aboutsummaryrefslogtreecommitdiff
path: root/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/operations
diff options
context:
space:
mode:
Diffstat (limited to '.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/operations')
-rw-r--r--.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/operations/__init__.py27
-rw-r--r--.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/operations/_data_call_operations.py356
-rw-r--r--.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/operations/_data_container_operations.py464
-rw-r--r--.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/operations/_data_version_operations.py1211
-rw-r--r--.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/operations/_dataset_controller_v2_operations.py1300
-rw-r--r--.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/operations/_dataset_v2_operations.py905
-rw-r--r--.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/operations/_datasets_v1_operations.py1300
-rw-r--r--.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/operations/_delete_operations.py145
-rw-r--r--.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/operations/_get_operation_status_operations.py212
9 files changed, 5920 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/operations/__init__.py b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/operations/__init__.py
new file mode 100644
index 00000000..f0340813
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/operations/__init__.py
@@ -0,0 +1,27 @@
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) AutoRest Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+
+from ._data_call_operations import DataCallOperations
+from ._data_container_operations import DataContainerOperations
+from ._delete_operations import DeleteOperations
+from ._datasets_v1_operations import DatasetsV1Operations
+from ._dataset_controller_v2_operations import DatasetControllerV2Operations
+from ._dataset_v2_operations import DatasetV2Operations
+from ._data_version_operations import DataVersionOperations
+from ._get_operation_status_operations import GetOperationStatusOperations
+
+__all__ = [
+ 'DataCallOperations',
+ 'DataContainerOperations',
+ 'DeleteOperations',
+ 'DatasetsV1Operations',
+ 'DatasetControllerV2Operations',
+ 'DatasetV2Operations',
+ 'DataVersionOperations',
+ 'GetOperationStatusOperations',
+]
diff --git a/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/operations/_data_call_operations.py b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/operations/_data_call_operations.py
new file mode 100644
index 00000000..4e7865d1
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/operations/_data_call_operations.py
@@ -0,0 +1,356 @@
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) AutoRest Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+import functools
+from typing import TYPE_CHECKING
+import warnings
+
+from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error
+from azure.core.pipeline import PipelineResponse
+from azure.core.pipeline.transport import HttpResponse
+from azure.core.rest import HttpRequest
+from azure.core.tracing.decorator import distributed_trace
+from azure.mgmt.core.exceptions import ARMErrorFormat
+from msrest import Serializer
+
+from .. import models as _models
+from .._vendor import _convert_request, _format_url_section
+
+if TYPE_CHECKING:
+ # pylint: disable=unused-import,ungrouped-imports
+ from typing import Any, Callable, Dict, Generic, List, Optional, TypeVar
+ T = TypeVar('T')
+ ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]]
+
+_SERIALIZER = Serializer()
+_SERIALIZER.client_side_validation = False
+# fmt: off
+
+def build_get_schema_for_ml_table_request(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ content_type = kwargs.pop('content_type', None) # type: Optional[str]
+
+ accept = "application/json"
+ # Construct URL
+ url = kwargs.pop("template_url", '/data/v2.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datacall/schema')
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ }
+
+ url = _format_url_section(url, **path_format_arguments)
+
+ # Construct headers
+ header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ if content_type is not None:
+ header_parameters['Content-Type'] = _SERIALIZER.header("content_type", content_type, 'str')
+ header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="POST",
+ url=url,
+ headers=header_parameters,
+ **kwargs
+ )
+
+
+def build_get_preview_for_ml_table_request(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ content_type = kwargs.pop('content_type', None) # type: Optional[str]
+
+ accept = "application/json"
+ # Construct URL
+ url = kwargs.pop("template_url", '/data/v2.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datacall/preview')
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ }
+
+ url = _format_url_section(url, **path_format_arguments)
+
+ # Construct headers
+ header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ if content_type is not None:
+ header_parameters['Content-Type'] = _SERIALIZER.header("content_type", content_type, 'str')
+ header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="POST",
+ url=url,
+ headers=header_parameters,
+ **kwargs
+ )
+
+
+def build_get_quick_profile_for_ml_table_request(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ content_type = kwargs.pop('content_type', None) # type: Optional[str]
+
+ accept = "application/json"
+ # Construct URL
+ url = kwargs.pop("template_url", '/data/v2.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datacall/quickprofile')
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ }
+
+ url = _format_url_section(url, **path_format_arguments)
+
+ # Construct headers
+ header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ if content_type is not None:
+ header_parameters['Content-Type'] = _SERIALIZER.header("content_type", content_type, 'str')
+ header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="POST",
+ url=url,
+ headers=header_parameters,
+ **kwargs
+ )
+
+# fmt: on
+class DataCallOperations(object):
+ """DataCallOperations operations.
+
+ You should not instantiate this class directly. Instead, you should create a Client instance that
+ instantiates it for you and attaches it as an attribute.
+
+ :ivar models: Alias to model classes used in this operation group.
+ :type models: ~azure.mgmt.machinelearningservices.models
+ :param client: Client for service requests.
+ :param config: Configuration of service client.
+ :param serializer: An object model serializer.
+ :param deserializer: An object model deserializer.
