_template( + ... card_data=card_data, + ... template_path='./src/huggingface_hub/templates/datasetcard_template.md', + ... custom_template_var='custom value', # will be replaced in template if it exists + ... ) + + ``` + """ + return super().from_template(card_data, template_path, template_str, **template_kwargs) + + +class SpaceCard(RepoCard): + card_data_class = SpaceCardData + default_template_path = TEMPLATE_MODELCARD_PATH + repo_type = "space" + + +def _detect_line_ending(content: str) -> Literal["\r", "\n", "\r\n", None]: # noqa: F722 + """Detect the line ending of a string. Used by RepoCard to avoid making huge diff on newlines. + + Uses same implementation as in Hub server, keep it in sync. + + Returns: + str: The detected line ending of the string. + """ + cr = content.count("\r") + lf = content.count("\n") + crlf = content.count("\r\n") + if cr + lf == 0: + return None + if crlf == cr and crlf == lf: + return "\r\n" + if cr > lf: + return "\r" + else: + return "\n" + + +def metadata_load(local_path: Union[str, Path]) -> Optional[Dict]: + content = Path(local_path).read_text() + match = REGEX_YAML_BLOCK.search(content) + if match: + yaml_block = match.group(2) + data = yaml.safe_load(yaml_block) + if data is None or isinstance(data, dict): + return data + raise ValueError("repo card metadata block should be a dict") + else: + return None + + +def metadata_save(local_path: Union[str, Path], data: Dict) -> None: + """ + Save the metadata dict in the upper YAML part Trying to preserve newlines as + in the existing file. Docs about open() with newline="" parameter: + https://docs.python.org/3/library/functions.html?highlight=open#open Does + not work with "^M" linebreaks, which are replaced by \n + """ + line_break = "\n" + content = "" + # try to detect existing newline character + if os.path.exists(local_path): + with open(local_path, "r", newline="", encoding="utf8") as readme: + content = readme.read() + if isinstance(readme.newlines, tuple): + line_break = readme.newlines[0] + elif isinstance(readme.newlines, str): + line_break = readme.newlines + + # creates a new file if it not + with open(local_path, "w", newline="", encoding="utf8") as readme: + data_yaml = yaml_dump(data, sort_keys=False, line_break=line_break) + # sort_keys: keep dict order + match = REGEX_YAML_BLOCK.search(content) + if match: + output = content[: match.start()] + f"---{line_break}{data_yaml}---{line_break}" + content[match.end() :] + else: + output = f"---{line_break}{data_yaml}---{line_break}{content}" + + readme.write(output) + readme.close() + + +def metadata_eval_result( + *, + model_pretty_name: str, + task_pretty_name: str, + task_id: str, + metrics_pretty_name: str, + metrics_id: str, + metrics_value: Any, + dataset_pretty_name: str, + dataset_id: str, + metrics_config: Optional[str] = None, + metrics_verified: bool = False, + dataset_config: Optional[str] = None, + dataset_split: Optional[str] = None, + dataset_revision: Optional[str] = None, + metrics_verification_token: Optional[str] = None, +) -> Dict: + """ + Creates a metadata dict with the result from a model evaluated on a dataset. + + Args: + model_pretty_name (`str`): + The name of the model in natural language. + task_pretty_name (`str`): + The name of a task in natural language. + task_id (`str`): + Example: automatic-speech-recognition. A task id. + metrics_pretty_name (`str`): + A name for the metric in natural language. Example: Test WER. + metrics_id (`str`): + Example: wer. A metric id from https://hf.co/metrics. + metrics_value (`Any`): + The value from the metric. Example: 20.0 or "20.0 ± 1.2". + dataset_pretty_name (`str`): + The name of the dataset in natural language. + dataset_id (`str`): + Example: common_voice. A dataset id from https://hf.co/datasets. + metrics_config (`str`, *optional*): + The name of the metric configuration used in `load_metric()`. + Example: bleurt-large-512 in `load_metric("bleurt", "bleurt-large-512")`. + metrics_verified (`bool`, *optional*, defaults to `False`): + Indicates whether the metrics originate from Hugging Face's [evaluation service](https://huggingface.co/spaces/autoevaluate/model-evaluator) or not. Automatically computed by Hugging Face, do not set. + dataset_config (`str`, *optional*): + Example: fr. The name of the dataset configuration used in `load_dataset()`. + dataset_split (`str`, *optional*): + Example: test. The name of the dataset split used in `load_dataset()`. + dataset_revision (`str`, *optional*): + Example: 5503434ddd753f426f4b38109466949a1217c2bb. The name of the dataset dataset revision + used in `load_dataset()`. + metrics_verification_token (`bool`, *optional*): + A JSON Web Token that is used to verify whether the metrics originate from Hugging Face's [evaluation service](https://huggingface.co/spaces/autoevaluate/model-evaluator) or not. + + Returns: + `dict`: a metadata dict with the result from a model evaluated on a dataset. + + Example: + ```python + >>> from huggingface_hub import metadata_eval_result + >>> results = metadata_eval_result( + ... model_pretty_name="RoBERTa fine-tuned on ReactionGIF", + ... task_pretty_name="Text Classification", + ... task_id="text-classification", + ... metrics_pretty_name="Accuracy", + ... metrics_id="accuracy", + ... metrics_value=0.2662102282047272, + ... dataset_pretty_name="ReactionJPEG", + ... dataset_id="julien-c/reactionjpeg", + ... dataset_config="default", + ... dataset_split="test", + ... ) + >>> results == { + ... 'model-index': [ + ... { + ... 'name': 'RoBERTa fine-tuned on ReactionGIF', + ... 'results': [ + ... { + ... 'task': { + ... 'type': 'text-classification', + ... 'name': 'Text Classification' + ... }, + ... 'dataset': { + ... 'name': 'ReactionJPEG', + ... 'type': 'julien-c/reactionjpeg', + ... 'config': 'default', + ... 'split': 'test' + ... }, + ... 'metrics': [ + ... { + ... 'type': 'accuracy', + ... 'value': 0.2662102282047272, + ... 'name': 'Accuracy', + ... 'verified': False + ... } + ... ] + ... } + ... ] + ... } + ... ] + ... } + True + + ``` + """ + + return { + "model-index": eval_results_to_model_index( + model_name=model_pretty_name, + eval_results=[ + EvalResult( + task_name=task_pretty_name, + task_type=task_id, + metric_name=metrics_pretty_name, + metric_type=metrics_id, + metric_value=metrics_value, + dataset_name=dataset_pretty_name, + dataset_type=dataset_id, + metric_config=metrics_config, + verified=metrics_verified, + verify_token=metrics_verification_token, + dataset_config=dataset_config, + dataset_split=dataset_split, + dataset_revision=dataset_revision, + ) + ], + ) + } + + +@validate_hf_hub_args +def metadata_update( + repo_id: str, + metadata: Dict, + *, + repo_type: Optional[str] = None, + overwrite: bool = False, + token: Optional[str] = None, + commit_message: Optional[str] = None, + commit_description: Optional[str] = None, + revision: Optional[str] = None, + create_pr: bool = False, + parent_commit: Optional[str] = None, +) -> str: + """ + Updates the metadata in the README.md of a repository on the Hugging Face Hub. + If the README.md file doesn't exist yet, a new one is created with metadata and an + the default ModelCard or DatasetCard template. For `space` repo, an error is thrown + as a Space cannot exist without a `README.md` file. + + Args: + repo_id (`str`): + The name of the repository. + metadata (`dict`): + A dictionary containing the metadata to be updated. + repo_type (`str`, *optional*): + Set to `"dataset"` or `"space"` if updating to a dataset or space, + `None` or `"model"` if updating to a model. Default is `None`. + overwrite (`bool`, *optional*, defaults to `False`): + If set to `True` an existing field can be overwritten, otherwise + attempting to overwrite an existing field will cause an error. + token (`str`, *optional*): + The Hugging Face authentication token. + commit_message (`str`, *optional*): + The summary / title / first line of the generated commit. Defaults to + `f"Update metadata with huggingface_hub"` + commit_description (`str` *optional*) + The description of the generated commit + revision (`str`, *optional*): + The git revision to commit from. Defaults to the head of the + `"main"` branch. + create_pr (`boolean`, *optional*): + Whether or not to create a Pull Request from `revision` with that commit. + Defaults to `False`. + parent_commit (`str`, *optional*): + The OID / SHA of the parent commit, as a hexadecimal string. Shorthands (7 first characters) are also supported. + If specified and `create_pr` is `False`, the commit will fail if `revision` does not point to `parent_commit`. + If specified and `create_pr` is `True`, the pull request will be created from `parent_commit`. + Specifying `parent_commit` ensures the repo has not changed before committing the changes, and can be + especially useful if the repo is updated / committed to concurrently. + Returns: + `str`: URL of the commit which updated the card metadata. + + Example: + ```python + >>> from huggingface_hub import metadata_update + >>> metadata = {'model-index': [{'name': 'RoBERTa fine-tuned on ReactionGIF', + ... 'results': [{'dataset': {'name': 'ReactionGIF', + ... 'type': 'julien-c/reactiongif'}, + ... 'metrics': [{'name': 'Recall', + ... 'type': 'recall', + ... 'value': 0.7762102282047272}], + ... 'task': {'name': 'Text Classification', + ... 'type': 'text-classification'}}]}]} + >>> url = metadata_update("hf-internal-testing/reactiongif-roberta-card", metadata) + + ``` + """ + commit_message = commit_message if commit_message is not None else "Update metadata with huggingface_hub" + + # Card class given repo_type + card_class: Type[RepoCard] + if repo_type is None or repo_type == "model": + card_class = ModelCard + elif repo_type == "dataset": + card_class = DatasetCard + elif repo_type == "space": + card_class = RepoCard + else: + raise ValueError(f"Unknown repo_type: {repo_type}") + + # Either load repo_card from the Hub or create an empty one. + # NOTE: Will not create the repo if it doesn't exist. + try: + card = card_class.load(repo_id, token=token, repo_type=repo_type) + except EntryNotFoundError: + if repo_type == "space": + raise ValueError("Cannot update metadata on a Space that doesn't contain a `README.md` file.") + + # Initialize a ModelCard or DatasetCard from default template and no data. + card = card_class.from_template(CardData()) + + for key, value in metadata.items(): + if key == "model-index": + # if the new metadata doesn't include a name, either use existing one or repo name + if "name" not in value[0]: + value[0]["name"] = getattr(card, "model_name", repo_id) + model_name, new_results = model_index_to_eval_results(value) + if card.data.eval_results is None: + card.data.eval_results = new_results + card.data.model_name = model_name + else: + existing_results = card.data.eval_results + + # Iterate over new results + # Iterate over existing results + # If both results describe the same metric but value is different: + # If overwrite=True: overwrite the metric value + # Else: raise ValueError + # Else: append new result to existing ones. + for new_result in new_results: + result_found = False + for existing_result in existing_results: + if new_result.is_equal_except_value(existing_result): + if new_result != existing_result and not overwrite: + raise ValueError( + "You passed a new value for the existing metric" + f" 'name: {new_result.metric_name}, type: " + f"{new_result.metric_type}'. Set `overwrite=True`" + " to overwrite existing metrics." + ) + result_found = True + existing_result.metric_value = new_result.metric_value + if existing_result.verified is True: + existing_result.verify_token = new_result.verify_token + if not result_found: + card.data.eval_results.append(new_result) + else: + # Any metadata that is not a result metric + if card.data.get(key) is not None and not overwrite and card.data.get(key) != value: + raise ValueError( + f"You passed a new value for the existing meta data field '{key}'." + " Set `overwrite=True` to overwrite existing metadata." + ) + else: + card.data[key] = value + + return card.push_to_hub( + repo_id, + token=token, + repo_type=repo_type, + commit_message=commit_message, + commit_description=commit_description, + create_pr=create_pr, + revision=revision, + parent_commit=parent_commit, + ) diff --git a/.venv/lib/python3.12/site-packages/huggingface_hub/repocard_data.py b/.venv/lib/python3.12/site-packages/huggingface_hub/repocard_data.py new file mode 100644 index 00000000..18366ca1 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/huggingface_hub/repocard_data.py @@ -0,0 +1,750 @@ +import copy +from collections import defaultdict +from dataclasses import dataclass +from typing import Any, Dict, List, Optional, Tuple, Union + +from huggingface_hub.utils import logging, yaml_dump + + +logger = logging.get_logger(__name__) + + +@dataclass +class EvalResult: + """ + Flattened representation of individual evaluation results found in model-index of Model Cards. + + For more information on the model-index spec, see https://github.com/huggingface/hub-docs/blob/main/modelcard.md?plain=1. + + Args: + task_type (`str`): + The task identifier. Example: "image-classification". + dataset_type (`str`): + The dataset identifier. Example: "common_voice". Use dataset id from https://hf.co/datasets. + dataset_name (`str`): + A pretty name for the dataset. Example: "Common Voice (French)". + metric_type (`str`): + The metric identifier. Example: "wer". Use metric id from https://hf.co/metrics. + metric_value (`Any`): + The metric value. Example: 0.9 or "20.0 ± 1.2". + task_name (`str`, *optional*): + A pretty name for the task. Example: "Speech Recognition". + dataset_config (`str`, *optional*): + The name of the dataset configuration used in `load_dataset()`. + Example: fr in `load_dataset("common_voice", "fr")`. See the `datasets` docs for more info: + https://hf.co/docs/datasets/package_reference/loading_methods#datasets.load_dataset.name + dataset_split (`str`, *optional*): + The split used in `load_dataset()`. Example: "test". + dataset_revision (`str`, *optional*): + The revision (AKA Git Sha) of the dataset used in `load_dataset()`. + Example: 5503434ddd753f426f4b38109466949a1217c2bb + dataset_args (`Dict[str, Any]`, *optional*): + The arguments passed during `Metric.compute()`. Example for `bleu`: `{"max_order": 4}` + metric_name (`str`, *optional*): + A pretty name for the metric. Example: "Test WER". + metric_config (`str`, *optional*): + The name of the metric configuration used in `load_metric()`. + Example: bleurt-large-512 in `load_metric("bleurt", "bleurt-large-512")`. + See the `datasets` docs for more info: https://huggingface.co/docs/datasets/v2.1.0/en/loading#load-configurations + metric_args (`Dict[str, Any]`, *optional*): + The arguments passed during `Metric.compute()`. Example for `bleu`: max_order: 4 + verified (`bool`, *optional*): + Indicates whether the metrics originate from Hugging Face's [evaluation service](https://huggingface.co/spaces/autoevaluate/model-evaluator) or not. Automatically computed by Hugging Face, do not set. + verify_token (`str`, *optional*): + A JSON Web Token that is used to verify whether the metrics originate from Hugging Face's [evaluation service](https://huggingface.co/spaces/autoevaluate/model-evaluator) or not. + source_name (`str`, *optional*): + The name of the source of the evaluation result. Example: "Open LLM Leaderboard". + source_url (`str`, *optional*): + The URL of the source of the evaluation result. Example: "https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard". + """ + + # Required + + # The task identifier + # Example: automatic-speech-recognition + task_type: str + + # The dataset identifier + # Example: common_voice. Use dataset id from https://hf.co/datasets + dataset_type: str + + # A pretty name for the dataset. + # Example: Common Voice (French) + dataset_name: str + + # The metric identifier + # Example: wer. Use metric id from https://hf.co/metrics + metric_type: str + + # Value of the metric. + # Example: 20.0 or "20.0 ± 1.2" + metric_value: Any + + # Optional + + # A pretty name for the task. + # Example: Speech Recognition + task_name: Optional[str] = None + + # The name of the dataset configuration used in `load_dataset()`. + # Example: fr in `load_dataset("common_voice", "fr")`. + # See the `datasets` docs for more info: + # https://huggingface.co/docs/datasets/package_reference/loading_methods#datasets.load_dataset.name + dataset_config: Optional[str] = None + + # The split used in `load_dataset()`. + # Example: test + dataset_split: Optional[str] = None + + # The revision (AKA Git Sha) of the dataset used in `load_dataset()`. + # Example: 5503434ddd753f426f4b38109466949a1217c2bb + dataset_revision: Optional[str] = None + + # The arguments passed during `Metric.compute()`. + # Example for `bleu`: max_order: 4 + dataset_args: Optional[Dict[str, Any]] = None + + # A pretty name for the metric. + # Example: Test WER + metric_name: Optional[str] = None + + # The name of the metric configuration used in `load_metric()`. + # Example: bleurt-large-512 in `load_metric("bleurt", "bleurt-large-512")`. + # See the `datasets` docs for more info: https://huggingface.co/docs/datasets/v2.1.0/en/loading#load-configurations + metric_config: Optional[str] = None + + # The arguments passed during `Metric.compute()`. + # Example for `bleu`: max_order: 4 + metric_args: Optional[Dict[str, Any]] = None + + # Indicates whether the metrics originate from Hugging Face's [evaluation service](https://huggingface.co/spaces/autoevaluate/model-evaluator) or not. Automatically computed by Hugging Face, do not set. + verified: Optional[bool] = None + + # A JSON Web Token that is used to verify whether the metrics originate from Hugging Face's [evaluation service](https://huggingface.co/spaces/autoevaluate/model-evaluator) or not. + verify_token: Optional[str] = None + + # The name of the source of the evaluation result. + # Example: Open LLM Leaderboard + source_name: Optional[str] = None + + # The URL of the source of the evaluation result. + # Example: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard + source_url: Optional[str] = None + + @property + def unique_identifier(self) -> tuple: + """Returns a tuple that uniquely identifies this evaluation.""" + return ( + self.task_type, + self.dataset_type, + self.dataset_config, + self.dataset_split, + self.dataset_revision, + ) + + def is_equal_except_value(self, other: "EvalResult") -> bool: + """ + Return True if `self` and `other` describe exactly the same metric but with a + different value. + """ + for key, _ in self.__dict__.items(): + if key == "metric_value": + continue + # For metrics computed by Hugging Face's evaluation service, `verify_token` is derived from `metric_value`, + # so we exclude it here in the comparison. + if key != "verify_token" and getattr(self, key) != getattr(other, key): + return False + return True + + def __post_init__(self) -> None: + if self.source_name is not None and self.source_url is None: + raise ValueError("If `source_name` is provided, `source_url` must also be provided.") + + +@dataclass +class CardData: + """Structure containing metadata from a RepoCard. + + [`CardData`] is the parent class of [`ModelCardData`] and [`DatasetCardData`]. + + Metadata can be exported as a dictionary or YAML. Export can be customized to alter the representation of the data + (example: flatten evaluation results). `CardData` behaves as a dictionary (can get, pop, set values) but do not + inherit from `dict` to allow this export step. + """ + + def __init__(self, ignore_metadata_errors: bool = False, **kwargs): + self.__dict__.update(kwargs) + + def to_dict(self): + """Converts CardData to a dict. + + Returns: + `dict`: CardData represented as a dictionary ready to be dumped to a YAML + block for inclusion in a README.md file. + """ + + data_dict = copy.deepcopy(self.__dict__) + self._to_dict(data_dict) + return {key: value for key, value in data_dict.items() if value is not None} + + def _to_dict(self, data_dict): + """Use this method in child classes to alter the dict representation of the data. Alter the dict in-place. + + Args: + data_dict (`dict`): The raw dict representation of the card data. + """ + pass + + def to_yaml(self, line_break=None, original_order: Optional[List[str]] = None) -> str: + """Dumps CardData to a YAML block for inclusion in a README.md file. + + Args: + line_break (str, *optional*): + The line break to use when dumping to yaml. + + Returns: + `str`: CardData represented as a YAML block. + """ + if original_order: + self.__dict__ = { + k: self.__dict__[k] + for k in original_order + list(set(self.__dict__.keys()) - set(original_order)) + if k in self.__dict__ + } + return yaml_dump(self.to_dict(), sort_keys=False, line_break=line_break).strip() + + def __repr__(self): + return repr(self.__dict__) + + def __str__(self): + return self.to_yaml() + + def get(self, key: str, default: Any = None) -> Any: + """Get value for a given metadata key.""" + value = self.__dict__.get(key) + return default if value is None else value + + def pop(self, key: str, default: Any = None) -> Any: + """Pop value for a given metadata key.""" + return self.__dict__.pop(key, default) + + def __getitem__(self, key: str) -> Any: + """Get value for a given metadata key.""" + return self.__dict__[key] + + def __setitem__(self, key: str, value: Any) -> None: + """Set value for a given metadata key.""" + self.__dict__[key] = value + + def __contains__(self, key: str) -> bool: + """Check if a given metadata key is set.""" + return key in self.__dict__ + + def __len__(self) -> int: + """Return the number of metadata keys set.""" + return len(self.__dict__) + + +class ModelCardData(CardData): + """Model Card Metadata that is used by Hugging Face Hub when included at the top of your README.md + + Args: + base_model (`str` or `List[str]`, *optional*): + The identifier of the base model from which the model derives. This is applicable for example if your model is a + fine-tune or adapter of an existing model. The value must be the ID of a model on the Hub (or a list of IDs + if your model derives from multiple models). Defaults to None. + datasets (`Union[str, List[str]]`, *optional*): + Dataset or list of datasets that were used to train this model. Should be a dataset ID + found on https://hf.co/datasets. Defaults to None. + eval_results (`Union[List[EvalResult], EvalResult]`, *optional*): + List of `huggingface_hub.EvalResult` that define evaluation results of the model. If provided, + `model_name` is used to as a name on PapersWithCode's leaderboards. Defaults to `None`. + language (`Union[str, List[str]]`, *optional*): + Language of model's training data or metadata. It must be an ISO 639-1, 639-2 or + 639-3 code (two/three letters), or a special value like "code", "multilingual". Defaults to `None`. + library_name (`str`, *optional*): + Name of library used by this model. Example: keras or any library from + https://github.com/huggingface/huggingface.js/blob/main/packages/tasks/src/model-libraries.ts. + Defaults to None. + license (`str`, *optional*): + License of this model. Example: apache-2.0 or any license from + https://huggingface.co/docs/hub/repositories-licenses. Defaults to None. + license_name (`str`, *optional*): + Name of the license of this model. Defaults to None. To be used in conjunction with `license_link`. + Common licenses (Apache-2.0, MIT, CC-BY-SA-4.0) do not need a name. In that case, use `license` instead. + license_link (`str`, *optional*): + Link to the license of this model. Defaults to None. To be used in conjunction with `license_name`. + Common licenses (Apache-2.0, MIT, CC-BY-SA-4.0) do not need a link. In that case, use `license` instead. + metrics (`List[str]`, *optional*): + List of metrics used to evaluate this model. Should be a metric name that can be found + at https://hf.co/metrics. Example: 'accuracy'. Defaults to None. + model_name (`str`, *optional*): + A name for this model. It is used along with + `eval_results` to construct the `model-index` within the card's metadata. The name + you supply here is what will be used on PapersWithCode's leaderboards. If None is provided + then the repo name is used as a default. Defaults to None. + pipeline_tag (`str`, *optional*): + The pipeline tag associated with the model. Example: "text-classification". + tags (`List[str]`, *optional*): + List of tags to add to your model that can be used when filtering on the Hugging + Face Hub. Defaults to None. + ignore_metadata_errors (`str`): + If True, errors while parsing the metadata section will be ignored. Some information might be lost during + the process. Use it at your own risk. + kwargs (`dict`, *optional*): + Additional metadata that will be added to the model card. Defaults to None. + + Example: + ```python + >>> from huggingface_hub import ModelCardData + >>> card_data = ModelCardData( + ... language="en", + ... license="mit", + ... library_name="timm", + ... tags=['image-classification', 'resnet'], + ... ) + >>> card_data.to_dict() + {'language': 'en', 'license': 'mit', 'library_name': 'timm', 'tags': ['image-classification', 'resnet']} + + ``` + """ + + def __init__( + self, + *, + base_model: Optional[Union[str, List[str]]] = None, + datasets: Optional[Union[str, List[str]]] = None, + eval_results: Optional[List[EvalResult]] = None, + language: Optional[Union[str, List[str]]] = None, + library_name: Optional[str] = None, + license: Optional[str] = None, + license_name: Optional[str] = None, + license_link: Optional[str] = None, + metrics: Optional[List[str]] = None, + model_name: Optional[str] = None, + pipeline_tag: Optional[str] = None, + tags: Optional[List[str]] = None, + ignore_metadata_errors: bool = False, + **kwargs, + ): + self.base_model = base_model + self.datasets = datasets + self.eval_results = eval_results + self.language = language + self.library_name = library_name + self.license = license + self.license_name = license_name + self.license_link = license_link + self.metrics = metrics + self.model_name = model_name + self.pipeline_tag = pipeline_tag + self.tags = _to_unique_list(tags) + + model_index = kwargs.pop("model-index", None) + if model_index: + try: + model_name, eval_results = model_index_to_eval_results(model_index) + self.model_name = model_name + self.eval_results = eval_results + except (KeyError, TypeError) as error: + if ignore_metadata_errors: + logger.warning("Invalid model-index. Not loading eval results into CardData.") + else: + raise ValueError( + f"Invalid `model_index` in metadata cannot be parsed: {error.__class__} {error}. Pass" + " `ignore_metadata_errors=True` to ignore this error while loading a Model Card. Warning:" + " some information will be lost. Use it at your own risk." + ) + + super().__init__(**kwargs) + + if self.eval_results: + if isinstance(self.eval_results, EvalResult): + self.eval_results = [self.eval_results] + if self.model_name is None: + raise ValueError("Passing `eval_results` requires `model_name` to be set.") + + def _to_dict(self, data_dict): + """Format the internal data dict. In this case, we convert eval results to a valid model index""" + if self.eval_results is not None: + data_dict["model-index"] = eval_results_to_model_index(self.model_name, self.eval_results) + del data_dict["eval_results"], data_dict["model_name"] + + +class DatasetCardData(CardData): + """Dataset Card Metadata that is used by Hugging Face Hub when included at the top of your README.md + + Args: + language (`List[str]`, *optional*): + Language of dataset's data or metadata. It must be an ISO 639-1, 639-2 or + 639-3 code (two/three letters), or a special value like "code", "multilingual". + license (`Union[str, List[str]]`, *optional*): + License(s) of this dataset. Example: apache-2.0 or any license from + https://huggingface.co/docs/hub/repositories-licenses. + annotations_creators (`Union[str, List[str]]`, *optional*): + How the annotations for the dataset were created. + Options are: 'found', 'crowdsourced', 'expert-generated', 'machine-generated', 'no-annotation', 'other'. + language_creators (`Union[str, List[str]]`, *optional*): + How the text-based data in the dataset was created. + Options are: 'found', 'crowdsourced', 'expert-generated', 'machine-generated', 'other' + multilinguality (`Union[str, List[str]]`, *optional*): + Whether the dataset is multilingual. + Options are: 'monolingual', 'multilingual', 'translation', 'other'. + size_categories (`Union[str, List[str]]`, *optional*): + The number of examples in the dataset. Options are: 'n<1K', '1K<n<10K', '10K<n<100K', + '100K<n<1M', '1M<n<10M', '10M<n<100M', '100M<n<1B', '1B<n<10B', '10B<n<100B', '100B<n<1T', 'n>1T', and 'other'. + source_datasets (`List[str]]`, *optional*): + Indicates whether the dataset is an original dataset or extended from another existing dataset. + Options are: 'original' and 'extended'. + task_categories (`Union[str, List[str]]`, *optional*): + What categories of task does the dataset support? + task_ids (`Union[str, List[str]]`, *optional*): + What specific tasks does the dataset support? + paperswithcode_id (`str`, *optional*): + ID of the dataset on PapersWithCode. + pretty_name (`str`, *optional*): + A more human-readable name for the dataset. (ex. "Cats vs. Dogs") + train_eval_index (`Dict`, *optional*): + A dictionary that describes the necessary spec for doing evaluation on the Hub. + If not provided, it will be gathered from the 'train-eval-index' key of the kwargs. + config_names (`Union[str, List[str]]`, *optional*): + A list of the available dataset configs for the dataset. + """ + + def __init__( + self, + *, + language: Optional[Union[str, List[str]]] = None, + license: Optional[Union[str, List[str]]] = None, + annotations_creators: Optional[Union[str, List[str]]] = None, + language_creators: Optional[Union[str, List[str]]] = None, + multilinguality: Optional[Union[str, List[str]]] = None, + size_categories: Optional[Union[str, List[str]]] = None, + source_datasets: Optional[List[str]] = None, + task_categories: Optional[Union[str, List[str]]] = None, + task_ids: Optional[Union[str, List[str]]] = None, + paperswithcode_id: Optional[str] = None, + pretty_name: Optional[str] = None, + train_eval_index: Optional[Dict] = None, + config_names: Optional[Union[str, List[str]]] = None, + ignore_metadata_errors: bool = False, + **kwargs, + ): + self.annotations_creators = annotations_creators + self.language_creators = language_creators + self.language = language + self.license = license + self.multilinguality = multilinguality + self.size_categories = size_categories + self.source_datasets = source_datasets + self.task_categories = task_categories + self.task_ids = task_ids + self.paperswithcode_id = paperswithcode_id + self.pretty_name = pretty_name + self.config_names = config_names + + # TODO - maybe handle this similarly to EvalResult? + self.train_eval_index = train_eval_index or kwargs.pop("train-eval-index", None) + super().__init__(**kwargs) + + def _to_dict(self, data_dict): + data_dict["train-eval-index"] = data_dict.pop("train_eval_index") + + +class SpaceCardData(CardData): + """Space Card Metadata that is used by Hugging Face Hub when included at the top of your README.md + + To get an exhaustive reference of Spaces configuration, please visit https://huggingface.co/docs/hub/spaces-config-reference#spaces-configuration-reference. + + Args: + title (`str`, *optional*) + Title of the Space. + sdk (`str`, *optional*) + SDK of the Space (one of `gradio`, `streamlit`, `docker`, or `static`). + sdk_version (`str`, *optional*) + Version of the used SDK (if Gradio/Streamlit sdk). + python_version (`str`, *optional*) + Python version used in the Space (if Gradio/Streamlit sdk). + app_file (`str`, *optional*) + Path to your main application file (which contains either gradio or streamlit Python code, or static html code). + Path is relative to the root of the repository. + app_port (`str`, *optional*) + Port on which your application is running. Used only if sdk is `docker`. + license (`str`, *optional*) + License of this model. Example: apache-2.0 or any license from + https://huggingface.co/docs/hub/repositories-licenses. + duplicated_from (`str`, *optional*) + ID of the original Space if this is a duplicated Space. + models (List[`str`], *optional*) + List of models related to this Space. Should be a dataset ID found on https://hf.co/models. + datasets (`List[str]`, *optional*) + List of datasets related to this Space. Should be a dataset ID found on https://hf.co/datasets. + tags (`List[str]`, *optional*) + List of tags to add to your Space that can be used when filtering on the Hub. + ignore_metadata_errors (`str`): + If True, errors while parsing the metadata section will be ignored. Some information might be lost during + the process. Use it at your own risk. + kwargs (`dict`, *optional*): + Additional metadata that will be added to the space card. + + Example: + ```python + >>> from huggingface_hub import SpaceCardData + >>> card_data = SpaceCardData( + ... title="Dreambooth Training", + ... license="mit", + ... sdk="gradio", + ... duplicated_from="multimodalart/dreambooth-training" + ... ) + >>> card_data.to_dict() + {'title': 'Dreambooth Training', 'sdk': 'gradio', 'license': 'mit', 'duplicated_from': 'multimodalart/dreambooth-training'} + ``` + """ + + def __init__( + self, + *, + title: Optional[str] = None, + sdk: Optional[str] = None, + sdk_version: Optional[str] = None, + python_version: Optional[str] = None, + app_file: Optional[str] = None, + app_port: Optional[int] = None, + license: Optional[str] = None, + duplicated_from: Optional[str] = None, + models: Optional[List[str]] = None, + datasets: Optional[List[str]] = None, + tags: Optional[List[str]] = None, + ignore_metadata_errors: bool = False, + **kwargs, + ): + self.title = title + self.sdk = sdk + self.sdk_version = sdk_version + self.python_version = python_version + self.app_file = app_file + self.app_port = app_port + self.license = license + self.duplicated_from = duplicated_from + self.models = models + self.datasets = datasets + self.tags = _to_unique_list(tags) + super().__init__(**kwargs) + + +def model_index_to_eval_results(model_index: List[Dict[str, Any]]) -> Tuple[str, List[EvalResult]]: + """Takes in a model index and returns the model name and a list of `huggingface_hub.EvalResult` objects. + + A detailed spec of the model index can be found here: + https://github.com/huggingface/hub-docs/blob/main/modelcard.md?plain=1 + + Args: + model_index (`List[Dict[str, Any]]`): + A model index data structure, likely coming from a README.md file on the + Hugging Face Hub. + + Returns: + model_name (`str`): + The name of the model as found in the model index. This is used as the + identifier for the model on leaderboards like PapersWithCode. + eval_results (`List[EvalResult]`): + A list of `huggingface_hub.EvalResult` objects containing the metrics + reported in the provided model_index. + + Example: + ```python + >>> from huggingface_hub.repocard_data import model_index_to_eval_results + >>> # Define a minimal model index + >>> model_index = [ + ... { + ... "name": "my-cool-model", + ... "results": [ + ... { + ... "task": { + ... "type": "image-classification" + ... }, + ... "dataset": { + ... "type": "beans", + ... "name": "Beans" + ... }, + ... "metrics": [ + ... { + ... "type": "accuracy", + ... "value": 0.9 + ... } + ... ] + ... } + ... ] + ... } + ... ] + >>> model_name, eval_results = model_index_to_eval_results(model_index) + >>> model_name + 'my-cool-model' + >>> eval_results[0].task_type + 'image-classification' + >>> eval_results[0].metric_type + 'accuracy' + + ``` + """ + + eval_results = [] + for elem in model_index: + name = elem["name"] + results = elem["results"] + for result in results: + task_type = result["task"]["type"] + task_name = result["task"].get("name") + dataset_type = result["dataset"]["type"] + dataset_name = result["dataset"]["name"] + dataset_config = result["dataset"].get("config") + dataset_split = result["dataset"].get("split") + dataset_revision = result["dataset"].get("revision") + dataset_args = result["dataset"].get("args") + source_name = result.get("source", {}).get("name") + source_url = result.get("source", {}).get("url") + + for metric in result["metrics"]: + metric_type = metric["type"] + metric_value = metric["value"] + metric_name = metric.get("name") + metric_args = metric.get("args") + metric_config = metric.get("config") + verified = metric.get("verified") + verify_token = metric.get("verifyToken") + + eval_result = EvalResult( + task_type=task_type, # Required + dataset_type=dataset_type, # Required + dataset_name=dataset_name, # Required + metric_type=metric_type, # Required + metric_value=metric_value, # Required + task_name=task_name, + dataset_config=dataset_config, + dataset_split=dataset_split, + dataset_revision=dataset_revision, + dataset_args=dataset_args, + metric_name=metric_name, + metric_args=metric_args, + metric_config=metric_config, + verified=verified, + verify_token=verify_token, + source_name=source_name, + source_url=source_url, + ) + eval_results.append(eval_result) + return name, eval_results + + +def _remove_none(obj): + """ + Recursively remove `None` values from a dict. Borrowed from: https://stackoverflow.com/a/20558778 + """ + if isinstance(obj, (list, tuple, set)): + return type(obj)(_remove_none(x) for x in obj if x is not None) + elif isinstance(obj, dict): + return type(obj)((_remove_none(k), _remove_none(v)) for k, v in obj.items() if k is not None and v is not None) + else: + return obj + + +def eval_results_to_model_index(model_name: str, eval_results: List[EvalResult]) -> List[Dict[str, Any]]: + """Takes in given model name and list of `huggingface_hub.EvalResult` and returns a + valid model-index that will be compatible with the format expected by the + Hugging Face Hub. + + Args: + model_name (`str`): + Name of the model (ex. "my-cool-model"). This is used as the identifier + for the model on leaderboards like PapersWithCode. + eval_results (`List[EvalResult]`): + List of `huggingface_hub.EvalResult` objects containing the metrics to be + reported in the model-index. + + Returns: + model_index (`List[Dict[str, Any]]`): The eval_results converted to a model-index. + + Example: + ```python + >>> from huggingface_hub.repocard_data import eval_results_to_model_index, EvalResult + >>> # Define minimal eval_results + >>> eval_results = [ + ... EvalResult( + ... task_type="image-classification", # Required + ... dataset_type="beans", # Required + ... dataset_name="Beans", # Required + ... metric_type="accuracy", # Required + ... metric_value=0.9, # Required + ... ) + ... ] + >>> eval_results_to_model_index("my-cool-model", eval_results) + [{'name': 'my-cool-model', 'results': [{'task': {'type': 'image-classification'}, 'dataset': {'name': 'Beans', 'type': 'beans'}, 'metrics': [{'type': 'accuracy', 'value': 0.9}]}]}] + + ``` + """ + + # Metrics are reported on a unique task-and-dataset basis. + # Here, we make a map of those pairs and the associated EvalResults. + task_and_ds_types_map: Dict[Any, List[EvalResult]] = defaultdict(list) + for eval_result in eval_results: + task_and_ds_types_map[eval_result.unique_identifier].append(eval_result) + + # Use the map from above to generate the model index data. + model_index_data = [] + for results in task_and_ds_types_map.values(): + # All items from `results` share same metadata + sample_result = results[0] + data = { + "task": { + "type": sample_result.task_type, + "name": sample_result.task_name, + }, + "dataset": { + "name": sample_result.dataset_name, + "type": sample_result.dataset_type, + "config": sample_result.dataset_config, + "split": sample_result.dataset_split, + "revision": sample_result.dataset_revision, + "args": sample_result.dataset_args, + }, + "metrics": [ + { + "type": result.metric_type, + "value": result.metric_value, + "name": result.metric_name, + "config": result.metric_config, + "args": result.metric_args, + "verified": result.verified, + "verifyToken": result.verify_token, + } + for result in results + ], + } + if sample_result.source_url is not None: + source = { + "url": sample_result.source_url, + } + if sample_result.source_name is not None: + source["name"] = sample_result.source_name + data["source"] = source + model_index_data.append(data) + + # TODO - Check if there cases where this list is longer than one? + # Finally, the model index itself is list of dicts. + model_index = [ + { + "name": model_name, + "results": model_index_data, + } + ] + return _remove_none(model_index) + + +def _to_unique_list(tags: Optional[List[str]]) -> Optional[List[str]]: + if tags is None: + return tags + unique_tags = [] # make tags unique + keep order explicitly + for tag in tags: + if tag not in unique_tags: + unique_tags.append(tag) + return unique_tags diff --git a/.venv/lib/python3.12/site-packages/huggingface_hub/repository.py b/.venv/lib/python3.12/site-packages/huggingface_hub/repository.py new file mode 100644 index 00000000..af1ab72f --- /dev/null +++ b/.venv/lib/python3.12/site-packages/huggingface_hub/repository.py @@ -0,0 +1,1477 @@ +import atexit +import os +import re +import subprocess +import threading +import time +from contextlib import contextmanager +from pathlib import Path +from typing import Callable, Dict, Iterator, List, Optional, Tuple, TypedDict, Union +from urllib.parse import urlparse + +from huggingface_hub import constants +from huggingface_hub.repocard import metadata_load, metadata_save + +from .hf_api import HfApi, repo_type_and_id_from_hf_id +from .lfs import LFS_MULTIPART_UPLOAD_COMMAND +from .utils import ( + SoftTemporaryDirectory, + get_token, + logging, + run_subprocess, + tqdm, + validate_hf_hub_args, +) +from .utils._deprecation import _deprecate_method + + +logger = logging.get_logger(__name__) + + +class CommandInProgress: + """ + Utility to follow commands launched asynchronously. + """ + + def __init__( + self, + title: str, + is_done_method: Callable, + status_method: Callable, + process: subprocess.Popen, + post_method: Optional[Callable] = None, + ): + self.title = title + self._is_done = is_done_method + self._status = status_method + self._process = process + self._stderr = "" + self._stdout = "" + self._post_method = post_method + + @property + def is_done(self) -> bool: + """ + Whether the process is done. + """ + result = self._is_done() + + if result and self._post_method is not None: + self._post_method() + self._post_method = None + + return result + + @property + def status(self) -> int: + """ + The exit code/status of the current action. Will return `0` if the + command has completed successfully, and a number between 1 and 255 if + the process errored-out. + + Will return -1 if the command is still ongoing. + """ + return self._status() + + @property + def failed(self) -> bool: + """ + Whether the process errored-out. + """ + return self.status > 0 + + @property + def stderr(self) -> str: + """ + The current output message on the standard error. + """ + if self._process.stderr is not None: + self._stderr += self._process.stderr.read() + return self._stderr + + @property + def stdout(self) -> str: + """ + The current output message on the standard output. + """ + if self._process.stdout is not None: + self._stdout += self._process.stdout.read() + return self._stdout + + def __repr__(self): + status = self.status + + if status == -1: + status = "running" + + return ( + f"[{self.title} command, status code: {status}," + f" {'in progress.' if not self.is_done else 'finished.'