diff options
Diffstat (limited to '.venv/lib/python3.12/site-packages/huggingface_hub/keras_mixin.py')
-rw-r--r-- | .venv/lib/python3.12/site-packages/huggingface_hub/keras_mixin.py | 500 |
1 files changed, 500 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/huggingface_hub/keras_mixin.py b/.venv/lib/python3.12/site-packages/huggingface_hub/keras_mixin.py new file mode 100644 index 00000000..e1c7ad50 --- /dev/null +++ b/.venv/lib/python3.12/site-packages/huggingface_hub/keras_mixin.py @@ -0,0 +1,500 @@ +import collections.abc as collections +import json +import os +import warnings +from functools import wraps +from pathlib import Path +from shutil import copytree +from typing import Any, Dict, List, Optional, Union + +from huggingface_hub import ModelHubMixin, snapshot_download +from huggingface_hub.utils import ( + get_tf_version, + is_graphviz_available, + is_pydot_available, + is_tf_available, + yaml_dump, +) + +from . import constants +from .hf_api import HfApi +from .utils import SoftTemporaryDirectory, logging, validate_hf_hub_args +from .utils._typing import CallableT + + +logger = logging.get_logger(__name__) + +keras = None +if is_tf_available(): + # Depending on which version of TensorFlow is installed, we need to import + # keras from the correct location. + # See https://github.com/tensorflow/tensorflow/releases/tag/v2.16.1. + # Note: saving a keras model only works with Keras<3.0. + try: + import tf_keras as keras # type: ignore + except ImportError: + import tensorflow as tf # type: ignore + + keras = tf.keras + + +def _requires_keras_2_model(fn: CallableT) -> CallableT: + # Wrapper to raise if user tries to save a Keras 3.x model + @wraps(fn) + def _inner(model, *args, **kwargs): + if not hasattr(model, "history"): # hacky way to check if model is Keras 2.x + raise NotImplementedError( + f"Cannot use '{fn.__name__}': Keras 3.x is not supported." + " Please save models manually and upload them using `upload_folder` or `huggingface-cli upload`." + ) + return fn(model, *args, **kwargs) + + return _inner # type: ignore [return-value] + + +def _flatten_dict(dictionary, parent_key=""): + """Flatten a nested dictionary. + Reference: https://stackoverflow.com/a/6027615/10319735 + + Args: + dictionary (`dict`): + The nested dictionary to be flattened. + parent_key (`str`): + The parent key to be prefixed to the children keys. + Necessary for recursing over the nested dictionary. + + Returns: + The flattened dictionary. + """ + items = [] + for key, value in dictionary.items(): + new_key = f"{parent_key}.{key}" if parent_key else key + if isinstance(value, collections.MutableMapping): + items.extend( + _flatten_dict( + value, + new_key, + ).items() + ) + else: + items.append((new_key, value)) + return dict(items) + + +def _create_hyperparameter_table(model): + """Parse hyperparameter dictionary into a markdown table.""" + table = None + if model.optimizer is not None: + optimizer_params = model.optimizer.get_config() + # flatten the configuration + optimizer_params = _flatten_dict(optimizer_params) + optimizer_params["training_precision"] = keras.mixed_precision.global_policy().name + table = "| Hyperparameters | Value |\n| :-- | :-- |\n" + for key, value in optimizer_params.items(): + table += f"| {key} | {value} |\n" + return table + + +def _plot_network(model, save_directory): + keras.utils.plot_model( + model, + to_file=f"{save_directory}/model.png", + show_shapes=False, + show_dtype=False, + show_layer_names=True, + rankdir="TB", + expand_nested=False, + dpi=96, + layer_range=None, + ) + + +def _create_model_card( + model, + repo_dir: Path, + plot_model: bool = True, + metadata: Optional[dict] = None, +): + """ + Creates a model card for the repository. + + Do not overwrite an existing README.md file. + """ + readme_path = repo_dir / "README.md" + if readme_path.exists(): + return + + hyperparameters = _create_hyperparameter_table(model) + if plot_model and is_graphviz_available() and is_pydot_available(): + _plot_network(model, repo_dir) + if metadata is None: + metadata = {} + metadata["library_name"] = "keras" + model_card: str = "---\n" + model_card += yaml_dump(metadata, default_flow_style=False) + model_card += "---\n" + model_card += "\n## Model description\n\nMore information needed\n" + model_card += "\n## Intended uses & limitations\n\nMore information