+ """
+
+ models = _models
+
+ def __init__(self, client, config, serializer, deserializer):
+ self._client = client
+ self._serialize = serializer
+ self._deserialize = deserializer
+ self._config = config
+
+ @distributed_trace
+ def get_schema_for_ml_table(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ body=None, # type: Optional["_models.DataCallRequest"]
+ **kwargs # type: Any
+ ):
+ # type: (...) -> List["_models.ColumnDefinition"]
+ """Get schema for a specific MLTable.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param body:
+ :type body: ~azure.mgmt.machinelearningservices.models.DataCallRequest
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: list of ColumnDefinition, or the result of cls(response)
+ :rtype: list[~azure.mgmt.machinelearningservices.models.ColumnDefinition]
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType[List["_models.ColumnDefinition"]]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+ content_type = kwargs.pop('content_type', "application/json") # type: Optional[str]
+
+ if body is not None:
+ _json = self._serialize.body(body, 'DataCallRequest')
+ else:
+ _json = None
+
+ request = build_get_schema_for_ml_table_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ content_type=content_type,
+ json=_json,
+ template_url=self.get_schema_for_ml_table.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('[ColumnDefinition]', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ get_schema_for_ml_table.metadata = {'url': '/data/v2.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datacall/schema'} # type: ignore
+
+
+ @distributed_trace
+ def get_preview_for_ml_table(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ body=None, # type: Optional["_models.DataCallRequest"]
+ **kwargs # type: Any
+ ):
+ # type: (...) -> "_models.DataViewSetResult"
+ """Get preview for a specific MLTable.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param body:
+ :type body: ~azure.mgmt.machinelearningservices.models.DataCallRequest
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: DataViewSetResult, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.DataViewSetResult
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.DataViewSetResult"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+ content_type = kwargs.pop('content_type', "application/json") # type: Optional[str]
+
+ if body is not None:
+ _json = self._serialize.body(body, 'DataCallRequest')
+ else:
+ _json = None
+
+ request = build_get_preview_for_ml_table_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ content_type=content_type,
+ json=_json,
+ template_url=self.get_preview_for_ml_table.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('DataViewSetResult', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ get_preview_for_ml_table.metadata = {'url': '/data/v2.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datacall/preview'} # type: ignore
+
+
+ @distributed_trace
+ def get_quick_profile_for_ml_table(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ body=None, # type: Optional["_models.DataCallRequest"]
+ **kwargs # type: Any
+ ):
+ # type: (...) -> List["_models.ProfileResult"]
+ """Get quick profile for a specific MLTable.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param body:
+ :type body: ~azure.mgmt.machinelearningservices.models.DataCallRequest
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: list of ProfileResult, or the result of cls(response)
+ :rtype: list[~azure.mgmt.machinelearningservices.models.ProfileResult]
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType[List["_models.ProfileResult"]]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+ content_type = kwargs.pop('content_type', "application/json") # type: Optional[str]
+
+ if body is not None:
+ _json = self._serialize.body(body, 'DataCallRequest')
+ else:
+ _json = None
+
+ request = build_get_quick_profile_for_ml_table_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ content_type=content_type,
+ json=_json,
+ template_url=self.get_quick_profile_for_ml_table.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('[ProfileResult]', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ get_quick_profile_for_ml_table.metadata = {'url': '/data/v2.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datacall/quickprofile'} # type: ignore
+
diff --git a/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/operations/_data_container_operations.py b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/operations/_data_container_operations.py
new file mode 100644
index 00000000..ac3af23d
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/operations/_data_container_operations.py
@@ -0,0 +1,464 @@
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) AutoRest Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+import functools
+from typing import TYPE_CHECKING
+import warnings
+
+from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error
+from azure.core.paging import ItemPaged
+from azure.core.pipeline import PipelineResponse
+from azure.core.pipeline.transport import HttpResponse
+from azure.core.rest import HttpRequest
+from azure.core.tracing.decorator import distributed_trace
+from azure.mgmt.core.exceptions import ARMErrorFormat
+from msrest import Serializer
+
+from .. import models as _models
+from .._vendor import _convert_request, _format_url_section
+
+if TYPE_CHECKING:
+ # pylint: disable=unused-import,ungrouped-imports
+ from typing import Any, Callable, Dict, Generic, Iterable, Optional, TypeVar
+ T = TypeVar('T')
+ ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]]
+
+_SERIALIZER = Serializer()
+_SERIALIZER.client_side_validation = False
+# fmt: off
+
+def build_create_data_container_request(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ content_type = kwargs.pop('content_type', None) # type: Optional[str]
+
+ accept = "application/json"
+ # Construct URL
+ url = kwargs.pop("template_url", '/data/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datacontainer')
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ }
+
+ url = _format_url_section(url, **path_format_arguments)
+
+ # Construct headers
+ header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ if content_type is not None:
+ header_parameters['Content-Type'] = _SERIALIZER.header("content_type", content_type, 'str')
+ header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="POST",
+ url=url,
+ headers=header_parameters,
+ **kwargs
+ )
+
+
+def build_list_data_container_request(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ accept = "application/json"
+ # Construct URL
+ url = kwargs.pop("template_url", '/data/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datacontainer')
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ }
+
+ url = _format_url_section(url, **path_format_arguments)
+
+ # Construct headers
+ header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="GET",
+ url=url,
+ headers=header_parameters,
+ **kwargs
+ )
+
+
+def build_get_data_container_request(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ name, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ accept = "application/json"
+ # Construct URL
+ url = kwargs.pop("template_url", '/data/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datacontainer/{name}')
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ "name": _SERIALIZER.url("name", name, 'str'),
+ }
+
+ url = _format_url_section(url, **path_format_arguments)
+
+ # Construct headers
+ header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="GET",
+ url=url,
+ headers=header_parameters,
+ **kwargs
+ )
+
+
+def build_modify_data_container_request(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ name, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ content_type = kwargs.pop('content_type', None) # type: Optional[str]
+
+ accept = "application/json"
+ # Construct URL
+ url = kwargs.pop("template_url", '/data/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datacontainer/{name}')
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ "name": _SERIALIZER.url("name", name, 'str'),
+ }
+
+ url = _format_url_section(url, **path_format_arguments)
+
+ # Construct headers
+ header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ if content_type is not None:
+ header_parameters['Content-Type'] = _SERIALIZER.header("content_type", content_type, 'str')
+ header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="PATCH",
+ url=url,
+ headers=header_parameters,
+ **kwargs
+ )
+
+# fmt: on
+class DataContainerOperations(object):
+ """DataContainerOperations operations.
+
+ You should not instantiate this class directly. Instead, you should create a Client instance that
+ instantiates it for you and attaches it as an attribute.
+
+ :ivar models: Alias to model classes used in this operation group.
+ :type models: ~azure.mgmt.machinelearningservices.models
+ :param client: Client for service requests.
+ :param config: Configuration of service client.
+ :param serializer: An object model serializer.
+ :param deserializer: An object model deserializer.