} PID:" + f" {self._process.pid}]" + ) + + +def is_git_repo(folder: Union[str, Path]) -> bool: + """ + Check if the folder is the root or part of a git repository + + Args: + folder (`str`): + The folder in which to run the command. + + Returns: + `bool`: `True` if the repository is part of a repository, `False` + otherwise. + """ + folder_exists = os.path.exists(os.path.join(folder, ".git")) + git_branch = subprocess.run("git branch".split(), cwd=folder, stdout=subprocess.PIPE, stderr=subprocess.PIPE) + return folder_exists and git_branch.returncode == 0 + + +def is_local_clone(folder: Union[str, Path], remote_url: str) -> bool: + """ + Check if the folder is a local clone of the remote_url + + Args: + folder (`str` or `Path`): + The folder in which to run the command. + remote_url (`str`): + The url of a git repository. + + Returns: + `bool`: `True` if the repository is a local clone of the remote + repository specified, `False` otherwise. + """ + if not is_git_repo(folder): + return False + + remotes = run_subprocess("git remote -v", folder).stdout + + # Remove token for the test with remotes. + remote_url = re.sub(r"https://.*@", "https://", remote_url) + remotes = [re.sub(r"https://.*@", "https://", remote) for remote in remotes.split()] + return remote_url in remotes + + +def is_tracked_with_lfs(filename: Union[str, Path]) -> bool: + """ + Check if the file passed is tracked with git-lfs. + + Args: + filename (`str` or `Path`): + The filename to check. + + Returns: + `bool`: `True` if the file passed is tracked with git-lfs, `False` + otherwise. + """ + folder = Path(filename).parent + filename = Path(filename).name + + try: + p = run_subprocess("git check-attr -a".split() + [filename], folder) + attributes = p.stdout.strip() + except subprocess.CalledProcessError as exc: + if not is_git_repo(folder): + return False + else: + raise OSError(exc.stderr) + + if len(attributes) == 0: + return False + + found_lfs_tag = {"diff": False, "merge": False, "filter": False} + + for attribute in attributes.split("\n"): + for tag in found_lfs_tag.keys(): + if tag in attribute and "lfs" in attribute: + found_lfs_tag[tag] = True + + return all(found_lfs_tag.values()) + + +def is_git_ignored(filename: Union[str, Path]) -> bool: + """ + Check if file is git-ignored. Supports nested .gitignore files. + + Args: + filename (`str` or `Path`): + The filename to check. + + Returns: + `bool`: `True` if the file passed is ignored by `git`, `False` + otherwise. + """ + folder = Path(filename).parent + filename = Path(filename).name + + try: + p = run_subprocess("git check-ignore".split() + [filename], folder, check=False) + # Will return exit code 1 if not gitignored + is_ignored = not bool(p.returncode) + except subprocess.CalledProcessError as exc: + raise OSError(exc.stderr) + + return is_ignored + + +def is_binary_file(filename: Union[str, Path]) -> bool: + """ + Check if file is a binary file. + + Args: + filename (`str` or `Path`): + The filename to check. + + Returns: + `bool`: `True` if the file passed is a binary file, `False` otherwise. + """ + try: + with open(filename, "rb") as f: + content = f.read(10 * (1024**2)) # Read a maximum of 10MB + + # Code sample taken from the following stack overflow thread + # https://stackoverflow.com/questions/898669/how-can-i-detect-if-a-file-is-binary-non-text-in-python/7392391#7392391 + text_chars = bytearray({7, 8, 9, 10, 12, 13, 27} | set(range(0x20, 0x100)) - {0x7F}) + return bool(content.translate(None, text_chars)) + except UnicodeDecodeError: + return True + + +def files_to_be_staged(pattern: str = ".", folder: Union[str, Path, None] = None) -> List[str]: + """ + Returns a list of filenames that are to be staged. + + Args: + pattern (`str` or `Path`): + The pattern of filenames to check. Put `.` to get all files. + folder (`str` or `Path`): + The folder in which to run the command. + + Returns: + `List[str]`: List of files that are to be staged. + """ + try: + p = run_subprocess("git ls-files --exclude-standard -mo".split() + [pattern], folder) + if len(p.stdout.strip()): + files = p.stdout.strip().split("\n") + else: + files = [] + except subprocess.CalledProcessError as exc: + raise EnvironmentError(exc.stderr) + + return files + + +def is_tracked_upstream(folder: Union[str, Path]) -> bool: + """ + Check if the current checked-out branch is tracked upstream. + + Args: + folder (`str` or `Path`): + The folder in which to run the command. + + Returns: + `bool`: `True` if the current checked-out branch is tracked upstream, + `False` otherwise. + """ + try: + run_subprocess("git rev-parse --symbolic-full-name --abbrev-ref @{u}", folder) + return True + except subprocess.CalledProcessError as exc: + if "HEAD" in exc.stderr: + raise OSError("No branch checked out") + + return False + + +def commits_to_push(folder: Union[str, Path], upstream: Optional[str] = None) -> int: + """ + Check the number of commits that would be pushed upstream + + Args: + folder (`str` or `Path`): + The folder in which to run the command. + upstream (`str`, *optional*): + The name of the upstream repository with which the comparison should be + made. + + Returns: + `int`: Number of commits that would be pushed upstream were a `git + push` to proceed. + """ + try: + result = run_subprocess(f"git cherry -v {upstream or ''}", folder) + return len(result.stdout.split("\n")) - 1 + except subprocess.CalledProcessError as exc: + raise EnvironmentError(exc.stderr) + + +class PbarT(TypedDict): + # Used to store an opened progress bar in `_lfs_log_progress` + bar: tqdm + past_bytes: int + + +@contextmanager +def _lfs_log_progress(): + """ + This is a context manager that will log the Git LFS progress of cleaning, + smudging, pulling and pushing. + """ + + if logger.getEffectiveLevel() >= logging.ERROR: + try: + yield + except Exception: + pass + return + + def output_progress(stopping_event: threading.Event): + """ + To be launched as a separate thread with an event meaning it should stop + the tail. + """ + # Key is tuple(state, filename), value is a dict(tqdm bar and a previous value) + pbars: Dict[Tuple[str, str], PbarT] = {} + + def close_pbars(): + for pbar in pbars.values(): + pbar["bar"].update(pbar["bar"].total - pbar["past_bytes"]) + pbar["bar"].refresh() + pbar["bar"].close() + + def tail_file(filename) -> Iterator[str]: + """ + Creates a generator to be iterated through, which will return each + line one by one. Will stop tailing the file if the stopping_event is + set. + """ + with open(filename, "r") as file: + current_line = "" + while True: + if stopping_event.is_set(): + close_pbars() + break + + line_bit = file.readline() + if line_bit is not None and not len(line_bit.strip()) == 0: + current_line += line_bit + if current_line.endswith("\n"): + yield current_line + current_line = "" + else: + time.sleep(1) + + # If the file isn't created yet, wait for a few seconds before trying again. + # Can be interrupted with the stopping_event. + while not os.path.exists(os.environ["GIT_LFS_PROGRESS"]): + if stopping_event.is_set(): + close_pbars() + return + + time.sleep(2) + + for line in tail_file(os.environ["GIT_LFS_PROGRESS"]): + try: + state, file_progress, byte_progress, filename = line.split() + except ValueError as error: + # Try/except to ease debugging. See https://github.com/huggingface/huggingface_hub/issues/1373. + raise ValueError(f"Cannot unpack LFS progress line:\n{line}") from error + description = f"{state.capitalize()} file {filename}" + + current_bytes, total_bytes = byte_progress.split("/") + current_bytes_int = int(current_bytes) + total_bytes_int = int(total_bytes) + + pbar = pbars.get((state, filename)) + if pbar is None: + # Initialize progress bar + pbars[(state, filename)] = { + "bar": tqdm( + desc=description, + initial=current_bytes_int, + total=total_bytes_int, + unit="B", + unit_scale=True, + unit_divisor=1024, + name="huggingface_hub.lfs_upload", + ), + "past_bytes": int(current_bytes), + } + else: + # Update progress bar + pbar["bar"].update(current_bytes_int - pbar["past_bytes"]) + pbar["past_bytes"] = current_bytes_int + + current_lfs_progress_value = os.environ.get("GIT_LFS_PROGRESS", "") + + with SoftTemporaryDirectory() as tmpdir: + os.environ["GIT_LFS_PROGRESS"] = os.path.join(tmpdir, "lfs_progress") + logger.debug(f"Following progress in {os.environ['GIT_LFS_PROGRESS']}") + + exit_event = threading.Event() + x = threading.Thread(target=output_progress, args=(exit_event,), daemon=True) + x.start() + + try: + yield + finally: + exit_event.set() + x.join() + + os.environ["GIT_LFS_PROGRESS"] = current_lfs_progress_value + + +class Repository: + """ + Helper class to wrap the git and git-lfs commands. + + The aim is to facilitate interacting with huggingface.co hosted model or + dataset repos, though not a lot here (if any) is actually specific to + huggingface.co. + + <Tip warning={true}> + + [`Repository`] is deprecated in favor of the http-based alternatives implemented in + [`HfApi`]. Given its large adoption in legacy code, the complete removal of + [`Repository`] will only happen in release `v1.0`. For more details, please read + https://huggingface.co/docs/huggingface_hub/concepts/git_vs_http. + + </Tip> + """ + + command_queue: List[CommandInProgress] + + @validate_hf_hub_args + @_deprecate_method( + version="1.0", + message=( + "Please prefer the http-based alternatives instead. Given its large adoption in legacy code, the complete" + " removal is only planned on next major release.\nFor more details, please read" + " https://huggingface.co/docs/huggingface_hub/concepts/git_vs_http." + ), + ) + def __init__( + self, + local_dir: Union[str, Path], + clone_from: Optional[str] = None, + repo_type: Optional[str] = None, + token: Union[bool, str] = True, + git_user: Optional[str] = None, + git_email: Optional[str] = None, + revision: Optional[str] = None, + skip_lfs_files: bool = False, + client: Optional[HfApi] = None, + ): + """ + Instantiate a local clone of a git repo. + + If `clone_from` is set, the repo will be cloned from an existing remote repository. + If the remote repo does not exist, a `EnvironmentError` exception will be thrown. + Please create the remote repo first using [`create_repo`]. + + `Repository` uses the local git credentials by default. If explicitly set, the `token` + or the `git_user`/`git_email` pair will be used instead. + + Args: + local_dir (`str` or `Path`): + path (e.g. `'my_trained_model/'`) to the local directory, where + the `Repository` will be initialized. + clone_from (`str`, *optional*): + Either a repository url or `repo_id`. + Example: + - `"https://huggingface.co/philschmid/playground-tests"` + - `"philschmid/playground-tests"` + repo_type (`str`, *optional*): + To set when cloning a repo from a repo_id. Default is model. + token (`bool` or `str`, *optional*): + A valid authentication token (see https://huggingface.co/settings/token). + If `None` or `True` and machine is logged in (through `huggingface-cli login` + or [`~huggingface_hub.login`]), token will be retrieved from the cache. + If `False`, token is not sent in the request header. + git_user (`str`, *optional*): + will override the `git config user.name` for committing and + pushing files to the hub. + git_email (`str`, *optional*): + will override the `git config user.email` for committing and + pushing files to the hub. + revision (`str`, *optional*): + Revision to checkout after initializing the repository. If the + revision doesn't exist, a branch will be created with that + revision name from the default branch's current HEAD. + skip_lfs_files (`bool`, *optional*, defaults to `False`): + whether to skip git-LFS files or not. + client (`HfApi`, *optional*): + Instance of [`HfApi`] to use when calling the HF Hub API. A new + instance will be created if this is left to `None`. + + Raises: + [`EnvironmentError`](https://docs.python.org/3/library/exceptions.html#EnvironmentError) + If the remote repository set in `clone_from` does not exist. + """ + if isinstance(local_dir, Path): + local_dir = str(local_dir) + os.makedirs(local_dir, exist_ok=True) + self.local_dir = os.path.join(os.getcwd(), local_dir) + self._repo_type = repo_type + self.command_queue = [] + self.skip_lfs_files = skip_lfs_files + self.client = client if client is not None else HfApi() + + self.check_git_versions() + + if isinstance(token, str): + self.huggingface_token: Optional[str] = token + elif token is False: + self.huggingface_token = None + else: + # if `True` -> explicit use of the cached token + # if `None` -> implicit use of the cached token + self.huggingface_token = get_token() + + if clone_from is not None: + self.clone_from(repo_url=clone_from) + else: + if is_git_repo(self.local_dir): + logger.debug("[Repository] is a valid git repo") + else: + raise ValueError("If not specifying `clone_from`, you need to pass Repository a valid git clone.") + + if self.huggingface_token is not None and (git_email is None or git_user is None): + user = self.client.whoami(self.huggingface_token) + + if git_email is None: + git_email = user.get("email") + + if git_user is None: + git_user = user.get("fullname") + + if git_user is not None or git_email is not None: + self.git_config_username_and_email(git_user, git_email) + + self.lfs_enable_largefiles() + self.git_credential_helper_store() + + if revision is not None: + self.git_checkout(revision, create_branch_ok=True) + + # This ensures that all commands exit before exiting the Python runtime. + # This will ensure all pushes register on the hub, even if other errors happen in subsequent operations. + atexit.register(self.wait_for_commands) + + @property + def current_branch(self) -> str: + """ + Returns the current checked out branch. + + Returns: + `str`: Current checked out branch. + """ + try: + result = run_subprocess("git rev-parse --abbrev-ref HEAD", self.local_dir).stdout.strip() + except subprocess.CalledProcessError as exc: + raise EnvironmentError(exc.stderr) + + return result + + def check_git_versions(self): + """ + Checks that `git` and `git-lfs` can be run. + + Raises: + [`EnvironmentError`](https://docs.python.org/3/library/exceptions.html#EnvironmentError) + If `git` or `git-lfs` are not installed. + """ + try: + git_version = run_subprocess("git --version", self.local_dir).stdout.strip() + except FileNotFoundError: + raise EnvironmentError("Looks like you do not have git installed, please install.") + + try: + lfs_version = run_subprocess("git-lfs --version", self.local_dir).stdout.strip() + except FileNotFoundError: + raise EnvironmentError( + "Looks like you do not have git-lfs installed, please install." + " You can install from https://git-lfs.github.com/." + " Then run `git lfs install` (you only have to do this once)." + ) + logger.info(git_version + "\n" + lfs_version) + + @validate_hf_hub_args + def clone_from(self, repo_url: str, token: Union[bool, str, None] = None): + """ + Clone from a remote. If the folder already exists, will try to clone the + repository within it. + + If this folder is a git repository with linked history, will try to + update the repository. + + Args: + repo_url (`str`): + The URL from which to clone the repository + token (`Union[str, bool]`, *optional*): + Whether to use the authentication token. It can be: + - a string which is the token itself + - `False`, which would not use the authentication token + - `True`, which would fetch the authentication token from the + local folder and use it (you should be logged in for this to + work). + - `None`, which would retrieve the value of + `self.huggingface_token`. + + <Tip> + + Raises the following error: + + - [`ValueError`](https://docs.python.org/3/library/exceptions.html#ValueError) + if an organization token (starts with "api_org") is passed. Use must use + your own personal access token (see https://hf.co/settings/tokens). + + - [`EnvironmentError`](https://docs.python.org/3/library/exceptions.html#EnvironmentError) + if you are trying to clone the repository in a non-empty folder, or if the + `git` operations raise errors. + + </Tip> + """ + token = ( + token # str -> use it + if isinstance(token, str) + else ( + None # `False` -> explicit no token + if token is False + else self.huggingface_token # `None` or `True` -> use default + ) + ) + if token is not None and token.startswith("api_org"): + raise ValueError( + "You must use your personal access token, not an Organization token" + " (see https://hf.co/settings/tokens)." + ) + + hub_url = self.client.endpoint + if hub_url in repo_url or ("http" not in repo_url and len(repo_url.split("/")) <= 2): + repo_type, namespace, repo_name = repo_type_and_id_from_hf_id(repo_url, hub_url=hub_url) + repo_id = f"{namespace}/{repo_name}" if namespace is not None else repo_name + + if repo_type is not None: + self._repo_type = repo_type + + repo_url = hub_url + "/" + + if self._repo_type in constants.REPO_TYPES_URL_PREFIXES: + repo_url += constants.REPO_TYPES_URL_PREFIXES[self._repo_type] + + if token is not None: + # Add token in git url when provided + scheme = urlparse(repo_url).scheme + repo_url = repo_url.replace(f"{scheme}://", f"{scheme}://user:{token}@") + + repo_url += repo_id + + # For error messages, it's cleaner to show the repo url without the token. + clean_repo_url = re.sub(r"(https?)://.*@", r"\1://", repo_url) + try: + run_subprocess("git lfs install", self.local_dir) + + # checks if repository is initialized in a empty repository or in one with files + if len(os.listdir(self.local_dir)) == 0: + logger.warning(f"Cloning {clean_repo_url} into local empty directory.") + + with _lfs_log_progress(): + env = os.environ.copy() + + if self.skip_lfs_files: + env.update({"GIT_LFS_SKIP_SMUDGE": "1"}) + + run_subprocess( + # 'git lfs clone' is deprecated (will display a warning in the terminal) + # but we still use it as it provides a nicer UX when downloading large + # files (shows progress). + f"{'git clone' if self.skip_lfs_files else 'git lfs clone'} {repo_url} .", + self.local_dir, + env=env, + ) + else: + # Check if the folder is the root of a git repository + if not is_git_repo(self.local_dir): + raise EnvironmentError( + "Tried to clone a repository in a non-empty folder that isn't" + f" a git repository ('{self.local_dir}'). If you really want to" + f" do this, do it manually:\n cd {self.local_dir} && git init" + " && git remote add origin && git pull origin main\n or clone" + " repo to a new folder and move your existing files there" + " afterwards." + ) + + if is_local_clone(self.local_dir, repo_url): + logger.warning( + f"{self.local_dir} is already a clone of {clean_repo_url}." + " Make sure you pull the latest changes with" + " `repo.git_pull()`." + ) + else: + output = run_subprocess("git remote get-url origin", self.local_dir, check=False) + + error_msg = ( + f"Tried to clone {clean_repo_url} in an unrelated git" + " repository.\nIf you believe this is an error, please add" + f" a remote with the following URL: {clean_repo_url}." + ) + if output.returncode == 0: + clean_local_remote_url = re.sub(r"https://.*@", "https://", output.stdout) + error_msg += f"\nLocal path has its origin defined as: {clean_local_remote_url}" + raise EnvironmentError(error_msg) + + except subprocess.CalledProcessError as exc: + raise EnvironmentError(exc.stderr) + + def git_config_username_and_email(self, git_user: Optional[str] = None, git_email: Optional[str] = None): + """ + Sets git username and email (only in the current repo). + + Args: + git_user (`str`, *optional*): + The username to register through `git`. + git_email (`str`, *optional*): + The email to register through `git`. + """ + try: + if git_user is not None: + run_subprocess("git config user.name".split() + [git_user], self.local_dir) + + if git_email is not None: + run_subprocess(f"git config user.email {git_email}".split(), self.local_dir) + except subprocess.CalledProcessError as exc: + raise EnvironmentError(exc.stderr) + + def git_credential_helper_store(self): + """ + Sets the git credential helper to `store` + """ + try: + run_subprocess("git config credential.helper store", self.local_dir) + except subprocess.CalledProcessError as exc: + raise EnvironmentError(exc.stderr) + + def git_head_hash(self) -> str: + """ + Get commit sha on top of HEAD. + + Returns: + `str`: The current checked out commit SHA. + """ + try: + p = run_subprocess("git rev-parse HEAD", self.local_dir) + return p.stdout.strip() + except subprocess.CalledProcessError as exc: + raise EnvironmentError(exc.stderr) + + def git_remote_url(self) -> str: + """ + Get URL to origin remote. + + Returns: + `str`: The URL of the `origin` remote. + """ + try: + p = run_subprocess("git config --get remote.origin.url", self.local_dir) + url = p.stdout.strip() + # Strip basic auth info. + return re.sub(r"https://.*@", "https://", url) + except subprocess.CalledProcessError as exc: + raise EnvironmentError(exc.stderr) + + def git_head_commit_url(self) -> str: + """ + Get URL to last commit on HEAD. We assume it's been pushed, and the url + scheme is the same one as for GitHub or HuggingFace. + + Returns: + `str`: The URL to the current checked-out commit. + """ + sha = self.git_head_hash() + url = self.git_remote_url() + if url.endswith("/"): + url = url[:-1] + return f"{url}/commit/{sha}" + + def list_deleted_files(self) -> List[str]: + """ + Returns a list of the files that are deleted in the working directory or + index. + + Returns: + `List[str]`: A list of files that have been deleted in the working + directory or index. + """ + try: + git_status = run_subprocess("git status -s", self.local_dir).stdout.strip() + except subprocess.CalledProcessError as exc: + raise EnvironmentError(exc.stderr) + + if len(git_status) == 0: + return [] + + # Receives a status like the following + # D .gitignore + # D new_file.json + # AD new_file1.json + # ?? new_file2.json + # ?? new_file4.json + + # Strip each line of whitespaces + modified_files_statuses = [status.strip() for status in git_status.split("\n")] + + # Only keep files that are deleted using the D prefix + deleted_files_statuses = [status for status in modified_files_statuses if "D" in status.split()[0]] + + # Remove the D prefix and strip to keep only the relevant filename + deleted_files = [status.split()[-1].strip() for status in deleted_files_statuses] + + return deleted_files + + def lfs_track(self, patterns: Union[str, List[str]], filename: bool = False): + """ + Tell git-lfs to track files according to a pattern. + + Setting the `filename` argument to `True` will treat the arguments as + literal filenames, not as patterns. Any special glob characters in the + filename will be escaped when writing to the `.gitattributes` file. + + Args: + patterns (`Union[str, List[str]]`): + The pattern, or list of patterns, to track with git-lfs. + filename (`bool`, *optional*, defaults to `False`): + Whether to use the patterns as literal filenames. + """ + if isinstance(patterns, str): + patterns = [patterns] + try: + for pattern in patterns: + run_subprocess( + f"git lfs track {'--filename' if filename else ''} {pattern}", + self.local_dir, + ) + except subprocess.CalledProcessError as exc: + raise EnvironmentError(exc.stderr) + + def lfs_untrack(self, patterns: Union[str, List[str]]): + """ + Tell git-lfs to untrack those files. + + Args: + patterns (`Union[str, List[str]]`): + The pattern, or list of patterns, to untrack with git-lfs. + """ + if isinstance(patterns, str): + patterns = [patterns] + try: + for pattern in patterns: + run_subprocess("git lfs untrack".split() + [pattern], self.local_dir) + except subprocess.CalledProcessError as exc: + raise EnvironmentError(exc.stderr) + + def lfs_enable_largefiles(self): + """ + HF-specific. This enables upload support of files >5GB. + """ + try: + lfs_config = "git config lfs.customtransfer.multipart" + run_subprocess(f"{lfs_config}.path huggingface-cli", self.local_dir) + run_subprocess( + f"{lfs_config}.args {LFS_MULTIPART_UPLOAD_COMMAND}", + self.local_dir, + ) + except subprocess.CalledProcessError as exc: + raise EnvironmentError(exc.stderr) + + def auto_track_binary_files(self, pattern: str = ".") -> List[str]: + """ + Automatically track binary files with git-lfs. + + Args: + pattern (`str`, *optional*, defaults to "."): + The pattern with which to track files that are binary. + + Returns: + `List[str]`: List of filenames that are now tracked due to being + binary files + """ + files_to_be_tracked_with_lfs = [] + + deleted_files = self.list_deleted_files() + + for filename in files_to_be_staged(pattern, folder=self.local_dir): + if filename in deleted_files: + continue + + path_to_file = os.path.join(os.getcwd(), self.local_dir, filename) + + if not (is_tracked_with_lfs(path_to_file) or is_git_ignored(path_to_file)): + size_in_mb = os.path.getsize(path_to_file) / (1024 * 1024) + + if size_in_mb >= 10: + logger.warning( + "Parsing a large file to check if binary or not. Tracking large" + " files using `repository.auto_track_large_files` is" + " recommended so as to not load the full file in memory." + ) + + is_binary = is_binary_file(path_to_file) + + if is_binary: + self.lfs_track(filename) + files_to_be_tracked_with_lfs.append(filename) + + # Cleanup the .gitattributes if files were deleted + self.lfs_untrack(deleted_files) + + return files_to_be_tracked_with_lfs + + def auto_track_large_files(self, pattern: str = ".") -> List[str]: + """ + Automatically track large files (files that weigh more than 10MBs) with + git-lfs. + + Args: + pattern (`str`, *optional*, defaults to "."): + The pattern with which to track files that are above 10MBs. + + Returns: + `List[str]`: List of filenames that are now tracked due to their + size. + """ + files_to_be_tracked_with_lfs = [] + + deleted_files = self.list_deleted_files() + + for filename in files_to_be_staged(pattern, folder=self.local_dir): + if filename in deleted_files: + continue + + path_to_file = os.path.join(os.getcwd(), self.local_dir, filename) + size_in_mb = os.path.getsize(path_to_file) / (1024 * 1024) + + if size_in_mb >= 10 and not is_tracked_with_lfs(path_to_file) and not is_git_ignored(path_to_file): + self.lfs_track(filename) + files_to_be_tracked_with_lfs.append(filename) + + # Cleanup the .gitattributes if files were deleted + self.lfs_untrack(deleted_files) + + return files_to_be_tracked_with_lfs + + def lfs_prune(self, recent=False): + """ + git lfs prune + + Args: + recent (`bool`, *optional*, defaults to `False`): + Whether to prune files even if they were referenced by recent + commits. See the following + [link](https://github.com/git-lfs/git-lfs/blob/f3d43f0428a84fc4f1e5405b76b5a73ec2437e65/docs/man/git-lfs-prune.1.ronn#recent-files) + for more information. + """ + try: + with _lfs_log_progress(): + result = run_subprocess(f"git lfs prune {'--recent' if recent else ''}", self.local_dir) + logger.info(result.stdout) + except subprocess.CalledProcessError as exc: + raise EnvironmentError(exc.stderr) + + def git_pull(self, rebase: bool = False, lfs: bool = False): + """ + git pull + + Args: + rebase (`bool`, *optional*, defaults to `False`): + Whether to rebase the current branch on top of the upstream + branch after fetching. + lfs (`bool`, *optional*, defaults to `False`): + Whether to fetch the LFS files too. This option only changes the + behavior when a repository was cloned without fetching the LFS + files; calling `repo.git_pull(lfs=True)` will then fetch the LFS + file from the remote repository. + """ + command = "git pull" if not lfs else "git lfs pull" + if rebase: + command += " --rebase" + try: + with _lfs_log_progress(): + result = run_subprocess(command, self.local_dir) + logger.info(result.stdout) + except subprocess.CalledProcessError as exc: + raise EnvironmentError(exc.stderr) + + def git_add(self, pattern: str = ".", auto_lfs_track: bool = False): + """ + git add + + Setting the `auto_lfs_track` parameter to `True` will automatically + track files that are larger than 10MB with `git-lfs`. + + Args: + pattern (`str`, *optional*, defaults to "."): + The pattern with which to add files to staging. + auto_lfs_track (`bool`, *optional*, defaults to `False`): + Whether to automatically track large and binary files with + git-lfs. Any file over 10MB in size, or in binary format, will + be automatically tracked. + """ + if auto_lfs_track: + # Track files according to their size (>=10MB) + tracked_files = self.auto_track_large_files(pattern) + + # Read the remaining files and track them if they're binary + tracked_files.extend(self.auto_track_binary_files(pattern)) + + if tracked_files: + logger.warning( + f"Adding files tracked by Git LFS: {tracked_files}. This may take a" + " bit of time if the files are large." + ) + + try: + result = run_subprocess("git add -v".split() + [pattern], self.local_dir) + logger.info(f"Adding to index:\n{result.stdout}\n") + except subprocess.CalledProcessError as exc: + raise EnvironmentError(exc.stderr) + + def git_commit(self, commit_message: str = "commit files to HF hub"): + """ + git commit + + Args: + commit_message (`str`, *optional*, defaults to "commit files to HF hub"): + The message attributed to the commit. + """ + try: + result = run_subprocess("git commit -v -m".split() + [commit_message], self.local_dir) + logger.info(f"Committed:\n{result.stdout}\n") + except subprocess.CalledProcessError as exc: + if len(exc.stderr) > 0: + raise EnvironmentError(exc.stderr) + else: + raise EnvironmentError(exc.stdout) + + def git_push( + self, + upstream: Optional[str] = None, + blocking: bool = True, + auto_lfs_prune: bool = False, + ) -> Union[str, Tuple[str, CommandInProgress]]: + """ + git push + + If used without setting `blocking`, will return url to commit on remote + repo. If used with `blocking=True`, will return a tuple containing the + url to commit and the command object to follow for information about the + process. + + Args: + upstream (`str`, *optional*): + Upstream to which this should push. If not specified, will push + to the lastly defined upstream or to the default one (`origin + main`). + blocking (`bool`, *optional*, defaults to `True`): + Whether the function should return only when the push has + finished. Setting this to `False` will return an + `CommandInProgress` object which has an `is_done` property. This + property will be set to `True` when the push is finished. + auto_lfs_prune (`bool`, *optional*, defaults to `False`): + Whether to automatically prune files once they have been pushed + to the remote. + """ + command = "git push" + + if upstream: + command += f" --set-upstream {upstream}" + + number_of_commits = commits_to_push(self.local_dir, upstream) + + if number_of_commits > 1: + logger.warning(f"Several commits ({number_of_commits}) will be pushed upstream.") + if blocking: + logger.warning("The progress bars may be unreliable.") + + try: + with _lfs_log_progress(): + process = subprocess.Popen( + command.split(), + stderr=subprocess.PIPE, + stdout=subprocess.PIPE, + encoding="utf-8", + cwd=self.local_dir, + ) + + if blocking: + stdout, stderr = process.communicate() + return_code = process.poll() + process.kill() + + if len(stderr): + logger.warning(stderr) + + if return_code: + raise subprocess.CalledProcessError(return_code, process.args, output=stdout, stderr=stderr) + + except subprocess.CalledProcessError as exc: + raise EnvironmentError(exc.stderr) + + if not blocking: + + def status_method(): + status = process.poll() + if status is None: + return -1 + else: + return status + + command_in_progress = CommandInProgress( + "push", + is_done_method=lambda: process.poll() is not None, + status_method=status_method, + process=process, + post_method=self.lfs_prune if auto_lfs_prune else None, + ) + + self.command_queue.append(command_in_progress) + + return self.git_head_commit_url(), command_in_progress + + if auto_lfs_prune: + self.lfs_prune() + + return self.git_head_commit_url() + + def git_checkout(self, revision: str, create_branch_ok: bool = False): + """ + git checkout a given revision + + Specifying `create_branch_ok` to `True` will create the branch to the + given revision if that revision doesn't exist. + + Args: + revision (`str`): + The revision to checkout. + create_branch_ok (`str`, *optional*, defaults to `False`): + Whether creating a branch named with the `revision` passed at + the current checked-out reference if `revision` isn't an + existing revision is allowed. + """ + try: + result = run_subprocess(f"git checkout {revision}", self.local_dir) + logger.warning(f"Checked out {revision} from {self.current_branch}.") + logger.warning(result.stdout) + except subprocess.CalledProcessError as exc: + if not create_branch_ok: + raise EnvironmentError(exc.stderr) + else: + try: + result = run_subprocess(f"git checkout -b {revision}", self.local_dir) + logger.warning( + f"Revision `{revision}` does not exist. Created and checked out branch `{revision}`." + ) + logger.warning(result.stdout) + except subprocess.CalledProcessError as exc: + raise EnvironmentError(exc.stderr) + + def tag_exists(self, tag_name: str, remote: Optional[str] = None) -> bool: + """ + Check if a tag exists or not. + + Args: + tag_name (`str`): + The name of the tag to check. + remote (`str`, *optional*): + Whether to check if the tag exists on a remote. This parameter + should be the identifier of the remote. + + Returns: + `bool`: Whether the tag exists. + """ + if remote: + try: + result = run_subprocess(f"git ls-remote origin refs/tags/{tag_name}", self.local_dir).stdout.strip() + except subprocess.CalledProcessError as exc: + raise EnvironmentError(exc.stderr) + + return len(result) != 0 + else: + try: + git_tags = run_subprocess("git tag", self.local_dir).stdout.strip() + except subprocess.CalledProcessError as exc: + raise EnvironmentError(exc.stderr) + + git_tags = git_tags.split("\n") + return tag_name in git_tags + + def delete_tag(self, tag_name: str, remote: Optional[str] = None) -> bool: + """ + Delete a tag, both local and remote, if it exists + + Args: + tag_name (`str`): + The tag name to delete. + remote (`str`, *optional*): + The remote on which to delete the tag. + + Returns: + `bool`: `True` if deleted, `False` if the tag didn't exist. + If remote is not passed, will just be updated locally + """ + delete_locally = True + delete_remotely = True + + if not self.tag_exists(tag_name): + delete_locally = False + + if not self.tag_exists(tag_name, remote=remote): + delete_remotely = False + + if delete_locally: + try: + run_subprocess(["git", "tag", "-d", tag_name], self.local_dir).stdout.strip() + except subprocess.CalledProcessError as exc: + raise EnvironmentError(exc.stderr) + + if remote and delete_remotely: + try: + run_subprocess(f"git push {remote} --delete {tag_name}", self.local_dir).stdout.strip() + except subprocess.CalledProcessError as exc: + raise EnvironmentError(exc.stderr) + + return True + + def add_tag(self, tag_name: str, message: Optional[str] = None, remote: Optional[str] = None): + """ + Add a tag at the current head and push it + + If remote is None, will just be updated locally + + If no message is provided, the tag will be lightweight. if a message is + provided, the tag will be annotated. + + Args: + tag_name (`str`): + The name of the tag to be added. + message (`str`, *optional*): + The message that accompanies the tag. The tag will turn into an + annotated tag if a message is passed. + remote (`str`, *optional*): + The remote on which to add the tag. + """ + if message: + tag_args = ["git", "tag", "-a", tag_name, "-m", message] + else: + tag_args = ["git", "tag", tag_name] + + try: + run_subprocess(tag_args, self.local_dir).stdout.strip() + except subprocess.CalledProcessError as exc: + raise EnvironmentError(exc.stderr) + + if remote: + try: + run_subprocess(f"git push {remote} {tag_name}", self.local_dir).stdout.strip() + except subprocess.CalledProcessError as exc: + raise EnvironmentError(exc.stderr) + + def is_repo_clean(self) -> bool: + """ + Return whether or not the git status is clean or not + + Returns: + `bool`: `True` if the git status is clean, `False` otherwise. + """ + try: + git_status = run_subprocess("git status --porcelain", self.local_dir).stdout.strip() + except subprocess.CalledProcessError as exc: + raise EnvironmentError(exc.stderr) + + return len(git_status) == 0 + + def push_to_hub( + self, + commit_message: str = "commit files to HF hub", + blocking: bool = True, + clean_ok: bool = True, + auto_lfs_prune: bool = False, + ) -> Union[None, str, Tuple[str, CommandInProgress]]: + """ + Helper to add, commit, and push files to remote repository on the + HuggingFace Hub. Will automatically track large files (>10MB). + + Args: + commit_message (`str`): + Message to use for the commit. + blocking (`bool`, *optional*, defaults to `True`): + Whether the function should return only when the `git push` has + finished. + clean_ok (`bool`, *optional*, defaults to `True`): + If True, this function will return None if the repo is + untouched. Default behavior is to fail because the git command + fails. + auto_lfs_prune (`bool`, *optional*, defaults to `False`): + Whether to automatically prune files once they have been pushed + to the remote. + """ + if clean_ok and self.is_repo_clean(): + logger.info("Repo currently clean. Ignoring push_to_hub") + return None + self.git_add(auto_lfs_track=True) + self.git_commit(commit_message) + return self.git_push( + upstream=f"origin {self.current_branch}", + blocking=blocking, + auto_lfs_prune=auto_lfs_prune, + ) + + @contextmanager + def commit( + self, + commit_message: str, + branch: Optional[str] = None, + track_large_files: bool = True, + blocking: bool = True, + auto_lfs_prune: bool = False, + ): + """ + Context manager utility to handle committing to a repository. This + automatically tracks large files (>10Mb) with git-lfs. Set the + `track_large_files` argument to `False` if you wish to ignore that + behavior. + + Args: + commit_message (`str`): + Message to use for the commit. + branch (`str`, *optional*): + The branch on which the commit will appear. This branch will be + checked-out before any operation. + track_large_files (`bool`, *optional*, defaults to `True`): + Whether to automatically track large files or not. Will do so by + default. + blocking (`bool`, *optional*, defaults to `True`): + Whether the function should return only when the `git push` has + finished. + auto_lfs_prune (`bool`, defaults to `True`): + Whether to automatically prune files once they have been pushed + to the remote. + + Examples: + + ```python + >>> with Repository( + ... "text-files", + ... clone_from="<user>/text-files", + ... token=True, + >>> ).commit("My first file :)"): + ... with open("file.txt", "w+") as f: + ... f.write(json.dumps({"hey": 8})) + + >>> import torch + + >>> model = torch.nn.Transformer() + >>> with Repository( + ... "torch-model", + ... clone_from="<user>/torch-model", + ... token=True, + >>> ).commit("My cool model :)"): + ... torch.save(model.state_dict(), "model.pt") + ``` + + """ + + files_to_stage = files_to_be_staged(".", folder=self.local_dir) + + if len(files_to_stage): + files_in_msg = str(files_to_stage[:5])[:-1] + ", ...]" if len(files_to_stage) > 5 else str(files_to_stage) + logger.error( + "There exists some updated files in the local repository that are not" + f" committed: {files_in_msg}. This may lead to errors if checking out" + " a branch. These files and their modifications will be added to the" + " current commit." + ) + + if branch is not None: + self.git_checkout(branch, create_branch_ok=True) + + if is_tracked_upstream(self.local_dir): + logger.warning("Pulling changes ...") + self.git_pull(rebase=True) + else: + logger.warning(f"The current branch has no upstream branch. Will push to 'origin {self.current_branch}'") + + current_working_directory = os.getcwd() + os.chdir(os.path.join(current_working_directory, self.local_dir)) + + try: + yield self + finally: + self.git_add(auto_lfs_track=track_large_files) + + try: + self.git_commit(commit_message) + except OSError as e: + # If no changes are detected, there is nothing to commit. + if "nothing to commit" not in str(e): + raise e + + try: + self.git_push( + upstream=f"origin {self.current_branch}", + blocking=blocking, + auto_lfs_prune=auto_lfs_prune, + ) + except OSError as e: + # If no changes are detected, there is nothing to commit. + if "could not read Username" in str(e): + raise OSError("Couldn't authenticate user for push. Did you set `token` to `True`?") from e + else: + raise e + + os.chdir(current_working_directory) + + def repocard_metadata_load(self) -> Optional[Dict]: + filepath = os.path.join(self.local_dir, constants.REPOCARD_NAME) + if os.path.isfile(filepath): + return metadata_load(filepath) + return None + + def repocard_metadata_save(self, data: Dict) -> None: + return metadata_save(os.path.join(self.local_dir, constants.REPOCARD_NAME), data) + + @property + def commands_failed(self): + """ + Returns the asynchronous commands that failed. + """ + return [c for c in self.command_queue if c.status > 0] + + @property + def commands_in_progress(self): + """ + Returns the asynchronous commands that are currently in progress. + """ + return [c for c in self.command_queue if not c.is_done] + + def wait_for_commands(self): + """ + Blocking method: blocks all subsequent execution until all commands have + been processed. + """ + index = 0 + for command_failed in self.commands_failed: + logger.error(f"The {command_failed.title} command with PID {command_failed._process.pid} failed.") + logger.error(command_failed.stderr) + + while self.commands_in_progress: + if index % 10 == 0: + logger.warning( + f"Waiting for the following commands to finish before shutting down: {self.commands_in_progress}." + ) + + index += 1 + + time.sleep(1) diff --git a/.venv/lib/python3.12/site-packages/huggingface_hub/serialization/__init__.py b/.venv/lib/python3.12/site-packages/huggingface_hub/serialization/__init__.py new file mode 100644 index 00000000..8949a22a --- /dev/null +++ b/.venv/lib/python3.12/site-packages/huggingface_hub/serialization/__init__.py @@ -0,0 +1,27 @@ +# Copyright 2024 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ruff: noqa: F401 +"""Contains helpers to serialize tensors.""" + +from ._base import StateDictSplit, split_state_dict_into_shards_factory +from ._tensorflow import get_tf_storage_size, split_tf_state_dict_into_shards +from ._torch import ( + get_torch_storage_id, + get_torch_storage_size, + load_state_dict_from_file, + load_torch_model, + save_torch_model, + save_torch_state_dict, + split_torch_state_dict_into_shards, +) diff --git a/.venv/lib/python3.12/site-packages/huggingface_hub/serialization/_base.py b/.venv/lib/python3.12/site-packages/huggingface_hub/serialization/_base.py new file mode 100644 index 00000000..b7b6454a --- /dev/null +++ b/.venv/lib/python3.12/site-packages/huggingface_hub/serialization/_base.py @@ -0,0 +1,210 @@ +# Copyright 2024 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Contains helpers to split tensors into shards.""" + +from dataclasses import dataclass, field +from typing import Any, Callable, Dict, List, Optional, TypeVar, Union + +from .. import logging + + +TensorT = TypeVar("TensorT") +TensorSizeFn_T = Callable[[TensorT], int] +StorageIDFn_T = Callable[[TensorT], Optional[Any]] + +MAX_SHARD_SIZE = "5GB" +SIZE_UNITS = { + "TB": 10**12, + "GB": 10**9, + "MB": 10**6, + "KB": 10**3, +} + + +logger = logging.get_logger(__file__) + + +@dataclass +class StateDictSplit: + is_sharded: bool = field(init=False) + metadata: Dict[str, Any] + filename_to_tensors: Dict[str, List[str]] + tensor_to_filename: Dict[str, str] + + def __post_init__(self): + self.is_sharded = len(self.filename_to_tensors) > 1 + + +def split_state_dict_into_shards_factory( + state_dict: Dict[str, TensorT], + *, + get_storage_size: TensorSizeFn_T, + filename_pattern: str, + get_storage_id: StorageIDFn_T = lambda tensor: None, + max_shard_size: Union[int, str] = MAX_SHARD_SIZE, +) -> StateDictSplit: + """ + Split a model state dictionary in shards so that each shard is smaller than a given size. + + The shards are determined by iterating through the `state_dict` in the order of its keys. There is no optimization + made to make each shard as close as possible to the maximum size passed. For example, if the limit is 10GB and we + have tensors of sizes [6GB, 6GB, 2GB, 6GB, 2GB, 2GB] they will get sharded as [6GB], [6+2GB], [6+2+2GB] and not + [6+2+2GB], [6+2GB], [6GB]. + + <Tip warning={true}> + + If one of the model's tensor is bigger than `max_shard_size`, it will end up in its own shard which will have a + size greater than `max_shard_size`. + + </Tip> + + Args: + state_dict (`Dict[str, Tensor]`): + The state dictionary to save. + get_storage_size (`Callable[[Tensor], int]`): + A function that returns the size of a tensor when saved on disk in bytes. + get_storage_id (`Callable[[Tensor], Optional[Any]]`, *optional*): + A function that returns a unique identifier to a tensor storage. Multiple different tensors can share the + same underlying storage. This identifier is guaranteed to be unique and constant for this tensor's storage + during its lifetime. Two tensor storages with non-overlapping lifetimes may have the same id. + filename_pattern (`str`, *optional*): + The pattern to generate the files names in which the model will be saved. Pattern must be a string that + can be formatted with `filename_pattern.format(suffix=...)` and must contain the keyword `suffix` + max_shard_size (`int` or `str`, *optional*): + The maximum size of each shard, in bytes. Defaults to 5GB. + + Returns: + [`StateDictSplit`]: A `StateDictSplit` object containing the shards and the index to retrieve them. + """ + storage_id_to_tensors: Dict[Any, List[str]] = {} + + shard_list: List[Dict[str, TensorT]] = [] + current_shard: Dict[str, TensorT] = {} + current_shard_size = 0 + total_size = 0 + + if isinstance(max_shard_size, str): + max_shard_size = parse_size_to_int(max_shard_size) + + for key, tensor in state_dict.items(): + # when bnb serialization is used the weights in the state dict can be strings + # check: https://github.com/huggingface/transformers/pull/24416 for more details + if isinstance(tensor, str): + logger.info("Skipping tensor %s as it is a string (bnb serialization)", key) + continue + + # If a `tensor` shares the same underlying storage as another tensor, we put `tensor` in the same `block` + storage_id = get_storage_id(tensor) + if storage_id is not None: + if storage_id in storage_id_to_tensors: + # We skip this tensor for now and will reassign to correct shard later + storage_id_to_tensors[storage_id].append(key) + continue + else: + # This is the first tensor with this storage_id, we create a new entry + # in the storage_id_to_tensors dict => we will assign the shard id later + storage_id_to_tensors[storage_id] = [key] + + # Compute tensor size + tensor_size = get_storage_size(tensor) + + # If this tensor is bigger than the maximal size, we put it in its own shard + if tensor_size > max_shard_size: + total_size += tensor_size + shard_list.append({key: tensor}) + continue + + # If this tensor is going to tip up over the maximal size, we split. + # Current shard already has some tensors, we add it to the list of shards and create a new one. + if current_shard_size + tensor_size > max_shard_size: + shard_list.append(current_shard) + current_shard = {} + current_shard_size = 0 + + # Add the tensor to the current shard + current_shard[key] = tensor + current_shard_size += tensor_size + total_size += tensor_size + + # Add the last shard + if len(current_shard) > 0: + shard_list.append(current_shard) + nb_shards = len(shard_list) + + # Loop over the tensors that share the same storage and assign them together + for storage_id, keys in storage_id_to_tensors.items(): + # Let's try to find the shard where the first tensor of this storage is and put all tensors in the same shard + for shard in shard_list: + if keys[0] in shard: + for key in keys: + shard[key] = state_dict[key] + break + + # If we only have one shard, we return it => no need to build the index + if nb_shards == 1: + filename = filename_pattern.format(suffix="") + return StateDictSplit( + metadata={"total_size": total_size}, + filename_to_tensors={filename: list(state_dict.keys())}, + tensor_to_filename={key: filename for key in state_dict.keys()}, + ) + + # Now that each tensor is assigned to a shard, let's assign a filename to each shard + tensor_name_to_filename = {} + filename_to_tensors = {} + for idx, shard in enumerate(shard_list): + filename = filename_pattern.format(suffix=f"-{idx + 1:05d}-of-{nb_shards:05d}") + for key in shard: + tensor_name_to_filename[key] = filename + filename_to_tensors[filename] = list(shard.keys()) + + # Build the index and return + return StateDictSplit( + metadata={"total_size": total_size}, + filename_to_tensors=filename_to_tensors, + tensor_to_filename=tensor_name_to_filename, + ) + + +def parse_size_to_int(size_as_str: str) -> int: + """ + Parse a size expressed as a string with digits and unit (like `"5MB"`) to an integer (in bytes). + + Supported units are "TB", "GB", "MB", "KB". + + Args: + size_as_str (`str`): The size to convert. Will be directly returned if an `int`. + + Example: + + ```py + >>> parse_size_to_int("5MB") + 5000000 + ``` + """ + size_as_str = size_as_str.strip() + + # Parse unit + unit = size_as_str[-2:].upper() + if unit not in SIZE_UNITS: + raise ValueError(f"Unit '{unit}' not supported. Supported units are TB, GB, MB, KB. Got '{size_as_str}'.") + multiplier = SIZE_UNITS[unit] + + # Parse value + try: + value = float(size_as_str[:-2].strip()) + except ValueError as e: + raise ValueError(f"Could not parse the size value from '{size_as_str}': {e}") from e + + return int(value * multiplier) diff --git a/.venv/lib/python3.12/site-packages/huggingface_hub/serialization/_dduf.py b/.venv/lib/python3.12/site-packages/huggingface_hub/serialization/_dduf.py new file mode 100644 index 00000000..a1debadb --- /dev/null +++ b/.venv/lib/python3.12/site-packages/huggingface_hub/serialization/_dduf.py @@ -0,0 +1,387 @@ +import json +import logging +import mmap +import os +import shutil +import zipfile +from contextlib import contextmanager +from dataclasses import dataclass, field +from pathlib import Path +from typing import Any, Dict, Generator, Iterable, Tuple, Union + +from ..errors import DDUFCorruptedFileError, DDUFExportError, DDUFInvalidEntryNameError + + +logger = logging.getLogger(__name__) + +DDUF_ALLOWED_ENTRIES = { + # Allowed file extensions in a DDUF file + ".json", + ".model", + ".safetensors", + ".txt", +} + +DDUF_FOLDER_REQUIRED_ENTRIES = { + # Each folder must contain at least one of these entries + "config.json", + "tokenizer_config.json", + "preprocessor_config.json", + "scheduler_config.json", +} + + +@dataclass +class DDUFEntry: + """Object representing a file entry in a DDUF file. + + See [`read_dduf_file`] for how to read a DDUF file. + + Attributes: + filename (str): + The name of the file in the DDUF archive. + offset (int): + The offset of the file in the DDUF archive. + length (int): + The length of the file in the DDUF archive. + dduf_path (str): + The path to the DDUF archive (for internal use). + """ + + filename: str + length: int + offset: int + + dduf_path: Path = field(repr=False) + + @contextmanager + def as_mmap(self) -> Generator[bytes, None, None]: + """Open the file as a memory-mapped file. + + Useful to load safetensors directly from the file. + + Example: + ```py + >>> import safetensors.torch + >>> with entry.as_mmap() as mm: + ... tensors = safetensors.torch.load(mm) + ``` + """ + with self.dduf_path.open("rb") as f: + with mmap.mmap(f.fileno(), length=0, access=mmap.ACCESS_READ) as mm: + yield mm[self.offset : self.offset + self.length] + + def read_text(self, encoding: str = "utf-8") -> str: + """Read the file as text. + + Useful for '.txt' and '.json' entries. + + Example: + ```py + >>> import json + >>> index = json.loads(entry.read_text()) + ``` + """ + with self.dduf_path.open("rb") as f: + f.seek(self.offset) + return f.read(self.length).decode(encoding=encoding) + + +def read_dduf_file(dduf_path: Union[os.PathLike, str]) -> Dict[str, DDUFEntry]: + """ + Read a DDUF file and return a dictionary of entries. + + Only the metadata is read, the data is not loaded in memory. + + Args: + dduf_path (`str` or `os.PathLike`): + The path to the DDUF file to read. + + Returns: + `Dict[str, DDUFEntry]`: + A dictionary of [`DDUFEntry`] indexed by filename. + + Raises: + - [`DDUFCorruptedFileError`]: If the DDUF file is corrupted (i.e. doesn't follow the DDUF format). + + Example: + ```python + >>> import json + >>> import safetensors.torch + >>> from huggingface_hub import read_dduf_file + + # Read DDUF metadata + >>> dduf_entries = read_dduf_file("FLUX.1-dev.dduf") + + # Returns a mapping filename <> DDUFEntry + >>> dduf_entries["model_index.json"] + DDUFEntry(filename='model_index.json', offset=66, length=587) + + # Load model index as JSON + >>> json.loads(dduf_entries["model_index.json"].read_text()) + {'_class_name': 'FluxPipeline', '_diffusers_version': '0.32.0.dev0', '_name_or_path': 'black-forest-labs/FLUX.1-dev', ... + + # Load VAE weights using safetensors + >>> with dduf_entries["vae/diffusion_pytorch_model.safetensors"].as_mmap() as mm: + ... state_dict = safetensors.torch.load(mm) + ``` + """ + entries = {} + dduf_path = Path(dduf_path) + logger.info(f"Reading DDUF file {dduf_path}") + with zipfile.ZipFile(str(dduf_path), "r") as zf: + for info in zf.infolist(): + logger.debug(f"Reading entry {info.filename}") + if info.compress_type != zipfile.ZIP_STORED: + raise DDUFCorruptedFileError("Data must not be compressed in DDUF file.") + + try: + _validate_dduf_entry_name(info.filename) + except DDUFInvalidEntryNameError as e: + raise DDUFCorruptedFileError(f"Invalid entry name in DDUF file: {info.filename}") from e + + offset = _get_data_offset(zf, info) + + entries[info.filename] = DDUFEntry( + filename=info.filename, offset=offset, length=info.file_size, dduf_path=dduf_path + ) + + # Consistency checks on the DDUF file + if "model_index.json" not in entries: + raise DDUFCorruptedFileError("Missing required 'model_index.json' entry in DDUF file.") + index = json.loads(entries["model_index.json"].read_text()) + _validate_dduf_structure(index, entries.keys()) + + logger.info(f"Done reading DDUF file {dduf_path}. Found {len(entries)} entries") + return entries + + +def export_entries_as_dduf( + dduf_path: Union[str, os.PathLike], entries: Iterable[Tuple[str, Union[str, Path, bytes]]] +) -> None: + """Write a DDUF file from an iterable of entries. + + This is a lower-level helper than [`export_folder_as_dduf`] that allows more flexibility when serializing data. + In particular, you don't need to save the data on disk before exporting it in the DDUF file. + + Args: + dduf_path (`str` or `os.PathLike`): + The path to the DDUF file to write. + entries (`Iterable[Tuple[str, Union[str, Path, bytes]]]`): + An iterable of entries to write in the DDUF file. Each entry is a tuple with the filename and the content. + The filename should be the path to the file in the DDUF archive. + The content can be a string or a pathlib.Path representing a path to a file on the local disk or directly the content as bytes. + + Raises: + - [`DDUFExportError`]: If anything goes wrong during the export (e.g. invalid entry name, missing 'model_index.json', etc.). + + Example: + ```python + # Export specific files from the local disk. + >>> from huggingface_hub import export_entries_as_dduf + >>> export_entries_as_dduf( + ... dduf_path="stable-diffusion-v1-4-FP16.dduf", + ... entries=[ # List entries to add to the DDUF file (here, only FP16 weights) + ... ("model_index.json", "path/to/model_index.json"), + ... ("vae/config.json", "path/to/vae/config.json"), + ... ("vae/diffusion_pytorch_model.fp16.safetensors", "path/to/vae/diffusion_pytorch_model.fp16.safetensors"), + ... ("text_encoder/config.json", "path/to/text_encoder/config.json"), + ... ("text_encoder/model.fp16.safetensors", "path/to/text_encoder/model.fp16.safetensors"), + ... # ... add more entries here + ... ] + ... ) + ``` + + ```python + # Export state_dicts one by one from a loaded pipeline + >>> from diffusers import DiffusionPipeline + >>> from typing import Generator, Tuple + >>> import safetensors.torch + >>> from huggingface_hub import export_entries_as_dduf + >>> pipe = DiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4") + ... # ... do some work with the pipeline + + >>> def as_entries(pipe: DiffusionPipeline) -> Generator[Tuple[str, bytes], None, None]: + ... # Build an generator that yields the entries to add to the DDUF file. + ... # The first element of the tuple is the filename in the DDUF archive (must use UNIX separator!). The second element is the content of the file. + ... # Entries will be evaluated lazily when the DDUF file is created (only 1 entry is loaded in memory at a time) + ... yield "vae/config.json", pipe.vae.to_json_string().encode() + ... yield "vae/diffusion_pytorch_model.safetensors", safetensors.torch.save(pipe.vae.state_dict()) + ... yield "text_encoder/config.json", pipe.text_encoder.config.to_json_string().encode() + ... yield "text_encoder/model.safetensors", safetensors.torch.save(pipe.text_encoder.state_dict()) + ... # ... add more entries here + + >>> export_entries_as_dduf(dduf_path="stable-diffusion-v1-4.dduf", entries=as_entries(pipe)) + ``` + """ + logger.info(f"Exporting DDUF file '{dduf_path}'") + filenames = set() + index = None + with zipfile.ZipFile(str(dduf_path), "w", zipfile.ZIP_STORED) as archive: + for filename, content in entries: + if filename in filenames: + raise DDUFExportError(f"Can't add duplicate entry: {filename}") + filenames.add(filename) + + if filename == "model_index.json": + try: + index = json.loads(_load_content(content).decode()) + except json.JSONDecodeError as e: + raise DDUFExportError("Failed to parse 'model_index.json'.") from e + + try: + filename = _validate_dduf_entry_name(filename) + except DDUFInvalidEntryNameError as e: + raise DDUFExportError(f"Invalid entry name: {filename}") from e + logger.debug(f"Adding entry '{filename}' to DDUF file") + _dump_content_in_archive(archive, filename, content) + + # Consistency checks on the DDUF file + if index is None: + raise DDUFExportError("Missing required 'model_index.json' entry in DDUF file.") + try: + _validate_dduf_structure(index, filenames) + except DDUFCorruptedFileError as e: + raise DDUFExportError("Invalid DDUF file structure.") from e + + logger.info(f"Done writing DDUF file {dduf_path}") + + +def export_folder_as_dduf(dduf_path: Union[str, os.PathLike], folder_path: Union[str, os.PathLike]) -> None: + """ + Export a folder as a DDUF file. + + AUses [`export_entries_as_dduf`] under the hood. + + Args: + dduf_path (`str` or `os.PathLike`): + The path to the DDUF file to write. + folder_path (`str` or `os.PathLike`): + The path to the folder containing the diffusion model. + + Example: + ```python + >>> from huggingface_hub import export_folder_as_dduf + >>> export_folder_as_dduf(dduf_path="FLUX.1-dev.dduf", folder_path="path/to/FLUX.1-dev") + ``` + """ + folder_path = Path(folder_path) + + def _iterate_over_folder() -> Iterable[Tuple[str, Path]]: + for path in Path(folder_path).glob("**/*"): + if not path.is_file(): + continue + if path.suffix not in DDUF_ALLOWED_ENTRIES: + logger.debug(f"Skipping file '{path}' (file type not allowed)") + continue + path_in_archive = path.relative_to(folder_path) + if len(path_in_archive.parts) >= 3: + logger.debug(f"Skipping file '{path}' (nested directories not allowed)") + continue + yield path_in_archive.as_posix(), path + + export_entries_as_dduf(dduf_path, _iterate_over_folder()) + + +def _dump_content_in_archive(archive: zipfile.ZipFile, filename: str, content: Union[str, os.PathLike, bytes]) -> None: + with archive.open(filename, "w", force_zip64=True) as archive_fh: + if isinstance(content, (str, Path)): + content_path = Path(content) + with content_path.open("rb") as content_fh: + shutil.copyfileobj(content_fh, archive_fh, 1024 * 1024 * 8) # type: ignore[misc] + elif isinstance(content, bytes): + archive_fh.write(content) + else: + raise DDUFExportError(f"Invalid content type for {filename}. Must be str, Path or bytes.") + + +def _load_content(content: Union[str, Path, bytes]) -> bytes: + """Load the content of an entry as bytes. + + Used only for small checks (not to dump content into archive). + """ + if isinstance(content, (str, Path)): + return Path(content).read_bytes() + elif isinstance(content, bytes): + return content + else: + raise DDUFExportError(f"Invalid content type. Must be str, Path or bytes. Got {type(content)}.") + + +def _validate_dduf_entry_name(entry_name: str) -> str: + if "." + entry_name.split(".")[-1] not in DDUF_ALLOWED_ENTRIES: + raise DDUFInvalidEntryNameError(f"File type not allowed: {entry_name}") + if "\\" in entry_name: + raise DDUFInvalidEntryNameError(f"Entry names must use UNIX separators ('/'). Got {entry_name}.") + entry_name = entry_name.strip("/") + if entry_name.count("/") > 1: + raise DDUFInvalidEntryNameError(f"DDUF only supports 1 level of directory. Got {entry_name}.") + return entry_name + + +def _validate_dduf_structure(index: Any, entry_names: Iterable[str]) -> None: + """ + Consistency checks on the DDUF file structure. + + Rules: + - The 'model_index.json' entry is required and must contain a dictionary. + - Each folder name must correspond to an entry in 'model_index.json'. + - Each folder must contain at least a config file ('config.json', 'tokenizer_config.json', 'preprocessor_config.json', 'scheduler_config.json'). + + Args: + index (Any): + The content of the 'model_index.json' entry. + entry_names (Iterable[str]): + The list of entry names in the DDUF file. + + Raises: + - [`DDUFCorruptedFileError`]: If the DDUF file is corrupted (i.e. doesn't follow the DDUF format). + """ + if not isinstance(index, dict): + raise DDUFCorruptedFileError(f"Invalid 'model_index.json' content. Must be a dictionary. Got {type(index)}.") + + dduf_folders = {entry.split("/")[0] for entry in entry_names if "/" in entry} + for folder in dduf_folders: + if folder not in index: + raise DDUFCorruptedFileError(f"Missing required entry '{folder}' in 'model_index.json'.") + if not any(f"{folder}/{required_entry}" in entry_names for required_entry in DDUF_FOLDER_REQUIRED_ENTRIES): + raise DDUFCorruptedFileError( + f"Missing required file in folder '{folder}'. Must contains at least one of {DDUF_FOLDER_REQUIRED_ENTRIES}." + ) + + +def _get_data_offset(zf: zipfile.ZipFile, info: zipfile.ZipInfo) -> int: + """ + Calculate the data offset for a file in a ZIP archive. + + Args: + zf (`zipfile.ZipFile`): + The opened ZIP file. Must be opened in read mode. + info (`zipfile.ZipInfo`): + The file info. + + Returns: + int: The offset of the file data in the ZIP archive. + """ + if zf.fp is None: + raise DDUFCorruptedFileError("ZipFile object must be opened in read mode.") + + # Step 1: Get the local file header offset + header_offset = info.header_offset + + # Step 2: Read the local file header + zf.fp.seek(header_offset) + local_file_header = zf.fp.read(30) # Fixed-size part of the local header + + if len(local_file_header) < 30: + raise DDUFCorruptedFileError("Incomplete local file header.") + + # Step 3: Parse the header fields to calculate the start of file data + # Local file header: https://en.wikipedia.org/wiki/ZIP_(file_format)#File_headers + filename_len = int.from_bytes(local_file_header[26:28], "little") + extra_field_len = int.from_bytes(local_file_header[28:30], "little") + + # Data offset is after the fixed header, filename, and extra fields + data_offset = header_offset + 30 + filename_len + extra_field_len + + return data_offset diff --git a/.venv/lib/python3.12/site-packages/huggingface_hub/serialization/_tensorflow.py b/.venv/lib/python3.12/site-packages/huggingface_hub/serialization/_tensorflow.py new file mode 100644 index 00000000..59ed8110 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/huggingface_hub/serialization/_tensorflow.py @@ -0,0 +1,95 @@ +# Copyright 2024 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Contains tensorflow-specific helpers.""" + +import math +import re +from typing import TYPE_CHECKING, Dict, Union + +from .. import constants +from ._base import MAX_SHARD_SIZE, StateDictSplit, split_state_dict_into_shards_factory + + +if TYPE_CHECKING: + import tensorflow as tf + + +def split_tf_state_dict_into_shards( + state_dict: Dict[str, "tf.Tensor"], + *, + filename_pattern: str = constants.TF2_WEIGHTS_FILE_PATTERN, + max_shard_size: Union[int, str] = MAX_SHARD_SIZE, +) -> StateDictSplit: + """ + Split a model state dictionary in shards so that each shard is smaller than a given size. + + The shards are determined by iterating through the `state_dict` in the order of its keys. There is no optimization + made to make each shard as close as possible to the maximum size passed. For example, if the limit is 10GB and we + have tensors of sizes [6GB, 6GB, 2GB, 6GB, 2GB, 2GB] they will get sharded as [6GB], [6+2GB], [6+2+2GB] and not + [6+2+2GB], [6+2GB], [6GB]. + + <Tip warning={true}> + + If one of the model's tensor is bigger than `max_shard_size`, it will end up in its own shard which will have a + size greater than `max_shard_size`. + + </Tip> + + Args: + state_dict (`Dict[str, Tensor]`): + The state dictionary to save. + filename_pattern (`str`, *optional*): + The pattern to generate the files names in which the model will be saved. Pattern must be a string that + can be formatted with `filename_pattern.format(suffix=...)` and must contain the keyword `suffix` + Defaults to `"tf_model{suffix}.h5"`. + max_shard_size (`int` or `str`, *optional*): + The maximum size of each shard, in bytes. Defaults to 5GB. + + Returns: + [`StateDictSplit`]: A `StateDictSplit` object containing the shards and the index to retrieve them. + """ + return split_state_dict_into_shards_factory( + state_dict, + max_shard_size=max_shard_size, + filename_pattern=filename_pattern, + get_storage_size=get_tf_storage_size, + ) + + +def get_tf_storage_size(tensor: "tf.Tensor") -> int: + # Return `math.ceil` since dtype byte size can be a float (e.g., 0.125 for tf.bool). + # Better to overestimate than underestimate. + return math.ceil(tensor.numpy().size * _dtype_byte_size_tf(tensor.dtype)) + + +def _dtype_byte_size_tf(dtype) -> float: + """ + Returns the size (in bytes) occupied by one parameter of type `dtype`. + Taken from https://github.com/huggingface/transformers/blob/74d9d0cebb0263a3f8ab9c280569170cc74651d0/src/transformers/modeling_tf_utils.py#L608. + NOTE: why not `tensor.numpy().nbytes`? + Example: + ```py + >>> _dtype_byte_size(tf.float32) + 4 + ``` + """ + import tensorflow as tf + + if dtype == tf.bool: + return 1 / 8 + bit_search = re.search(r"[^\d](\d+)$", dtype.name) + if bit_search is None: + raise ValueError(f"`dtype` is not a valid dtype: {dtype}.") + bit_size = int(bit_search.groups()[0]) + return bit_size // 8 diff --git a/.venv/lib/python3.12/site-packages/huggingface_hub/serialization/_torch.py b/.venv/lib/python3.12/site-packages/huggingface_hub/serialization/_torch.py new file mode 100644 index 00000000..ccb9c42b --- /dev/null +++ b/.venv/lib/python3.12/site-packages/huggingface_hub/serialization/_torch.py @@ -0,0 +1,1015 @@ +# Copyright 2024 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Contains pytorch-specific helpers.""" + +import importlib +import json +import os +import re +from collections import defaultdict, namedtuple +from functools import lru_cache +from pathlib import Path +from typing import TYPE_CHECKING, Any, Dict, Iterable, List, NamedTuple, Optional, Set, Tuple, Union + +from packaging import version + +from .. import constants, logging +from ._base import MAX_SHARD_SIZE, StateDictSplit, split_state_dict_into_shards_factory + + +logger = logging.get_logger(__file__) + +if TYPE_CHECKING: + import torch + +# SAVING + + +def save_torch_model( + model: "torch.nn.Module", + save_directory: Union[str, Path], + *, + filename_pattern: Optional[str] = None, + force_contiguous: bool = True, + max_shard_size: Union[int, str] = MAX_SHARD_SIZE, + metadata: Optional[Dict[str, str]] = None, + safe_serialization: bool = True, + is_main_process: bool = True, + shared_tensors_to_discard: Optional[List[str]] = None, +): + """ + Saves a given torch model to disk, handling sharding and shared tensors issues. + + See also [`save_torch_state_dict`] to save a state dict with more flexibility. + + For more information about tensor sharing, check out [this guide](https://huggingface.co/docs/safetensors/torch_shared_tensors). + + The model state dictionary is split into shards so that each shard is smaller than a given size. The shards are + saved in the `save_directory` with the given `filename_pattern`. If the model is too big to fit in a single shard, + an index file is saved in the `save_directory` to indicate where each tensor is saved. This helper uses + [`split_torch_state_dict_into_shards`] under the hood. If `safe_serialization` is `True`, the shards are saved as + safetensors (the default). Otherwise, the shards are saved as pickle. + + Before saving the model, the `save_directory` is cleaned from any previous shard files. + + <Tip warning={true}> + + If one of the model's tensor is bigger than `max_shard_size`, it will end up in its own shard which will have a + size greater than `max_shard_size`. + + </Tip> + + <Tip warning={true}> + + If your model is a `transformers.PreTrainedModel`, you should pass `model._tied_weights_keys` as `shared_tensors_to_discard` to properly handle shared tensors saving. This ensures the correct duplicate tensors are discarded during saving. + + </Tip> + + Args: + model (`torch.nn.Module`): + The model to save on disk. + save_directory (`str` or `Path`): + The directory in which the model will be saved. + filename_pattern (`str`, *optional*): + The pattern to generate the files names in which the model will be saved. Pattern must be a string that + can be formatted with `filename_pattern.format(suffix=...)` and must contain the keyword `suffix` + Defaults to `"model{suffix}.safetensors"` or `pytorch_model{suffix}.bin` depending on `safe_serialization` + parameter. + force_contiguous (`boolean`, *optional*): + Forcing the state_dict to be saved as contiguous tensors. This has no effect on the correctness of the + model, but it could potentially change performance if the layout of the tensor was chosen specifically for + that reason. Defaults to `True`. + max_shard_size (`int` or `str`, *optional*): + The maximum size of each shard, in bytes. Defaults to 5GB. + metadata (`Dict[str, str]`, *optional*): + Extra information to save along with the model. Some metadata will be added for each dropped tensors. + This information will not be enough to recover the entire shared structure but might help understanding + things. + safe_serialization (`bool`, *optional*): + Whether to save as safetensors, which is the default behavior. If `False`, the shards are saved as pickle. + Safe serialization is recommended for security reasons. Saving as pickle is deprecated and will be removed + in a future version. + is_main_process (`bool`, *optional*): + Whether the process calling this is the main process or not. Useful when in distributed training like + TPUs and need to call this function from all processes. In this case, set `is_main_process=True` only on + the main process to avoid race conditions. Defaults to True. + shared_tensors_to_discard (`List[str]`, *optional*): + List of tensor names to drop when saving shared tensors. If not provided and shared tensors are + detected, it will drop the first name alphabetically. + + Example: + + ```py + >>> from huggingface_hub import save_torch_model + >>> model = ... # A PyTorch model + + # Save state dict to "path/to/folder". The model will be split into shards of 5GB each and saved as safetensors. + >>> save_torch_model(model, "path/to/folder") + + # Load model back + >>> from huggingface_hub import load_torch_model # TODO + >>> load_torch_model(model, "path/to/folder") + >>> + ``` + """ + save_torch_state_dict( + state_dict=model.state_dict(), + filename_pattern=filename_pattern, + force_contiguous=force_contiguous, + max_shard_size=max_shard_size, + metadata=metadata, + safe_serialization=safe_serialization, + save_directory=save_directory, + is_main_process=is_main_process, + shared_tensors_to_discard=shared_tensors_to_discard, + ) + + +def save_torch_state_dict( + state_dict: Dict[str, "torch.Tensor"], + save_directory: Union[str, Path], + *, + filename_pattern: Optional[str] = None, + force_contiguous: bool = True, + max_shard_size: Union[int, str] = MAX_SHARD_SIZE, + metadata: Optional[Dict[str, str]] = None, + safe_serialization: bool = True, + is_main_process: bool = True, + shared_tensors_to_discard: Optional[List[str]] = None, +) -> None: + """ + Save a model state dictionary to the disk, handling sharding and shared tensors issues. + + See also [`save_torch_model`] to directly save a PyTorch model. + + For more information about tensor sharing, check out [this guide](https://huggingface.co/docs/safetensors/torch_shared_tensors). + + The model state dictionary is split into shards so that each shard is smaller than a given size. The shards are + saved in the `save_directory` with the given `filename_pattern`. If the model is too big to fit in a single shard, + an index file is saved in the `save_directory` to indicate where each tensor is saved. This helper uses + [`split_torch_state_dict_into_shards`] under the hood. If `safe_serialization` is `True`, the shards are saved as + safetensors (the default). Otherwise, the shards are saved as pickle. + + Before saving the model, the `save_directory` is cleaned from any previous shard files. + + <Tip warning={true}> + + If one of the model's tensor is bigger than `max_shard_size`, it will end up in its own shard which will have a + size greater than `max_shard_size`. + + </Tip> + + <Tip warning={true}> + + If your model is a `transformers.PreTrainedModel`, you should pass `model._tied_weights_keys` as `shared_tensors_to_discard` to properly handle shared tensors saving. This ensures the correct duplicate tensors are discarded during saving. + + </Tip> + + Args: + state_dict (`Dict[str, torch.Tensor]`): + The state dictionary to save. + save_directory (`str` or `Path`): + The directory in which the model will be saved. + filename_pattern (`str`, *optional*): + The pattern to generate the files names in which the model will be saved. Pattern must be a string that + can be formatted with `filename_pattern.format(suffix=...)