needed\n" + model_card += "\n## Training and evaluation data\n\nMore information needed\n" + if hyperparameters is not None: + model_card += "\n## Training procedure\n" + model_card += "\n### Training hyperparameters\n" + model_card += "\nThe following hyperparameters were used during training:\n\n" + model_card += hyperparameters + model_card += "\n" + if plot_model and os.path.exists(f"{repo_dir}/model.png"): + model_card += "\n ## Model Plot\n" + model_card += "\n<details>" + model_card += "\n<summary>View Model Plot</summary>\n" + path_to_plot = "./model.png" + model_card += f"\n\n" + model_card += "\n</details>" + + readme_path.write_text(model_card) + + +@_requires_keras_2_model +def save_pretrained_keras( + model, + save_directory: Union[str, Path], + config: Optional[Dict[str, Any]] = None, + include_optimizer: bool = False, + plot_model: bool = True, + tags: Optional[Union[list, str]] = None, + **model_save_kwargs, +): + """ + Saves a Keras model to save_directory in SavedModel format. Use this if + you're using the Functional or Sequential APIs. + + Args: + model (`Keras.Model`): + The [Keras + model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) + you'd like to save. The model must be compiled and built. + save_directory (`str` or `Path`): + Specify directory in which you want to save the Keras model. + config (`dict`, *optional*): + Configuration object to be saved alongside the model weights. + include_optimizer(`bool`, *optional*, defaults to `False`): + Whether or not to include optimizer in serialization. + plot_model (`bool`, *optional*, defaults to `True`): + Setting this to `True` will plot the model and put it in the model + card. Requires graphviz and pydot to be installed. + tags (Union[`str`,`list`], *optional*): + List of tags that are related to model or string of a single tag. See example tags + [here](https://github.com/huggingface/hub-docs/blob/main/modelcard.md?plain=1). + model_save_kwargs(`dict`, *optional*): + model_save_kwargs will be passed to + [`tf.keras.models.save_model()`](https://www.tensorflow.org/api_docs/python/tf/keras/models/save_model). + """ + if keras is None: + raise ImportError("Called a Tensorflow-specific function but could not import it.") + + if not model.built: + raise ValueError("Model should be built before trying to save") + + save_directory = Path(save_directory) + save_directory.mkdir(parents=True, exist_ok=True) + + # saving config + if config: + if not isinstance(config, dict): + raise RuntimeError(f"Provided config to save_pretrained_keras should be a dict. Got: '{type(config)}'") + + with (save_directory / constants.CONFIG_NAME).open("w") as f: + json.dump(config, f) + + metadata = {} + if isinstance(tags, list): + metadata["tags"] = tags + elif isinstance(tags, str): + metadata["tags"] = [tags] + + task_name = model_save_kwargs.pop("task_name", None) + if task_name is not None: + warnings.warn( + "`task_name` input argument is deprecated. Pass `tags` instead.", + FutureWarning, + ) + if "tags" in metadata: + metadata["tags"].append(task_name) + else: + metadata["tags"] = [task_name] + + if model.history is not None: + if model.history.history != {}: + path = save_directory / "history.json" + if path.exists(): + warnings.warn( + "`history.json` file already exists, it will be overwritten by the history of this version.", + UserWarning, + ) + with path.open("w", encoding="utf-8") as f: + json.dump(model.history.history, f, indent=2, sort_keys=True) + + _create_model_card(model, save_directory, plot_model, metadata) + keras.models.save_model(model, save_directory, include_optimizer=include_optimizer, **model_save_kwargs) + + +def from_pretrained_keras(*args, **kwargs) -> "KerasModelHubMixin": + r""" + Instantiate a pretrained Keras model from a pre-trained model from the Hub. + The model is expected to be in `SavedModel` format. + + Args: + pretrained_model_name_or_path (`str` or `os.PathLike`): + Can be either: + - A string, the `model id` of a pretrained model hosted inside a + model repo on huggingface.co. Valid model ids can be located + at the root-level, like `bert-base-uncased`, or namespaced + under a user or organization name, like + `dbmdz/bert-base-german-cased`. + - You can add `revision` by appending `@` at the end of model_id + simply like this: `dbmdz/bert-base-german-cased@main` Revision + is the specific model