+ """
+
+ models = _models
+
+ def __init__(self, client, config, serializer, deserializer):
+ self._client = client
+ self._serialize = serializer
+ self._deserialize = deserializer
+ self._config = config
+
+ @distributed_trace
+ def create_data_container(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ body=None, # type: Optional["_models.DataContainer"]
+ **kwargs # type: Any
+ ):
+ # type: (...) -> "_models.DataContainerEntity"
+ """create_data_container.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param body:
+ :type body: ~azure.mgmt.machinelearningservices.models.DataContainer
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: DataContainerEntity, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.DataContainerEntity
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.DataContainerEntity"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+ content_type = kwargs.pop('content_type', "application/json") # type: Optional[str]
+
+ if body is not None:
+ _json = self._serialize.body(body, 'DataContainer')
+ else:
+ _json = None
+
+ request = build_create_data_container_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ content_type=content_type,
+ json=_json,
+ template_url=self.create_data_container.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('DataContainerEntity', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ create_data_container.metadata = {'url': '/data/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datacontainer'} # type: ignore
+
+
+ @distributed_trace
+ def list_data_container(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ **kwargs # type: Any
+ ):
+ # type: (...) -> Iterable["_models.PaginatedDataContainerEntityList"]
+ """list_data_container.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: An iterator like instance of either PaginatedDataContainerEntityList or the result of
+ cls(response)
+ :rtype:
+ ~azure.core.paging.ItemPaged[~azure.mgmt.machinelearningservices.models.PaginatedDataContainerEntityList]
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.PaginatedDataContainerEntityList"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+ def prepare_request(next_link=None):
+ if not next_link:
+
+ request = build_list_data_container_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ template_url=self.list_data_container.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ else:
+
+ request = build_list_data_container_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ template_url=next_link,
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+ request.method = "GET"
+ return request
+
+ def extract_data(pipeline_response):
+ deserialized = self._deserialize("PaginatedDataContainerEntityList", pipeline_response)
+ list_of_elem = deserialized.value
+ if cls:
+ list_of_elem = cls(list_of_elem)
+ return deserialized.next_link or None, iter(list_of_elem)
+
+ def get_next(next_link=None):
+ request = prepare_request(next_link)
+
+ pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ return pipeline_response
+
+
+ return ItemPaged(
+ get_next, extract_data
+ )
+ list_data_container.metadata = {'url': '/data/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datacontainer'} # type: ignore
+
+ @distributed_trace
+ def get_data_container(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ name, # type: str
+ **kwargs # type: Any
+ ):
+ # type: (...) -> "_models.DataContainerEntity"
+ """get_data_container.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param name:
+ :type name: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: DataContainerEntity, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.DataContainerEntity
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.DataContainerEntity"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+
+ request = build_get_data_container_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ name=name,
+ template_url=self.get_data_container.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('DataContainerEntity', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ get_data_container.metadata = {'url': '/data/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datacontainer/{name}'} # type: ignore
+
+
+ @distributed_trace
+ def modify_data_container(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ name, # type: str
+ body=None, # type: Optional["_models.DataContainerMutable"]
+ **kwargs # type: Any
+ ):
+ # type: (...) -> "_models.DataContainerEntity"
+ """modify_data_container.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param name:
+ :type name: str
+ :param body:
+ :type body: ~azure.mgmt.machinelearningservices.models.DataContainerMutable
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: DataContainerEntity, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.DataContainerEntity
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.DataContainerEntity"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+ content_type = kwargs.pop('content_type', "application/json") # type: Optional[str]
+
+ if body is not None:
+ _json = self._serialize.body(body, 'DataContainerMutable')
+ else:
+ _json = None
+
+ request = build_modify_data_container_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ name=name,
+ content_type=content_type,
+ json=_json,
+ template_url=self.modify_data_container.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('DataContainerEntity', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ modify_data_container.metadata = {'url': '/data/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datacontainer/{name}'} # type: ignore
+
diff --git a/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/operations/_data_version_operations.py b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/operations/_data_version_operations.py
new file mode 100644
index 00000000..ae87ad4b
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/operations/_data_version_operations.py
@@ -0,0 +1,1211 @@
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) AutoRest Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+import functools
+from typing import TYPE_CHECKING
+import warnings
+
+from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error
+from azure.core.paging import ItemPaged
+from azure.core.pipeline import PipelineResponse
+from azure.core.pipeline.transport import HttpResponse
+from azure.core.rest import HttpRequest
+from azure.core.tracing.decorator import distributed_trace
+from azure.mgmt.core.exceptions import ARMErrorFormat
+from msrest import Serializer
+
+from .. import models as _models
+from .._vendor import _convert_request, _format_url_section
+
+if TYPE_CHECKING:
+ # pylint: disable=unused-import,ungrouped-imports
+ from typing import Any, Callable, Dict, Generic, Iterable, Optional, TypeVar
+ T = TypeVar('T')
+ ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]]
+
+_SERIALIZER = Serializer()
+_SERIALIZER.client_side_validation = False
+# fmt: off
+
+def build_create_request(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ name, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ content_type = kwargs.pop('content_type', None) # type: Optional[str]
+
+ accept = "application/json"
+ # Construct URL
+ url = kwargs.pop("template_url", '/data/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/dataversion/{name}/versions')
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ "name": _SERIALIZER.url("name", name, 'str'),
+ }
+
+ url = _format_url_section(url, **path_format_arguments)
+
+ # Construct headers
+ header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ if content_type is not None:
+ header_parameters['Content-Type'] = _SERIALIZER.header("content_type", content_type, 'str')
+ header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="POST",
+ url=url,
+ headers=header_parameters,
+ **kwargs
+ )
+
+
+def build_list_request(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ name, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ order_by = kwargs.pop('order_by', None) # type: Optional[str]
+ top = kwargs.pop('top', None) # type: Optional[int]
+
+ accept = "application/json"
+ # Construct URL
+ url = kwargs.pop("template_url", '/data/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/dataversion/{name}/versions')