` and must contain the keyword `suffix` + Defaults to `"model{suffix}.safetensors"` or `pytorch_model{suffix}.bin` depending on `safe_serialization` + parameter. + force_contiguous (`boolean`, *optional*): + Forcing the state_dict to be saved as contiguous tensors. This has no effect on the correctness of the + model, but it could potentially change performance if the layout of the tensor was chosen specifically for + that reason. Defaults to `True`. + max_shard_size (`int` or `str`, *optional*): + The maximum size of each shard, in bytes. Defaults to 5GB. + metadata (`Dict[str, str]`, *optional*): + Extra information to save along with the model. Some metadata will be added for each dropped tensors. + This information will not be enough to recover the entire shared structure but might help understanding + things. + safe_serialization (`bool`, *optional*): + Whether to save as safetensors, which is the default behavior. If `False`, the shards are saved as pickle. + Safe serialization is recommended for security reasons. Saving as pickle is deprecated and will be removed + in a future version. + is_main_process (`bool`, *optional*): + Whether the process calling this is the main process or not. Useful when in distributed training like + TPUs and need to call this function from all processes. In this case, set `is_main_process=True` only on + the main process to avoid race conditions. Defaults to True. + shared_tensors_to_discard (`List[str]`, *optional*): + List of tensor names to drop when saving shared tensors. If not provided and shared tensors are + detected, it will drop the first name alphabetically. + + Example: + + ```py + >>> from huggingface_hub import save_torch_state_dict + >>> model = ... # A PyTorch model + + # Save state dict to "path/to/folder". The model will be split into shards of 5GB each and saved as safetensors. + >>> state_dict = model_to_save.state_dict() + >>> save_torch_state_dict(state_dict, "path/to/folder") + ``` + """ + save_directory = str(save_directory) + + if filename_pattern is None: + filename_pattern = ( + constants.SAFETENSORS_WEIGHTS_FILE_PATTERN + if safe_serialization + else constants.PYTORCH_WEIGHTS_FILE_PATTERN + ) + + if metadata is None: + metadata = {} + if safe_serialization: + try: + from safetensors.torch import save_file as save_file_fn + except ImportError as e: + raise ImportError( + "Please install `safetensors` to use safe serialization. " + "You can install it with `pip install safetensors`." + ) from e + # Clean state dict for safetensors + state_dict = _clean_state_dict_for_safetensors( + state_dict, + metadata, + force_contiguous=force_contiguous, + shared_tensors_to_discard=shared_tensors_to_discard, + ) + else: + from torch import save as save_file_fn # type: ignore[assignment] + + logger.warning( + "You are using unsafe serialization. Due to security reasons, it is recommended not to load " + "pickled models from untrusted sources. If you intend to share your model, we strongly recommend " + "using safe serialization by installing `safetensors` with `pip install safetensors`." + ) + # Split dict + state_dict_split = split_torch_state_dict_into_shards( + state_dict, filename_pattern=filename_pattern, max_shard_size=max_shard_size + ) + + # Only main process should clean up existing files to avoid race conditions in distributed environment + if is_main_process: + existing_files_regex = re.compile(filename_pattern.format(suffix=r"(-\d{5}-of-\d{5})?") + r"(\.index\.json)?") + for filename in os.listdir(save_directory): + if existing_files_regex.match(filename): + try: + logger.debug(f"Removing existing file '{filename}' from folder.") + os.remove(os.path.join(save_directory, filename)) + except Exception as e: + logger.warning( + f"Error when trying to remove existing '{filename}' from folder: {e}. Continuing..." + ) + + # Save each shard + per_file_metadata = {"format": "pt"} + if not state_dict_split.is_sharded: + per_file_metadata.update(metadata) + safe_file_kwargs = {"metadata": per_file_metadata} if safe_serialization else {} + for filename, tensors in state_dict_split.filename_to_tensors.items(): + shard = {tensor: state_dict[tensor] for tensor in tensors} + save_file_fn(shard, os.path.join(save_directory, filename), **safe_file_kwargs) + logger.debug(f"Shard saved to {filename}") + + # Save the index (if any) + if state_dict_split.is_sharded: + index_path = filename_pattern.format(suffix="") + ".index.json" + index = { + "metadata": {**state_dict_split.metadata, **metadata}, + "weight_map": state_dict_split.tensor_to_filename, + } + with open(os.path.join(save_directory, index_path), "w") as f: + json.dump(index, f, indent=2) + logger.info( + f"The model is bigger than the maximum size per checkpoint ({max_shard_size}). " + f"Model weighs have been saved in {len(state_dict_split.filename_to_tensors)} checkpoint shards. " + f"You can find where each parameters has been saved in the index located at {index_path}." + ) + + logger.info(f"Model weights successfully saved to {save_directory}!") + + +def split_torch_state_dict_into_shards( + state_dict: Dict[str, "torch.Tensor"], + *, + filename_pattern: str = constants.SAFETENSORS_WEIGHTS_FILE_PATTERN, + max_shard_size: Union[int, str] = MAX_SHARD_SIZE, +) -> StateDictSplit: + """ + Split a model state dictionary in shards so that each shard is smaller than a given size. + + The shards are determined by iterating through the `state_dict` in the order of its keys. There is no optimization + made to make each shard as close as possible to the maximum size passed. For example, if the limit is 10GB and we + have tensors of sizes [6GB, 6GB, 2GB, 6GB, 2GB, 2GB] they will get sharded as [6GB], [6+2GB], [6+2+2GB] and not + [6+2+2GB], [6+2GB], [6GB]. + + + <Tip> + + To save a model state dictionary to the disk, see [`save_torch_state_dict`]. This helper uses + `split_torch_state_dict_into_shards` under the hood. + + </Tip> + + <Tip warning={true}> + + If one of the model's tensor is bigger than `max_shard_size`, it will end up in its own shard which will have a + size greater than `max_shard_size`. + + </Tip> + + Args: + state_dict (`Dict[str, torch.Tensor]`): + The state dictionary to save. + filename_pattern (`str`, *optional*): + The pattern to generate the files names in which the model will be saved. Pattern must be a string that + can be formatted with `filename_pattern.format(suffix=...)` and must contain the keyword `suffix` + Defaults to `"model{suffix}.safetensors"`. + max_shard_size (`int` or `str`, *optional*): + The maximum size of each shard, in bytes. Defaults to 5GB. + + Returns: + [`StateDictSplit`]: A `StateDictSplit` object containing the shards and the index to retrieve them. + + Example: + ```py + >>> import json + >>> import os + >>> from safetensors.torch import save_file as safe_save_file + >>> from huggingface_hub import split_torch_state_dict_into_shards + + >>> def save_state_dict(state_dict: Dict[str, torch.Tensor], save_directory: str): + ... state_dict_split = split_torch_state_dict_into_shards(state_dict) + ... for filename, tensors in state_dict_split.filename_to_tensors.items(): + ... shard = {tensor: state_dict[tensor] for tensor in tensors} + ... safe_save_file( + ... shard, + ... os.path.join(save_directory, filename), + ... metadata={"format": "pt"}, + ... ) + ... if state_dict_split.is_sharded: + ... index = { + ... "metadata": state_dict_split.metadata, + ... "weight_map": state_dict_split.tensor_to_filename, + ... } + ... with open(os.path.join(save_directory, "model.safetensors.index.json"), "w") as f: + ... f.write(json.dumps(index, indent=2)) + ``` + """ + return split_state_dict_into_shards_factory( + state_dict, + max_shard_size=max_shard_size, + filename_pattern=filename_pattern, + get_storage_size=get_torch_storage_size, + get_storage_id=get_torch_storage_id, + ) + + +# LOADING + + +def load_torch_model( + model: "torch.nn.Module", + checkpoint_path: Union[str, os.PathLike], + *, + strict: bool = False, + safe: bool = True, + weights_only: bool = False, + map_location: Optional[Union[str, "torch.device"]] = None, + mmap: bool = False, + filename_pattern: Optional[str] = None, +) -> NamedTuple: + """ + Load a checkpoint into a model, handling both sharded and non-sharded checkpoints. + + Args: + model (`torch.nn.Module`): + The model in which to load the checkpoint. + checkpoint_path (`str` or `os.PathLike`): + Path to either the checkpoint file or directory containing the checkpoint(s). + strict (`bool`, *optional*, defaults to `False`): + Whether to strictly enforce that the keys in the model state dict match the keys in the checkpoint. + safe (`bool`, *optional*, defaults to `True`): + If `safe` is True, the safetensors files will be loaded. If `safe` is False, the function + will first attempt to load safetensors files if they are available, otherwise it will fall back to loading + pickle files. `filename_pattern` parameter takes precedence over `safe` parameter. + weights_only (`bool`, *optional*, defaults to `False`): + If True, only loads the model weights without optimizer states and other metadata. + Only supported in PyTorch >= 1.13. + map_location (`str` or `torch.device`, *optional*): + A `torch.device` object, string or a dict specifying how to remap storage locations. It + indicates the location where all tensors should be loaded. + mmap (`bool`, *optional*, defaults to `False`): + Whether to use memory-mapped file loading. Memory mapping can improve loading performance + for large models in PyTorch >= 2.1.0 with zipfile-based checkpoints. + filename_pattern (`str`, *optional*): + The pattern to look for the index file. Pattern must be a string that + can be formatted with `filename_pattern.format(suffix=...)` and must contain the keyword `suffix` + Defaults to `"model{suffix}.safetensors"`. + Returns: + `NamedTuple`: A named tuple with `missing_keys` and `unexpected_keys` fields. + - `missing_keys` is a list of str containing the missing keys, i.e. keys that are in the model but not in the checkpoint. + - `unexpected_keys` is a list of str containing the unexpected keys, i.e. keys that are in the checkpoint but not in the model. + + Raises: + [`FileNotFoundError`](https://docs.python.org/3/library/exceptions.html#FileNotFoundError) + If the checkpoint file or directory does not exist. + [`ImportError`](https://docs.python.org/3/library/exceptions.html#ImportError) + If safetensors or torch is not installed when trying to load a .safetensors file or a PyTorch checkpoint respectively. + [`ValueError`](https://docs.python.org/3/library/exceptions.html#ValueError) + If the checkpoint path is invalid or if the checkpoint format cannot be determined. + + Example: + ```python + >>> from huggingface_hub import load_torch_model + >>> model = ... # A PyTorch model + >>> load_torch_model(model, "path/to/checkpoint") + ``` + """ + checkpoint_path = Path(checkpoint_path) + + if not checkpoint_path.exists(): + raise ValueError(f"Checkpoint path {checkpoint_path} does not exist") + # 1. Check if checkpoint is a single file + if checkpoint_path.is_file(): + state_dict = load_state_dict_from_file( + checkpoint_file=checkpoint_path, + map_location=map_location, + weights_only=weights_only, + ) + return model.load_state_dict(state_dict, strict=strict) + + # 2. If not, checkpoint_path is a directory + if filename_pattern is None: + filename_pattern = constants.SAFETENSORS_WEIGHTS_FILE_PATTERN + index_path = checkpoint_path / (filename_pattern.format(suffix="") + ".index.json") + # Only fallback to pickle format if safetensors index is not found and safe is False. + if not index_path.is_file() and not safe: + filename_pattern = constants.PYTORCH_WEIGHTS_FILE_PATTERN + + index_path = checkpoint_path / (filename_pattern.format(suffix="") + ".index.json") + + if index_path.is_file(): + return _load_sharded_checkpoint( + model=model, + save_directory=checkpoint_path, + strict=strict, + weights_only=weights_only, + filename_pattern=filename_pattern, + ) + + # Look for single model file + model_files = list(checkpoint_path.glob("*.safetensors" if safe else "*.bin")) + if len(model_files) == 1: + state_dict = load_state_dict_from_file( + checkpoint_file=model_files[0], + map_location=map_location, + weights_only=weights_only, + mmap=mmap, + ) + return model.load_state_dict(state_dict, strict=strict) + + raise ValueError( + f"Directory '{checkpoint_path}' does not contain a valid checkpoint. " + "Expected either a sharded checkpoint with an index file, or a single model file." + ) + + +def _load_sharded_checkpoint( + model: "torch.nn.Module", + save_directory: os.PathLike, + *, + strict: bool = False, + weights_only: bool = False, + filename_pattern: str = constants.SAFETENSORS_WEIGHTS_FILE_PATTERN, +) -> NamedTuple: + """ + Loads a sharded checkpoint into a model. This is the same as + [`torch.nn.Module.load_state_dict`](https://pytorch.org/docs/stable/generated/torch.nn.Module.html?highlight=load_state_dict#torch.nn.Module.load_state_dict) + but for a sharded checkpoint. Each shard is loaded one by one and removed from memory after being loaded into the model. + + Args: + model (`torch.nn.Module`): + The model in which to load the checkpoint. + save_directory (`str` or `os.PathLike`): + A path to a folder containing the sharded checkpoint. + strict (`bool`, *optional*, defaults to `False`): + Whether to strictly enforce that the keys in the model state dict match the keys in the sharded checkpoint. + weights_only (`bool`, *optional*, defaults to `False`): + If True, only loads the model weights without optimizer states and other metadata. + Only supported in PyTorch >= 1.13. + filename_pattern (`str`, *optional*, defaults to `"model{suffix}.safetensors"`): + The pattern to look for the index file. Pattern must be a string that + can be formatted with `filename_pattern.format(suffix=...)` and must contain the keyword `suffix` + Defaults to `"model{suffix}.safetensors"`. + + Returns: + `NamedTuple`: A named tuple with `missing_keys` and `unexpected_keys` fields, + - `missing_keys` is a list of str containing the missing keys + - `unexpected_keys` is a list of str containing the unexpected keys + """ + + # 1. Load and validate index file + # The index file contains mapping of parameter names to shard files + index_path = filename_pattern.format(suffix="") + ".index.json" + index_file = os.path.join(save_directory, index_path) + with open(index_file, "r", encoding="utf-8") as f: + index = json.load(f) + + # 2. Validate keys if in strict mode + # This is done before loading any shards to fail fast + if strict: + _validate_keys_for_strict_loading(model, index["weight_map"].keys()) + + # 3. Load each shard using `load_state_dict` + # Get unique shard files (multiple parameters can be in same shard) + shard_files = list(set(index["weight_map"].values())) + for shard_file in shard_files: + # Load shard into memory + shard_path = os.path.join(save_directory, shard_file) + state_dict = load_state_dict_from_file( + shard_path, + map_location="cpu", + weights_only=weights_only, + ) + # Update model with parameters from this shard + model.load_state_dict(state_dict, strict=strict) + # Explicitly remove the state dict from memory + del state_dict + + # 4. Return compatibility info + loaded_keys = set(index["weight_map"].keys()) + model_keys = set(model.state_dict().keys()) + return _IncompatibleKeys( + missing_keys=list(model_keys - loaded_keys), unexpected_keys=list(loaded_keys - model_keys) + ) + + +def load_state_dict_from_file( + checkpoint_file: Union[str, os.PathLike], + map_location: Optional[Union[str, "torch.device"]] = None, + weights_only: bool = False, + mmap: bool = False, +) -> Union[Dict[str, "torch.Tensor"], Any]: + """ + Loads a checkpoint file, handling both safetensors and pickle checkpoint formats. + + Args: + checkpoint_file (`str` or `os.PathLike`): + Path to the checkpoint file to load. Can be either a safetensors or pickle (`.bin`) checkpoint. + map_location (`str` or `torch.device`, *optional*): + A `torch.device` object, string or a dict specifying how to remap storage locations. It + indicates the location where all tensors should be loaded. + weights_only (`bool`, *optional*, defaults to `False`): + If True, only loads the model weights without optimizer states and other metadata. + Only supported for pickle (`.bin`) checkpoints with PyTorch >= 1.13. Has no effect when + loading safetensors files. + mmap (`bool`, *optional*, defaults to `False`): + Whether to use memory-mapped file loading. Memory mapping can improve loading performance + for large models in PyTorch >= 2.1.0 with zipfile-based checkpoints. Has no effect when + loading safetensors files, as the `safetensors` library uses memory mapping by default. + + Returns: + `Union[Dict[str, "torch.Tensor"], Any]`: The loaded checkpoint. + - For safetensors files: always returns a dictionary mapping parameter names to tensors. + - For pickle files: returns any Python object that was pickled (commonly a state dict, but could be + an entire model, optimizer state, or any other Python object). + + Raises: + [`FileNotFoundError`](https://docs.python.org/3/library/exceptions.html#FileNotFoundError) + If the checkpoint file does not exist. + [`ImportError`](https://docs.python.org/3/library/exceptions.html#ImportError) + If safetensors or torch is not installed when trying to load a .safetensors file or a PyTorch checkpoint respectively. + [`OSError`](https://docs.python.org/3/library/exceptions.html#OSError) + If the checkpoint file format is invalid or if git-lfs files are not properly downloaded. + [`ValueError`](https://docs.python.org/3/library/exceptions.html#ValueError) + If the checkpoint file path is empty or invalid. + + Example: + ```python + >>> from huggingface_hub import load_state_dict_from_file + + # Load a PyTorch checkpoint + >>> state_dict = load_state_dict_from_file("path/to/model.bin", map_location="cpu") + >>> model.load_state_dict(state_dict) + + # Load a safetensors checkpoint + >>> state_dict = load_state_dict_from_file("path/to/model.safetensors") + >>> model.load_state_dict(state_dict) + ``` + """ + checkpoint_path = Path(checkpoint_file) + + # Check if file exists and is a regular file (not a directory) + if not checkpoint_path.is_file(): + raise FileNotFoundError( + f"No checkpoint file found at '{checkpoint_path}'. Please verify the path is correct and " + "the file has been properly downloaded." + ) + + # Load safetensors checkpoint + if checkpoint_path.suffix == ".safetensors": + try: + from safetensors import safe_open + from safetensors.torch import load_file + except ImportError as e: + raise ImportError( + "Please install `safetensors` to load safetensors checkpoint. " + "You can install it with `pip install safetensors`." + ) from e + + # Check format of the archive + with safe_open(checkpoint_file, framework="pt") as f: # type: ignore[attr-defined] + metadata = f.metadata() + # see comment: https://github.com/huggingface/transformers/blob/3d213b57fe74302e5902d68ed9478c3ad1aaa713/src/transformers/modeling_utils.py#L3966 + if metadata is not None and metadata.get("format") not in ["pt", "mlx"]: + raise OSError( + f"The safetensors archive passed at {checkpoint_file} does not contain the valid metadata. Make sure " + "you save your model with the `save_torch_model` method." + ) + device = str(map_location.type) if map_location is not None and hasattr(map_location, "type") else map_location + # meta device is not supported with safetensors, falling back to CPU + if device == "meta": + logger.warning("Meta device is not supported with safetensors. Falling back to CPU device.") + device = "cpu" + return load_file(checkpoint_file, device=device) # type: ignore[arg-type] + # Otherwise, load from pickle + try: + import torch + from torch import load + except ImportError as e: + raise ImportError( + "Please install `torch` to load torch tensors. You can install it with `pip install torch`." + ) from e + # Add additional kwargs, mmap is only supported in torch >= 2.1.0 + additional_kwargs = {} + if version.parse(torch.__version__) >= version.parse("2.1.0"): + additional_kwargs["mmap"] = mmap + + # weights_only is only supported in torch >= 1.13.0 + if version.parse(torch.__version__) >= version.parse("1.13.0"): + additional_kwargs["weights_only"] = weights_only + + return load( + checkpoint_file, + map_location=map_location, + **additional_kwargs, + ) + + +# HELPERS + + +def _validate_keys_for_strict_loading( + model: "torch.nn.Module", + loaded_keys: Iterable[str], +) -> None: + """ + Validate that model keys match loaded keys when strict loading is enabled. + + Args: + model: The PyTorch model being loaded + loaded_keys: The keys present in the checkpoint + + Raises: + RuntimeError: If there are missing or unexpected keys in strict mode + """ + loaded_keys_set = set(loaded_keys) + model_keys = set(model.state_dict().keys()) + missing_keys = model_keys - loaded_keys_set # Keys in model but not in checkpoint + unexpected_keys = loaded_keys_set - model_keys # Keys in checkpoint but not in model + + if missing_keys or unexpected_keys: + error_message = f"Error(s) in loading state_dict for {model.__class__.__name__}" + if missing_keys: + str_missing_keys = ",".join([f'"{k}"' for k in sorted(missing_keys)]) + error_message += f"\nMissing key(s): {str_missing_keys}." + if unexpected_keys: + str_unexpected_keys = ",".join([f'"{k}"' for k in sorted(unexpected_keys)]) + error_message += f"\nUnexpected key(s): {str_unexpected_keys}." + raise RuntimeError(error_message) + + +def _get_unique_id(tensor: "torch.Tensor") -> Union[int, Tuple[Any, ...]]: + """Returns a unique id for plain tensor + or a (potentially nested) Tuple of unique id for the flattened Tensor + if the input is a wrapper tensor subclass Tensor + """ + + try: + # for torch 2.1 and above we can also handle tensor subclasses + from torch.utils._python_dispatch import is_traceable_wrapper_subclass + + if is_traceable_wrapper_subclass(tensor): + attrs, _ = tensor.__tensor_flatten__() # type: ignore[attr-defined] + return tuple(_get_unique_id(getattr(tensor, attr)) for attr in attrs) + + except ImportError: + # for torch version less than 2.1, we can fallback to original implementation + pass + + if tensor.device.type == "xla" and is_torch_tpu_available(): + # NOTE: xla tensors dont have storage + # use some other unique id to distinguish. + # this is a XLA tensor, it must be created using torch_xla's + # device. So the following import is safe: + import torch_xla # type: ignore[import] + + unique_id = torch_xla._XLAC._xla_get_tensor_id(tensor) + else: + unique_id = storage_ptr(tensor) + + return unique_id + + +def get_torch_storage_id(tensor: "torch.Tensor") -> Optional[Tuple["torch.device", Union[int, Tuple[Any, ...]], int]]: + """ + Return unique identifier to a tensor storage. + + Multiple different tensors can share the same underlying storage. This identifier is + guaranteed to be unique and constant for this tensor's storage during its lifetime. Two tensor storages with + non-overlapping lifetimes may have the same id. + In the case of meta tensors, we return None since we can't tell if they share the same storage. + + Taken from https://github.com/huggingface/transformers/blob/1ecf5f7c982d761b4daaa96719d162c324187c64/src/transformers/pytorch_utils.py#L278. + """ + if tensor.device.type == "meta": + return None + else: + return tensor.device, _get_unique_id(tensor), get_torch_storage_size(tensor) + + +def get_torch_storage_size(tensor: "torch.Tensor") -> int: + """ + Taken from https://github.com/huggingface/safetensors/blob/08db34094e9e59e2f9218f2df133b7b4aaff5a99/bindings/python/py_src/safetensors/torch.py#L31C1-L41C59 + """ + try: + # for torch 2.1 and above we can also handle tensor subclasses + from torch.utils._python_dispatch import is_traceable_wrapper_subclass + + if is_traceable_wrapper_subclass(tensor): + attrs, _ = tensor.__tensor_flatten__() # type: ignore[attr-defined] + return sum(get_torch_storage_size(getattr(tensor, attr)) for attr in attrs) + except ImportError: + # for torch version less than 2.1, we can fallback to original implementation + pass + + try: + return tensor.untyped_storage().nbytes() + except AttributeError: + # Fallback for torch==1.10 + try: + return tensor.storage().size() * _get_dtype_size(tensor.dtype) + except NotImplementedError: + # Fallback for meta storage + # On torch >=2.0 this is the tensor size + return tensor.nelement() * _get_dtype_size(tensor.dtype) + + +@lru_cache() +def is_torch_tpu_available(check_device=True): + """ + Checks if `torch_xla` is installed and potentially if a TPU is in the environment + + Taken from https://github.com/huggingface/transformers/blob/1ecf5f7c982d761b4daaa96719d162c324187c64/src/transformers/utils/import_utils.py#L463. + """ + if importlib.util.find_spec("torch_xla") is not None: + if check_device: + # We need to check if `xla_device` can be found, will raise a RuntimeError if not + try: + import torch_xla.core.xla_model as xm # type: ignore[import] + + _ = xm.xla_device() + return True + except RuntimeError: + return False + return True + return False + + +def storage_ptr(tensor: "torch.Tensor") -> Union[int, Tuple[Any, ...]]: + """ + Taken from https://github.com/huggingface/safetensors/blob/079781fd0dc455ba0fe851e2b4507c33d0c0d407/bindings/python/py_src/safetensors/torch.py#L11. + """ + try: + # for torch 2.1 and above we can also handle tensor subclasses + from torch.utils._python_dispatch import is_traceable_wrapper_subclass + + if is_traceable_wrapper_subclass(tensor): + return _get_unique_id(tensor) # type: ignore + except ImportError: + # for torch version less than 2.1, we can fallback to original implementation + pass + + try: + return tensor.untyped_storage().data_ptr() + except Exception: + # Fallback for torch==1.10 + try: + return tensor.storage().data_ptr() + except NotImplementedError: + # Fallback for meta storage + return 0 + + +def _clean_state_dict_for_safetensors( + state_dict: Dict[str, "torch.Tensor"], + metadata: Dict[str, str], + force_contiguous: bool = True, + shared_tensors_to_discard: Optional[List[str]] = None, +): + """Remove shared tensors from state_dict and update metadata accordingly (for reloading). + + Warning: `state_dict` and `metadata` are mutated in-place! + + Taken from https://github.com/huggingface/safetensors/blob/079781fd0dc455ba0fe851e2b4507c33d0c0d407/bindings/python/py_src/safetensors/torch.py#L155. + """ + to_removes = _remove_duplicate_names(state_dict, discard_names=shared_tensors_to_discard) + for kept_name, to_remove_group in to_removes.items(): + for to_remove in to_remove_group: + if metadata is None: + metadata = {} + + if to_remove not in metadata: + # Do not override user data + metadata[to_remove] = kept_name + del state_dict[to_remove] + if force_contiguous: + state_dict = {k: v.contiguous() for k, v in state_dict.items()} + return state_dict + + +def _end_ptr(tensor: "torch.Tensor") -> int: + """ + Taken from https://github.com/huggingface/safetensors/blob/079781fd0dc455ba0fe851e2b4507c33d0c0d407/bindings/python/py_src/safetensors/torch.py#L23. + """ + if tensor.nelement(): + stop = tensor.view(-1)[-1].data_ptr() + _get_dtype_size(tensor.dtype) + else: + stop = tensor.data_ptr() + return stop + + +def _filter_shared_not_shared(tensors: List[Set[str]], state_dict: Dict[str, "torch.Tensor"]) -> List[Set[str]]: + """ + Taken from https://github.com/huggingface/safetensors/blob/079781fd0dc455ba0fe851e2b4507c33d0c0d407/bindings/python/py_src/safetensors/torch.py#L44 + """ + filtered_tensors = [] + for shared in tensors: + if len(shared) < 2: + filtered_tensors.append(shared) + continue + + areas = [] + for name in shared: + tensor = state_dict[name] + areas.append((tensor.data_ptr(), _end_ptr(tensor), name)) + areas.sort() + + _, last_stop, last_name = areas[0] + filtered_tensors.append({last_name}) + for start, stop, name in areas[1:]: + if start >= last_stop: + filtered_tensors.append({name}) + else: + filtered_tensors[-1].add(name) + last_stop = stop + + return filtered_tensors + + +def _find_shared_tensors(state_dict: Dict[str, "torch.Tensor"]) -> List[Set[str]]: + """ + Taken from https://github.com/huggingface/safetensors/blob/079781fd0dc455ba0fe851e2b4507c33d0c0d407/bindings/python/py_src/safetensors/torch.py#L69. + """ + import torch + + tensors_dict = defaultdict(set) + for k, v in state_dict.items(): + if v.device != torch.device("meta") and storage_ptr(v) != 0 and get_torch_storage_size(v) != 0: + # Need to add device as key because of multiple GPU. + tensors_dict[(v.device, storage_ptr(v), get_torch_storage_size(v))].add(k) + tensors = list(sorted(tensors_dict.values())) + tensors = _filter_shared_not_shared(tensors, state_dict) + return tensors + + +def _is_complete(tensor: "torch.Tensor") -> bool: + """ + Taken from https://github.com/huggingface/safetensors/blob/079781fd0dc455ba0fe851e2b4507c33d0c0d407/bindings/python/py_src/safetensors/torch.py#L80 + """ + try: + # for torch 2.1 and above we can also handle tensor subclasses + from torch.utils._python_dispatch import is_traceable_wrapper_subclass + + if is_traceable_wrapper_subclass(tensor): + attrs, _ = tensor.__tensor_flatten__() # type: ignore[attr-defined] + return all(_is_complete(getattr(tensor, attr)) for attr in attrs) + except ImportError: + # for torch version less than 2.1, we can fallback to original implementation + pass + + return tensor.data_ptr() == storage_ptr(tensor) and tensor.nelement() * _get_dtype_size( + tensor.dtype + ) == get_torch_storage_size(tensor) + + +def _remove_duplicate_names( + state_dict: Dict[str, "torch.Tensor"], + *, + preferred_names: Optional[List[str]] = None, + discard_names: Optional[List[str]] = None, +) -> Dict[str, List[str]]: + """ + Taken from https://github.com/huggingface/safetensors/blob/079781fd0dc455ba0fe851e2b4507c33d0c0d407/bindings/python/py_src/safetensors/torch.py#L80 + """ + if preferred_names is None: + preferred_names = [] + unique_preferred_names = set(preferred_names) + if discard_names is None: + discard_names = [] + unique_discard_names = set(discard_names) + + shareds = _find_shared_tensors(state_dict) + to_remove = defaultdict(list) + for shared in shareds: + complete_names = set([name for name in shared if _is_complete(state_dict[name])]) + if not complete_names: + raise RuntimeError( + "Error while trying to find names to remove to save state dict, but found no suitable name to keep" + f" for saving amongst: {shared}. None is covering the entire storage. Refusing to save/load the model" + " since you could be storing much more memory than needed. Please refer to" + " https://huggingface.co/docs/safetensors/torch_shared_tensors for more information. Or open an" + " issue." + ) + + keep_name = sorted(list(complete_names))[0] + + # Mechanism to preferentially select keys to keep + # coming from the on-disk file to allow + # loading models saved with a different choice + # of keep_name + preferred = complete_names.difference(unique_discard_names) + if preferred: + keep_name = sorted(list(preferred))[0] + + if unique_preferred_names: + preferred = unique_preferred_names.intersection(complete_names) + if preferred: + keep_name = sorted(list(preferred))[0] + for name in sorted(shared): + if name != keep_name: + to_remove[keep_name].append(name) + return to_remove + + +@lru_cache() +def _get_dtype_size(dtype: "torch.dtype") -> int: + """ + Taken from https://github.com/huggingface/safetensors/blob/08db34094e9e59e2f9218f2df133b7b4aaff5a99/bindings/python/py_src/safetensors/torch.py#L344 + """ + import torch + + # torch.float8 formats require 2.1; we do not support these dtypes on earlier versions + _float8_e4m3fn = getattr(torch, "float8_e4m3fn", None) + _float8_e5m2 = getattr(torch, "float8_e5m2", None) + _SIZE = { + torch.int64: 8, + torch.float32: 4, + torch.int32: 4, + torch.bfloat16: 2, + torch.float16: 2, + torch.int16: 2, + torch.uint8: 1, + torch.int8: 1, + torch.bool: 1, + torch.float64: 8, + _float8_e4m3fn: 1, + _float8_e5m2: 1, + } + return _SIZE[dtype] + + +class _IncompatibleKeys(namedtuple("IncompatibleKeys", ["missing_keys", "unexpected_keys"])): + """ + This is used to report missing and unexpected keys in the state dict. + Taken from https://github.com/pytorch/pytorch/blob/main/torch/nn/modules/module.py#L52. + + """ + + def __repr__(self) -> str: + if not self.missing_keys and not self.unexpected_keys: + return "<All keys matched successfully>" + return super().__repr__() + + __str__ = __repr__ diff --git a/.venv/lib/python3.12/site-packages/huggingface_hub/templates/datasetcard_template.md b/.venv/lib/python3.12/site-packages/huggingface_hub/templates/datasetcard_template.md new file mode 100644 index 00000000..9af29ebb --- /dev/null +++ b/.venv/lib/python3.12/site-packages/huggingface_hub/templates/datasetcard_template.md @@ -0,0 +1,143 @@ +--- +# For reference on dataset card metadata, see the spec: https://github.com/huggingface/hub-docs/blob/main/datasetcard.md?plain=1 +# Doc / guide: https://huggingface.co/docs/hub/datasets-cards +{{ card_data }} +--- + +# Dataset Card for {{ pretty_name | default("Dataset Name", true) }} + +<!-- Provide a quick summary of the dataset. --> + +{{ dataset_summary | default("", true) }} + +## Dataset Details + +### Dataset Description + +<!-- Provide a longer summary of what this dataset is. --> + +{{ dataset_description | default("", true) }} + +- **Curated by:** {{ curators | default("[More Information Needed]", true)}} +- **Funded by [optional]:** {{ funded_by | default("[More Information Needed]", true)}} +- **Shared by [optional]:** {{ shared_by | default("[More Information Needed]", true)}} +- **Language(s) (NLP):** {{ language | default("[More Information Needed]", true)}} +- **License:** {{ license | default("[More Information Needed]", true)}} + +### Dataset Sources [optional] + +<!-- Provide the basic links for the dataset. --> + +- **Repository:** {{ repo | default("[More Information Needed]", true)}} +- **Paper [optional]:** {{ paper | default("[More Information Needed]", true)}} +- **Demo [optional]:** {{ demo | default("[More Information Needed]", true)}} + +## Uses + +<!-- Address questions around how the dataset is intended to be used. --> + +### Direct Use + +<!-- This section describes suitable use cases for the dataset. --> + +{{ direct_use | default("[More Information Needed]", true)}} + +### Out-of-Scope Use + +<!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. --> + +{{ out_of_scope_use | default("[More Information Needed]", true)}} + +## Dataset Structure + +<!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. --> + +{{ dataset_structure | default("[More Information Needed]", true)}} + +## Dataset Creation + +### Curation Rationale + +<!-- Motivation for the creation of this dataset. --> + +{{ curation_rationale_section | default("[More Information Needed]", true)}} + +### Source Data + +<!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). --> + +#### Data Collection and Processing + +<!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. --> + +{{ data_collection_and_processing_section | default("[More Information Needed]", true)}} + +#### Who are the source data producers? + +<!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. --> + +{{ source_data_producers_section | default("[More Information Needed]", true)}} + +### Annotations [optional] + +<!-- If the dataset contains annotations which are not part of the initial data collection, use this section to describe them. --> + +#### Annotation process + +<!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. --> + +{{ annotation_process_section | default("[More Information Needed]", true)}} + +#### Who are the annotators? + +<!-- This section describes the people or systems who created the annotations. --> + +{{ who_are_annotators_section | default("[More Information Needed]", true)}} + +#### Personal and Sensitive Information + +<!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. --> + +{{ personal_and_sensitive_information | default("[More Information Needed]", true)}} + +## Bias, Risks, and Limitations + +<!-- This section is meant to convey both technical and sociotechnical limitations. --> + +{{ bias_risks_limitations | default("[More Information Needed]", true)}} + +### Recommendations + +<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> + +{{ bias_recommendations | default("Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.", true)}} + +## Citation [optional] + +<!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. --> + +**BibTeX:** + +{{ citation_bibtex | default("[More Information Needed]", true)}} + +**APA:** + +{{ citation_apa | default("[More Information Needed]", true)}} + +## Glossary [optional] + +<!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. --> + +{{ glossary | default("[More Information Needed]", true)}} + +## More Information [optional] + +{{ more_information | default("[More Information Needed]", true)}} + +## Dataset Card Authors [optional] + +{{ dataset_card_authors | default("[More Information Needed]", true)}} + +## Dataset Card Contact + +{{ dataset_card_contact | default("[More Information Needed]", true)}} diff --git a/.venv/lib/python3.12/site-packages/huggingface_hub/templates/modelcard_template.md b/.venv/lib/python3.12/site-packages/huggingface_hub/templates/modelcard_template.md new file mode 100644 index 00000000..79ca15e4 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/huggingface_hub/templates/modelcard_template.md @@ -0,0 +1,200 @@ +--- +# For reference on model card metadata, see the spec: https://github.com/huggingface/hub-docs/blob/main/modelcard.md?plain=1 +# Doc / guide: https://huggingface.co/docs/hub/model-cards +{{ card_data }} +--- + +# Model Card for {{ model_id | default("Model ID", true) }} + +<!-- Provide a quick summary of what the model is/does. --> + +{{ model_summary | default("", true) }} + +## Model Details + +### Model Description + +<!-- Provide a longer summary of what this model is. --> + +{{ model_description | default("", true) }} + +- **Developed by:** {{ developers | default("[More Information Needed]", true)}} +- **Funded by [optional]:** {{ funded_by | default("[More Information Needed]", true)}} +- **Shared by [optional]:** {{ shared_by | default("[More Information Needed]", true)}} +- **Model type:** {{ model_type | default("[More Information Needed]", true)}} +- **Language(s) (NLP):** {{ language | default("[More Information Needed]", true)}} +- **License:** {{ license | default("[More Information Needed]", true)}} +- **Finetuned from model [optional]:** {{ base_model | default("[More Information Needed]", true)}} + +### Model Sources [optional] + +<!-- Provide the basic links for the model. --> + +- **Repository:** {{ repo | default("[More Information Needed]", true)}} +- **Paper [optional]:** {{ paper | default("[More Information Needed]", true)}} +- **Demo [optional]:** {{ demo | default("[More Information Needed]", true)}} + +## Uses + +<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> + +### Direct Use + +<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> + +{{ direct_use | default("[More Information Needed]", true)}} + +### Downstream Use [optional] + +<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> + +{{ downstream_use | default("[More Information Needed]", true)}} + +### Out-of-Scope Use + +<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> + +{{ out_of_scope_use | default("[More Information Needed]", true)}} + +## Bias, Risks, and Limitations + +<!-- This section is meant to convey both technical and sociotechnical limitations. --> + +{{ bias_risks_limitations | default("[More Information Needed]", true)}} + +### Recommendations + +<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> + +{{ bias_recommendations | default("Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", true)}} + +## How to Get Started with the Model + +Use the code below to get started with the model. + +{{ get_started_code | default("[More Information Needed]", true)}} + +## Training Details + +### Training Data + +<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> + +{{ training_data | default("[More Information Needed]", true)}} + +### Training Procedure + +<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> + +#### Preprocessing [optional] + +{{ preprocessing | default("[More Information Needed]", true)}} + + +#### Training Hyperparameters + +- **Training regime:** {{ training_regime | default("[More Information Needed]", true)}} <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> + +#### Speeds, Sizes, Times [optional] + +<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> + +{{ speeds_sizes_times | default("[More Information Needed]", true)}} + +## Evaluation + +<!-- This section describes the evaluation protocols and provides the results. --> + +### Testing Data, Factors & Metrics + +#### Testing Data + +<!-- This should link to a Dataset Card if possible. --> + +{{ testing_data | default("[More Information Needed]", true)}} + +#### Factors + +<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> + +{{ testing_factors | default("[More Information Needed]", true)}} + +#### Metrics + +<!-- These are the evaluation metrics being used, ideally with a description of why. --> + +{{ testing_metrics | default("[More Information Needed]", true)}} + +### Results + +{{ results | default("[More Information Needed]", true)}} + +#### Summary + +{{ results_summary | default("", true) }} + +## Model Examination [optional] + +<!