version to use. It can be a branch name, + a tag name, or a commit id, since we use a git-based system + for storing models and other artifacts on huggingface.co, so + `revision` can be any identifier allowed by git. + - A path to a `directory` containing model weights saved using + [`~transformers.PreTrainedModel.save_pretrained`], e.g., + `./my_model_directory/`. + - `None` if you are both providing the configuration and state + dictionary (resp. with keyword arguments `config` and + `state_dict`). + force_download (`bool`, *optional*, defaults to `False`): + Whether to force the (re-)download of the model weights and + configuration files, overriding the cached versions if they exist. + proxies (`Dict[str, str]`, *optional*): + A dictionary of proxy servers to use by protocol or endpoint, e.g., + `{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}`. The + proxies are used on each request. + token (`str` or `bool`, *optional*): + The token to use as HTTP bearer authorization for remote files. If + `True`, will use the token generated when running `transformers-cli + login` (stored in `~/.huggingface`). + cache_dir (`Union[str, os.PathLike]`, *optional*): + Path to a directory in which a downloaded pretrained model + configuration should be cached if the standard cache should not be + used. + local_files_only(`bool`, *optional*, defaults to `False`): + Whether to only look at local files (i.e., do not try to download + the model). + model_kwargs (`Dict`, *optional*): + model_kwargs will be passed to the model during initialization + + <Tip> + + Passing `token=True` is required when you want to use a private + model. + + </Tip> + """ + return KerasModelHubMixin.from_pretrained(*args, **kwargs) + + +@validate_hf_hub_args +@_requires_keras_2_model +def push_to_hub_keras( + model, + repo_id: str, + *, + config: Optional[dict] = None, + commit_message: str = "Push Keras model using huggingface_hub.", + private: Optional[bool] = None, + api_endpoint: Optional[str] = None, + token: Optional[str] = None, + branch: Optional[str] = None, + create_pr: Optional[bool] = None, + allow_patterns: Optional[Union[List[str], str]] = None, + ignore_patterns: Optional[Union[List[str], str]] = None, + delete_patterns: Optional[Union[List[str], str]] = None, + log_dir: Optional[str] = None, + include_optimizer: bool = False, + tags: Optional[Union[list, str]] = None, + plot_model: bool = True, + **model_save_kwargs, +): + """ + Upload model checkpoint to the Hub. + + Use `allow_patterns` and `ignore_patterns` to precisely filter which files should be pushed to the hub. Use + `delete_patterns` to delete existing remote files in the same commit. See [`upload_folder`] reference for more + details. + + Args: + model (`Keras.Model`): + The [Keras model](`https://www.tensorflow.org/api_docs/python/tf/keras/Model`) you'd like to push to the + Hub. The model must be compiled and built. + repo_id (`str`): + ID of the repository to push to (example: `"username/my-model"`). + commit_message (`str`, *optional*, defaults to "Add Keras model"): + Message to commit while pushing. + private (`bool`, *optional*): + Whether the repository created should be private. + If `None` (default), the repo will be public unless the organization's default is private. + api_endpoint (`str`, *optional*): + The API endpoint to use when pushing the model to the hub. + token (`str`, *optional*): + The token to use as HTTP bearer authorization for remote files. If + not set, will use the token set when logging in with + `huggingface-cli login` (stored in `~/.huggingface`). + branch (`str`, *optional*): + The git branch on which to push the model. This defaults to + the default branch as specified in your repository, which + defaults to `"main"`. + create_pr (`boolean`, *optional*): + Whether or not to create a Pull Request from `branch` with that commit. + Defaults to `False`. + config (`dict`, *optional*): + Configuration object to be saved alongside the model weights. + allow_patterns (`List[str]` or `str`, *optional*): + If provided, only files matching at least one pattern are pushed. + ignore_patterns (`List[str]` or `str`, *optional*): + If provided, files matching any of the patterns are not pushed. + delete_patterns (`List[str]` or `str`, *optional*): + If provided, remote files matching any of the patterns will be deleted from the