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ "name": _SERIALIZER.url("name", name, 'str'),
+ }
+
+ url = _format_url_section(url, **path_format_arguments)
+
+ # Construct parameters
+ query_parameters = kwargs.pop("params", {}) # type: Dict[str, Any]
+ if order_by is not None:
+ query_parameters['orderBy'] = _SERIALIZER.query("order_by", order_by, 'str')
+ if top is not None:
+ query_parameters['top'] = _SERIALIZER.query("top", top, 'int')
+
+ # Construct headers
+ header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="GET",
+ url=url,
+ params=query_parameters,
+ headers=header_parameters,
+ **kwargs
+ )
+
+
+def build_get_request(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ name, # type: str
+ version, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ accept = "application/json"
+ # Construct URL
+ url = kwargs.pop("template_url", '/data/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/dataversion/{name}/versions/{version}')
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ "name": _SERIALIZER.url("name", name, 'str'),
+ "version": _SERIALIZER.url("version", version, 'str'),
+ }
+
+ url = _format_url_section(url, **path_format_arguments)
+
+ # Construct headers
+ header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="GET",
+ url=url,
+ headers=header_parameters,
+ **kwargs
+ )
+
+
+def build_modify_request(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ name, # type: str
+ version, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ content_type = kwargs.pop('content_type', None) # type: Optional[str]
+
+ accept = "application/json"
+ # Construct URL
+ url = kwargs.pop("template_url", '/data/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/dataversion/{name}/versions/{version}')
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ "name": _SERIALIZER.url("name", name, 'str'),
+ "version": _SERIALIZER.url("version", version, 'str'),
+ }
+
+ url = _format_url_section(url, **path_format_arguments)
+
+ # Construct headers
+ header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ if content_type is not None:
+ header_parameters['Content-Type'] = _SERIALIZER.header("content_type", content_type, 'str')
+ header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="PATCH",
+ url=url,
+ headers=header_parameters,
+ **kwargs
+ )
+
+
+def build_delete_request(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ name, # type: str
+ version, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ accept = "application/json"
+ # Construct URL
+ url = kwargs.pop("template_url", '/data/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/dataversion/{name}/versions/{version}')
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ "name": _SERIALIZER.url("name", name, 'str'),
+ "version": _SERIALIZER.url("version", version, 'str'),
+ }
+
+ url = _format_url_section(url, **path_format_arguments)
+
+ # Construct headers
+ header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="DELETE",
+ url=url,
+ headers=header_parameters,
+ **kwargs
+ )
+
+
+def build_exists_request(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ name, # type: str
+ version, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ accept = "application/json"
+ # Construct URL
+ url = kwargs.pop("template_url", '/data/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/dataversion/{name}/versions/{version}/exists')
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ "name": _SERIALIZER.url("name", name, 'str'),
+ "version": _SERIALIZER.url("version", version, 'str'),
+ }
+
+ url = _format_url_section(url, **path_format_arguments)
+
+ # Construct headers
+ header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="GET",
+ url=url,
+ headers=header_parameters,
+ **kwargs
+ )
+
+
+def build_get_by_asset_id_request(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ content_type = kwargs.pop('content_type', None) # type: Optional[str]
+
+ accept = "application/json"
+ # Construct URL
+ url = kwargs.pop("template_url", '/data/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/dataversion/getByAssetId')
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ }
+
+ url = _format_url_section(url, **path_format_arguments)
+
+ # Construct headers
+ header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ if content_type is not None:
+ header_parameters['Content-Type'] = _SERIALIZER.header("content_type", content_type, 'str')
+ header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="POST",
+ url=url,
+ headers=header_parameters,
+ **kwargs
+ )
+
+
+def build_create_unregistered_input_data_request(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ content_type = kwargs.pop('content_type', None) # type: Optional[str]
+
+ accept = "application/json"
+ # Construct URL
+ url = kwargs.pop("template_url", '/data/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/dataversion/createUnregisteredInput')
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ }
+
+ url = _format_url_section(url, **path_format_arguments)
+
+ # Construct headers
+ header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ if content_type is not None:
+ header_parameters['Content-Type'] = _SERIALIZER.header("content_type", content_type, 'str')
+ header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="POST",
+ url=url,
+ headers=header_parameters,
+ **kwargs
+ )
+
+
+def build_create_unregistered_output_data_request(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ content_type = kwargs.pop('content_type', None) # type: Optional[str]
+
+ accept = "application/json"
+ # Construct URL
+ url = kwargs.pop("template_url", '/data/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/dataversion/createUnregisteredOutput')
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ }
+
+ url = _format_url_section(url, **path_format_arguments)
+
+ # Construct headers
+ header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ if content_type is not None:
+ header_parameters['Content-Type'] = _SERIALIZER.header("content_type", content_type, 'str')
+ header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="POST",
+ url=url,
+ headers=header_parameters,
+ **kwargs
+ )
+
+
+def build_registered_existing_data_request(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ content_type = kwargs.pop('content_type', None) # type: Optional[str]
+
+ accept = "application/json"
+ # Construct URL
+ url = kwargs.pop("template_url", '/data/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/dataversion/registerExisting')
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ }
+
+ url = _format_url_section(url, **path_format_arguments)
+
+ # Construct headers
+ header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ if content_type is not None:
+ header_parameters['Content-Type'] = _SERIALIZER.header("content_type", content_type, 'str')
+ header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="POST",
+ url=url,
+ headers=header_parameters,
+ **kwargs
+ )
+
+
+def build_batch_get_resolved_uris_request(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ content_type = kwargs.pop('content_type', None) # type: Optional[str]
+
+ accept = "application/json"
+ # Construct URL
+ url = kwargs.pop("template_url", '/data/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/dataversion/batchGetResolvedUris')
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ }
+
+ url = _format_url_section(url, **path_format_arguments)
+
+ # Construct headers
+ header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ if content_type is not None:
+ header_parameters['Content-Type'] = _SERIALIZER.header("content_type", content_type, 'str')
+ header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="POST",
+ url=url,
+ headers=header_parameters,
+ **kwargs
+ )
+
+# fmt: on
+class DataVersionOperations(object):
+ """DataVersionOperations operations.
+
+ You should not instantiate this class directly. Instead, you should create a Client instance that
+ instantiates it for you and attaches it as an attribute.
+
+ :ivar models: Alias to model classes used in this operation group.
+ :type models: ~azure.mgmt.machinelearningservices.models
+ :param client: Client for service requests.
+ :param config: Configuration of service client.
+ :param serializer: An object model serializer.
+ :param deserializer: An object model deserializer.