-- Relevant interpretability work for the model goes here --> + +{{ model_examination | default("[More Information Needed]", true)}} + +## Environmental Impact + +<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> + +Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). + +- **Hardware Type:** {{ hardware_type | default("[More Information Needed]", true)}} +- **Hours used:** {{ hours_used | default("[More Information Needed]", true)}} +- **Cloud Provider:** {{ cloud_provider | default("[More Information Needed]", true)}} +- **Compute Region:** {{ cloud_region | default("[More Information Needed]", true)}} +- **Carbon Emitted:** {{ co2_emitted | default("[More Information Needed]", true)}} + +## Technical Specifications [optional] + +### Model Architecture and Objective + +{{ model_specs | default("[More Information Needed]", true)}} + +### Compute Infrastructure + +{{ compute_infrastructure | default("[More Information Needed]", true)}} + +#### Hardware + +{{ hardware_requirements | default("[More Information Needed]", true)}} + +#### Software + +{{ software | default("[More Information Needed]", true)}} + +## Citation [optional] + +<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> + +**BibTeX:** + +{{ citation_bibtex | default("[More Information Needed]", true)}} + +**APA:** + +{{ citation_apa | default("[More Information Needed]", true)}} + +## Glossary [optional] + +<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> + +{{ glossary | default("[More Information Needed]", true)}} + +## More Information [optional] + +{{ more_information | default("[More Information Needed]", true)}} + +## Model Card Authors [optional] + +{{ model_card_authors | default("[More Information Needed]", true)}} + +## Model Card Contact + +{{ model_card_contact | default("[More Information Needed]", true)}} diff --git a/.venv/lib/python3.12/site-packages/huggingface_hub/utils/__init__.py b/.venv/lib/python3.12/site-packages/huggingface_hub/utils/__init__.py new file mode 100644 index 00000000..b9715dc0 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/huggingface_hub/utils/__init__.py @@ -0,0 +1,110 @@ +# coding=utf-8 +# Copyright 2021 The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License + +# ruff: noqa: F401 + +from huggingface_hub.errors import ( + BadRequestError, + CacheNotFound, + CorruptedCacheException, + DisabledRepoError, + EntryNotFoundError, + FileMetadataError, + GatedRepoError, + HfHubHTTPError, + HFValidationError, + LocalEntryNotFoundError, + LocalTokenNotFoundError, + NotASafetensorsRepoError, + OfflineModeIsEnabled, + RepositoryNotFoundError, + RevisionNotFoundError, + SafetensorsParsingError, +) + +from . import tqdm as _tqdm # _tqdm is the module +from ._auth import get_stored_tokens, get_token +from ._cache_assets import cached_assets_path +from ._cache_manager import ( + CachedFileInfo, + CachedRepoInfo, + CachedRevisionInfo, + DeleteCacheStrategy, + HFCacheInfo, + scan_cache_dir, +) +from ._chunk_utils import chunk_iterable +from ._datetime import parse_datetime +from ._experimental import experimental +from ._fixes import SoftTemporaryDirectory, WeakFileLock, yaml_dump +from ._git_credential import list_credential_helpers, set_git_credential, unset_git_credential +from ._headers import build_hf_headers, get_token_to_send +from ._hf_folder import HfFolder +from ._http import ( + configure_http_backend, + fix_hf_endpoint_in_url, + get_session, + hf_raise_for_status, + http_backoff, + reset_sessions, +) +from ._pagination import paginate +from ._paths import DEFAULT_IGNORE_PATTERNS, FORBIDDEN_FOLDERS, filter_repo_objects +from ._runtime import ( + dump_environment_info, + get_aiohttp_version, + get_fastai_version, + get_fastapi_version, + get_fastcore_version, + get_gradio_version, + get_graphviz_version, + get_hf_hub_version, + get_hf_transfer_version, + get_jinja_version, + get_numpy_version, + get_pillow_version, + get_pydantic_version, + get_pydot_version, + get_python_version, + get_tensorboard_version, + get_tf_version, + get_torch_version, + is_aiohttp_available, + is_colab_enterprise, + is_fastai_available, + is_fastapi_available, + is_fastcore_available, + is_google_colab, + is_gradio_available, + is_graphviz_available, + is_hf_transfer_available, + is_jinja_available, + is_notebook, + is_numpy_available, + is_package_available, + is_pillow_available, + is_pydantic_available, + is_pydot_available, + is_safetensors_available, + is_tensorboard_available, + is_tf_available, + is_torch_available, +) +from ._safetensors import SafetensorsFileMetadata, SafetensorsRepoMetadata, TensorInfo +from ._subprocess import capture_output, run_interactive_subprocess, run_subprocess +from ._telemetry import send_telemetry +from ._typing import is_jsonable, is_simple_optional_type, unwrap_simple_optional_type +from ._validators import smoothly_deprecate_use_auth_token, validate_hf_hub_args, validate_repo_id +from .tqdm import are_progress_bars_disabled, disable_progress_bars, enable_progress_bars, tqdm, tqdm_stream_file diff --git a/.venv/lib/python3.12/site-packages/huggingface_hub/utils/_auth.py b/.venv/lib/python3.12/site-packages/huggingface_hub/utils/_auth.py new file mode 100644 index 00000000..c70280ae --- /dev/null +++ b/.venv/lib/python3.12/site-packages/huggingface_hub/utils/_auth.py @@ -0,0 +1,214 @@ +# Copyright 2023 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Contains an helper to get the token from machine (env variable, secret or config file).""" + +import configparser +import logging +import os +import warnings +from pathlib import Path +from threading import Lock +from typing import Dict, Optional + +from .. import constants +from ._runtime import is_colab_enterprise, is_google_colab + + +_IS_GOOGLE_COLAB_CHECKED = False +_GOOGLE_COLAB_SECRET_LOCK = Lock() +_GOOGLE_COLAB_SECRET: Optional[str] = None + +logger = logging.getLogger(__name__) + + +def get_token() -> Optional[str]: + """ + Get token if user is logged in. + + Note: in most cases, you should use [`huggingface_hub.utils.build_hf_headers`] instead. This method is only useful + if you want to retrieve the token for other purposes than sending an HTTP request. + + Token is retrieved in priority from the `HF_TOKEN` environment variable. Otherwise, we read the token file located + in the Hugging Face home folder. Returns None if user is not logged in. To log in, use [`login`] or + `huggingface-cli login`. + + Returns: + `str` or `None`: The token, `None` if it doesn't exist. + """ + return _get_token_from_google_colab() or _get_token_from_environment() or _get_token_from_file() + + +def _get_token_from_google_colab() -> Optional[str]: + """Get token from Google Colab secrets vault using `google.colab.userdata.get(...)`. + + Token is read from the vault only once per session and then stored in a global variable to avoid re-requesting + access to the vault. + """ + # If it's not a Google Colab or it's Colab Enterprise, fallback to environment variable or token file authentication + if not is_google_colab() or is_colab_enterprise(): + return None + + # `google.colab.userdata` is not thread-safe + # This can lead to a deadlock if multiple threads try to access it at the same time + # (typically when using `snapshot_download`) + # => use a lock + # See https://github.com/huggingface/huggingface_hub/issues/1952 for more details. + with _GOOGLE_COLAB_SECRET_LOCK: + global _GOOGLE_COLAB_SECRET + global _IS_GOOGLE_COLAB_CHECKED + + if _IS_GOOGLE_COLAB_CHECKED: # request access only once + return _GOOGLE_COLAB_SECRET + + try: + from google.colab import userdata # type: ignore + from google.colab.errors import Error as ColabError # type: ignore + except ImportError: + return None + + try: + token = userdata.get("HF_TOKEN") + _GOOGLE_COLAB_SECRET = _clean_token(token) + except userdata.NotebookAccessError: + # Means the user has a secret call `HF_TOKEN` and got a popup "please grand access to HF_TOKEN" and refused it + # => warn user but ignore error => do not re-request access to user + warnings.warn( + "\nAccess to the secret `HF_TOKEN` has not been granted on this notebook." + "\nYou will not be requested again." + "\nPlease restart the session if you want to be prompted again." + ) + _GOOGLE_COLAB_SECRET = None + except userdata.SecretNotFoundError: + # Means the user did not define a `HF_TOKEN` secret => warn + warnings.warn( + "\nThe secret `HF_TOKEN` does not exist in your Colab secrets." + "\nTo authenticate with the Hugging Face Hub, create a token in your settings tab " + "(https://huggingface.co/settings/tokens), set it as secret in your Google Colab and restart your session." + "\nYou will be able to reuse this secret in all of your notebooks." + "\nPlease note that authentication is recommended but still optional to access public models or datasets." + ) + _GOOGLE_COLAB_SECRET = None + except ColabError as e: + # Something happen but we don't know what => recommend to open a GitHub issue + warnings.warn( + f"\nError while fetching `HF_TOKEN` secret value from your vault: '{str(e)}'." + "\nYou are not authenticated with the Hugging Face Hub in this notebook." + "\nIf the error persists, please let us know by opening an issue on GitHub " + "(https://github.com/huggingface/huggingface_hub/issues/new)." + ) + _GOOGLE_COLAB_SECRET = None + + _IS_GOOGLE_COLAB_CHECKED = True + return _GOOGLE_COLAB_SECRET + + +def _get_token_from_environment() -> Optional[str]: + # `HF_TOKEN` has priority (keep `HUGGING_FACE_HUB_TOKEN` for backward compatibility) + return _clean_token(os.environ.get("HF_TOKEN") or os.environ.get("HUGGING_FACE_HUB_TOKEN")) + + +def _get_token_from_file() -> Optional[str]: + try: + return _clean_token(Path(constants.HF_TOKEN_PATH).read_text()) + except FileNotFoundError: + return None + + +def get_stored_tokens() -> Dict[str, str]: + """ + Returns the parsed INI file containing the access tokens. + The file is located at `HF_STORED_TOKENS_PATH`, defaulting to `~/.cache/huggingface/stored_tokens`. + If the file does not exist, an empty dictionary is returned. + + Returns: `Dict[str, str]` + Key is the token name and value is the token. + """ + tokens_path = Path(constants.HF_STORED_TOKENS_PATH) + if not tokens_path.exists(): + stored_tokens = {} + config = configparser.ConfigParser() + try: + config.read(tokens_path) + stored_tokens = {token_name: config.get(token_name, "hf_token") for token_name in config.sections()} + except configparser.Error as e: + logger.error(f"Error parsing stored tokens file: {e}") + stored_tokens = {} + return stored_tokens + + +def _save_stored_tokens(stored_tokens: Dict[str, str]) -> None: + """ + Saves the given configuration to the stored tokens file. + + Args: + stored_tokens (`Dict[str, str]`): + The stored tokens to save. Key is the token name and value is the token. + """ + stored_tokens_path = Path(constants.HF_STORED_TOKENS_PATH) + + # Write the stored tokens into an INI file + config = configparser.ConfigParser() + for token_name in sorted(stored_tokens.keys()): + config.add_section(token_name) + config.set(token_name, "hf_token", stored_tokens[token_name]) + + stored_tokens_path.parent.mkdir(parents=True, exist_ok=True) + with stored_tokens_path.open("w") as config_file: + config.write(config_file) + + +def _get_token_by_name(token_name: str) -> Optional[str]: + """ + Get the token by name. + + Args: + token_name (`str`): + The name of the token to get. + + Returns: + `str` or `None`: The token, `None` if it doesn't exist. + + """ + stored_tokens = get_stored_tokens() + if token_name not in stored_tokens: + return None + return _clean_token(stored_tokens[token_name]) + + +def _save_token(token: str, token_name: str) -> None: + """ + Save the given token. + + If the stored tokens file does not exist, it will be created. + Args: + token (`str`): + The token to save. + token_name (`str`): + The name of the token. + """ + tokens_path = Path(constants.HF_STORED_TOKENS_PATH) + stored_tokens = get_stored_tokens() + stored_tokens[token_name] = token + _save_stored_tokens(stored_tokens) + logger.info(f"The token `{token_name}` has been saved to {tokens_path}") + + +def _clean_token(token: Optional[str]) -> Optional[str]: + """Clean token by removing trailing and leading spaces and newlines. + + If token is an empty string, return None. + """ + if token is None: + return None + return token.replace("\r", "").replace("\n", "").strip() or None diff --git a/.venv/lib/python3.12/site-packages/huggingface_hub/utils/_cache_assets.py b/.venv/lib/python3.12/site-packages/huggingface_hub/utils/_cache_assets.py new file mode 100644 index 00000000..e5d435df --- /dev/null +++ b/.venv/lib/python3.12/site-packages/huggingface_hub/utils/_cache_assets.py @@ -0,0 +1,135 @@ +# coding=utf-8 +# Copyright 2019-present, the HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +from pathlib import Path +from typing import Union + +from ..constants import HF_ASSETS_CACHE + + +def cached_assets_path( + library_name: str, + namespace: str = "default", + subfolder: str = "default", + *, + assets_dir: Union[str, Path, None] = None, +): + """Return a folder path to cache arbitrary files. + + `huggingface_hub` provides a canonical folder path to store assets. This is the + recommended way to integrate cache in a downstream library as it will benefit from + the builtins tools to scan and delete the cache properly. + + The distinction is made between files cached from the Hub and assets. Files from the + Hub are cached in a git-aware manner and entirely managed by `huggingface_hub`. See + [related documentation](https://huggingface.co/docs/huggingface_hub/how-to-cache). + All other files that a downstream library caches are considered to be "assets" + (files downloaded from external sources, extracted from a .tar archive, preprocessed + for training,...). + + Once the folder path is generated, it is guaranteed to exist and to be a directory. + The path is based on 3 levels of depth: the library name, a namespace and a + subfolder. Those 3 levels grants flexibility while allowing `huggingface_hub` to + expect folders when scanning/deleting parts of the assets cache. Within a library, + it is expected that all namespaces share the same subset of subfolder names but this + is not a mandatory rule. The downstream library has then full control on which file + structure to adopt within its cache. Namespace and subfolder are optional (would + default to a `"default/"` subfolder) but library name is mandatory as we want every + downstream library to manage its own cache. + + Expected tree: + ```text + assets/ + └── datasets/ + │ ├── SQuAD/ + │ │ ├── downloaded/ + │ │ ├── extracted/ + │ │ └── processed/ + │ ├── Helsinki-NLP--tatoeba_mt/ + │ ├── downloaded/ + │ ├── extracted/ + │ └── processed/ + └── transformers/ + ├── default/ + │ ├── something/ + ├── bert-base-cased/ + │ ├── default/ + │ └── training/ + hub/ + └── models--julien-c--EsperBERTo-small/ + ├── blobs/ + │ ├── (...) + │ ├── (...) + ├── refs/ + │ └── (...) + └── [ 128] snapshots/ + ├── 2439f60ef33a0d46d85da5001d52aeda5b00ce9f/ + │ ├── (...) + └── bbc77c8132af1cc5cf678da3f1ddf2de43606d48/ + └── (...) + ``` + + + Args: + library_name (`str`): + Name of the library that will manage the cache folder. Example: `"dataset"`. + namespace (`str`, *optional*, defaults to "default"): + Namespace to which the data belongs. Example: `"SQuAD"`. + subfolder (`str`, *optional*, defaults to "default"): + Subfolder in which the data will be stored. Example: `extracted`. + assets_dir (`str`, `Path`, *optional*): + Path to the folder where assets are cached. This must not be the same folder + where Hub files are cached. Defaults to `HF_HOME / "assets"` if not provided. + Can also be set with `HF_ASSETS_CACHE` environment variable. + + Returns: + Path to the cache folder (`Path`). + + Example: + ```py + >>> from huggingface_hub import cached_assets_path + + >>> cached_assets_path(library_name="datasets", namespace="SQuAD", subfolder="download") + PosixPath('/home/wauplin/.cache/huggingface/extra/datasets/SQuAD/download') + + >>> cached_assets_path(library_name="datasets", namespace="SQuAD", subfolder="extracted") + PosixPath('/home/wauplin/.cache/huggingface/extra/datasets/SQuAD/extracted') + + >>> cached_assets_path(library_name="datasets", namespace="Helsinki-NLP/tatoeba_mt") + PosixPath('/home/wauplin/.cache/huggingface/extra/datasets/Helsinki-NLP--tatoeba_mt/default') + + >>> cached_assets_path(library_name="datasets", assets_dir="/tmp/tmp123456") + PosixPath('/tmp/tmp123456/datasets/default/default') + ``` + """ + # Resolve assets_dir + if assets_dir is None: + assets_dir = HF_ASSETS_CACHE + assets_dir = Path(assets_dir).expanduser().resolve() + + # Avoid names that could create path issues + for part in (" ", "/", "\\"): + library_name = library_name.replace(part, "--") + namespace = namespace.replace(part, "--") + subfolder = subfolder.replace(part, "--") + + # Path to subfolder is created + path = assets_dir / library_name / namespace / subfolder + try: + path.mkdir(exist_ok=True, parents=True) + except (FileExistsError, NotADirectoryError): + raise ValueError(f"Corrupted assets folder: cannot create directory because of an existing file ({path}).") + + # Return + return path diff --git a/.venv/lib/python3.12/site-packages/huggingface_hub/utils/_cache_manager.py b/.venv/lib/python3.12/site-packages/huggingface_hub/utils/_cache_manager.py new file mode 100644 index 00000000..21469c97 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/huggingface_hub/utils/_cache_manager.py @@ -0,0 +1,896 @@ +# coding=utf-8 +# Copyright 2022-present, the HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Contains utilities to manage the HF cache directory.""" + +import os +import shutil +import time +from collections import defaultdict +from dataclasses import dataclass +from pathlib import Path +from typing import Dict, FrozenSet, List, Literal, Optional, Set, Union + +from huggingface_hub.errors import CacheNotFound, CorruptedCacheException + +from ..commands._cli_utils import tabulate +from ..constants import HF_HUB_CACHE +from . import logging + + +logger = logging.get_logger(__name__) + +REPO_TYPE_T = Literal["model", "dataset", "space"] + +# List of OS-created helper files that need to be ignored +FILES_TO_IGNORE = [".DS_Store"] + + +@dataclass(frozen=True) +class CachedFileInfo: + """Frozen data structure holding information about a single cached file. + + Args: + file_name (`str`): + Name of the file. Example: `config.json`. + file_path (`Path`): + Path of the file in the `snapshots` directory. The file path is a symlink + referring to a blob in the `blobs` folder. + blob_path (`Path`): + Path of the blob file. This is equivalent to `file_path.resolve()`. + size_on_disk (`int`): + Size of the blob file in bytes. + blob_last_accessed (`float`): + Timestamp of the last time the blob file has been accessed (from any + revision). + blob_last_modified (`float`): + Timestamp of the last time the blob file has been modified/created. + + <Tip warning={true}> + + `blob_last_accessed` and `blob_last_modified` reliability can depend on the OS you + are using. See [python documentation](https://docs.python.org/3/library/os.html#os.stat_result) + for more details. + + </Tip> + """ + + file_name: str + file_path: Path + blob_path: Path + size_on_disk: int + + blob_last_accessed: float + blob_last_modified: float + + @property + def blob_last_accessed_str(self) -> str: + """ + (property) Timestamp of the last time the blob file has been accessed (from any + revision), returned as a human-readable string. + + Example: "2 weeks ago". + """ + return _format_timesince(self.blob_last_accessed) + + @property + def blob_last_modified_str(self) -> str: + """ + (property) Timestamp of the last time the blob file has been modified, returned + as a human-readable string. + + Example: "2 weeks ago". + """ + return _format_timesince(self.blob_last_modified) + + @property + def size_on_disk_str(self) -> str: + """ + (property) Size of the blob file as a human-readable string. + + Example: "42.2K". + """ + return _format_size(self.size_on_disk) + + +@dataclass(frozen=True) +class CachedRevisionInfo: + """Frozen data structure holding information about a revision. + + A revision correspond to a folder in the `snapshots` folder and is populated with + the exact tree structure as the repo on the Hub but contains only symlinks. A + revision can be either referenced by 1 or more `refs` or be "detached" (no refs). + + Args: + commit_hash (`str`): + Hash of the revision (unique). + Example: `"9338f7b671827df886678df2bdd7cc7b4f36dffd"`. + snapshot_path (`Path`): + Path to the revision directory in the `snapshots` folder. It contains the + exact tree structure as the repo on the Hub. + files: (`FrozenSet[CachedFileInfo]`): + Set of [`~CachedFileInfo`] describing all files contained in the snapshot. + refs (`FrozenSet[str]`): + Set of `refs` pointing to this revision. If the revision has no `refs`, it + is considered detached. + Example: `{"main", "2.4.0"}` or `{"refs/pr/1"}`. + size_on_disk (`int`): + Sum of the blob file sizes that are symlink-ed by the revision. + last_modified (`float`): + Timestamp of the last time the revision has been created/modified. + + <Tip warning={true}> + + `last_accessed` cannot be determined correctly on a single revision as blob files + are shared across revisions. + + </Tip> + + <Tip warning={true}> + + `size_on_disk` is not necessarily the sum of all file sizes because of possible + duplicated files. Besides, only blobs are taken into account, not the (negligible) + size of folders and symlinks. + + </Tip> + """ + + commit_hash: str + snapshot_path: Path + size_on_disk: int + files: FrozenSet[CachedFileInfo] + refs: FrozenSet[str] + + last_modified: float + + @property + def last_modified_str(self) -> str: + """ + (property) Timestamp of the last time the revision has been modified, returned + as a human-readable string. + + Example: "2 weeks ago". + """ + return _format_timesince(self.last_modified) + + @property + def size_on_disk_str(self) -> str: + """ + (property) Sum of the blob file sizes as a human-readable string. + + Example: "42.2K". + """ + return _format_size(self.size_on_disk) + + @property + def nb_files(self) -> int: + """ + (property) Total number of files in the revision. + """ + return len(self.files) + + +@dataclass(frozen=True) +class CachedRepoInfo: + """Frozen data structure holding information about a cached repository. + + Args: + repo_id (`str`): + Repo id of the repo on the Hub. Example: `"google/fleurs"`. + repo_type (`Literal["dataset", "model", "space"]`): + Type of the cached repo. + repo_path (`Path`): + Local path to the cached repo. + size_on_disk (`int`): + Sum of the blob file sizes in the cached repo. + nb_files (`int`): + Total number of blob files in the cached repo. + revisions (`FrozenSet[CachedRevisionInfo]`): + Set of [`~CachedRevisionInfo`] describing all revisions cached in the repo. + last_accessed (`float`): + Timestamp of the last time a blob file of the repo has been accessed. + last_modified (`float`): + Timestamp of the last time a blob file of the repo has been modified/created. + + <Tip warning={true}> + + `size_on_disk` is not necessarily the sum of all revisions sizes because of + duplicated files. Besides, only blobs are taken into account, not the (negligible) + size of folders and symlinks. + + </Tip> + + <Tip warning={true}> + + `last_accessed` and `last_modified` reliability can depend on the OS you are using. + See [python documentation](https://docs.python.org/3/library/os.html#os.stat_result) + for more details. + + </Tip> + """ + + repo_id: str + repo_type: REPO_TYPE_T + repo_path: Path + size_on_disk: int + nb_files: int + revisions: FrozenSet[CachedRevisionInfo] + + last_accessed: float + last_modified: float + + @property + def last_accessed_str(self) -> str: + """ + (property) Last time a blob file of the repo has been accessed, returned as a + human-readable string. + + Example: "2 weeks ago". + """ + return _format_timesince(self.last_accessed) + + @property + def last_modified_str(self) -> str: + """ + (property) Last time a blob file of the repo has been modified, returned as a + human-readable string. + + Example: "2 weeks ago". + """ + return _format_timesince(self.last_modified) + + @property + def size_on_disk_str(self) -> str: + """ + (property) Sum of the blob file sizes as a human-readable string. + + Example: "42.2K". + """ + return _format_size(self.size_on_disk) + + @property + def refs(self) -> Dict[str, CachedRevisionInfo]: + """ + (property) Mapping between `refs` and revision data structures. + """ + return {ref: revision for revision in self.revisions for ref in revision.refs} + + +@dataclass(frozen=True) +class DeleteCacheStrategy: + """Frozen data structure holding the strategy to delete cached revisions. + + This object is not meant to be instantiated programmatically but to be returned by + [`~utils.HFCacheInfo.delete_revisions`]. See documentation for usage example. + + Args: + expected_freed_size (`float`): + Expected freed size once strategy is executed. + blobs (`FrozenSet[Path]`): + Set of blob file paths to be deleted. + refs (`FrozenSet[Path]`): + Set of reference file paths to be deleted. + repos (`FrozenSet[Path]`): + Set of entire repo paths to be deleted. + snapshots (`FrozenSet[Path]`): + Set of snapshots to be deleted (directory of symlinks). + """ + + expected_freed_size: int + blobs: FrozenSet[Path] + refs: FrozenSet[Path] + repos: FrozenSet[Path] + snapshots: FrozenSet[Path] + + @property + def expected_freed_size_str(self) -> str: + """ + (property) Expected size that will be freed as a human-readable string. + + Example: "42.2K". + """ + return _format_size(self.expected_freed_size) + + def execute(self) -> None: + """Execute the defined strategy. + + <Tip warning={true}> + + If this method is interrupted, the cache might get corrupted. Deletion order is + implemented so that references and symlinks are deleted before the actual blob + files. + + </Tip> + + <Tip warning={true}> + + This method is irreversible. If executed, cached files are erased and must be + downloaded again. + + </Tip> + """ + # Deletion order matters. Blobs are deleted in last so that the user can't end + # up in a state where a `ref`` refers to a missing snapshot or a snapshot + # symlink refers to a deleted blob. + + # Delete entire repos + for path in self.repos: + _try_delete_path(path, path_type="repo") + + # Delete snapshot directories + for path in self.snapshots: + _try_delete_path(path, path_type="snapshot") + + # Delete refs files + for path in self.refs: + _try_delete_path(path, path_type="ref") + + # Delete blob files + for path in self.blobs: + _try_delete_path(path, path_type="blob") + + logger.info(f"Cache deletion done. Saved {self.expected_freed_size_str}.") + + +@dataclass(frozen=True) +class HFCacheInfo: + """Frozen data structure holding information about the entire cache-system. + + This data structure is returned by [`scan_cache_dir`] and is immutable. + + Args: + size_on_disk (`int`): + Sum of all valid repo sizes in the cache-system. + repos (`FrozenSet[CachedRepoInfo]`): + Set of [`~CachedRepoInfo`] describing all valid cached repos found on the + cache-system while scanning. + warnings (`List[CorruptedCacheException]`): + List of [`~CorruptedCacheException`] that occurred while scanning the cache. + Those exceptions are captured so that the scan can continue. Corrupted repos + are skipped from the scan. + + <Tip warning={true}> + + Here `size_on_disk` is equal to the sum of all repo sizes (only blobs). However if + some cached repos are corrupted, their sizes are not taken into account. + + </Tip> + """ + + size_on_disk: int + repos: FrozenSet[CachedRepoInfo] + warnings: List[CorruptedCacheException] + + @property + def size_on_disk_str(self) -> str: + """ + (property) Sum of all valid repo sizes in the cache-system as a human-readable + string. + + Example: "42.2K". + """ + return _format_size(self.size_on_disk) + + def delete_revisions(self, *revisions: str) -> DeleteCacheStrategy: + """Prepare the strategy to delete one or more revisions cached locally. + + Input revisions can be any revision hash. If a revision hash is not found in the + local cache, a warning is thrown but no error is raised. Revisions can be from + different cached repos since hashes are unique across repos, + + Examples: + ```py + >>> from huggingface_hub import scan_cache_dir + >>> cache_info = scan_cache_dir() + >>> delete_strategy = cache_info.delete_revisions( + ... "81fd1d6e7847c99f5862c9fb81387956d99ec7aa" + ... ) + >>> print(f"Will free {delete_strategy.expected_freed_size_str}.") + Will free 7.9K. + >>> delete_strategy.execute() + Cache deletion done. Saved 7.9K. + ``` + + ```py + >>> from huggingface_hub import scan_cache_dir + >>> scan_cache_dir().delete_revisions( + ... "81fd1d6e7847c99f5862c9fb81387956d99ec7aa", + ... "e2983b237dccf3ab4937c97fa717319a9ca1a96d", + ... "6c0e6080953db56375760c0471a8c5f2929baf11", + ... ).execute() + Cache deletion done. Saved 8.6G. + ``` + + <Tip warning={true}> + + `delete_revisions` returns a [`~utils.DeleteCacheStrategy`] object that needs to + be executed. The [`~utils.DeleteCacheStrategy`] is not meant to be modified but + allows having a dry run before actually executing the deletion. + + </Tip> + """ + hashes_to_delete: Set[str] = set(revisions) + + repos_with_revisions: Dict[CachedRepoInfo, Set[CachedRevisionInfo]] = defaultdict(set) + + for repo in self.repos: + for revision in repo.revisions: + if revision.commit_hash in hashes_to_delete: + repos_with_revisions[repo].add(revision) + hashes_to_delete.remove(revision.commit_hash) + + if len(hashes_to_delete) > 0: + logger.warning(f"Revision(s) not found - cannot delete them: {', '.join(hashes_to_delete)}") + + delete_strategy_blobs: Set[Path] = set() + delete_strategy_refs: Set[Path] = set() + delete_strategy_repos: Set[Path] = set() + delete_strategy_snapshots: Set[Path] = set() + delete_strategy_expected_freed_size = 0 + + for affected_repo, revisions_to_delete in repos_with_revisions.items(): + other_revisions = affected_repo.revisions - revisions_to_delete + + # If no other revisions, it means all revisions are deleted + # -> delete the entire cached repo + if len(other_revisions) == 0: + delete_strategy_repos.add(affected_repo.repo_path) + delete_strategy_expected_freed_size += affected_repo.size_on_disk + continue + + # Some revisions of the repo will be deleted but not all. We need to filter + # which blob files will not be linked anymore. + for revision_to_delete in revisions_to_delete: + # Snapshot dir + delete_strategy_snapshots.add(revision_to_delete.snapshot_path) + + # Refs dir + for ref in revision_to_delete.refs: + delete_strategy_refs.add(affected_repo.repo_path / "refs" / ref) + + # Blobs dir + for file in revision_to_delete.files: + if file.blob_path not in delete_strategy_blobs: + is_file_alone = True + for revision in other_revisions: + for rev_file in revision.files: + if file.blob_path == rev_file.blob_path: + is_file_alone = False + break + if not is_file_alone: + break + + # Blob file not referenced by remaining revisions -> delete + if is_file_alone: + delete_strategy_blobs.add(file.blob_path) + delete_strategy_expected_freed_size += file.size_on_disk + + # Return the strategy instead of executing it. + return DeleteCacheStrategy( + blobs=frozenset(delete_strategy_blobs), + refs=frozenset(delete_strategy_refs), + repos=frozenset(delete_strategy_repos), + snapshots=frozenset(delete_strategy_snapshots), + expected_freed_size=delete_strategy_expected_freed_size, + ) + + def export_as_table(self, *, verbosity: int = 0) -> str: + """Generate a table from the [`HFCacheInfo`] object. + + Pass `verbosity=0` to get a table with a single row per repo, with columns + "repo_id", "repo_type", "size_on_disk", "nb_files", "last_accessed", "last_modified", "refs", "local_path". + + Pass `verbosity=1` to get a table with a row per repo and revision (thus multiple rows can appear for a single repo), with columns + "repo_id", "repo_type", "revision", "size_on_disk", "nb_files", "last_modified", "refs", "local_path". + + Example: + ```py + >>> from huggingface_hub.utils import scan_cache_dir + + >>> hf_cache_info = scan_cache_dir() + HFCacheInfo(...) + + >>> print(hf_cache_info.export_as_table()) + REPO ID REPO TYPE SIZE ON DISK NB FILES LAST_ACCESSED LAST_MODIFIED REFS LOCAL PATH + --------------------------------------------------- --------- ------------ -------- ------------- ------------- ---- -------------------------------------------------------------------------------------------------- + roberta-base model 2.7M 5 1 day ago 1 week ago main ~/.cache/huggingface/hub/models--roberta-base + suno/bark model 8.8K 1 1 week ago 1 week ago main ~/.cache/huggingface/hub/models--suno--bark + t5-base model 893.8M 4 4 days ago 7 months ago main ~/.cache/huggingface/hub/models--t5-base + t5-large model 3.0G 4 5 weeks ago 5 months ago main ~/.cache/huggingface/hub/models--t5-large + + >>> print(hf_cache_info.export_as_table(verbosity=1)) + REPO ID REPO TYPE REVISION SIZE ON DISK NB FILES LAST_MODIFIED REFS LOCAL PATH + --------------------------------------------------- --------- ---------------------------------------- ------------ -------- ------------- ---- ----------------------------------------------------------------------------------------------------------------------------------------------------- + roberta-base model e2da8e2f811d1448a5b465c236feacd80ffbac7b 2.7M 5 1 week ago main ~/.cache/huggingface/hub/models--roberta-base/snapshots/e2da8e2f811d1448a5b465c236feacd80ffbac7b + suno/bark model 70a8a7d34168586dc5d028fa9666aceade177992 8.8K 1 1 week ago main ~/.cache/huggingface/hub/models--suno--bark/snapshots/70a8a7d34168586dc5d028fa9666aceade177992 + t5-base model a9723ea7f1b39c1eae772870f3b547bf6ef7e6c1 893.8M 4 7 months ago main ~/.cache/huggingface/hub/models--t5-base/snapshots/a9723ea7f1b39c1eae772870f3b547bf6ef7e6c1 + t5-large model 150ebc2c4b72291e770f58e6057481c8d2ed331a 3.0G 4 5 months ago main ~/.cache/huggingface/hub/models--t5-large/snapshots/150ebc2c4b72291e770f58e6057481c8d2ed331a + ``` + + Args: + verbosity (`int`, *optional*): + The verbosity level. Defaults to 0. + + Returns: + `str`: The table as a string. + """ + if verbosity == 0: + return tabulate( + rows=[ + [ + repo.repo_id, + repo.repo_type, + "{:>12}".format(repo.size_on_disk_str), + repo.nb_files, + repo.last_accessed_str, + repo.last_modified_str, + ", ".join(sorted(repo.refs)), + str(repo.repo_path), + ] + for repo in sorted(self.repos, key=lambda repo: repo.repo_path) + ], + headers=[ + "REPO ID", + "REPO TYPE", + "SIZE ON DISK", + "NB FILES", + "LAST_ACCESSED", + "LAST_MODIFIED", + "REFS", + "LOCAL PATH", + ], + ) + else: + return tabulate( + rows=[ + [ + repo.repo_id, + repo.repo_type, + revision.commit_hash, + "{:>12}".format(revision.size_on_disk_str), + revision.nb_files, + revision.last_modified_str, + ", ".join(sorted(revision.refs)), + str(revision.snapshot_path), + ] + for repo in sorted(self.repos, key=lambda repo: repo.repo_path) + for revision in sorted(repo.revisions, key=lambda revision: revision.commit_hash) + ], + headers=[ + "REPO ID", + "REPO TYPE", + "REVISION", + "SIZE ON DISK", + "NB FILES", + "LAST_MODIFIED", + "REFS", + "LOCAL PATH", + ], + ) + + +def scan_cache_dir(cache_dir: Optional[Union[str, Path]] = None) -> HFCacheInfo: + """Scan the entire HF cache-system and return a [`~HFCacheInfo`] structure. + + Use `scan_cache_dir` in order to programmatically scan your cache-system. The cache + will be scanned repo by repo. If a repo is corrupted, a [`~CorruptedCacheException`] + will be thrown internally but captured and returned in the [`~HFCacheInfo`] + structure. Only valid repos get a proper report. + + ```py + >>> from huggingface_hub import scan_cache_dir + + >>> hf_cache_info = scan_cache_dir() + HFCacheInfo( + size_on_disk=3398085269, + repos=frozenset({ + CachedRepoInfo( + repo_id='t5-small', + repo_type='model', + repo_path=PosixPath(...), + size_on_disk=970726914, + nb_files=11, + revisions=frozenset({ + CachedRevisionInfo( + commit_hash='d78aea13fa7ecd06c29e3e46195d6341255065d5', + size_on_disk=970726339, + snapshot_path=PosixPath(...), + files=frozenset({ + CachedFileInfo( + file_name='config.json', + size_on_disk=1197 + file_path=PosixPath(...), + blob_path=PosixPath(...), + ), + CachedFileInfo(...), + ... + }), + ), + CachedRevisionInfo(...), + ... + }), + ), + CachedRepoInfo(...), + ... + }), + warnings=[ + CorruptedCacheException("Snapshots dir doesn't exist in cached repo: ..."), + CorruptedCacheException(...), + ... + ], + ) + ``` + + You can also print a detailed report directly from the `huggingface-cli` using: + ```text + > huggingface-cli scan-cache + REPO ID REPO TYPE SIZE ON DISK NB FILES REFS LOCAL PATH + --------------------------- --------- ------------ -------- ------------------- ------------------------------------------------------------------------- + glue dataset 116.3K 15 1.17.0, main, 2.4.0 /Users/lucain/.cache/huggingface/hub/datasets--glue + google/fleurs dataset 64.9M 6 main, refs/pr/1 /Users/lucain/.cache/huggingface/hub/datasets--google--fleurs + Jean-Baptiste/camembert-ner model 441.0M 7 main /Users/lucain/.cache/huggingface/hub/models--Jean-Baptiste--camembert-ner + bert-base-cased model 1.9G 13 main /Users/lucain/.cache/huggingface/hub/models--bert-base-cased + t5-base model 10.1K 3 main /Users/lucain/.cache/huggingface/hub/models--t5-base + t5-small model 970.7M 11 refs/pr/1, main /Users/lucain/.cache/huggingface/hub/models--t5-small + + Done in 0.0s. Scanned 6 repo(s) for a total of 3.4G. + Got 1 warning(s) while scanning. Use -vvv to print details. + ``` + + Args: + cache_dir (`str` or `Path`, `optional`): + Cache directory to cache. Defaults to the default HF cache directory. + + <Tip warning={true}> + + Raises: + + `CacheNotFound` + If the cache directory does not exist. + + [`ValueError`](https://docs.python.org/3/library/exceptions.html#ValueError) + If the cache directory is a file, instead of a directory. + + </Tip> + + Returns: a [`~HFCacheInfo`] object. + """ + if cache_dir is None: + cache_dir = HF_HUB_CACHE + + cache_dir = Path(cache_dir).expanduser().resolve() + if not cache_dir.exists(): + raise CacheNotFound( + f"Cache directory not found: {cache_dir}. Please use `cache_dir` argument or set `HF_HUB_CACHE` environment variable.", + cache_dir=cache_dir, + ) + + if cache_dir.is_file(): + raise ValueError( + f"Scan cache expects a directory but found a file: {cache_dir}. Please use `cache_dir` argument or set `HF_HUB_CACHE` environment variable." + ) + + repos: Set[CachedRepoInfo] = set() + warnings: List[CorruptedCacheException] = [] + for repo_path in cache_dir.iterdir(): + if repo_path.name == ".locks": # skip './.locks/' folder + continue + try: + repos.add(_scan_cached_repo(repo_path)) + except CorruptedCacheException as e: + warnings.append(e) + + return HFCacheInfo( + repos=frozenset(repos), + size_on_disk=sum(repo.size_on_disk for repo in repos), + warnings=warnings, + ) + + +def _scan_cached_repo(repo_path: Path) -> CachedRepoInfo: + """Scan a single cache repo and return information about it. + + Any unexpected behavior will raise a [`~CorruptedCacheException`]. + """ + if not repo_path.is_dir(): + raise CorruptedCacheException(f"Repo path is not a directory: {repo_path}") + + if "--" not in repo_path.name: + raise CorruptedCacheException(f"Repo path is not a valid HuggingFace cache directory: {repo_path}") + + repo_type, repo_id = repo_path.name.split("--", maxsplit=1) + repo_type = repo_type[:-1] # "models" -> "model" + repo_id = repo_id.replace("--", "/") # google/fleurs -> "google/fleurs" + + if repo_type not in {"dataset", "model", "space"}: + raise CorruptedCacheException( + f"Repo type must be `dataset`, `model` or `space`, found `{repo_type}` ({repo_path})." + ) + + blob_stats: Dict[Path, os.stat_result] = {} # Key is blob_path, value is blob stats + + snapshots_path = repo_path / "snapshots" + refs_path = repo_path / "refs" + + if not snapshots_path.exists() or not snapshots_path.is_dir(): + raise CorruptedCacheException(f"Snapshots dir doesn't exist in cached repo: {snapshots_path}") + + # Scan over `refs` directory + + # key is revision hash, value is set of refs + refs_by_hash: Dict[str, Set[str]] = defaultdict(set) + if refs_path.exists(): + # Example of `refs` directory + # ── refs + # ├── main + # └── refs + # └── pr + # └── 1 + if refs_path.is_file(): + raise CorruptedCacheException(f"Refs directory cannot be a file: {refs_path}") + + for ref_path in refs_path.glob("**/*"): + # glob("**/*") iterates over all files and directories -> skip directories + if ref_path.is_dir() or ref_path.name in FILES_TO_IGNORE: + continue + + ref_name = str(ref_path.relative_to(refs_path)) + with ref_path.open() as f: + commit_hash = f.read() + + refs_by_hash[commit_hash].add(ref_name) + + # Scan snapshots directory + cached_revisions: Set[CachedRevisionInfo] = set() + for revision_path in snapshots_path.iterdir(): + # Ignore OS-created helper files + if revision_path.name in FILES_TO_IGNORE: + continue + if revision_path.is_file(): + raise CorruptedCacheException(f"Snapshots folder corrupted. Found a file: {revision_path}") + + cached_files = set() + for file_path in revision_path.glob("**/*"): + # glob("**/*") iterates over all files and directories -> skip directories + if file_path.is_dir(): + continue + + blob_path = Path(file_path).resolve() + if not blob_path.exists(): + raise CorruptedCacheException(f"Blob missing (broken symlink): {blob_path}") + + if blob_path not in blob_stats: + blob_stats[blob_path] = blob_path.stat() + + cached_files.add( + CachedFileInfo( + file_name=file_path.name, + file_path=file_path, + size_on_disk=blob_stats[blob_path].st_size, + blob_path=blob_path, + blob_last_accessed=blob_stats[blob_path].st_atime, + blob_last_modified=blob_stats[blob_path].st_mtime, + ) + ) + + # Last modified is either the last modified blob file or the revision folder + # itself if it is empty + if len(cached_files) > 0: + revision_last_modified = max(blob_stats[file.blob_path].st_mtime for file in cached_files) + else: + revision_last_modified = revision_path.stat().st_mtime + + cached_revisions.add( + CachedRevisionInfo( + commit_hash=revision_path.name, + files=frozenset(cached_files), + refs=frozenset(refs_by_hash.pop(revision_path.name, set())), + size_on_disk=sum( + blob_stats[blob_path].st_size for blob_path in set(file.blob_path for file in cached_files) + ), + snapshot_path=revision_path, + last_modified=revision_last_modified, + ) + ) + + # Check that all refs referred to an existing revision + if len(refs_by_hash) > 0: + raise CorruptedCacheException( + f"Reference(s) refer to missing commit hashes: {dict(refs_by_hash)} ({repo_path})." + ) + + # Last modified is either the last modified blob file or the repo folder itself if + # no blob files has been found. Same for last accessed. + if len(blob_stats) > 0: + repo_last_accessed = max(stat.st_atime for stat in blob_stats.values()) + repo_last_modified = max(stat.st_mtime for stat in blob_stats.values()) + else: + repo_stats = repo_path.stat() + repo_last_accessed = repo_stats.st_atime + repo_last_modified = repo_stats.st_mtime + + # Build and return frozen structure + return CachedRepoInfo( + nb_files=len(blob_stats), + repo_id=repo_id, + repo_path=repo_path, + repo_type=repo_type, # type: ignore + revisions=frozenset(cached_revisions), + size_on_disk=sum(stat.st_size for stat in blob_stats.values()), + last_accessed=repo_last_accessed, + last_modified=repo_last_modified, + ) + + +def _format_size(num: int) -> str: + """Format size in bytes into a human-readable string. + + Taken from https://stackoverflow.com/a/1094933 + """ + num_f = float(num) + for unit in ["", "K", "M", "G", "T", "P", "E", "Z"]: + if abs(num_f) < 1000.0: + return f"{num_f:3.1f}{unit}" + num_f /= 1000.0 + return f"{num_f:.1f}Y" + + +_TIMESINCE_CHUNKS = ( + # Label, divider, max value + ("second", 1, 60), + ("minute", 60, 60), + ("hour", 60 * 60, 24), + ("day", 60 * 60 * 24, 6), + ("week", 60 * 60 * 24 * 7, 6), + ("month", 60 * 60 * 24 * 30, 11), + ("year", 60 * 60 * 24 * 365, None), +) + + +def _format_timesince(ts: float) -> str: + """Format timestamp in seconds into a human-readable string, relative to now. + + Vaguely inspired by Django's `timesince` formatter. + """ + delta = time.time() - ts + if delta < 20: + return "a few seconds ago" + for label, divider, max_value in _TIMESINCE_CHUNKS: # noqa: B007 + value = round(delta / divider) + if max_value is not None and value <= max_value: + break + return f"{value} {label}{'s' if value > 1 else ''} ago" + + +def _try_delete_path(path: Path, path_type: str) -> None: + """Try to delete a local file or folder. + + If the path does not exists, error is logged as a warning and then ignored. + + Args: + path (`Path`) + Path to delete. Can be a file or a folder. + path_type (`str`) + What path are we deleting ? Only for logging purposes. Example: "snapshot". + """ + logger.info(f"Delete {path_type}: {path}") + try: + if path.is_file(): + os.remove(path) + else: + shutil.rmtree(path) + except FileNotFoundError: + logger.warning(f"Couldn't delete {path_type}: file not found ({path})", exc_info=True) + except PermissionError: + logger.warning(f"Couldn't delete {path_type}: permission denied ({path})", exc_info=True) diff --git a/.venv/lib/python3.12/site-packages/huggingface_hub/utils/_chunk_utils.py b/.venv/lib/python3.12/site-packages/huggingface_hub/utils/_chunk_utils.py new file mode 100644 index 00000000..b0af032a --- /dev/null +++ b/.venv/lib/python3.12/site-packages/huggingface_hub/utils/_chunk_utils.py @@ -0,0 +1,65 @@ +# coding=utf-8 +# Copyright 2022-present, the HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Contains a utility to iterate by chunks over an iterator.""" + +import itertools +from typing import Iterable, TypeVar + + +T = TypeVar("T") + + +def chunk_iterable(iterable: Iterable[T], chunk_size: int) -> Iterable[Iterable[T]]: + """Iterates over an iterator chunk by chunk. + + Taken from https://stackoverflow.com/a/8998040. + See also https://github.com/huggingface/huggingface_hub/pull/920#discussion_r938793088. + + Args: + iterable (`Iterable`): + The iterable on which we want to iterate. + chunk_size (`int`): + Size of the chunks. Must be a strictly positive integer (e.g. >0). + + Example: + + ```python + >>> from huggingface_hub.utils import chunk_iterable + + >>> for items in chunk_iterable(range(17), chunk_size=8): + ... print(items) + # [0, 1, 2, 3, 4, 5, 6, 7] + # [8, 9, 10, 11, 12, 13, 14, 15] + # [16] # smaller last chunk + ``` + + Raises: + [`ValueError`](https://docs.python.org/3/library/exceptions.html#ValueError) + If `chunk_size` <= 0. + + <Tip warning={true}> + The last chunk can be smaller than `chunk_size`. + </Tip> + """ + if not isinstance(chunk_size, int) or chunk_size <= 0: + raise ValueError("`chunk_size` must be a strictly positive integer (>0).") + + iterator = iter(iterable) + while True: + try: + next_item = next(iterator) + except StopIteration: + return + yield itertools.chain((next_item,), itertools.islice(iterator, chunk_size - 1)) diff --git a/.venv/lib/python3.12/site-packages/huggingface_hub/utils/_datetime.py b/.venv/lib/python3.12/site-packages/huggingface_hub/utils/_datetime.py new file mode 100644 index 00000000..1a7f4428 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/huggingface_hub/utils/_datetime.py @@ -0,0 +1,67 @@ +# coding=utf-8 +# Copyright 2022-present, the HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Contains utilities to handle datetimes in Huggingface Hub.""" + +from datetime import datetime, timezone + + +def parse_datetime(date_string: str) -> datetime: + """ + Parses a date_string returned from the server to a datetime object. + + This parser is a weak-parser is the sense that it handles only a single format of + date_string. It is expected that the server format will never change. The + implementation depends only on the standard lib to avoid an external dependency + (python-dateutil). See full discussion about this decision on PR: + https://github.com/huggingface/huggingface_hub/pull/999. + + Example: + ```py + > parse_datetime('2022-08-19T07:19:38.123Z') + datetime.datetime(2022, 8, 19, 7, 19, 38, 123000, tzinfo=timezone.utc) + ``` + + Args: + date_string (`str`): + A string representing a datetime returned by the Hub server. + String is expected to follow '%Y-%m-%dT%H:%M:%S.%fZ' pattern. + + Returns: + A python datetime object. + + Raises: + :class:`ValueError`: + If `date_string` cannot be parsed. + """ + try: + # Normalize the string to always have 6 digits of fractional seconds + if date_string.endswith("Z"): + # Case 1: No decimal point (e.g., "2024-11-16T00:27:02Z") + if "." not in date_string: + # No fractional seconds - insert .000000 + date_string = date_string[:-1] + ".000000Z" + # Case 2: Has decimal point (e.g., "2022-08-19T07:19:38.123456789Z") + else: + # Get the fractional and base parts + base, fraction = date_string[:-1].split(".") + # fraction[:6] takes first 6 digits and :0<6 pads with zeros if less than 6 digits + date_string = f"{base}.{fraction[:6]:0<6}Z" + + return datetime.strptime(date_string, "%Y-%m-%dT%H:%M:%S.%fZ").replace(tzinfo=timezone.utc) + except ValueError as e: + raise ValueError( + f"Cannot parse '{date_string}' as a datetime. Date string is expected to" + " follow '%Y-%m-%dT%H:%M:%S.%fZ' pattern." + ) from e diff --git a/.venv/lib/python3.12/site-packages/huggingface_hub/utils/_deprecation.py b/.venv/lib/python3.12/site-packages/huggingface_hub/utils/_deprecation.py new file mode 100644 index 00000000..4cb8d6e4 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/huggingface_hub/utils/_deprecation.py @@ -0,0 +1,136 @@ +import warnings +from functools import wraps +from inspect import Parameter, signature +from typing import Iterable, Optional + + +def _deprecate_positional_args(*, version: str): + """Decorator for methods that issues warnings for positional arguments. + Using the keyword-only argument syntax in pep 3102, arguments after the + * will issue a warning when passed as a positional argument. + + Args: + version (`str`): + The version when positional arguments will result in error. + """ + + def _inner_deprecate_positional_args(f): + sig = signature(f) + kwonly_args = [] + all_args = [] + for name, param in sig.parameters.items(): + if param.kind == Parameter.POSITIONAL_OR_KEYWORD: + all_args.append(name) + elif param.kind == Parameter.KEYWORD_ONLY: + kwonly_args.append(name) + + @wraps(f) + def inner_f(*args, **kwargs): + extra_args = len(args) - len(all_args) + if extra_args <= 0: + return f(*args, **kwargs) + # extra_args > 0 + args_msg = [ + f"{name}='{arg}'" if isinstance(arg, str) else f"{name}={arg}" + for name, arg in zip(kwonly_args[:extra_args], args[-extra_args:]) + ] + args_msg = ", ".join(args_msg) + warnings.warn( + f"Deprecated positional argument(s) used in '{f.__name__}': pass" + f" {args_msg} as keyword args. From version {version} passing these" + " as positional arguments will result in an error,", + FutureWarning, + ) + kwargs.update(zip(sig.parameters, args)) + return f(**kwargs) + + return inner_f + + return _inner_deprecate_positional_args + + +def _deprecate_arguments( + *, + version: str, + deprecated_args: Iterable[str], + custom_message: Optional[str] = None, +): + """Decorator to issue warnings when using deprecated arguments. + + TODO: could be useful to be able to set a custom error message. + + Args: + version (`str`): + The version when deprecated arguments will result in error. + deprecated_args (`List[str]`): + List of the arguments to be deprecated. + custom_message (`str`, *optional*): + Warning message that is raised. If not passed, a default warning message + will be created. + """ + + def _inner_deprecate_positional_args(f): + sig = signature(f) + + @wraps(f) + def inner_f(*args, **kwargs): + # Check for used deprecated arguments + used_deprecated_args = [] + for _, parameter in zip(args, sig.parameters.values()): + if parameter.name in deprecated_args: + used_deprecated_args.append(parameter.name) + for kwarg_name, kwarg_value in kwargs.items(): + if ( + # If argument is deprecated but still used + kwarg_name in deprecated_args + # And then the value is not the default value + and kwarg_value != sig.parameters[kwarg_name].default + ): + used_deprecated_args.append(kwarg_name) + + # Warn and proceed + if len(used_deprecated_args) > 0: + message = ( + f"Deprecated argument(s) used in '{f.__name__}':" + f" {', '.join(used_deprecated_args)}. Will not be supported from" + f" version '{version}'." + ) + if custom_message is not None: + message += "\n\n" + custom_message + warnings.warn(message, FutureWarning) + return f(*args, **kwargs) + + return inner_f + + return _inner_deprecate_positional_args + + +def _deprecate_method(*, version: str, message: Optional[str] = None): + """Decorator to issue warnings when using a deprecated method. + + Args: + version (`str`): + The version when deprecated arguments will result in error. + message (`str`, *optional*): + Warning message that is raised. If not passed, a default warning message + will be created. + """ + + def _inner_deprecate_method(f): + name = f.__name__ + if name == "__init__": + name = f.__qualname__.split(".")[0] # class name instead of method name + + @wraps(f) + def inner_f(*args, **kwargs): + warning_message = ( + f"'{name}' (from '{f.__module__}') is deprecated and will be removed from version '{version}'." + ) + if message is not None: + warning_message += " " + message + warnings.warn(warning_message, FutureWarning) + return f(*args, **kwargs) + + return inner_f + + return _inner_deprecate_method diff --git a/.venv/lib/python3.12/site-packages/huggingface_hub/utils/_experimental.py b/.venv/lib/python3.12/site-packages/huggingface_hub/utils/_experimental.py new file mode 100644 index 00000000..34141eba --- /dev/null +++ b/.venv/lib/python3.12/site-packages/huggingface_hub/utils/_experimental.py @@ -0,0 +1,66 @@ +# coding=utf-8 +# Copyright 2023-present, the HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Contains utilities to flag a feature as "experimental" in Huggingface Hub.""" + +import warnings +from functools import wraps +from typing import Callable + +from .. import constants + + +def experimental(fn: Callable) -> Callable: + """Decorator to flag a feature as experimental. + + An experimental feature trigger a warning when used as it might be subject to breaking changes in the future. + Warnings can be disabled by setting the environment variable `HF_EXPERIMENTAL_WARNING` to `0`. + + Args: + fn (`Callable`): + The function to flag as experimental. + + Returns: + `Callable`: The decorated function. + + Example: + + ```python + >>> from huggingface_hub.utils import experimental + + >>> @experimental + ... def my_function(): + ... print("Hello world!") + + >>> my_function() + UserWarning: 'my_function' is experimental and might be subject to breaking changes in the future. You can disable + this warning by setting `HF_HUB_DISABLE_EXPERIMENTAL_WARNING=1` as environment variable. + Hello world! + ``` + """ + # For classes, put the "experimental" around the "__new__" method => __new__ will be removed in warning message + name = fn.__qualname__[: -len(".__new__")] if fn.__qualname__.endswith(".__new__") else fn.__qualname__ + + @wraps(fn) + def _inner_fn(*args, **kwargs): + if not constants.HF_HUB_DISABLE_EXPERIMENTAL_WARNING: + warnings.warn( + f"'{name}' is experimental and might be subject to breaking changes in the future." + " You can disable this warning by setting `HF_HUB_DISABLE_EXPERIMENTAL_WARNING=1` as environment" + " variable.", + UserWarning, + ) + return fn(*args, **kwargs) + + return _inner_fn diff --git a/.venv/lib/python3.12/site-packages/huggingface_hub/utils/_fixes.py b/.venv/lib/python3.12/site-packages/huggingface_hub/utils/_fixes.py new file mode 100644 index 00000000..560003b6 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/huggingface_hub/utils/_fixes.py @@ -0,0 +1,133 @@ +# JSONDecodeError was introduced in requests=2.27 released in 2022. +# This allows us to support older requests for users +# More information: https://github.com/psf/requests/pull/5856 +try: + from requests import JSONDecodeError # type: ignore # noqa: F401 +except ImportError: + try: + from simplejson import JSONDecodeError # type: ignore # noqa: F401 + except ImportError: + from json import JSONDecodeError # type: ignore # noqa: F401 +import contextlib +import os +import shutil +import stat +import tempfile +import time +from functools import partial +from pathlib import Path +from typing import Callable, Generator, Optional, Union + +import yaml +from filelock import BaseFileLock, FileLock, SoftFileLock, Timeout + +from .. import constants +from . import logging + + +logger = logging.get_logger(__name__) + +# Wrap `yaml.dump` to set `allow_unicode=True` by default. +# +# Example: +# ```py +# >>> yaml.dump({"emoji": "👀", "some unicode": "日本か"}) +# 'emoji: "\\U0001F440"\nsome unicode: "\\u65E5\\u672C\\u304B"\n' +# +# >>> yaml_dump({"emoji": "👀", "some unicode": "日本か"}) +# 'emoji: "👀"\nsome unicode: "日本か"\n' +# ``` +yaml_dump: Callable[..., str] = partial(yaml.dump, stream=None, allow_unicode=True) # type: ignore + + +@contextlib.contextmanager +def SoftTemporaryDirectory( + suffix: Optional[str] = None, + prefix: Optional[str] = None, + dir: Optional[Union[Path, str]] = None, + **kwargs, +) -> Generator[Path, None, None]: + """ + Context manager to create a temporary directory and safely delete it. + + If tmp directory cannot be deleted normally, we set the WRITE permission and retry. + If cleanup still fails, we give up but don't raise an exception. This is equivalent + to `tempfile.TemporaryDirectory(..., ignore_cleanup_errors=True)` introduced in + Python 3.10. + + See https://www.scivision.dev/python-tempfile-permission-error-windows/. + """ + tmpdir = tempfile.TemporaryDirectory(prefix=prefix, suffix=suffix, dir=dir, **kwargs) + yield Path(tmpdir.name).resolve() + + try: + # First once with normal cleanup + shutil.rmtree(tmpdir.name) + except Exception: + # If failed, try to set write permission and retry + try: + shutil.rmtree(tmpdir.name, onerror=_set_write_permission_and_retry) + except Exception: + pass + + # And finally, cleanup the tmpdir. + # If it fails again, give up but do not throw error + try: + tmpdir.cleanup() + except Exception: + pass + + +def _set_write_permission_and_retry(func, path, excinfo): + os.chmod(path, stat.S_IWRITE) + func(path) + + +@contextlib.contextmanager +def WeakFileLock( + lock_file: Union[str, Path], *, timeout: Optional[float] = None +) -> Generator[BaseFileLock, None, None]: + """A filelock with some custom logic. + + This filelock is weaker than the default filelock in that: + 1. It won't raise an exception if release fails. + 2. It will default to a SoftFileLock if the filesystem does not support flock. + + An INFO log message is emitted every 10 seconds if the lock is not acquired immediately. + If a timeout is provided, a `filelock.Timeout` exception is raised if the lock is not acquired within the timeout. + """ + log_interval = constants.FILELOCK_LOG_EVERY_SECONDS + lock = FileLock(lock_file, timeout=log_interval) + start_time = time.time() + + while True: + elapsed_time = time.time() - start_time + if timeout is not None and elapsed_time >= timeout: + raise Timeout(str(lock_file)) + + try: + lock.acquire(timeout=min(log_interval, timeout - elapsed_time) if timeout else log_interval) + except Timeout: + logger.info( + f"Still waiting to acquire lock on {lock_file} (elapsed: {time.time() - start_time:.1f} seconds)" + ) + except NotImplementedError as e: + if "use SoftFileLock instead" in str(e): + logger.warning( + "FileSystem does not appear to support flock. Falling back to SoftFileLock for %s", lock_file + ) + lock = SoftFileLock(lock_file, timeout=log_interval) + continue + else: + break + + try: + yield lock + finally: + try: + lock.release() + except OSError: + try: + Path(lock_file).unlink() + except OSError: + pass diff --git a/.venv/lib/python3.12/site-packages/huggingface_hub/utils/_git_credential.py b/.venv/lib/python3.12/site-packages/huggingface_hub/utils/_git_credential.py new file mode 100644 index 00000000..a8ed77f4 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/huggingface_hub/utils/_git_credential.py @@ -0,0 +1,121 @@ +# coding=utf-8 +# Copyright 2022-present, the HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Contains utilities to manage Git credentials.""" + +import re +import subprocess +from typing import List, Optional + +from ..constants import ENDPOINT +from ._subprocess import run_interactive_subprocess, run_subprocess + + +GIT_CREDENTIAL_REGEX = re.compile( + r""" + ^\s* # start of line + credential\.helper # credential.helper value + \s*=\s* # separator + (\w+) # the helper name (group 1) + (\s|$) # whitespace or end of line + """, + flags=re.MULTILINE | re.IGNORECASE | re.VERBOSE, +) + + +def list_credential_helpers(folder: Optional[str] = None) -> List[str]: + """Return the list of git credential helpers configured. + + See https://git-scm.com/docs/gitcredentials. + + Credentials are saved in all configured helpers (store, cache, macOS keychain,...). + Calls "`git credential approve`" internally. See https://git-scm.com/docs/git-credential. + + Args: + folder (`str`, *optional*): + The folder in which to check the configured helpers. + """ + try: + output = run_subprocess("git config --list", folder=folder).stdout + parsed = _parse_credential_output(output) + return parsed + except subprocess.CalledProcessError as exc: + raise EnvironmentError(exc.stderr) + + +def set_git_credential(token: str, username: str = "hf_user", folder: Optional[str] = None) -> None: + """Save a username/token pair in git credential for HF Hub registry. + + Credentials are saved in all configured helpers (store, cache, macOS keychain,...). + Calls "`git credential approve`" internally. See https://git-scm.com/docs/git-credential. + + Args: + username (`str`, defaults to `"hf_user"`): + A git username. Defaults to `"hf_user"`, the default user used in the Hub. + token (`str`, defaults to `"hf_user"`): + A git password. In practice, the User Access Token for the Hub. + See https://huggingface.co/settings/tokens. + folder (`str`, *optional*): + The folder in which to check the configured helpers. + """ + with run_interactive_subprocess("git credential approve", folder=folder) as ( + stdin, + _, + ): + stdin.write(f"url={ENDPOINT}\nusername={username.lower()}\npassword={token}\n\n") + stdin.flush() + + +def unset_git_credential(username: str = "hf_user", folder: Optional[str] = None) -> None: + """Erase credentials from git credential for HF Hub registry. + + Credentials are erased from the configured helpers (store, cache, macOS + keychain,...), if any. If `username` is not provided, any credential configured for + HF Hub endpoint is erased. + Calls "`git credential erase`" internally. See https://git-scm.com/docs/git-credential. + + Args: + username (`str`, defaults to `"hf_user"`): + A git username. Defaults to `"hf_user"`, the default user used in the Hub. + folder (`str`, *optional*): + The folder in which to check the configured helpers. + """ + with run_interactive_subprocess("git credential reject", folder=folder) as ( + stdin, + _, + ): + standard_input = f"url={ENDPOINT}\n" + if username is not None: + standard_input += f"username={username.lower()}\n" + standard_input += "\n" + + stdin.write(standard_input) + stdin.flush() + + +def _parse_credential_output(output: str) -> List[str]: + """Parse the output of `git credential fill` to extract the password. + + Args: + output (`str`): + The output of `git credential fill`. + """ + # NOTE: If user has set an helper for a custom URL, it will not we caught here. + # Example: `credential.https://huggingface.co.helper=store` + # See: https://github.com/huggingface/huggingface_hub/pull/1138#discussion_r1013324508 + return sorted( # Sort for nice printing + set( # Might have some duplicates + match[0] for match in GIT_CREDENTIAL_REGEX.findall(output) + ) + ) diff --git a/.venv/lib/python3.12/site-packages/huggingface_hub/utils/_headers.py b/.venv/lib/python3.12/site-packages/huggingface_hub/utils/_headers.py new file mode 100644 index 00000000..f0e1ddd8 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/huggingface_hub/utils/_headers.py @@ -0,0 +1,228 @@ +# coding=utf-8 +# Copyright 2022-present, the HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Contains utilities to handle headers to send in calls to Huggingface Hub.""" + +from typing import Dict, Optional, Union + +from huggingface_hub.errors import LocalTokenNotFoundError + +from .. import constants +from ._auth import get_token +from ._deprecation import _deprecate_arguments +from ._runtime import ( + get_fastai_version, + get_fastcore_version, + get_hf_hub_version, + get_python_version, + get_tf_version, + get_torch_version, + is_fastai_available, + is_fastcore_available, + is_tf_available, + is_torch_available, +) +from ._validators import validate_hf_hub_args + + +@_deprecate_arguments( + version="1.0", + deprecated_args="is_write_action", + custom_message="This argument is ignored and we let the server handle the permission error instead (if any).", +) +@validate_hf_hub_args +def build_hf_headers( + *, + token: Optional[Union[bool, str]] = None, + library_name: Optional[str] = None, + library_version: Optional[str] = None, + user_agent: Union[Dict, str, None] = None, + headers: Optional[Dict[str, str]] = None, + is_write_action: bool = False, +) -> Dict[str, str]: + """ + Build headers dictionary to send in a HF Hub call. + + By default, authorization token is always provided either from argument (explicit + use) or retrieved from the cache (implicit use). To explicitly avoid sending the + token to the Hub, set `token=False` or set the `HF_HUB_DISABLE_IMPLICIT_TOKEN` + environment variable. + + In case of an API call that requires write access, an error is thrown if token is + `None` or token is an organization token (starting with `"api_org***"`). + + In addition to the auth header, a user-agent is added to provide information about + the installed packages (versions of python, huggingface_hub, torch, tensorflow, + fastai and fastcore). + + Args: + token (`str`, `bool`, *optional*): + The token to be sent in authorization header for the Hub call: + - if a string, it is used as the Hugging Face token + - if `True`, the token is read from the machine (cache or env variable) + - if `False`, authorization header is not set + - if `None`, the token is read from the machine only except if + `HF_HUB_DISABLE_IMPLICIT_TOKEN` env variable is set. + library_name (`str`, *optional*): + The name of the library that is making the HTTP request. Will be added to + the user-agent header. + library_version (`str`, *optional*): + The version of the library that is making the HTTP request. Will be added + to the user-agent header. + user_agent (`str`, `dict`, *optional*): + The user agent info in the form of a dictionary or a single string. It will + be completed with information about the installed packages. + headers (`dict`, *optional*): + Additional headers to include in the request. Those headers take precedence + over the ones generated by this function. + is_write_action (`bool`): + Ignored and deprecated argument. + + Returns: + A `Dict` of headers to pass in your API call. + + Example: + ```py + >>> build_hf_headers(token="hf_***") # explicit token + {"authorization": "Bearer hf_***", "user-agent": ""} + + >>> build_hf_headers(token=True) # explicitly use cached token + {"authorization": "Bearer hf_***",...} + + >>> build_hf_headers(token=False) # explicitly don't use cached token + {"user-agent": ...} + + >>> build_hf_headers() # implicit use of the cached token + {"authorization": "Bearer hf_***",...} + + # HF_HUB_DISABLE_IMPLICIT_TOKEN=True # to set as env variable + >>> build_hf_headers() # token is not sent + {"user-agent": ...} + + >>> build_hf_headers(library_name="transformers", library_version="1.2.3") + {"authorization": ..., "user-agent": "transformers/1.2.3; hf_hub/0.10.2; python/3.10.4; tensorflow/1.55"} + ``` + + Raises: + [`ValueError`](https://docs.python.org/3/library/exceptions.html#ValueError) + If organization token is passed and "write" access is required. + [`ValueError`](https://docs.python.org/3/library/exceptions.html#ValueError) + If "write" access is required but token is not passed and not saved locally. + [`EnvironmentError`](https://docs.python.org/3/library/exceptions.html#EnvironmentError) + If `token=True` but token is not saved locally. + """ + # Get auth token to send + token_to_send = get_token_to_send(token) + + # Combine headers + hf_headers = { + "user-agent": _http_user_agent( + library_name=library_name, + library_version=library_version, + user_agent=user_agent, + ) + } + if token_to_send is not None: + hf_headers["authorization"] = f"Bearer {token_to_send}" + if headers is not None: + hf_headers.update(headers) + return hf_headers + + +def get_token_to_send(token: Optional[Union[bool, str]]) -> Optional[str]: + """Select the token to send from either `token` or the cache.""" + # Case token is explicitly provided + if isinstance(token, str): + return token + + # Case token is explicitly forbidden + if token is False: + return None + + # Token is not provided: we get it from local cache + cached_token = get_token() + + # Case token is explicitly required + if token is True: + if cached_token is None: + raise LocalTokenNotFoundError( + "Token is required (`token=True`), but no token found. You" + " need to provide a token or be logged in to Hugging Face with" + " `huggingface-cli login` or `huggingface_hub.login`. See" + " https://huggingface.co/settings/tokens." + ) + return cached_token + + # Case implicit use of the token is forbidden by env variable + if constants.HF_HUB_DISABLE_IMPLICIT_TOKEN: + return None + + # Otherwise: we use the cached token as the user has not explicitly forbidden it + return cached_token + + +def _http_user_agent( + *, + library_name: Optional[str] = None, + library_version: Optional[str] = None, + user_agent: Union[Dict, str, None] = None, +) -> str: + """Format a user-agent string containing information about the installed packages. + + Args: + library_name (`str`, *optional*): + The name of the library that is making the HTTP request. + library_version (`str`, *optional*): + The version of the library that is making the HTTP request. + user_agent (`str`, `dict`, *optional*): + The user agent info in the form of a dictionary or a single string. + + Returns: + The formatted user-agent string. + """ + if library_name is not None: + ua = f"{library_name}/{library_version}" + else: + ua = "unknown/None" + ua += f"; hf_hub/{get_hf_hub_version()}" + ua += f"; python/{get_python_version()}" + + if not constants.HF_HUB_DISABLE_TELEMETRY: + if is_torch_available(): + ua += f"; torch/{get_torch_version()}" + if is_tf_available(): + ua += f"; tensorflow/{get_tf_version()}" + if is_fastai_available(): + ua += f"; fastai/{get_fastai_version()}" + if is_fastcore_available(): + ua += f"; fastcore/{get_fastcore_version()}" + + if isinstance(user_agent, dict): + ua += "; " + "; ".join(f"{k}/{v}" for k, v in user_agent.items()) + elif isinstance(user_agent, str): + ua += "; " + user_agent + + # Retrieve user-agent origin headers from environment variable + origin = constants.HF_HUB_USER_AGENT_ORIGIN + if origin is not None: + ua += "; origin/" + origin + + return _deduplicate_user_agent(ua) + + +def _deduplicate_user_agent(user_agent: str) -> str: + """Deduplicate redundant information in the generated user-agent.""" + # Split around ";" > Strip whitespaces > Store as dict keys (ensure unicity) > format back as string + # Order is implicitly preserved by dictionary structure (see https://stackoverflow.com/a/53657523). + return "; ".join({key.strip(): None for key in user_agent.split(";")}.keys()) diff --git a/.venv/lib/python3.12/site-packages/huggingface_hub/utils/_hf_folder.py b/.venv/lib/python3.12/site-packages/huggingface_hub/utils/_hf_folder.py new file mode 100644 index 00000000..6418bf2f --- /dev/null +++ b/.venv/lib/python3.12/site-packages/huggingface_hub/utils/_hf_folder.py @@ -0,0 +1,68 @@ +# coding=utf-8 +# Copyright 2022-present, the HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Contain helper class to retrieve/store token from/to local cache.""" + +from pathlib import Path +from typing import Optional + +from .. import constants +from ._auth import get_token + + +class HfFolder: + # TODO: deprecate when adapted in transformers/datasets/gradio + # @_deprecate_method(version="1.0", message="Use `huggingface_hub.login` instead.") + @classmethod + def save_token(cls, token: str) -> None: + """ + Save token, creating folder as needed. + + Token is saved in the huggingface home folder. You can configure it by setting + the `HF_HOME` environment variable. + + Args: + token (`str`): + The token to save to the [`HfFolder`] + """ + path_token = Path(constants.HF_TOKEN_PATH) + path_token.parent.mkdir(parents=True, exist_ok=True) + path_token.write_text(token) + + # TODO: deprecate when adapted in transformers/datasets/gradio + # @_deprecate_method(version="1.0", message="Use `huggingface_hub.get_token` instead.") + @classmethod + def get_token(cls) -> Optional[str]: + """ + Get token or None if not existent. + + This method is deprecated in favor of [`huggingface_hub.get_token`] but is kept for backward compatibility. + Its behavior is the same as [`huggingface_hub.get_token`]. + + Returns: + `str` or `None`: The token, `None` if it doesn't exist. + """ + return get_token() + + # TODO: deprecate when adapted in transformers/datasets/gradio + # @_deprecate_method(version="1.0", message="Use `huggingface_hub.logout` instead.") + @classmethod + def delete_token(cls) -> None: + """ + Deletes the token from storage. Does not fail if token does not exist. + """ + try: + Path(constants.HF_TOKEN_PATH).unlink() + except FileNotFoundError: + pass diff --git a/.venv/lib/python3.12/site-packages/huggingface_hub/utils/_http.py b/.venv/lib/python3.12/site-packages/huggingface_hub/utils/_http.py new file mode 100644 index 00000000..0ed0789d --- /dev/null +++ b/.venv/lib/python3.12/site-packages/huggingface_hub/utils/_http.py @@ -0,0 +1,634 @@ +# coding=utf-8 +# Copyright 2022-present, the HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Contains utilities to handle HTTP requests in Huggingface Hub.""" + +import io +import os +import re +import threading +import time +import uuid +from functools import lru_cache +from http import HTTPStatus +from shlex import quote +from typing import Any, Callable, List, Optional, Tuple, Type, Union + +import requests +from requests import HTTPError, Response +from requests.adapters import HTTPAdapter +from requests.models import PreparedRequest + +from huggingface_hub.errors import OfflineModeIsEnabled + +from .. import constants +from ..errors import ( + BadRequestError, + DisabledRepoError, + EntryNotFoundError, + GatedRepoError, + HfHubHTTPError, + RepositoryNotFoundError, + RevisionNotFoundError, +) +from . import logging +from ._fixes import JSONDecodeError +from ._lfs import SliceFileObj +from ._typing import HTTP_METHOD_T + + +logger = logging.get_logger(__name__) + +# Both headers are used by the Hub to debug failed requests. +# `X_AMZN_TRACE_ID` is better as it also works to debug on Cloudfront and ALB. +# If `X_AMZN_TRACE_ID` is set, the Hub will use it as well. +X_AMZN_TRACE_ID = "X-Amzn-Trace-Id" +X_REQUEST_ID = "x-request-id" + +REPO_API_REGEX = re.compile( + r""" + # staging or production endpoint + ^https://[^/]+ + ( + # on /api/repo_type/repo_id + /api/(models|datasets|spaces)/(.+) + | + # or /repo_id/resolve/revision/... + /(.+)/resolve/(.