repo. + log_dir (`str`, *optional*): + TensorBoard logging directory to be pushed. The Hub automatically + hosts and displays a TensorBoard instance if log files are included + in the repository. + include_optimizer (`bool`, *optional*, defaults to `False`): + Whether or not to include optimizer during serialization. + tags (Union[`list`, `str`], *optional*): + List of tags that are related to model or string of a single tag. See example tags + [here](https://github.com/huggingface/hub-docs/blob/main/modelcard.md?plain=1). + plot_model (`bool`, *optional*, defaults to `True`): + Setting this to `True` will plot the model and put it in the model + card. Requires graphviz and pydot to be installed. + model_save_kwargs(`dict`, *optional*): + model_save_kwargs will be passed to + [`tf.keras.models.save_model()`](https://www.tensorflow.org/api_docs/python/tf/keras/models/save_model). + + Returns: + The url of the commit of your model in the given repository. + """ + api = HfApi(endpoint=api_endpoint) + repo_id = api.create_repo(repo_id=repo_id, token=token, private=private, exist_ok=True).repo_id + + # Push the files to the repo in a single commit + with SoftTemporaryDirectory() as tmp: + saved_path = Path(tmp) / repo_id + save_pretrained_keras( + model, + saved_path, + config=config, + include_optimizer=include_optimizer, + tags=tags, + plot_model=plot_model, + **model_save_kwargs, + ) + + # If `log_dir` provided, delete remote logs and upload new ones + if log_dir is not None: + delete_patterns = ( + [] + if delete_patterns is None + else ( + [delete_patterns] # convert `delete_patterns` to a list + if isinstance(delete_patterns, str) + else delete_patterns + ) + ) + delete_patterns.append("logs/*") + copytree(log_dir, saved_path / "logs") + + return api.upload_folder( + repo_type="model", + repo_id=repo_id, + folder_path=saved_path, + commit_message=commit_message, + token=token, + revision=branch, + create_pr=create_pr, + allow_patterns=allow_patterns, + ignore_patterns=ignore_patterns, + delete_patterns=delete_patterns, + ) + + +class KerasModelHubMixin(ModelHubMixin): + """ + Implementation of [`ModelHubMixin`] to provide model Hub upload/download + capabilities to Keras models. + + + ```python + >>> import tensorflow as tf + >>> from huggingface_hub import KerasModelHubMixin + + + >>> class MyModel(tf.keras.Model, KerasModelHubMixin): + ... def __init__(self, **kwargs): + ... super().__init__() + ... self.config = kwargs.pop("config", None) + ... self.dummy_inputs = ... + ... self.layer = ... + + ... def call(self, *args): + ... return ... + + + >>> # Initialize and compile the model as you normally would + >>> model = MyModel() + >>> model.compile(...) + >>> # Build the graph by training it or passing dummy inputs + >>> _ = model(model.dummy_inputs) + >>> # Save model weights to local directory + >>> model.save_pretrained("my-awesome-model") + >>> # Push model weights to the Hub + >>> model.push_to_hub("my-awesome-model") + >>> # Download and initialize weights from the Hub + >>> model = MyModel.from_pretrained("username/super-cool-model") + ``` + """ + + def _save_pretrained(self, save_directory): + save_pretrained_keras(self, save_directory) + + @classmethod + def _from_pretrained( + cls, + model_id, + revision, + cache_dir, + force_download, + proxies, + resume_download, + local_files_only, + token, + config: Optional[Dict[str, Any]] = None, + **model_kwargs, + ): + """Here we just call [`from_pretrained_keras`] function so both the mixin and + functional APIs stay in sync. + + TODO - Some args above aren't used since we are calling + snapshot_download instead of hf_hub_download. + """ + if keras is None: + raise ImportError("Called a TensorFlow-specific function but could not import it.") + + # Root is either a local filepath matching model_id or a cached snapshot + if not os.path.isdir(model_id): + storage_folder = snapshot_download( + repo_id=model_id, + revision=revision, + cache_dir=cache_dir, + library_name="keras", + library_version=get_tf_version(), + ) + else: + storage_folder = model_id + + # TODO: change this in a future PR. We are not returning a KerasModelHubMixin instance here... + model = keras.models.load_model(storage_folder) + + # For now, we add a new attribute, config, to store the config loaded from the hub/a local dir. + model.config = config + + return model |