+ """
+
+ models = _models
+
+ def __init__(self, client, config, serializer, deserializer):
+ self._client = client
+ self._serialize = serializer
+ self._deserialize = deserializer
+ self._config = config
+
+ @distributed_trace
+ def create(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ name, # type: str
+ body=None, # type: Optional["_models.DataVersion"]
+ **kwargs # type: Any
+ ):
+ # type: (...) -> "_models.DataVersionEntity"
+ """create.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param name:
+ :type name: str
+ :param body:
+ :type body: ~azure.mgmt.machinelearningservices.models.DataVersion
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: DataVersionEntity, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.DataVersionEntity
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.DataVersionEntity"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+ content_type = kwargs.pop('content_type', "application/json") # type: Optional[str]
+
+ if body is not None:
+ _json = self._serialize.body(body, 'DataVersion')
+ else:
+ _json = None
+
+ request = build_create_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ name=name,
+ content_type=content_type,
+ json=_json,
+ template_url=self.create.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('DataVersionEntity', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ create.metadata = {'url': '/data/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/dataversion/{name}/versions'} # type: ignore
+
+
+ @distributed_trace
+ def list(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ name, # type: str
+ order_by=None, # type: Optional[str]
+ top=None, # type: Optional[int]
+ **kwargs # type: Any
+ ):
+ # type: (...) -> Iterable["_models.PaginatedDataVersionEntityList"]
+ """list.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param name:
+ :type name: str
+ :param order_by:
+ :type order_by: str
+ :param top:
+ :type top: int
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: An iterator like instance of either PaginatedDataVersionEntityList or the result of
+ cls(response)
+ :rtype:
+ ~azure.core.paging.ItemPaged[~azure.mgmt.machinelearningservices.models.PaginatedDataVersionEntityList]
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.PaginatedDataVersionEntityList"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+ def prepare_request(next_link=None):
+ if not next_link:
+
+ request = build_list_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ name=name,
+ order_by=order_by,
+ top=top,
+ template_url=self.list.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ else:
+
+ request = build_list_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ name=name,
+ order_by=order_by,
+ top=top,
+ template_url=next_link,
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+ request.method = "GET"
+ return request
+
+ def extract_data(pipeline_response):
+ deserialized = self._deserialize("PaginatedDataVersionEntityList", pipeline_response)
+ list_of_elem = deserialized.value
+ if cls:
+ list_of_elem = cls(list_of_elem)
+ return deserialized.next_link or None, iter(list_of_elem)
+
+ def get_next(next_link=None):
+ request = prepare_request(next_link)
+
+ pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ return pipeline_response
+
+
+ return ItemPaged(
+ get_next, extract_data
+ )
+ list.metadata = {'url': '/data/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/dataversion/{name}/versions'} # type: ignore
+
+ @distributed_trace
+ def get(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ name, # type: str
+ version, # type: str
+ **kwargs # type: Any
+ ):
+ # type: (...) -> "_models.DataVersionEntity"
+ """get.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param name:
+ :type name: str
+ :param version:
+ :type version: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: DataVersionEntity, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.DataVersionEntity
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.DataVersionEntity"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+
+ request = build_get_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ name=name,
+ version=version,
+ template_url=self.get.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('DataVersionEntity', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ get.metadata = {'url': '/data/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/dataversion/{name}/versions/{version}'} # type: ignore
+
+
+ @distributed_trace
+ def modify(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ name, # type: str
+ version, # type: str
+ body=None, # type: Optional["_models.DataVersionMutable"]
+ **kwargs # type: Any
+ ):
+ # type: (...) -> "_models.DataVersionEntity"
+ """modify.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param name:
+ :type name: str
+ :param version:
+ :type version: str
+ :param body:
+ :type body: ~azure.mgmt.machinelearningservices.models.DataVersionMutable
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: DataVersionEntity, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.DataVersionEntity
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.DataVersionEntity"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+ content_type = kwargs.pop('content_type', "application/json") # type: Optional[str]
+
+ if body is not None:
+ _json = self._serialize.body(body, 'DataVersionMutable')
+ else:
+ _json = None
+
+ request = build_modify_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ name=name,
+ version=version,
+ content_type=content_type,
+ json=_json,
+ template_url=self.modify.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('DataVersionEntity', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ modify.metadata = {'url': '/data/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/dataversion/{name}/versions/{version}'} # type: ignore
+
+
+ @distributed_trace
+ def delete(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ name, # type: str
+ version, # type: str
+ **kwargs # type: Any
+ ):
+ # type: (...) -> "_models.HttpResponseMessage"
+ """delete.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param name:
+ :type name: str
+ :param version:
+ :type version: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: HttpResponseMessage, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.HttpResponseMessage
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.HttpResponseMessage"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+
+ request = build_delete_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ name=name,
+ version=version,
+ template_url=self.delete.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('HttpResponseMessage', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ delete.metadata = {'url': '/data/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/dataversion/{name}/versions/{version}'} # type: ignore
+
+
+ @distributed_trace
+ def exists(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ name, # type: str
+ version, # type: str
+ **kwargs # type: Any
+ ):
+ # type: (...) -> bool
+ """exists.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param name:
+ :type name: str
+ :param version:
+ :type version: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: bool, or the result of cls(response)
+ :rtype: bool
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType[bool]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+
+ request = build_exists_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ name=name,
+ version=version,
+ template_url=self.exists.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('bool', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ exists.metadata = {'url': '/data/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/dataversion/{name}/versions/{version}/exists'} # type: ignore
+
+
+ @distributed_trace
+ def get_by_asset_id(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ body=None, # type: Optional["_models.AssetId"]
+ **kwargs # type: Any
+ ):
+ # type: (...) -> "_models.DataVersionEntity"
+ """get_by_asset_id.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param body:
+ :type body: ~azure.mgmt.machinelearningservices.models.AssetId
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: DataVersionEntity, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.DataVersionEntity