+) + ) + """, + flags=re.VERBOSE, +) + + +class UniqueRequestIdAdapter(HTTPAdapter): + X_AMZN_TRACE_ID = "X-Amzn-Trace-Id" + + def add_headers(self, request, **kwargs): + super().add_headers(request, **kwargs) + + # Add random request ID => easier for server-side debug + if X_AMZN_TRACE_ID not in request.headers: + request.headers[X_AMZN_TRACE_ID] = request.headers.get(X_REQUEST_ID) or str(uuid.uuid4()) + + # Add debug log + has_token = len(str(request.headers.get("authorization", ""))) > 0 + logger.debug( + f"Request {request.headers[X_AMZN_TRACE_ID]}: {request.method} {request.url} (authenticated: {has_token})" + ) + + def send(self, request: PreparedRequest, *args, **kwargs) -> Response: + """Catch any RequestException to append request id to the error message for debugging.""" + if constants.HF_DEBUG: + logger.debug(f"Send: {_curlify(request)}") + try: + return super().send(request, *args, **kwargs) + except requests.RequestException as e: + request_id = request.headers.get(X_AMZN_TRACE_ID) + if request_id is not None: + # Taken from https://stackoverflow.com/a/58270258 + e.args = (*e.args, f"(Request ID: {request_id})") + raise + + +class OfflineAdapter(HTTPAdapter): + def send(self, request: PreparedRequest, *args, **kwargs) -> Response: + raise OfflineModeIsEnabled( + f"Cannot reach {request.url}: offline mode is enabled. To disable it, please unset the `HF_HUB_OFFLINE` environment variable." + ) + + +def _default_backend_factory() -> requests.Session: + session = requests.Session() + if constants.HF_HUB_OFFLINE: + session.mount("http://", OfflineAdapter()) + session.mount("https://", OfflineAdapter()) + else: + session.mount("http://", UniqueRequestIdAdapter()) + session.mount("https://", UniqueRequestIdAdapter()) + return session + + +BACKEND_FACTORY_T = Callable[[], requests.Session] +_GLOBAL_BACKEND_FACTORY: BACKEND_FACTORY_T = _default_backend_factory + + +def configure_http_backend(backend_factory: BACKEND_FACTORY_T = _default_backend_factory) -> None: + """ + Configure the HTTP backend by providing a `backend_factory`. Any HTTP calls made by `huggingface_hub` will use a + Session object instantiated by this factory. This can be useful if you are running your scripts in a specific + environment requiring custom configuration (e.g. custom proxy or certifications). + + Use [`get_session`] to get a configured Session. Since `requests.Session` is not guaranteed to be thread-safe, + `huggingface_hub` creates 1 Session instance per thread. They are all instantiated using the same `backend_factory` + set in [`configure_http_backend`]. A LRU cache is used to cache the created sessions (and connections) between + calls. Max size is 128 to avoid memory leaks if thousands of threads are spawned. + + See [this issue](https://github.com/psf/requests/issues/2766) to know more about thread-safety in `requests`. + + Example: + ```py + import requests + from huggingface_hub import configure_http_backend, get_session + + # Create a factory function that returns a Session with configured proxies + def backend_factory() -> requests.Session: + session = requests.Session() + session.proxies = {"http": "http://10.10.1.10:3128", "https": "https://10.10.1.11:1080"} + return session + + # Set it as the default session factory + configure_http_backend(backend_factory=backend_factory) + + # In practice, this is mostly done internally in `huggingface_hub` + session = get_session() + ``` + """ + global _GLOBAL_BACKEND_FACTORY + _GLOBAL_BACKEND_FACTORY = backend_factory + reset_sessions() + + +def get_session() -> requests.Session: + """ + Get a `requests.Session` object, using the session factory from the user. + + Use [`get_session`] to get a configured Session. Since `requests.Session` is not guaranteed to be thread-safe, + `huggingface_hub` creates 1 Session instance per thread. They are all instantiated using the same `backend_factory` + set in [`configure_http_backend`]. A LRU cache is used to cache the created sessions (and connections) between + calls. Max size is 128 to avoid memory leaks if thousands of threads are spawned. + + See [this issue](https://github.com/psf/requests/issues/2766) to know more about thread-safety in `requests`. + + Example: + ```py + import requests + from huggingface_hub import configure_http_backend, get_session + + # Create a factory function that returns a Session with configured proxies + def backend_factory() -> requests.Session: + session = requests.Session() + session.proxies = {"http": "http://10.10.1.10:3128", "https": "https://10.10.1.11:1080"} + return session + + # Set it as the default session factory + configure_http_backend(backend_factory=backend_factory) + + # In practice, this is mostly done internally in `huggingface_hub` + session = get_session() + ``` + """ + return _get_session_from_cache(process_id=os.getpid(), thread_id=threading.get_ident()) + + +def reset_sessions() -> None: + """Reset the cache of sessions. + + Mostly used internally when sessions are reconfigured or an SSLError is raised. + See [`configure_http_backend`] for more details. + """ + _get_session_from_cache.cache_clear() + + +@lru_cache +def _get_session_from_cache(process_id: int, thread_id: int) -> requests.Session: + """ + Create a new session per thread using global factory. Using LRU cache (maxsize 128) to avoid memory leaks when + using thousands of threads. Cache is cleared when `configure_http_backend` is called. + """ + return _GLOBAL_BACKEND_FACTORY() + + +def http_backoff( + method: HTTP_METHOD_T, + url: str, + *, + max_retries: int = 5, + base_wait_time: float = 1, + max_wait_time: float = 8, + retry_on_exceptions: Union[Type[Exception], Tuple[Type[Exception], ...]] = ( + requests.Timeout, + requests.ConnectionError, + ), + retry_on_status_codes: Union[int, Tuple[int, ...]] = HTTPStatus.SERVICE_UNAVAILABLE, + **kwargs, +) -> Response: + """Wrapper around requests to retry calls on an endpoint, with exponential backoff. + + Endpoint call is retried on exceptions (ex: connection timeout, proxy error,...) + and/or on specific status codes (ex: service unavailable). If the call failed more + than `max_retries`, the exception is thrown or `raise_for_status` is called on the + response object. + + Re-implement mechanisms from the `backoff` library to avoid adding an external + dependencies to `hugging_face_hub`. See https://github.com/litl/backoff. + + Args: + method (`Literal["GET", "OPTIONS", "HEAD", "POST", "PUT", "PATCH", "DELETE"]`): + HTTP method to perform. + url (`str`): + The URL of the resource to fetch. + max_retries (`int`, *optional*, defaults to `5`): + Maximum number of retries, defaults to 5 (no retries). + base_wait_time (`float`, *optional*, defaults to `1`): + Duration (in seconds) to wait before retrying the first time. + Wait time between retries then grows exponentially, capped by + `max_wait_time`. + max_wait_time (`float`, *optional*, defaults to `8`): + Maximum duration (in seconds) to wait before retrying. + retry_on_exceptions (`Type[Exception]` or `Tuple[Type[Exception]]`, *optional*): + Define which exceptions must be caught to retry the request. Can be a single type or a tuple of types. + By default, retry on `requests.Timeout` and `requests.ConnectionError`. + retry_on_status_codes (`int` or `Tuple[int]`, *optional*, defaults to `503`): + Define on which status codes the request must be retried. By default, only + HTTP 503 Service Unavailable is retried. + **kwargs (`dict`, *optional*): + kwargs to pass to `requests.request`. + + Example: + ``` + >>> from huggingface_hub.utils import http_backoff + + # Same usage as "requests.request". + >>> response = http_backoff("GET", "https://www.google.com") + >>> response.raise_for_status() + + # If you expect a Gateway Timeout from time to time + >>> http_backoff("PUT", upload_url, data=data, retry_on_status_codes=504) + >>> response.raise_for_status() + ``` + + <Tip warning={true}> + + When using `requests` it is possible to stream data by passing an iterator to the + `data` argument. On http backoff this is a problem as the iterator is not reset + after a failed call. This issue is mitigated for file objects or any IO streams + by saving the initial position of the cursor (with `data.tell()`) and resetting the + cursor between each call (with `data.seek()`). For arbitrary iterators, http backoff + will fail. If this is a hard constraint for you, please let us know by opening an + issue on [Github](https://github.com/huggingface/huggingface_hub). + + </Tip> + """ + if isinstance(retry_on_exceptions, type): # Tuple from single exception type + retry_on_exceptions = (retry_on_exceptions,) + + if isinstance(retry_on_status_codes, int): # Tuple from single status code + retry_on_status_codes = (retry_on_status_codes,) + + nb_tries = 0 + sleep_time = base_wait_time + + # If `data` is used and is a file object (or any IO), it will be consumed on the + # first HTTP request. We need to save the initial position so that the full content + # of the file is re-sent on http backoff. See warning tip in docstring. + io_obj_initial_pos = None + if "data" in kwargs and isinstance(kwargs["data"], (io.IOBase, SliceFileObj)): + io_obj_initial_pos = kwargs["data"].tell() + + session = get_session() + while True: + nb_tries += 1 + try: + # If `data` is used and is a file object (or any IO), set back cursor to + # initial position. + if io_obj_initial_pos is not None: + kwargs["data"].seek(io_obj_initial_pos) + + # Perform request and return if status_code is not in the retry list. + response = session.request(method=method, url=url, **kwargs) + if response.status_code not in retry_on_status_codes: + return response + + # Wrong status code returned (HTTP 503 for instance) + logger.warning(f"HTTP Error {response.status_code} thrown while requesting {method} {url}") + if nb_tries > max_retries: + response.raise_for_status() # Will raise uncaught exception + # We return response to avoid infinite loop in the corner case where the + # user ask for retry on a status code that doesn't raise_for_status. + return response + + except retry_on_exceptions as err: + logger.warning(f"'{err}' thrown while requesting {method} {url}") + + if isinstance(err, requests.ConnectionError): + reset_sessions() # In case of SSLError it's best to reset the shared requests.Session objects + + if nb_tries > max_retries: + raise err + + # Sleep for X seconds + logger.warning(f"Retrying in {sleep_time}s [Retry {nb_tries}/{max_retries}].") + time.sleep(sleep_time) + + # Update sleep time for next retry + sleep_time = min(max_wait_time, sleep_time * 2) # Exponential backoff + + +def fix_hf_endpoint_in_url(url: str, endpoint: Optional[str]) -> str: + """Replace the default endpoint in a URL by a custom one. + + This is useful when using a proxy and the Hugging Face Hub returns a URL with the default endpoint. + """ + endpoint = endpoint.rstrip("/") if endpoint else constants.ENDPOINT + # check if a proxy has been set => if yes, update the returned URL to use the proxy + if endpoint not in (constants._HF_DEFAULT_ENDPOINT, constants._HF_DEFAULT_STAGING_ENDPOINT): + url = url.replace(constants._HF_DEFAULT_ENDPOINT, endpoint) + url = url.replace(constants._HF_DEFAULT_STAGING_ENDPOINT, endpoint) + return url + + +def hf_raise_for_status(response: Response, endpoint_name: Optional[str] = None) -> None: + """ + Internal version of `response.raise_for_status()` that will refine a + potential HTTPError. Raised exception will be an instance of `HfHubHTTPError`. + + This helper is meant to be the unique method to raise_for_status when making a call + to the Hugging Face Hub. + + + Example: + ```py + import requests + from huggingface_hub.utils import get_session, hf_raise_for_status, HfHubHTTPError + + response = get_session().post(...) + try: + hf_raise_for_status(response) + except HfHubHTTPError as e: + print(str(e)) # formatted message + e.request_id, e.server_message # details returned by server + + # Complete the error message with additional information once it's raised + e.append_to_message("\n`create_commit` expects the repository to exist.") + raise + ``` + + Args: + response (`Response`): + Response from the server. + endpoint_name (`str`, *optional*): + Name of the endpoint that has been called. If provided, the error message + will be more complete. + + <Tip warning={true}> + + Raises when the request has failed: + + - [`~utils.RepositoryNotFoundError`] + If the repository to download from cannot be found. This may be because it + doesn't exist, because `repo_type` is not set correctly, or because the repo + is `private` and you do not have access. + - [`~utils.GatedRepoError`] + If the repository exists but is gated and the user is not on the authorized + list. + - [`~utils.RevisionNotFoundError`] + If the repository exists but the revision couldn't be find. + - [`~utils.EntryNotFoundError`] + If the repository exists but the entry (e.g. the requested file) couldn't be + find. + - [`~utils.BadRequestError`] + If request failed with a HTTP 400 BadRequest error. + - [`~utils.HfHubHTTPError`] + If request failed for a reason not listed above. + + </Tip> + """ + try: + response.raise_for_status() + except HTTPError as e: + error_code = response.headers.get("X-Error-Code") + error_message = response.headers.get("X-Error-Message") + + if error_code == "RevisionNotFound": + message = f"{response.status_code} Client Error." + "\n\n" + f"Revision Not Found for url: {response.url}." + raise _format(RevisionNotFoundError, message, response) from e + + elif error_code == "EntryNotFound": + message = f"{response.status_code} Client Error." + "\n\n" + f"Entry Not Found for url: {response.url}." + raise _format(EntryNotFoundError, message, response) from e + + elif error_code == "GatedRepo": + message = ( + f"{response.status_code} Client Error." + "\n\n" + f"Cannot access gated repo for url {response.url}." + ) + raise _format(GatedRepoError, message, response) from e + + elif error_message == "Access to this resource is disabled.": + message = ( + f"{response.status_code} Client Error." + + "\n\n" + + f"Cannot access repository for url {response.url}." + + "\n" + + "Access to this resource is disabled." + ) + raise _format(DisabledRepoError, message, response) from e + + elif error_code == "RepoNotFound" or ( + response.status_code == 401 + and error_message != "Invalid credentials in Authorization header" + and response.request is not None + and response.request.url is not None + and REPO_API_REGEX.search(response.request.url) is not None + ): + # 401 is misleading as it is returned for: + # - private and gated repos if user is not authenticated + # - missing repos + # => for now, we process them as `RepoNotFound` anyway. + # See https://gist.github.com/Wauplin/46c27ad266b15998ce56a6603796f0b9 + message = ( + f"{response.status_code} Client Error." + + "\n\n" + + f"Repository Not Found for url: {response.url}." + + "\nPlease make sure you specified the correct `repo_id` and" + " `repo_type`.\nIf you are trying to access a private or gated repo," + " make sure you are authenticated." + ) + raise _format(RepositoryNotFoundError, message, response) from e + + elif response.status_code == 400: + message = ( + f"\n\nBad request for {endpoint_name} endpoint:" if endpoint_name is not None else "\n\nBad request:" + ) + raise _format(BadRequestError, message, response) from e + + elif response.status_code == 403: + message = ( + f"\n\n{response.status_code} Forbidden: {error_message}." + + f"\nCannot access content at: {response.url}." + + "\nMake sure your token has the correct permissions." + ) + raise _format(HfHubHTTPError, message, response) from e + + elif response.status_code == 416: + range_header = response.request.headers.get("Range") + message = f"{e}. Requested range: {range_header}. Content-Range: {response.headers.get('Content-Range')}." + raise _format(HfHubHTTPError, message, response) from e + + # Convert `HTTPError` into a `HfHubHTTPError` to display request information + # as well (request id and/or server error message) + raise _format(HfHubHTTPError, str(e), response) from e + + +def _format(error_type: Type[HfHubHTTPError], custom_message: str, response: Response) -> HfHubHTTPError: + server_errors = [] + + # Retrieve server error from header + from_headers = response.headers.get("X-Error-Message") + if from_headers is not None: + server_errors.append(from_headers) + + # Retrieve server error from body + try: + # Case errors are returned in a JSON format + data = response.json() + + error = data.get("error") + if error is not None: + if isinstance(error, list): + # Case {'error': ['my error 1', 'my error 2']} + server_errors.extend(error) + else: + # Case {'error': 'my error'} + server_errors.append(error) + + errors = data.get("errors") + if errors is not None: + # Case {'errors': [{'message': 'my error 1'}, {'message': 'my error 2'}]} + for error in errors: + if "message" in error: + server_errors.append(error["message"]) + + except JSONDecodeError: + # If content is not JSON and not HTML, append the text + content_type = response.headers.get("Content-Type", "") + if response.text and "html" not in content_type.lower(): + server_errors.append(response.text) + + # Strip all server messages + server_errors = [str(line).strip() for line in server_errors if str(line).strip()] + + # Deduplicate server messages (keep order) + # taken from https://stackoverflow.com/a/17016257 + server_errors = list(dict.fromkeys(server_errors)) + + # Format server error + server_message = "\n".join(server_errors) + + # Add server error to custom message + final_error_message = custom_message + if server_message and server_message.lower() not in custom_message.lower(): + if "\n\n" in custom_message: + final_error_message += "\n" + server_message + else: + final_error_message += "\n\n" + server_message + # Add Request ID + request_id = str(response.headers.get(X_REQUEST_ID, "")) + if request_id: + request_id_message = f" (Request ID: {request_id})" + else: + # Fallback to X-Amzn-Trace-Id + request_id = str(response.headers.get(X_AMZN_TRACE_ID, "")) + if request_id: + request_id_message = f" (Amzn Trace ID: {request_id})" + if request_id and request_id.lower() not in final_error_message.lower(): + if "\n" in final_error_message: + newline_index = final_error_message.index("\n") + final_error_message = ( + final_error_message[:newline_index] + request_id_message + final_error_message[newline_index:] + ) + else: + final_error_message += request_id_message + + # Return + return error_type(final_error_message.strip(), response=response, server_message=server_message or None) + + +def _curlify(request: requests.PreparedRequest) -> str: + """Convert a `requests.PreparedRequest` into a curl command (str). + + Used for debug purposes only. + + Implementation vendored from https://github.com/ofw/curlify/blob/master/curlify.py. + MIT License Copyright (c) 2016 Egor. + """ + parts: List[Tuple[Any, Any]] = [ + ("curl", None), + ("-X", request.method), + ] + + for k, v in sorted(request.headers.items()): + if k.lower() == "authorization": + v = "<TOKEN>" # Hide authorization header, no matter its value (can be Bearer, Key, etc.) + parts += [("-H", "{0}: {1}".format(k, v))] + + if request.body: + body = request.body + if isinstance(body, bytes): + body = body.decode("utf-8", errors="ignore") + if len(body) > 1000: + body = body[:1000] + " ... [truncated]" + parts += [("-d", body.replace("\n", ""))] + + parts += [(None, request.url)] + + flat_parts = [] + for k, v in parts: + if k: + flat_parts.append(quote(k)) + if v: + flat_parts.append(quote(v)) + + return " ".join(flat_parts) + + +# Regex to parse HTTP Range header +RANGE_REGEX = re.compile(r"^\s*bytes\s*=\s*(\d*)\s*-\s*(\d*)\s*$", re.IGNORECASE) + + +def _adjust_range_header(original_range: Optional[str], resume_size: int) -> Optional[str]: + """ + Adjust HTTP Range header to account for resume position. + """ + if not original_range: + return f"bytes={resume_size}-" + + if "," in original_range: + raise ValueError(f"Multiple ranges detected - {original_range!r}, not supported yet.") + + match = RANGE_REGEX.match(original_range) + if not match: + raise RuntimeError(f"Invalid range format - {original_range!r}.") + start, end = match.groups() + + if not start: + if not end: + raise RuntimeError(f"Invalid range format - {original_range!r}.") + + new_suffix = int(end) - resume_size + new_range = f"bytes=-{new_suffix}" + if new_suffix <= 0: + raise RuntimeError(f"Empty new range - {new_range!r}.") + return new_range + + start = int(start) + new_start = start + resume_size + if end: + end = int(end) + new_range = f"bytes={new_start}-{end}" + if new_start > end: + raise RuntimeError(f"Empty new range - {new_range!r}.") + return new_range + + return f"bytes={new_start}-" diff --git a/.venv/lib/python3.12/site-packages/huggingface_hub/utils/_lfs.py b/.venv/lib/python3.12/site-packages/huggingface_hub/utils/_lfs.py new file mode 100644 index 00000000..307f371f --- /dev/null +++ b/.venv/lib/python3.12/site-packages/huggingface_hub/utils/_lfs.py @@ -0,0 +1,110 @@ +# coding=utf-8 +# Copyright 2019-present, the HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Git LFS related utilities""" + +import io +import os +from contextlib import AbstractContextManager +from typing import BinaryIO + + +class SliceFileObj(AbstractContextManager): + """ + Utility context manager to read a *slice* of a seekable file-like object as a seekable, file-like object. + + This is NOT thread safe + + Inspired by stackoverflow.com/a/29838711/593036 + + Credits to @julien-c + + Args: + fileobj (`BinaryIO`): + A file-like object to slice. MUST implement `tell()` and `seek()` (and `read()` of course). + `fileobj` will be reset to its original position when exiting the context manager. + seek_from (`int`): + The start of the slice (offset from position 0 in bytes). + read_limit (`int`): + The maximum number of bytes to read from the slice. + + Attributes: + previous_position (`int`): + The previous position + + Examples: + + Reading 200 bytes with an offset of 128 bytes from a file (ie bytes 128 to 327): + ```python + >>> with open("path/to/file", "rb") as file: + ... with SliceFileObj(file, seek_from=128, read_limit=200) as fslice: + ... fslice.read(...) + ``` + + Reading a file in chunks of 512 bytes + ```python + >>> import os + >>> chunk_size = 512 + >>> file_size = os.getsize("path/to/file") + >>> with open("path/to/file", "rb") as file: + ... for chunk_idx in range(ceil(file_size / chunk_size)): + ... with SliceFileObj(file, seek_from=chunk_idx * chunk_size, read_limit=chunk_size) as fslice: + ... chunk = fslice.read(...) + + ``` + """ + + def __init__(self, fileobj: BinaryIO, seek_from: int, read_limit: int): + self.fileobj = fileobj + self.seek_from = seek_from + self.read_limit = read_limit + + def __enter__(self): + self._previous_position = self.fileobj.tell() + end_of_stream = self.fileobj.seek(0, os.SEEK_END) + self._len = min(self.read_limit, end_of_stream - self.seek_from) + # ^^ The actual number of bytes that can be read from the slice + self.fileobj.seek(self.seek_from, io.SEEK_SET) + return self + + def __exit__(self, exc_type, exc_value, traceback): + self.fileobj.seek(self._previous_position, io.SEEK_SET) + + def read(self, n: int = -1): + pos = self.tell() + if pos >= self._len: + return b"" + remaining_amount = self._len - pos + data = self.fileobj.read(remaining_amount if n < 0 else min(n, remaining_amount)) + return data + + def tell(self) -> int: + return self.fileobj.tell() - self.seek_from + + def seek(self, offset: int, whence: int = os.SEEK_SET) -> int: + start = self.seek_from + end = start + self._len + if whence in (os.SEEK_SET, os.SEEK_END): + offset = start + offset if whence == os.SEEK_SET else end + offset + offset = max(start, min(offset, end)) + whence = os.SEEK_SET + elif whence == os.SEEK_CUR: + cur_pos = self.fileobj.tell() + offset = max(start - cur_pos, min(offset, end - cur_pos)) + else: + raise ValueError(f"whence value {whence} is not supported") + return self.fileobj.seek(offset, whence) - self.seek_from + + def __iter__(self): + yield self.read(n=4 * 1024 * 1024) diff --git a/.venv/lib/python3.12/site-packages/huggingface_hub/utils/_pagination.py b/.venv/lib/python3.12/site-packages/huggingface_hub/utils/_pagination.py new file mode 100644 index 00000000..f7ab4fe7 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/huggingface_hub/utils/_pagination.py @@ -0,0 +1,52 @@ +# coding=utf-8 +# Copyright 2022-present, the HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Contains utilities to handle pagination on Huggingface Hub.""" + +from typing import Dict, Iterable, Optional + +import requests + +from . import get_session, hf_raise_for_status, logging + + +logger = logging.get_logger(__name__) + + +def paginate(path: str, params: Dict, headers: Dict) -> Iterable: + """Fetch a list of models/datasets/spaces and paginate through results. + + This is using the same "Link" header format as GitHub. + See: + - https://requests.readthedocs.io/en/latest/api/#requests.Response.links + - https://docs.github.com/en/rest/guides/traversing-with-pagination#link-header + """ + session = get_session() + r = session.get(path, params=params, headers=headers) + hf_raise_for_status(r) + yield from r.json() + + # Follow pages + # Next link already contains query params + next_page = _get_next_page(r) + while next_page is not None: + logger.debug(f"Pagination detected. Requesting next page: {next_page}") + r = session.get(next_page, headers=headers) + hf_raise_for_status(r) + yield from r.json() + next_page = _get_next_page(r) + + +def _get_next_page(response: requests.Response) -> Optional[str]: + return response.links.get("next", {}).get("url") diff --git a/.venv/lib/python3.12/site-packages/huggingface_hub/utils/_paths.py b/.venv/lib/python3.12/site-packages/huggingface_hub/utils/_paths.py new file mode 100644 index 00000000..4f2c0ebc --- /dev/null +++ b/.venv/lib/python3.12/site-packages/huggingface_hub/utils/_paths.py @@ -0,0 +1,141 @@ +# coding=utf-8 +# Copyright 2022-present, the HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Contains utilities to handle paths in Huggingface Hub.""" + +from fnmatch import fnmatch +from pathlib import Path +from typing import Callable, Generator, Iterable, List, Optional, TypeVar, Union + + +T = TypeVar("T") + +# Always ignore `.git` and `.cache/huggingface` folders in commits +DEFAULT_IGNORE_PATTERNS = [ + ".git", + ".git/*", + "*/.git", + "**/.git/**", + ".cache/huggingface", + ".cache/huggingface/*", + "*/.cache/huggingface", + "**/.cache/huggingface/**", +] +# Forbidden to commit these folders +FORBIDDEN_FOLDERS = [".git", ".cache"] + + +def filter_repo_objects( + items: Iterable[T], + *, + allow_patterns: Optional[Union[List[str], str]] = None, + ignore_patterns: Optional[Union[List[str], str]] = None, + key: Optional[Callable[[T], str]] = None, +) -> Generator[T, None, None]: + """Filter repo objects based on an allowlist and a denylist. + + Input must be a list of paths (`str` or `Path`) or a list of arbitrary objects. + In the later case, `key` must be provided and specifies a function of one argument + that is used to extract a path from each element in iterable. + + Patterns are Unix shell-style wildcards which are NOT regular expressions. See + https://docs.python.org/3/library/fnmatch.html for more details. + + Args: + items (`Iterable`): + List of items to filter. + allow_patterns (`str` or `List[str]`, *optional*): + Patterns constituting the allowlist. If provided, item paths must match at + least one pattern from the allowlist. + ignore_patterns (`str` or `List[str]`, *optional*): + Patterns constituting the denylist. If provided, item paths must not match + any patterns from the denylist. + key (`Callable[[T], str]`, *optional*): + Single-argument function to extract a path from each item. If not provided, + the `items` must already be `str` or `Path`. + + Returns: + Filtered list of objects, as a generator. + + Raises: + :class:`ValueError`: + If `key` is not provided and items are not `str` or `Path`. + + Example usage with paths: + ```python + >>> # Filter only PDFs that are not hidden. + >>> list(filter_repo_objects( + ... ["aaa.PDF", "bbb.jpg", ".ccc.pdf", ".ddd.png"], + ... allow_patterns=["*.pdf"], + ... ignore_patterns=[".*"], + ... )) + ["aaa.pdf"] + ``` + + Example usage with objects: + ```python + >>> list(filter_repo_objects( + ... [ + ... CommitOperationAdd(path_or_fileobj="/tmp/aaa.pdf", path_in_repo="aaa.pdf") + ... CommitOperationAdd(path_or_fileobj="/tmp/bbb.jpg", path_in_repo="bbb.jpg") + ... CommitOperationAdd(path_or_fileobj="/tmp/.ccc.pdf", path_in_repo=".ccc.pdf") + ... CommitOperationAdd(path_or_fileobj="/tmp/.ddd.png", path_in_repo=".ddd.png") + ... ], + ... allow_patterns=["*.pdf"], + ... ignore_patterns=[".*"], + ... key=lambda x: x.repo_in_path + ... )) + [CommitOperationAdd(path_or_fileobj="/tmp/aaa.pdf", path_in_repo="aaa.pdf")] + ``` + """ + if isinstance(allow_patterns, str): + allow_patterns = [allow_patterns] + + if isinstance(ignore_patterns, str): + ignore_patterns = [ignore_patterns] + + if allow_patterns is not None: + allow_patterns = [_add_wildcard_to_directories(p) for p in allow_patterns] + if ignore_patterns is not None: + ignore_patterns = [_add_wildcard_to_directories(p) for p in ignore_patterns] + + if key is None: + + def _identity(item: T) -> str: + if isinstance(item, str): + return item + if isinstance(item, Path): + return str(item) + raise ValueError(f"Please provide `key` argument in `filter_repo_objects`: `{item}` is not a string.") + + key = _identity # Items must be `str` or `Path`, otherwise raise ValueError + + for item in items: + path = key(item) + + # Skip if there's an allowlist and path doesn't match any + if allow_patterns is not None and not any(fnmatch(path, r) for r in allow_patterns): + continue + + # Skip if there's a denylist and path matches any + if ignore_patterns is not None and any(fnmatch(path, r) for r in ignore_patterns): + continue + + yield item + + +def _add_wildcard_to_directories(pattern: str) -> str: + if pattern[-1] == "/": + return pattern + "*" + return pattern diff --git a/.venv/lib/python3.12/site-packages/huggingface_hub/utils/_runtime.py b/.venv/lib/python3.12/site-packages/huggingface_hub/utils/_runtime.py new file mode 100644 index 00000000..c8d82d41 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/huggingface_hub/utils/_runtime.py @@ -0,0 +1,379 @@ +# coding=utf-8 +# Copyright 2022-present, the HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Check presence of installed packages at runtime.""" + +import importlib.metadata +import os +import platform +import sys +import warnings +from typing import Any, Dict + +from .. import __version__, constants + + +_PY_VERSION: str = sys.version.split()[0].rstrip("+") + +_package_versions = {} + +_CANDIDATES = { + "aiohttp": {"aiohttp"}, + "fastai": {"fastai"}, + "fastapi": {"fastapi"}, + "fastcore": {"fastcore"}, + "gradio": {"gradio"}, + "graphviz": {"graphviz"}, + "hf_transfer": {"hf_transfer"}, + "jinja": {"Jinja2"}, + "keras": {"keras"}, + "numpy": {"numpy"}, + "pillow": {"Pillow"}, + "pydantic": {"pydantic"}, + "pydot": {"pydot"}, + "safetensors": {"safetensors"}, + "tensorboard": {"tensorboardX"}, + "tensorflow": ( + "tensorflow", + "tensorflow-cpu", + "tensorflow-gpu", + "tf-nightly", + "tf-nightly-cpu", + "tf-nightly-gpu", + "intel-tensorflow", + "intel-tensorflow-avx512", + "tensorflow-rocm", + "tensorflow-macos", + ), + "torch": {"torch"}, +} + +# Check once at runtime +for candidate_name, package_names in _CANDIDATES.items(): + _package_versions[candidate_name] = "N/A" + for name in package_names: + try: + _package_versions[candidate_name] = importlib.metadata.version(name) + break + except importlib.metadata.PackageNotFoundError: + pass + + +def _get_version(package_name: str) -> str: + return _package_versions.get(package_name, "N/A") + + +def is_package_available(package_name: str) -> bool: + return _get_version(package_name) != "N/A" + + +# Python +def get_python_version() -> str: + return _PY_VERSION + + +# Huggingface Hub +def get_hf_hub_version() -> str: + return __version__ + + +# aiohttp +def is_aiohttp_available() -> bool: + return is_package_available("aiohttp") + + +def get_aiohttp_version() -> str: + return _get_version("aiohttp") + + +# FastAI +def is_fastai_available() -> bool: + return is_package_available("fastai") + + +def get_fastai_version() -> str: + return _get_version("fastai") + + +# FastAPI +def is_fastapi_available() -> bool: + return is_package_available("fastapi") + + +def get_fastapi_version() -> str: + return _get_version("fastapi") + + +# Fastcore +def is_fastcore_available() -> bool: + return is_package_available("fastcore") + + +def get_fastcore_version() -> str: + return _get_version("fastcore") + + +# FastAI +def is_gradio_available() -> bool: + return is_package_available("gradio") + + +def get_gradio_version() -> str: + return _get_version("gradio") + + +# Graphviz +def is_graphviz_available() -> bool: + return is_package_available("graphviz") + + +def get_graphviz_version() -> str: + return _get_version("graphviz") + + +# hf_transfer +def is_hf_transfer_available() -> bool: + return is_package_available("hf_transfer") + + +def get_hf_transfer_version() -> str: + return _get_version("hf_transfer") + + +# keras +def is_keras_available() -> bool: + return is_package_available("keras") + + +def get_keras_version() -> str: + return _get_version("keras") + + +# Numpy +def is_numpy_available() -> bool: + return is_package_available("numpy") + + +def get_numpy_version() -> str: + return _get_version("numpy") + + +# Jinja +def is_jinja_available() -> bool: + return is_package_available("jinja") + + +def get_jinja_version() -> str: + return _get_version("jinja") + + +# Pillow +def is_pillow_available() -> bool: + return is_package_available("pillow") + + +def get_pillow_version() -> str: + return _get_version("pillow") + + +# Pydantic +def is_pydantic_available() -> bool: + if not is_package_available("pydantic"): + return False + # For Pydantic, we add an extra check to test whether it is correctly installed or not. If both pydantic 2.x and + # typing_extensions<=4.5.0 are installed, then pydantic will fail at import time. This should not happen when + # it is installed with `pip install huggingface_hub[inference]` but it can happen when it is installed manually + # by the user in an environment that we don't control. + # + # Usually we won't need to do this kind of check on optional dependencies. However, pydantic is a special case + # as it is automatically imported when doing `from huggingface_hub import ...` even if the user doesn't use it. + # + # See https://github.com/huggingface/huggingface_hub/pull/1829 for more details. + try: + from pydantic import validator # noqa: F401 + except ImportError: + # Example: "ImportError: cannot import name 'TypeAliasType' from 'typing_extensions'" + warnings.warn( + "Pydantic is installed but cannot be imported. Please check your installation. `huggingface_hub` will " + "default to not using Pydantic. Error message: '{e}'" + ) + return False + return True + + +def get_pydantic_version() -> str: + return _get_version("pydantic") + + +# Pydot +def is_pydot_available() -> bool: + return is_package_available("pydot") + + +def get_pydot_version() -> str: + return _get_version("pydot") + + +# Tensorboard +def is_tensorboard_available() -> bool: + return is_package_available("tensorboard") + + +def get_tensorboard_version() -> str: + return _get_version("tensorboard") + + +# Tensorflow +def is_tf_available() -> bool: + return is_package_available("tensorflow") + + +def get_tf_version() -> str: + return _get_version("tensorflow") + + +# Torch +def is_torch_available() -> bool: + return is_package_available("torch") + + +def get_torch_version() -> str: + return _get_version("torch") + + +# Safetensors +def is_safetensors_available() -> bool: + return is_package_available("safetensors") + + +# Shell-related helpers +try: + # Set to `True` if script is running in a Google Colab notebook. + # If running in Google Colab, git credential store is set globally which makes the + # warning disappear. See https://github.com/huggingface/huggingface_hub/issues/1043 + # + # Taken from https://stackoverflow.com/a/63519730. + _is_google_colab = "google.colab" in str(get_ipython()) # type: ignore # noqa: F821 +except NameError: + _is_google_colab = False + + +def is_notebook() -> bool: + """Return `True` if code is executed in a notebook (Jupyter, Colab, QTconsole). + + Taken from https://stackoverflow.com/a/39662359. + Adapted to make it work with Google colab as well. + """ + try: + shell_class = get_ipython().__class__ # type: ignore # noqa: F821 + for parent_class in shell_class.__mro__: # e.g. "is subclass of" + if parent_class.__name__ == "ZMQInteractiveShell": + return True # Jupyter notebook, Google colab or qtconsole + return False + except NameError: + return False # Probably standard Python interpreter + + +def is_google_colab() -> bool: + """Return `True` if code is executed in a Google colab. + + Taken from https://stackoverflow.com/a/63519730. + """ + return _is_google_colab + + +def is_colab_enterprise() -> bool: + """Return `True` if code is executed in a Google Colab Enterprise environment.""" + return os.environ.get("VERTEX_PRODUCT") == "COLAB_ENTERPRISE" + + +def dump_environment_info() -> Dict[str, Any]: + """Dump information about the machine to help debugging issues. + + Similar helper exist in: + - `datasets` (https://github.com/huggingface/datasets/blob/main/src/datasets/commands/env.py) + - `diffusers` (https://github.com/huggingface/diffusers/blob/main/src/diffusers/commands/env.py) + - `transformers` (https://github.com/huggingface/transformers/blob/main/src/transformers/commands/env.py) + """ + from huggingface_hub import get_token, whoami + from huggingface_hub.utils import list_credential_helpers + + token = get_token() + + # Generic machine info + info: Dict[str, Any] = { + "huggingface_hub version": get_hf_hub_version(), + "Platform": platform.platform(), + "Python version": get_python_version(), + } + + # Interpreter info + try: + shell_class = get_ipython().__class__ # type: ignore # noqa: F821 + info["Running in iPython ?"] = "Yes" + info["iPython shell"] = shell_class.__name__ + except NameError: + info["Running in iPython ?"] = "No" + info["Running in notebook ?"] = "Yes" if is_notebook() else "No" + info["Running in Google Colab ?"] = "Yes" if is_google_colab() else "No" + info["Running in Google Colab Enterprise ?"] = "Yes" if is_colab_enterprise() else "No" + # Login info + info["Token path ?"] = constants.HF_TOKEN_PATH + info["Has saved token ?"] = token is not None + if token is not None: + try: + info["Who am I ?"] = whoami()["name"] + except Exception: + pass + + try: + info["Configured git credential helpers"] = ", ".join(list_credential_helpers()) + except Exception: + pass + + # Installed dependencies + info["FastAI"] = get_fastai_version() + info["Tensorflow"] = get_tf_version() + info["Torch"] = get_torch_version() + info["Jinja2"] = get_jinja_version() + info["Graphviz"] = get_graphviz_version() + info["keras"] = get_keras_version() + info["Pydot"] = get_pydot_version() + info["Pillow"] = get_pillow_version() + info["hf_transfer"] = get_hf_transfer_version() + info["gradio"] = get_gradio_version() + info["tensorboard"] = get_tensorboard_version() + info["numpy"] = get_numpy_version() + info["pydantic"] = get_pydantic_version() + info["aiohttp"] = get_aiohttp_version() + + # Environment variables + info["ENDPOINT"] = constants.ENDPOINT + info["HF_HUB_CACHE"] = constants.HF_HUB_CACHE + info["HF_ASSETS_CACHE"] = constants.HF_ASSETS_CACHE + info["HF_TOKEN_PATH"] = constants.HF_TOKEN_PATH + info["HF_STORED_TOKENS_PATH"] = constants.HF_STORED_TOKENS_PATH + info["HF_HUB_OFFLINE"] = constants.HF_HUB_OFFLINE + info["HF_HUB_DISABLE_TELEMETRY"] = constants.HF_HUB_DISABLE_TELEMETRY + info["HF_HUB_DISABLE_PROGRESS_BARS"] = constants.HF_HUB_DISABLE_PROGRESS_BARS + info["HF_HUB_DISABLE_SYMLINKS_WARNING"] = constants.HF_HUB_DISABLE_SYMLINKS_WARNING + info["HF_HUB_DISABLE_EXPERIMENTAL_WARNING"] = constants.HF_HUB_DISABLE_EXPERIMENTAL_WARNING + info["HF_HUB_DISABLE_IMPLICIT_TOKEN"] = constants.HF_HUB_DISABLE_IMPLICIT_TOKEN + info["HF_HUB_ENABLE_HF_TRANSFER"] = constants.HF_HUB_ENABLE_HF_TRANSFER + info["HF_HUB_ETAG_TIMEOUT"] = constants.HF_HUB_ETAG_TIMEOUT + info["HF_HUB_DOWNLOAD_TIMEOUT"] = constants.HF_HUB_DOWNLOAD_TIMEOUT + + print("\nCopy-and-paste the text below in your GitHub issue.