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.DataVersionEntity"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+ content_type = kwargs.pop('content_type', "application/json") # type: Optional[str]
+
+ if body is not None:
+ _json = self._serialize.body(body, 'AssetId')
+ else:
+ _json = None
+
+ request = build_get_by_asset_id_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ content_type=content_type,
+ json=_json,
+ template_url=self.get_by_asset_id.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('DataVersionEntity', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ get_by_asset_id.metadata = {'url': '/data/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/dataversion/getByAssetId'} # type: ignore
+
+
+ @distributed_trace
+ def create_unregistered_input_data(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ body=None, # type: Optional["_models.CreateUnregisteredInputData"]
+ **kwargs # type: Any
+ ):
+ # type: (...) -> "_models.DataContainerEntity"
+ """create_unregistered_input_data.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param body:
+ :type body: ~azure.mgmt.machinelearningservices.models.CreateUnregisteredInputData
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: DataContainerEntity, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.DataContainerEntity
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.DataContainerEntity"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+ content_type = kwargs.pop('content_type', "application/json") # type: Optional[str]
+
+ if body is not None:
+ _json = self._serialize.body(body, 'CreateUnregisteredInputData')
+ else:
+ _json = None
+
+ request = build_create_unregistered_input_data_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ content_type=content_type,
+ json=_json,
+ template_url=self.create_unregistered_input_data.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('DataContainerEntity', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ create_unregistered_input_data.metadata = {'url': '/data/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/dataversion/createUnregisteredInput'} # type: ignore
+
+
+ @distributed_trace
+ def create_unregistered_output_data(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ body=None, # type: Optional["_models.CreateUnregisteredOutputData"]
+ **kwargs # type: Any
+ ):
+ # type: (...) -> "_models.DataContainerEntity"
+ """create_unregistered_output_data.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param body:
+ :type body: ~azure.mgmt.machinelearningservices.models.CreateUnregisteredOutputData
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: DataContainerEntity, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.DataContainerEntity
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.DataContainerEntity"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+ content_type = kwargs.pop('content_type', "application/json") # type: Optional[str]
+
+ if body is not None:
+ _json = self._serialize.body(body, 'CreateUnregisteredOutputData')
+ else:
+ _json = None
+
+ request = build_create_unregistered_output_data_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ content_type=content_type,
+ json=_json,
+ template_url=self.create_unregistered_output_data.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('DataContainerEntity', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ create_unregistered_output_data.metadata = {'url': '/data/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/dataversion/createUnregisteredOutput'} # type: ignore
+
+
+ @distributed_trace
+ def registered_existing_data(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ body=None, # type: Optional["_models.RegisterExistingData"]
+ **kwargs # type: Any
+ ):
+ # type: (...) -> "_models.DataContainerEntity"
+ """registered_existing_data.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param body:
+ :type body: ~azure.mgmt.machinelearningservices.models.RegisterExistingData
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: DataContainerEntity, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.DataContainerEntity
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.DataContainerEntity"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+ content_type = kwargs.pop('content_type', "application/json") # type: Optional[str]
+
+ if body is not None:
+ _json = self._serialize.body(body, 'RegisterExistingData')
+ else:
+ _json = None
+
+ request = build_registered_existing_data_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ content_type=content_type,
+ json=_json,
+ template_url=self.registered_existing_data.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('DataContainerEntity', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ registered_existing_data.metadata = {'url': '/data/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/dataversion/registerExisting'} # type: ignore
+
+
+ @distributed_trace
+ def batch_get_resolved_uris(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ body=None, # type: Optional["_models.BatchGetResolvedURIs"]
+ **kwargs # type: Any
+ ):
+ # type: (...) -> "_models.BatchDataUriResponse"
+ """batch_get_resolved_uris.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param body:
+ :type body: ~azure.mgmt.machinelearningservices.models.BatchGetResolvedURIs
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: BatchDataUriResponse, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.BatchDataUriResponse
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.BatchDataUriResponse"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+ content_type = kwargs.pop('content_type', "application/json") # type: Optional[str]
+
+ if body is not None:
+ _json = self._serialize.body(body, 'BatchGetResolvedURIs')
+ else:
+ _json = None
+
+ request = build_batch_get_resolved_uris_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ content_type=content_type,
+ json=_json,
+ template_url=self.batch_get_resolved_uris.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('BatchDataUriResponse', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ batch_get_resolved_uris.metadata = {'url': '/data/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/dataversion/batchGetResolvedUris'} # type: ignore
+
diff --git a/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/operations/_dataset_controller_v2_operations.py b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/operations/_dataset_controller_v2_operations.py
new file mode 100644
index 00000000..05d64736
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/operations/_dataset_controller_v2_operations.py
@@ -0,0 +1,1300 @@
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) AutoRest Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+import functools
+from typing import TYPE_CHECKING
+import warnings
+
+from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error
+from azure.core.paging import ItemPaged
+from azure.core.pipeline import PipelineResponse
+from azure.core.pipeline.transport import HttpResponse
+from azure.core.rest import HttpRequest
+from azure.core.tracing.decorator import distributed_trace
+from azure.mgmt.core.exceptions import ARMErrorFormat
+from msrest import Serializer
+
+from .. import models as _models
+from .._vendor import _convert_request, _format_url_section
+
+if TYPE_CHECKING:
+ # pylint: disable=unused-import,ungrouped-imports
+ from typing import Any, Callable, Dict, Generic, Iterable, List, Optional, TypeVar
+ T = TypeVar('T')
+ ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]]
+
+_SERIALIZER = Serializer()
+_SERIALIZER.client_side_validation = False
+# fmt: off
+
+def build_get_dataset_definition_request(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ dataset_id, # type: str
+ version, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ accept = "application/json"
+ # Construct URL
+ url = kwargs.pop("template_url", '/dataset/v1.2/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datasets/{datasetId}/definitions/{version}')
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ "datasetId": _SERIALIZER.url("dataset_id", dataset_id, 'str'),
+ "version": _SERIALIZER.url("version", version, 'str'),
+ }
+
+ url = _format_url_section(url, **path_format_arguments)
+
+ # Construct headers
+ header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="GET",
+ url=url,
+ headers=header_parameters,
+ **kwargs
+ )
+
+
+def build_get_all_dataset_definitions_request(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ dataset_id, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ continuation_token_parameter = kwargs.pop('continuation_token_parameter', None) # type: Optional[str]
+ page_size = kwargs.pop('page_size', None) # type: Optional[int]
+
+ accept = "application/json"
+ # Construct URL
+ url = kwargs.pop("template_url", '/dataset/v1.2/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datasets/{datasetId}/definitions')
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ "datasetId": _SERIALIZER.url("dataset_id", dataset_id, 'str'),
+ }
+
+ url = _format_url_section(url, **path_format_arguments)
+
+ # Construct parameters
+ query_parameters = kwargs.pop("params", {}) # type: Dict[str, Any]
+ if continuation_token_parameter is not None:
+ query_parameters['continuationToken'] = _SERIALIZER.query("continuation_token_parameter", continuation_token_parameter, 'str')
+ if page_size is not None:
+ query_parameters['pageSize'] = _SERIALIZER.query("page_size", page_size, 'int')
+
+ # Construct headers
+ header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="GET",
+ url=url,
+ params=query_parameters,
+ headers=header_parameters,
+ **kwargs
+ )
+
+
+def build_update_definition_request(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ dataset_id, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ content_type = kwargs.pop('content_type', None) # type: Optional[str]
+ register_as_pending = kwargs.pop('register_as_pending', False) # type: Optional[bool]
+ force_update = kwargs.pop('force_update', False) # type: Optional[bool]
+ dataset_type = kwargs.pop('dataset_type', None) # type: Optional[str]
+ user_version_id = kwargs.pop('user_version_id', None) # type: Optional[str]
+
+ accept = "application/json"
+ # Construct URL
+ url = kwargs.pop("template_url", '/dataset/v1.2/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datasets/{datasetId}/definitions')
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ "datasetId": _SERIALIZER.url("dataset_id", dataset_id, 'str'),
+ }
+
+ url = _format_url_section(url, **path_format_arguments)
+
+ # Construct parameters
+ query_parameters = kwargs.pop("params", {}) # type: Dict[str, Any]
+ if register_as_pending is not None:
+ query_parameters['registerAsPending'] = _SERIALIZER.query("register_as_pending", register_as_pending, 'bool')
+ if force_update is not None:
+ query_parameters['forceUpdate'] = _SERIALIZER.query("force_update", force_update, 'bool')
+ if dataset_type is not None:
+ query_parameters['datasetType'] = _SERIALIZER.query("dataset_type", dataset_type, 'str')
+ if user_version_id is not None:
+ query_parameters['userVersionId'] = _SERIALIZER.query("user_version_id", user_version_id, 'str')
+
+ # Construct headers
+ header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ if content_type is not None:
+ header_parameters['Content-Type'] = _SERIALIZER.header("content_type", content_type, 'str')
+ header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="POST",
+ url=url,
+ params=query_parameters,
+ headers=header_parameters,
+ **kwargs
+ )
+
+
+def build_get_all_dataset_versions_request(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ dataset_id, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ continuation_token_parameter = kwargs.pop('continuation_token_parameter', None) # type: Optional[str]
+ page_size = kwargs.pop('page_size', None) # type: Optional[int]
+
+ accept = "application/json"
+ # Construct URL
+ url = kwargs.pop("template_url", '/dataset/v1.2/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datasets/{datasetId}/versions')
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ "datasetId": _SERIALIZER.url("dataset_id", dataset_id, 'str'),
+ }
+
+ url = _format_url_section(url, **path_format_arguments)
+
+ # Construct parameters
+ query_parameters = kwargs.pop("params", {}) # type: Dict[str, Any]
+ if continuation_token_parameter is not None:
+ query_parameters['continuationToken'] = _SERIALIZER.query("continuation_token_parameter", continuation_token_parameter, 'str')
+ if page_size is not None:
+ query_parameters['pageSize'] = _SERIALIZER.query("page_size", page_size, 'int')
+
+ # Construct headers
+ header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="GET",
+ url=url,
+ params=query_parameters,
+ headers=header_parameters,
+ **kwargs
+ )
+
+
+def build_get_dataset_by_name_request(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ dataset_name, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ version_id = kwargs.pop('version_id', None) # type: Optional[str]
+ include_latest_definition = kwargs.pop('include_latest_definition', True) # type: Optional[bool]
+
+ accept = "application/json"
+ # Construct URL
+ url = kwargs.pop("template_url", '/dataset/v1.2/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datasets/query/name={datasetName}')
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ "datasetName": _SERIALIZER.url("dataset_name", dataset_name, 'str'),
+ }
+
+ url = _format_url_section(url, **path_format_arguments)
+
+ # Construct parameters
+ query_parameters = kwargs.pop("params", {}) # type: Dict[str, Any]
+ if version_id is not None:
+ query_parameters['versionId'] = _SERIALIZER.query("version_id", version_id, 'str')
+ if include_latest_definition is not None:
+ query_parameters['includeLatestDefinition'] = _SERIALIZER.query("include_latest_definition", include_latest_definition, 'bool')
+
+ # Construct headers
+ header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="GET",
+ url=url,
+ params=query_parameters,
+ headers=header_parameters,
+ **kwargs
+ )
+
+
+def build_list_request(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ dataset_names = kwargs.pop('dataset_names', None) # type: Optional[List[str]]
+ search_text = kwargs.pop('search_text', None) # type: Optional[str]
+ include_invisible = kwargs.pop('include_invisible', False) # type: Optional[bool]
+ status = kwargs.pop('status', None) # type: Optional[str]
+ continuation_token_parameter = kwargs.pop('continuation_token_parameter', None) # type: Optional[str]
+ page_size = kwargs.pop('page_size', None) # type: Optional[int]
+ include_latest_definition = kwargs.pop('include_latest_definition', False) # type: Optional[bool]
+ order_by = kwargs.pop('order_by', None) # type: Optional[str]
+ order_by_asc = kwargs.pop('order_by_asc', False) # type: Optional[bool]
+ dataset_types = kwargs.pop('dataset_types', None) # type: Optional[List[str]]
+
+ accept = "application/json"
+ # Construct URL
+ url = kwargs.pop("template_url", '/dataset/v1.2/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datasets')
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ }
+
+ url = _format_url_section(url, **path_format_arguments)
+
+ # Construct parameters
+ query_parameters = kwargs.pop("params", {}) # type: Dict[str, Any]
+ if dataset_names is not None:
+ query_parameters['datasetNames'] = _SERIALIZER.query("dataset_names", dataset_names, '[str]')
+ if search_text is not None:
+ query_parameters['searchText'] = _SERIALIZER.query("search_text", search_text, 'str')
+ if include_invisible is not None:
+ query_parameters['includeInvisible'] = _SERIALIZER.query("include_invisible", include_invisible, 'bool')
+ if status is not None:
+ query_parameters['status'] = _SERIALIZER.query("status", status, 'str')
+ if continuation_token_parameter is not None:
+ query_parameters['continuationToken'] = _SERIALIZER.query("continuation_token_parameter", continuation_token_parameter, 'str')
+ if page_size is not None:
+ query_parameters['pageSize'] = _SERIALIZER.query("page_size", page_size, 'int')
+ if include_latest_definition is not None:
+ query_parameters['includeLatestDefinition'] = _SERIALIZER.query("include_latest_definition", include_latest_definition, 'bool')
+ if order_by is not None:
+ query_parameters['orderBy'] = _SERIALIZER.query("order_by", order_by, 'str')
+ if order_by_asc is not None:
+ query_parameters['orderByAsc'] = _SERIALIZER.query("order_by_asc", order_by_asc, 'bool')
+ if dataset_types is not None:
+ query_parameters['datasetTypes'] = _SERIALIZER.query("dataset_types", dataset_types, '[str]')
+
+ # Construct headers
+ header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="GET",