\n") + print("\n".join([f"- {prop}: {val}" for prop, val in info.items()]) + "\n") + return info diff --git a/.venv/lib/python3.12/site-packages/huggingface_hub/utils/_safetensors.py b/.venv/lib/python3.12/site-packages/huggingface_hub/utils/_safetensors.py new file mode 100644 index 00000000..38546c6d --- /dev/null +++ b/.venv/lib/python3.12/site-packages/huggingface_hub/utils/_safetensors.py @@ -0,0 +1,111 @@ +import functools +import operator +from collections import defaultdict +from dataclasses import dataclass, field +from typing import Dict, List, Literal, Optional, Tuple + + +FILENAME_T = str +TENSOR_NAME_T = str +DTYPE_T = Literal["F64", "F32", "F16", "BF16", "I64", "I32", "I16", "I8", "U8", "BOOL"] + + +@dataclass +class TensorInfo: + """Information about a tensor. + + For more details regarding the safetensors format, check out https://huggingface.co/docs/safetensors/index#format. + + Attributes: + dtype (`str`): + The data type of the tensor ("F64", "F32", "F16", "BF16", "I64", "I32", "I16", "I8", "U8", "BOOL"). + shape (`List[int]`): + The shape of the tensor. + data_offsets (`Tuple[int, int]`): + The offsets of the data in the file as a tuple `[BEGIN, END]`. + parameter_count (`int`): + The number of parameters in the tensor. + """ + + dtype: DTYPE_T + shape: List[int] + data_offsets: Tuple[int, int] + parameter_count: int = field(init=False) + + def __post_init__(self) -> None: + # Taken from https://stackoverflow.com/a/13840436 + try: + self.parameter_count = functools.reduce(operator.mul, self.shape) + except TypeError: + self.parameter_count = 1 # scalar value has no shape + + +@dataclass +class SafetensorsFileMetadata: + """Metadata for a Safetensors file hosted on the Hub. + + This class is returned by [`parse_safetensors_file_metadata`]. + + For more details regarding the safetensors format, check out https://huggingface.co/docs/safetensors/index#format. + + Attributes: + metadata (`Dict`): + The metadata contained in the file. + tensors (`Dict[str, TensorInfo]`): + A map of all tensors. Keys are tensor names and values are information about the corresponding tensor, as a + [`TensorInfo`] object. + parameter_count (`Dict[str, int]`): + A map of the number of parameters per data type. Keys are data types and values are the number of parameters + of that data type. + """ + + metadata: Dict[str, str] + tensors: Dict[TENSOR_NAME_T, TensorInfo] + parameter_count: Dict[DTYPE_T, int] = field(init=False) + + def __post_init__(self) -> None: + parameter_count: Dict[DTYPE_T, int] = defaultdict(int) + for tensor in self.tensors.values(): + parameter_count[tensor.dtype] += tensor.parameter_count + self.parameter_count = dict(parameter_count) + + +@dataclass +class SafetensorsRepoMetadata: + """Metadata for a Safetensors repo. + + A repo is considered to be a Safetensors repo if it contains either a 'model.safetensors' weight file (non-shared + model) or a 'model.safetensors.index.json' index file (sharded model) at its root. + + This class is returned by [`get_safetensors_metadata`]. + + For more details regarding the safetensors format, check out https://huggingface.co/docs/safetensors/index#format. + + Attributes: + metadata (`Dict`, *optional*): + The metadata contained in the 'model.safetensors.index.json' file, if it exists. Only populated for sharded + models. + sharded (`bool`): + Whether the repo contains a sharded model or not. + weight_map (`Dict[str, str]`): + A map of all weights. Keys are tensor names and values are filenames of the files containing the tensors. + files_metadata (`Dict[str, SafetensorsFileMetadata]`): + A map of all files metadata. Keys are filenames and values are the metadata of the corresponding file, as + a [`SafetensorsFileMetadata`] object. + parameter_count (`Dict[str, int]`): + A map of the number of parameters per data type. Keys are data types and values are the number of parameters + of that data type. + """ + + metadata: Optional[Dict] + sharded: bool + weight_map: Dict[TENSOR_NAME_T, FILENAME_T] # tensor name -> filename + files_metadata: Dict[FILENAME_T, SafetensorsFileMetadata] # filename -> metadata + parameter_count: Dict[DTYPE_T, int] = field(init=False) + + def __post_init__(self) -> None: + parameter_count: Dict[DTYPE_T, int] = defaultdict(int) + for file_metadata in self.files_metadata.values(): + for dtype, nb_parameters_ in file_metadata.parameter_count.items(): + parameter_count[dtype] += nb_parameters_ + self.parameter_count = dict(parameter_count) diff --git a/.venv/lib/python3.12/site-packages/huggingface_hub/utils/_subprocess.py b/.venv/lib/python3.12/site-packages/huggingface_hub/utils/_subprocess.py new file mode 100644 index 00000000..fdabf1c4 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/huggingface_hub/utils/_subprocess.py @@ -0,0 +1,144 @@ +# coding=utf-8 +# Copyright 2021 The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License +"""Contains utilities to easily handle subprocesses in `huggingface_hub`.""" + +import os +import subprocess +import sys +from contextlib import contextmanager +from io import StringIO +from pathlib import Path +from typing import IO, Generator, List, Optional, Tuple, Union + +from .logging import get_logger + + +logger = get_logger(__name__) + + +@contextmanager +def capture_output() -> Generator[StringIO, None, None]: + """Capture output that is printed to terminal. + + Taken from https://stackoverflow.com/a/34738440 + + Example: + ```py + >>> with capture_output() as output: + ... print("hello world") + >>> assert output.getvalue() == "hello world\n" + ``` + """ + output = StringIO() + previous_output = sys.stdout + sys.stdout = output + try: + yield output + finally: + sys.stdout = previous_output + + +def run_subprocess( + command: Union[str, List[str]], + folder: Optional[Union[str, Path]] = None, + check=True, + **kwargs, +) -> subprocess.CompletedProcess: + """ + Method to run subprocesses. Calling this will capture the `stderr` and `stdout`, + please call `subprocess.run` manually in case you would like for them not to + be captured. + + Args: + command (`str` or `List[str]`): + The command to execute as a string or list of strings. + folder (`str`, *optional*): + The folder in which to run the command. Defaults to current working + directory (from `os.getcwd()`). + check (`bool`, *optional*, defaults to `True`): + Setting `check` to `True` will raise a `subprocess.CalledProcessError` + when the subprocess has a non-zero exit code. + kwargs (`Dict[str]`): + Keyword arguments to be passed to the `subprocess.run` underlying command. + + Returns: + `subprocess.CompletedProcess`: The completed process. + """ + if isinstance(command, str): + command = command.split() + + if isinstance(folder, Path): + folder = str(folder) + + return subprocess.run( + command, + stderr=subprocess.PIPE, + stdout=subprocess.PIPE, + check=check, + encoding="utf-8", + errors="replace", # if not utf-8, replace char by � + cwd=folder or os.getcwd(), + **kwargs, + ) + + +@contextmanager +def run_interactive_subprocess( + command: Union[str, List[str]], + folder: Optional[Union[str, Path]] = None, + **kwargs, +) -> Generator[Tuple[IO[str], IO[str]], None, None]: + """Run a subprocess in an interactive mode in a context manager. + + Args: + command (`str` or `List[str]`): + The command to execute as a string or list of strings. + folder (`str`, *optional*): + The folder in which to run the command. Defaults to current working + directory (from `os.getcwd()`). + kwargs (`Dict[str]`): + Keyword arguments to be passed to the `subprocess.run` underlying command. + + Returns: + `Tuple[IO[str], IO[str]]`: A tuple with `stdin` and `stdout` to interact + with the process (input and output are utf-8 encoded). + + Example: + ```python + with _interactive_subprocess("git credential-store get") as (stdin, stdout): + # Write to stdin + stdin.write("url=hf.co\nusername=obama\n".encode("utf-8")) + stdin.flush() + + # Read from stdout + output = stdout.read().decode("utf-8") + ``` + """ + if isinstance(command, str): + command = command.split() + + with subprocess.Popen( + command, + stdin=subprocess.PIPE, + stdout=subprocess.PIPE, + stderr=subprocess.STDOUT, + encoding="utf-8", + errors="replace", # if not utf-8, replace char by � + cwd=folder or os.getcwd(), + **kwargs, + ) as process: + assert process.stdin is not None, "subprocess is opened as subprocess.PIPE" + assert process.stdout is not None, "subprocess is opened as subprocess.PIPE" + yield process.stdin, process.stdout diff --git a/.venv/lib/python3.12/site-packages/huggingface_hub/utils/_telemetry.py b/.venv/lib/python3.12/site-packages/huggingface_hub/utils/_telemetry.py new file mode 100644 index 00000000..2ba4a634 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/huggingface_hub/utils/_telemetry.py @@ -0,0 +1,126 @@ +from queue import Queue +from threading import Lock, Thread +from typing import Dict, Optional, Union +from urllib.parse import quote + +from .. import constants, logging +from . import build_hf_headers, get_session, hf_raise_for_status + + +logger = logging.get_logger(__name__) + +# Telemetry is sent by a separate thread to avoid blocking the main thread. +# A daemon thread is started once and consume tasks from the _TELEMETRY_QUEUE. +# If the thread stops for some reason -shouldn't happen-, we restart a new one. +_TELEMETRY_THREAD: Optional[Thread] = None +_TELEMETRY_THREAD_LOCK = Lock() # Lock to avoid starting multiple threads in parallel +_TELEMETRY_QUEUE: Queue = Queue() + + +def send_telemetry( + topic: str, + *, + library_name: Optional[str] = None, + library_version: Optional[str] = None, + user_agent: Union[Dict, str, None] = None, +) -> None: + """ + Sends telemetry that helps tracking usage of different HF libraries. + + This usage data helps us debug issues and prioritize new features. However, we understand that not everyone wants + to share additional information, and we respect your privacy. You can disable telemetry collection by setting the + `HF_HUB_DISABLE_TELEMETRY=1` as environment variable. Telemetry is also disabled in offline mode (i.e. when setting + `HF_HUB_OFFLINE=1`). + + Telemetry collection is run in a separate thread to minimize impact for the user. + + Args: + topic (`str`): + Name of the topic that is monitored. The topic is directly used to build the URL. If you want to monitor + subtopics, just use "/" separation. Examples: "gradio", "transformers/examples",... + library_name (`str`, *optional*): + The name of the library that is making the HTTP request. Will be added to the user-agent header. + library_version (`str`, *optional*): + The version of the library that is making the HTTP request. Will be added to the user-agent header. + user_agent (`str`, `dict`, *optional*): + The user agent info in the form of a dictionary or a single string. It will be completed with information about the installed packages. + + Example: + ```py + >>> from huggingface_hub.utils import send_telemetry + + # Send telemetry without library information + >>> send_telemetry("ping") + + # Send telemetry to subtopic with library information + >>> send_telemetry("gradio/local_link", library_name="gradio", library_version="3.22.1") + + # Send telemetry with additional data + >>> send_telemetry( + ... topic="examples", + ... library_name="transformers", + ... library_version="4.26.0", + ... user_agent={"pipeline": "text_classification", "framework": "flax"}, + ... ) + ``` + """ + if constants.HF_HUB_OFFLINE or constants.HF_HUB_DISABLE_TELEMETRY: + return + + _start_telemetry_thread() # starts thread only if doesn't exist yet + _TELEMETRY_QUEUE.put( + {"topic": topic, "library_name": library_name, "library_version": library_version, "user_agent": user_agent} + ) + + +def _start_telemetry_thread(): + """Start a daemon thread to consume tasks from the telemetry queue. + + If the thread is interrupted, start a new one. + """ + with _TELEMETRY_THREAD_LOCK: # avoid to start multiple threads if called concurrently + global _TELEMETRY_THREAD + if _TELEMETRY_THREAD is None or not _TELEMETRY_THREAD.is_alive(): + _TELEMETRY_THREAD = Thread(target=_telemetry_worker, daemon=True) + _TELEMETRY_THREAD.start() + + +def _telemetry_worker(): + """Wait for a task and consume it.""" + while True: + kwargs = _TELEMETRY_QUEUE.get() + _send_telemetry_in_thread(**kwargs) + _TELEMETRY_QUEUE.task_done() + + +def _send_telemetry_in_thread( + topic: str, + *, + library_name: Optional[str] = None, + library_version: Optional[str] = None, + user_agent: Union[Dict, str, None] = None, +) -> None: + """Contains the actual data sending data to the Hub. + + This function is called directly in gradio's analytics because + it is not possible to send telemetry from a daemon thread. + + See here: https://github.com/gradio-app/gradio/pull/8180 + + Please do not rename or remove this function. + """ + path = "/".join(quote(part) for part in topic.split("/") if len(part) > 0) + try: + r = get_session().head( + f"{constants.ENDPOINT}/api/telemetry/{path}", + headers=build_hf_headers( + token=False, # no need to send a token for telemetry + library_name=library_name, + library_version=library_version, + user_agent=user_agent, + ), + ) + hf_raise_for_status(r) + except Exception as e: + # We don't want to error in case of connection errors of any kind. + logger.debug(f"Error while sending telemetry: {e}") diff --git a/.venv/lib/python3.12/site-packages/huggingface_hub/utils/_typing.py b/.venv/lib/python3.12/site-packages/huggingface_hub/utils/_typing.py new file mode 100644 index 00000000..b8388ca0 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/huggingface_hub/utils/_typing.py @@ -0,0 +1,75 @@ +# coding=utf-8 +# Copyright 2022-present, the HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Handle typing imports based on system compatibility.""" + +import sys +from typing import Any, Callable, List, Literal, Type, TypeVar, Union, get_args, get_origin + + +UNION_TYPES: List[Any] = [Union] +if sys.version_info >= (3, 10): + from types import UnionType + + UNION_TYPES += [UnionType] + + +HTTP_METHOD_T = Literal["GET", "OPTIONS", "HEAD", "POST", "PUT", "PATCH", "DELETE"] + +# type hint meaning "function signature not changed by decorator" +CallableT = TypeVar("CallableT", bound=Callable) + +_JSON_SERIALIZABLE_TYPES = (int, float, str, bool, type(None)) + + +def is_jsonable(obj: Any) -> bool: + """Check if an object is JSON serializable. + + This is a weak check, as it does not check for the actual JSON serialization, but only for the types of the object. + It works correctly for basic use cases but do not guarantee an exhaustive check. + + Object is considered to be recursively json serializable if: + - it is an instance of int, float, str, bool, or NoneType + - it is a list or tuple and all its items are json serializable + - it is a dict and all its keys are strings and all its values are json serializable + """ + try: + if isinstance(obj, _JSON_SERIALIZABLE_TYPES): + return True + if isinstance(obj, (list, tuple)): + return all(is_jsonable(item) for item in obj) + if isinstance(obj, dict): + return all(isinstance(key, _JSON_SERIALIZABLE_TYPES) and is_jsonable(value) for key, value in obj.items()) + if hasattr(obj, "__json__"): + return True + return False + except RecursionError: + return False + + +def is_simple_optional_type(type_: Type) -> bool: + """Check if a type is optional, i.e. Optional[Type] or Union[Type, None] or Type | None, where Type is a non-composite type.""" + if get_origin(type_) in UNION_TYPES: + union_args = get_args(type_) + if len(union_args) == 2 and type(None) in union_args: + return True + return False + + +def unwrap_simple_optional_type(optional_type: Type) -> Type: + """Unwraps a simple optional type, i.e. returns Type from Optional[Type].""" + for arg in get_args(optional_type): + if arg is not type(None): + return arg + raise ValueError(f"'{optional_type}' is not an optional type") diff --git a/.venv/lib/python3.12/site-packages/huggingface_hub/utils/_validators.py b/.venv/lib/python3.12/site-packages/huggingface_hub/utils/_validators.py new file mode 100644 index 00000000..27833f28 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/huggingface_hub/utils/_validators.py @@ -0,0 +1,226 @@ +# coding=utf-8 +# Copyright 2022-present, the HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Contains utilities to validate argument values in `huggingface_hub`.""" + +import inspect +import re +import warnings +from functools import wraps +from itertools import chain +from typing import Any, Dict + +from huggingface_hub.errors import HFValidationError + +from ._typing import CallableT + + +REPO_ID_REGEX = re.compile( + r""" + ^ + (\b[\w\-.]+\b/)? # optional namespace (username or organization) + \b # starts with a word boundary + [\w\-.]{1,96} # repo_name: alphanumeric + . _ - + \b # ends with a word boundary + $ + """, + flags=re.VERBOSE, +) + + +def validate_hf_hub_args(fn: CallableT) -> CallableT: + """Validate values received as argument for any public method of `huggingface_hub`. + + The goal of this decorator is to harmonize validation of arguments reused + everywhere. By default, all defined validators are tested. + + Validators: + - [`~utils.validate_repo_id`]: `repo_id` must be `"repo_name"` + or `"namespace/repo_name"`. Namespace is a username or an organization. + - [`~utils.smoothly_deprecate_use_auth_token`]: Use `token` instead of + `use_auth_token` (only if `use_auth_token` is not expected by the decorated + function - in practice, always the case in `huggingface_hub`). + + Example: + ```py + >>> from huggingface_hub.utils import validate_hf_hub_args + + >>> @validate_hf_hub_args + ... def my_cool_method(repo_id: str): + ... print(repo_id) + + >>> my_cool_method(repo_id="valid_repo_id") + valid_repo_id + + >>> my_cool_method("other..repo..id") + huggingface_hub.utils._validators.HFValidationError: Cannot have -- or .. in repo_id: 'other..repo..id'. + + >>> my_cool_method(repo_id="other..repo..id") + huggingface_hub.utils._validators.HFValidationError: Cannot have -- or .. in repo_id: 'other..repo..id'. + + >>> @validate_hf_hub_args + ... def my_cool_auth_method(token: str): + ... print(token) + + >>> my_cool_auth_method(token="a token") + "a token" + + >>> my_cool_auth_method(use_auth_token="a use_auth_token") + "a use_auth_token" + + >>> my_cool_auth_method(token="a token", use_auth_token="a use_auth_token") + UserWarning: Both `token` and `use_auth_token` are passed (...) + "a token" + ``` + + Raises: + [`~utils.HFValidationError`]: + If an input is not valid. + """ + # TODO: add an argument to opt-out validation for specific argument? + signature = inspect.signature(fn) + + # Should the validator switch `use_auth_token` values to `token`? In practice, always + # True in `huggingface_hub`. Might not be the case in a downstream library. + check_use_auth_token = "use_auth_token" not in signature.parameters and "token" in signature.parameters + + @wraps(fn) + def _inner_fn(*args, **kwargs): + has_token = False + for arg_name, arg_value in chain( + zip(signature.parameters, args), # Args values + kwargs.items(), # Kwargs values + ): + if arg_name in ["repo_id", "from_id", "to_id"]: + validate_repo_id(arg_value) + + elif arg_name == "token" and arg_value is not None: + has_token = True + + if check_use_auth_token: + kwargs = smoothly_deprecate_use_auth_token(fn_name=fn.__name__, has_token=has_token, kwargs=kwargs) + + return fn(*args, **kwargs) + + return _inner_fn # type: ignore + + +def validate_repo_id(repo_id: str) -> None: + """Validate `repo_id` is valid. + + This is not meant to replace the proper validation made on the Hub but rather to + avoid local inconsistencies whenever possible (example: passing `repo_type` in the + `repo_id` is forbidden). + + Rules: + - Between 1 and 96 characters. + - Either "repo_name" or "namespace/repo_name" + - [a-zA-Z0-9] or "-", "_", "." + - "--" and ".." are forbidden + + Valid: `"foo"`, `"foo/bar"`, `"123"`, `"Foo-BAR_foo.bar123"` + + Not valid: `"datasets/foo/bar"`, `".repo_id"`, `"foo--bar"`, `"foo.git"` + + Example: + ```py + >>> from huggingface_hub.utils import validate_repo_id + >>> validate_repo_id(repo_id="valid_repo_id") + >>> validate_repo_id(repo_id="other..repo..id") + huggingface_hub.utils._validators.HFValidationError: Cannot have -- or .. in repo_id: 'other..repo..id'. + ``` + + Discussed in https://github.com/huggingface/huggingface_hub/issues/1008. + In moon-landing (internal repository): + - https://github.com/huggingface/moon-landing/blob/main/server/lib/Names.ts#L27 + - https://github.com/huggingface/moon-landing/blob/main/server/views/components/NewRepoForm/NewRepoForm.svelte#L138 + """ + if not isinstance(repo_id, str): + # Typically, a Path is not a repo_id + raise HFValidationError(f"Repo id must be a string, not {type(repo_id)}: '{repo_id}'.") + + if repo_id.count("/") > 1: + raise HFValidationError( + "Repo id must be in the form 'repo_name' or 'namespace/repo_name':" + f" '{repo_id}'. Use `repo_type` argument if needed." + ) + + if not REPO_ID_REGEX.match(repo_id): + raise HFValidationError( + "Repo id must use alphanumeric chars or '-', '_', '.', '--' and '..' are" + " forbidden, '-' and '.' cannot start or end the name, max length is 96:" + f" '{repo_id}'." + ) + + if "--" in repo_id or ".." in repo_id: + raise HFValidationError(f"Cannot have -- or .. in repo_id: '{repo_id}'.") + + if repo_id.endswith(".git"): + raise HFValidationError(f"Repo_id cannot end by '.git': '{repo_id}'.") + + +def smoothly_deprecate_use_auth_token(fn_name: str, has_token: bool, kwargs: Dict[str, Any]) -> Dict[str, Any]: + """Smoothly deprecate `use_auth_token` in the `huggingface_hub` codebase. + + The long-term goal is to remove any mention of `use_auth_token` in the codebase in + favor of a unique and less verbose `token` argument. This will be done a few steps: + + 0. Step 0: methods that require a read-access to the Hub use the `use_auth_token` + argument (`str`, `bool` or `None`). Methods requiring write-access have a `token` + argument (`str`, `None`). This implicit rule exists to be able to not send the + token when not necessary (`use_auth_token=False`) even if logged in. + + 1. Step 1: we want to harmonize everything and use `token` everywhere (supporting + `token=False` for read-only methods). In order not to break existing code, if + `use_auth_token` is passed to a function, the `use_auth_token` value is passed + as `token` instead, without any warning. + a. Corner case: if both `use_auth_token` and `token` values are passed, a warning + is thrown and the `use_auth_token` value is ignored. + + 2. Step 2: Once it is release, we should push downstream libraries to switch from + `use_auth_token` to `token` as much as possible, but without throwing a warning + (e.g. manually create issues on the corresponding repos). + + 3. Step 3: After a transitional period (6 months e.g. until April 2023?), we update + `huggingface_hub` to throw a warning on `use_auth_token`. Hopefully, very few + users will be impacted as it would have already been fixed. + In addition, unit tests in `huggingface_hub` must be adapted to expect warnings + to be thrown (but still use `use_auth_token` as before). + + 4. Step 4: After a normal deprecation cycle (3 releases ?), remove this validator. + `use_auth_token` will definitely not be supported. + In addition, we update unit tests in `huggingface_hub` to use `token` everywhere. + + This has been discussed in: + - https://github.com/huggingface/huggingface_hub/issues/1094. + - https://github.com/huggingface/huggingface_hub/pull/928 + - (related) https://github.com/huggingface/huggingface_hub/pull/1064 + """ + new_kwargs = kwargs.copy() # do not mutate input ! + + use_auth_token = new_kwargs.pop("use_auth_token", None) # remove from kwargs + if use_auth_token is not None: + if has_token: + warnings.warn( + "Both `token` and `use_auth_token` are passed to" + f" `{fn_name}` with non-None values. `token` is now the" + " preferred argument to pass a User Access Token." + " `use_auth_token` value will be ignored." + ) + else: + # `token` argument is not passed and a non-None value is passed in + # `use_auth_token` => use `use_auth_token` value as `token` kwarg. + new_kwargs["token"] = use_auth_token + + return new_kwargs diff --git a/.venv/lib/python3.12/site-packages/huggingface_hub/utils/endpoint_helpers.py b/.venv/lib/python3.12/site-packages/huggingface_hub/utils/endpoint_helpers.py new file mode 100644 index 00000000..85cd8601 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/huggingface_hub/utils/endpoint_helpers.py @@ -0,0 +1,66 @@ +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" +Helpful utility functions and classes in relation to exploring API endpoints +with the aim for a user-friendly interface. +""" + +import math +import re +from typing import TYPE_CHECKING + +from ..repocard_data import ModelCardData + + +if TYPE_CHECKING: + from ..hf_api import ModelInfo + + +def _is_emission_within_threshold(model_info: "ModelInfo", minimum_threshold: float, maximum_threshold: float) -> bool: + """Checks if a model's emission is within a given threshold. + + Args: + model_info (`ModelInfo`): + A model info object containing the model's emission information. + minimum_threshold (`float`): + A minimum carbon threshold to filter by, such as 1. + maximum_threshold (`float`): + A maximum carbon threshold to filter by, such as 10. + + Returns: + `bool`: Whether the model's emission is within the given threshold. + """ + if minimum_threshold is None and maximum_threshold is None: + raise ValueError("Both `minimum_threshold` and `maximum_threshold` cannot both be `None`") + if minimum_threshold is None: + minimum_threshold = -1 + if maximum_threshold is None: + maximum_threshold = math.inf + + card_data = getattr(model_info, "card_data", None) + if card_data is None or not isinstance(card_data, (dict, ModelCardData)): + return False + + # Get CO2 emission metadata + emission = card_data.get("co2_eq_emissions", None) + if isinstance(emission, dict): + emission = emission["emissions"] + if not emission: + return False + + # Filter out if value is missing or out of range + matched = re.search(r"\d+\.\d+|\d+", str(emission)) + if matched is None: + return False + + emission_value = float(matched.group(0)) + return minimum_threshold <= emission_value <= maximum_threshold diff --git a/.venv/lib/python3.12/site-packages/huggingface_hub/utils/insecure_hashlib.py b/.venv/lib/python3.12/site-packages/huggingface_hub/utils/insecure_hashlib.py new file mode 100644 index 00000000..f232ee0a --- /dev/null +++ b/.venv/lib/python3.12/site-packages/huggingface_hub/utils/insecure_hashlib.py @@ -0,0 +1,34 @@ +# Taken from https://github.com/mlflow/mlflow/pull/10119 +# +# DO NOT use this function for security purposes (e.g., password hashing). +# +# In Python >= 3.9, insecure hashing algorithms such as MD5 fail in FIPS-compliant +# environments unless `usedforsecurity=False` is explicitly passed. +# +# References: +# - https://github.com/mlflow/mlflow/issues/9905 +# - https://github.com/mlflow/mlflow/pull/10119 +# - https://docs.python.org/3/library/hashlib.html +# - https://github.com/huggingface/transformers/pull/27038 +# +# Usage: +# ```python +# # Use +# from huggingface_hub.utils.insecure_hashlib import sha256 +# # instead of +# from hashlib import sha256 +# +# # Use +# from huggingface_hub.utils import insecure_hashlib +# # instead of +# import hashlib +# ``` +import functools +import hashlib +import sys + + +_kwargs = {"usedforsecurity": False} if sys.version_info >= (3, 9) else {} +md5 = functools.partial(hashlib.md5, **_kwargs) +sha1 = functools.partial(hashlib.sha1, **_kwargs) +sha256 = functools.partial(hashlib.sha256, **_kwargs) diff --git a/.venv/lib/python3.12/site-packages/huggingface_hub/utils/logging.py b/.venv/lib/python3.12/site-packages/huggingface_hub/utils/logging.py new file mode 100644 index 00000000..81371968 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/huggingface_hub/utils/logging.py @@ -0,0 +1,188 @@ +# coding=utf-8 +# Copyright 2020 Optuna, Hugging Face +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Logging utilities.""" + +import logging +import os +from logging import ( + CRITICAL, # NOQA + DEBUG, # NOQA + ERROR, # NOQA + FATAL, # NOQA + INFO, # NOQA + NOTSET, # NOQA + WARN, # NOQA + WARNING, # NOQA +) +from typing import Optional + +from .. import constants + + +log_levels = { + "debug": logging.DEBUG, + "info": logging.INFO, + "warning": logging.WARNING, + "error": logging.ERROR, + "critical": logging.CRITICAL, +} + +_default_log_level = logging.WARNING + + +def _get_library_name() -> str: + return __name__.split(".")[0] + + +def _get_library_root_logger() -> logging.Logger: + return logging.getLogger(_get_library_name()) + + +def _get_default_logging_level(): + """ + If `HF_HUB_VERBOSITY` env var is set to one of the valid choices return that as the new default level. If it is not + - fall back to `_default_log_level` + """ + env_level_str = os.getenv("HF_HUB_VERBOSITY", None) + if env_level_str: + if env_level_str in log_levels: + return log_levels[env_level_str] + else: + logging.getLogger().warning( + f"Unknown option HF_HUB_VERBOSITY={env_level_str}, has to be one of: {', '.join(log_levels.keys())}" + ) + return _default_log_level + + +def _configure_library_root_logger() -> None: + library_root_logger = _get_library_root_logger() + library_root_logger.addHandler(logging.StreamHandler()) + library_root_logger.setLevel(_get_default_logging_level()) + + +def _reset_library_root_logger() -> None: + library_root_logger = _get_library_root_logger() + library_root_logger.setLevel(logging.NOTSET) + + +def get_logger(name: Optional[str] = None) -> logging.Logger: + """ + Returns a logger with the specified name. This function is not supposed + to be directly accessed by library users. + + Args: + name (`str`, *optional*): + The name of the logger to get, usually the filename + + Example: + + ```python + >>> from huggingface_hub import get_logger + + >>> logger = get_logger(__file__) + >>> logger.set_verbosity_info() + ``` + """ + + if name is None: + name = _get_library_name() + + return logging.getLogger(name) + + +def get_verbosity() -> int: + """Return the current level for the HuggingFace Hub's root logger. + + Returns: + Logging level, e.g., `huggingface_hub.logging.DEBUG` and + `huggingface_hub.logging.INFO`. + + <Tip> + + HuggingFace Hub has following logging levels: + + - `huggingface_hub.logging.CRITICAL`, `huggingface_hub.logging.FATAL` + - `huggingface_hub.logging.ERROR` + - `huggingface_hub.logging.WARNING`, `huggingface_hub.logging.WARN` + - `huggingface_hub.logging.INFO` + - `huggingface_hub.logging.DEBUG` + + </Tip> + """ + return _get_library_root_logger().getEffectiveLevel() + + +def set_verbosity(verbosity: int) -> None: + """ + Sets the level for the HuggingFace Hub's root logger. + + Args: + verbosity (`int`): + Logging level, e.g., `huggingface_hub.logging.DEBUG` and + `huggingface_hub.logging.INFO`. + """ + _get_library_root_logger().setLevel(verbosity) + + +def set_verbosity_info(): + """ + Sets the verbosity to `logging.INFO`. + """ + return set_verbosity(INFO) + + +def set_verbosity_warning(): + """ + Sets the verbosity to `logging.WARNING`. + """ + return set_verbosity(WARNING) + + +def set_verbosity_debug(): + """ + Sets the verbosity to `logging.DEBUG`. + """ + return set_verbosity(DEBUG) + + +def set_verbosity_error(): + """ + Sets the verbosity to `logging.ERROR`. + """ + return set_verbosity(ERROR) + + +def disable_propagation() -> None: + """ + Disable propagation of the library log outputs. Note that log propagation is + disabled by default. + """ + _get_library_root_logger().propagate = False + + +def enable_propagation() -> None: + """ + Enable propagation of the library log outputs. Please disable the + HuggingFace Hub's default handler to prevent double logging if the root + logger has been configured. + """ + _get_library_root_logger().propagate = True + + +_configure_library_root_logger() + +if constants.HF_DEBUG: + # If `HF_DEBUG` environment variable is set, set the verbosity of `huggingface_hub` logger to `DEBUG`. + set_verbosity_debug() diff --git a/.venv/lib/python3.12/site-packages/huggingface_hub/utils/sha.py b/.venv/lib/python3.12/site-packages/huggingface_hub/utils/sha.py new file mode 100644 index 00000000..001c3fe8 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/huggingface_hub/utils/sha.py @@ -0,0 +1,64 @@ +"""Utilities to efficiently compute the SHA 256 hash of a bunch of bytes.""" + +from typing import BinaryIO, Optional + +from .insecure_hashlib import sha1, sha256 + + +def sha_fileobj(fileobj: BinaryIO, chunk_size: Optional[int] = None) -> bytes: + """ + Computes the sha256 hash of the given file object, by chunks of size `chunk_size`. + + Args: + fileobj (file-like object): + The File object to compute sha256 for, typically obtained with `open(path, "rb")` + chunk_size (`int`, *optional*): + The number of bytes to read from `fileobj` at once, defaults to 1MB. + + Returns: + `bytes`: `fileobj`'s sha256 hash as bytes + """ + chunk_size = chunk_size if chunk_size is not None else 1024 * 1024 + + sha = sha256() + while True: + chunk = fileobj.read(chunk_size) + sha.update(chunk) + if not chunk: + break + return sha.digest() + + +def git_hash(data: bytes) -> str: + """ + Computes the git-sha1 hash of the given bytes, using the same algorithm as git. + + This is equivalent to running `git hash-object`. See https://git-scm.com/docs/git-hash-object + for more details. + + Note: this method is valid for regular files. For LFS files, the proper git hash is supposed to be computed on the + pointer file content, not the actual file content. However, for simplicity, we directly compare the sha256 of + the LFS file content when we want to compare LFS files. + + Args: + data (`bytes`): + The data to compute the git-hash for. + + Returns: + `str`: the git-hash of `data` as an hexadecimal string. + + Example: + ```python + >>> from huggingface_hub.utils.sha import git_hash + >>> git_hash(b"Hello, World!") + 'b45ef6fec89518d314f546fd6c3025367b721684' + ``` + """ + # Taken from https://gist.github.com/msabramo/763200 + # Note: no need to optimize by reading the file in chunks as we're not supposed to hash huge files (5MB maximum). + sha = sha1() + sha.update(b"blob ") + sha.update(str(len(data)).encode()) + sha.update(b"\0") + sha.update(data) + return sha.hexdigest() diff --git a/.venv/lib/python3.12/site-packages/huggingface_hub/utils/tqdm.py b/.venv/lib/python3.12/site-packages/huggingface_hub/utils/tqdm.py new file mode 100644 index 00000000..b22b797c --- /dev/null +++ b/.venv/lib/python3.12/site-packages/huggingface_hub/utils/tqdm.py @@ -0,0 +1,279 @@ +# coding=utf-8 +# Copyright 2021 The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License +"""Utility helpers to handle progress bars in `huggingface_hub`. + +Example: + 1. Use `huggingface_hub.utils.tqdm` as you would use `tqdm.tqdm` or `tqdm.auto.tqdm`. + 2. To disable progress bars, either use `disable_progress_bars()` helper or set the + environment variable `HF_HUB_DISABLE_PROGRESS_BARS` to 1. + 3. To re-enable progress bars, use `enable_progress_bars()`. + 4. To check whether progress bars are disabled, use `are_progress_bars_disabled()`. + +NOTE: Environment variable `HF_HUB_DISABLE_PROGRESS_BARS` has the priority. + +Example: + ```py + >>> from huggingface_hub.utils import are_progress_bars_disabled, disable_progress_bars, enable_progress_bars, tqdm + + # Disable progress bars globally + >>> disable_progress_bars() + + # Use as normal `tqdm` + >>> for _ in tqdm(range(5)): + ... pass + + # Still not showing progress bars, as `disable=False` is overwritten to `True`. + >>> for _ in tqdm(range(5), disable=False): + ... pass + + >>> are_progress_bars_disabled() + True + + # Re-enable progress bars globally + >>> enable_progress_bars() + + # Progress bar will be shown ! + >>> for _ in tqdm(range(5)): + ... pass + 100%|███████████████████████████████████████| 5/5 [00:00<00:00, 117817.53it/s] + ``` + +Group-based control: + ```python + # Disable progress bars for a specific group + >>> disable_progress_bars("peft.foo") + + # Check state of different groups + >>> assert not are_progress_bars_disabled("peft")) + >>> assert not are_progress_bars_disabled("peft.something") + >>> assert are_progress_bars_disabled("peft.foo")) + >>> assert are_progress_bars_disabled("peft.foo.bar")) + + # Enable progress bars for a subgroup + >>> enable_progress_bars("peft.foo.bar") + + # Check if enabling a subgroup affects the parent group + >>> assert are_progress_bars_disabled("peft.foo")) + >>> assert not are_progress_bars_disabled("peft.foo.bar")) + + # No progress bar for `name="peft.foo"` + >>> for _ in tqdm(range(5), name="peft.foo"): + ... pass + + # Progress bar will be shown for `name="peft.foo.bar"` + >>> for _ in tqdm(range(5), name="peft.foo.bar"): + ... pass + 100%|███████████████████████████████████████| 5/5 [00:00<00:00, 117817.53it/s] + + ``` +""" + +import io +import logging +import os +import warnings +from contextlib import contextmanager +from pathlib import Path +from typing import Dict, Iterator, Optional, Union + +from tqdm.auto import tqdm as old_tqdm + +from ..constants import HF_HUB_DISABLE_PROGRESS_BARS + + +# The `HF_HUB_DISABLE_PROGRESS_BARS` environment variable can be True, False, or not set (None), +# allowing for control over progress bar visibility. When set, this variable takes precedence +# over programmatic settings, dictating whether progress bars should be shown or hidden globally. +# Essentially, the environment variable's setting overrides any code-based configurations. +# +# If `HF_HUB_DISABLE_PROGRESS_BARS` is not defined (None), it implies that users can manage +# progress bar visibility through code. By default, progress bars are turned on. + + +progress_bar_states: Dict[str, bool] = {} + + +def disable_progress_bars(name: Optional[str] = None) -> None: + """ + Disable progress bars either globally or for a specified group. + + This function updates the state of progress bars based on a group name. + If no group name is provided, all progress bars are disabled. The operation + respects the `HF_HUB_DISABLE_PROGRESS_BARS` environment variable's setting. + + Args: + name (`str`, *optional*): + The name of the group for which to disable the progress bars. If None, + progress bars are disabled globally. + + Raises: + Warning: If the environment variable precludes changes. + """ + if HF_HUB_DISABLE_PROGRESS_BARS is False: + warnings.warn( + "Cannot disable progress bars: environment variable `HF_HUB_DISABLE_PROGRESS_BARS=0` is set and has priority." + ) + return + + if name is None: + progress_bar_states.clear() + progress_bar_states["_global"] = False + else: + keys_to_remove = [key for key in progress_bar_states if key.startswith(f"{name}.")] + for key in keys_to_remove: + del progress_bar_states[key] + progress_bar_states[name] = False + + +def enable_progress_bars(name: Optional[str] = None) -> None: + """ + Enable progress bars either globally or for a specified group. + + This function sets the progress bars to enabled for the specified group or globally + if no group is specified. The operation is subject to the `HF_HUB_DISABLE_PROGRESS_BARS` + environment setting. + + Args: + name (`str`, *optional*): + The name of the group for which to enable the progress bars. If None, + progress bars are enabled globally. + + Raises: + Warning: If the environment variable precludes changes. + """ + if HF_HUB_DISABLE_PROGRESS_BARS is True: + warnings.warn( + "Cannot enable progress bars: environment variable `HF_HUB_DISABLE_PROGRESS_BARS=1` is set and has priority." + ) + return + + if name is None: + progress_bar_states.clear() + progress_bar_states["_global"] = True + else: + keys_to_remove = [key for key in progress_bar_states if key.startswith(f"{name}.")] + for key in keys_to_remove: + del progress_bar_states[key] + progress_bar_states[name] = True + + +def are_progress_bars_disabled(name: Optional[str] = None) -> bool: + """ + Check if progress bars are disabled globally or for a specific group. + + This function returns whether progress bars are disabled for a given group or globally. + It checks the `HF_HUB_DISABLE_PROGRESS_BARS` environment variable first, then the programmatic + settings. + + Args: + name (`str`, *optional*): + The group name to check; if None, checks the global setting. + + Returns: + `bool`: True if progress bars are disabled, False otherwise. + """ + if HF_HUB_DISABLE_PROGRESS_BARS is True: + return True + + if name is None: + return not progress_bar_states.get("_global", True) + + while name: + if name in progress_bar_states: + return not progress_bar_states[name] + name = ".".join(name.split(".")[:-1]) + + return not progress_bar_states.get("_global", True) + + +def is_tqdm_disabled(log_level: int) -> Optional[bool]: + """ + Determine if tqdm progress bars should be disabled based on logging level and environment settings. + + see https://github.com/huggingface/huggingface_hub/pull/2000 and https://github.com/huggingface/huggingface_hub/pull/2698. + """ + if log_level == logging.NOTSET: + return True + if os.getenv("TQDM_POSITION") == "-1": + return False + return None + + +class tqdm(old_tqdm): + """ + Class to override `disable` argument in case progress bars are globally disabled. + + Taken from https://github.com/tqdm/tqdm/issues/619#issuecomment-619639324. + """ + + def __init__(self, *args, **kwargs): + name = kwargs.pop("name", None) # do not pass `name` to `tqdm` + if are_progress_bars_disabled(name): + kwargs["disable"] = True + super().__init__(*args, **kwargs) + + def __delattr__(self, attr: str) -> None: + """Fix for https://github.com/huggingface/huggingface_hub/issues/1603""" + try: + super().__delattr__(attr) + except AttributeError: + if attr != "_lock": + raise + + +@contextmanager +def tqdm_stream_file(path: Union[Path, str]) -> Iterator[io.BufferedReader]: + """ + Open a file as binary and wrap the `read` method to display a progress bar when it's streamed. + + First implemented in `transformers` in 2019 but removed when switched to git-lfs. Used in `huggingface_hub` to show + progress bar when uploading an LFS file to the Hub. See github.com/huggingface/transformers/pull/2078#discussion_r354739608 + for implementation details. + + Note: currently implementation handles only files stored on disk as it is the most common use case. Could be + extended to stream any `BinaryIO` object but we might have to debug some corner cases. + + Example: + ```py + >>> with tqdm_stream_file("config.json") as f: + >>> requests.put(url, data=f) + config.json: 100%|█████████████████████████| 8.19k/8.19k [00:02<00:00, 3.72kB/s] + ``` + """ + if isinstance(path, str): + path = Path(path) + + with path.open("rb") as f: + total_size = path.stat().st_size + pbar = tqdm( + unit="B", + unit_scale=True, + total=total_size, + initial=0, + desc=path.name, + ) + + f_read = f.read + + def _inner_read(size: Optional[int] = -1) -> bytes: + data = f_read(size) + pbar.update(len(data)) + return data + + f.read = _inner_read # type: ignore + + yield f + + pbar.close() |