+ url=url,
+ params=query_parameters,
+ headers=header_parameters,
+ **kwargs
+ )
+
+
+def build_register_request(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ content_type = kwargs.pop('content_type', None) # type: Optional[str]
+ register_as_pending = kwargs.pop('register_as_pending', False) # type: Optional[bool]
+ if_exists_ok = kwargs.pop('if_exists_ok', True) # type: Optional[bool]
+ update_definition_if_exists = kwargs.pop('update_definition_if_exists', False) # type: Optional[bool]
+ with_data_hash = kwargs.pop('with_data_hash', False) # type: Optional[bool]
+ user_version_id = kwargs.pop('user_version_id', None) # type: Optional[str]
+
+ accept = "application/json"
+ # Construct URL
+ url = kwargs.pop("template_url", '/dataset/v1.2/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datasets')
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ }
+
+ url = _format_url_section(url, **path_format_arguments)
+
+ # Construct parameters
+ query_parameters = kwargs.pop("params", {}) # type: Dict[str, Any]
+ if register_as_pending is not None:
+ query_parameters['registerAsPending'] = _SERIALIZER.query("register_as_pending", register_as_pending, 'bool')
+ if if_exists_ok is not None:
+ query_parameters['ifExistsOk'] = _SERIALIZER.query("if_exists_ok", if_exists_ok, 'bool')
+ if update_definition_if_exists is not None:
+ query_parameters['updateDefinitionIfExists'] = _SERIALIZER.query("update_definition_if_exists", update_definition_if_exists, 'bool')
+ if with_data_hash is not None:
+ query_parameters['withDataHash'] = _SERIALIZER.query("with_data_hash", with_data_hash, 'bool')
+ if user_version_id is not None:
+ query_parameters['userVersionId'] = _SERIALIZER.query("user_version_id", user_version_id, 'str')
+
+ # Construct headers
+ header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ if content_type is not None:
+ header_parameters['Content-Type'] = _SERIALIZER.header("content_type", content_type, 'str')
+ header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="POST",
+ url=url,
+ params=query_parameters,
+ headers=header_parameters,
+ **kwargs
+ )
+
+
+def build_delete_all_datasets_request(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ accept = "application/json"
+ # Construct URL
+ url = kwargs.pop("template_url", '/dataset/v1.2/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datasets')
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ }
+
+ url = _format_url_section(url, **path_format_arguments)
+
+ # Construct headers
+ header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="DELETE",
+ url=url,
+ headers=header_parameters,
+ **kwargs
+ )
+
+
+def build_update_dataset_request(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ dataset_id, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ content_type = kwargs.pop('content_type', None) # type: Optional[str]
+ force_update = kwargs.pop('force_update', False) # type: Optional[bool]
+
+ accept = "application/json"
+ # Construct URL
+ url = kwargs.pop("template_url", '/dataset/v1.2/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datasets/{datasetId}')
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ "datasetId": _SERIALIZER.url("dataset_id", dataset_id, 'str'),
+ }
+
+ url = _format_url_section(url, **path_format_arguments)
+
+ # Construct parameters
+ query_parameters = kwargs.pop("params", {}) # type: Dict[str, Any]
+ if force_update is not None:
+ query_parameters['forceUpdate'] = _SERIALIZER.query("force_update", force_update, 'bool')
+
+ # Construct headers
+ header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ if content_type is not None:
+ header_parameters['Content-Type'] = _SERIALIZER.header("content_type", content_type, 'str')
+ header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="PUT",
+ url=url,
+ params=query_parameters,
+ headers=header_parameters,
+ **kwargs
+ )
+
+
+def build_unregister_dataset_request(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ name, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ accept = "application/json"
+ # Construct URL
+ url = kwargs.pop("template_url", '/dataset/v1.2/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datasets/{name}')
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ "name": _SERIALIZER.url("name", name, 'str'),
+ }
+
+ url = _format_url_section(url, **path_format_arguments)
+
+ # Construct headers
+ header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="DELETE",
+ url=url,
+ headers=header_parameters,
+ **kwargs
+ )
+
+# fmt: on
+class DatasetControllerV2Operations(object):
+ """DatasetControllerV2Operations operations.
+
+ You should not instantiate this class directly. Instead, you should create a Client instance that
+ instantiates it for you and attaches it as an attribute.
+
+ :ivar models: Alias to model classes used in this operation group.
+ :type models: ~azure.mgmt.machinelearningservices.models
+ :param client: Client for service requests.
+ :param config: Configuration of service client.
+ :param serializer: An object model serializer.
+ :param deserializer: An object model deserializer.
+ """
+
+ models = _models
+
+ def __init__(self, client, config, serializer, deserializer):
+ self._client = client
+ self._serialize = serializer
+ self._deserialize = deserializer
+ self._config = config
+
+ @distributed_trace
+ def get_dataset_definition(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ dataset_id, # type: str
+ version, # type: str
+ **kwargs # type: Any
+ ):
+ # type: (...) -> "_models.DatasetDefinition"
+ """Get a specific dataset definition.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param dataset_id:
+ :type dataset_id: str
+ :param version:
+ :type version: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: DatasetDefinition, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.DatasetDefinition
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.DatasetDefinition"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+
+ request = build_get_dataset_definition_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ dataset_id=dataset_id,
+ version=version,
+ template_url=self.get_dataset_definition.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('DatasetDefinition', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ get_dataset_definition.metadata = {'url': '/dataset/v1.2/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datasets/{datasetId}/definitions/{version}'} # type: ignore
+
+
+ @distributed_trace
+ def get_all_dataset_definitions(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ dataset_id, # type: str
+ continuation_token_parameter=None, # type: Optional[str]
+ page_size=None, # type: Optional[int]
+ **kwargs # type: Any
+ ):
+ # type: (...) -> Iterable["_models.PaginatedDatasetDefinitionList"]
+ """Get all dataset definitions for a given dataset.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param dataset_id:
+ :type dataset_id: str
+ :param continuation_token_parameter:
+ :type continuation_token_parameter: str
+ :param page_size:
+ :type page_size: int
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: An iterator like instance of either PaginatedDatasetDefinitionList or the result of
+ cls(response)
+ :rtype:
+ ~azure.core.paging.ItemPaged[~azure.mgmt.machinelearningservices.models.PaginatedDatasetDefinitionList]
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.PaginatedDatasetDefinitionList"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+ def prepare_request(next_link=None):
+ if not next_link:
+
+ request = build_get_all_dataset_definitions_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ dataset_id=dataset_id,
+ continuation_token_parameter=continuation_token_parameter,
+ page_size=page_size,
+ template_url=self.get_all_dataset_definitions.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ else:
+
+ request = build_get_all_dataset_definitions_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ dataset_id=dataset_id,
+ continuation_token_parameter=continuation_token_parameter,
+ page_size=page_size,
+ template_url=next_link,
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+ request.method = "GET"
+ return request
+
+ def extract_data(pipeline_response):
+ deserialized = self._deserialize("PaginatedDatasetDefinitionList", pipeline_response)
+ list_of_elem = deserialized.value
+ if cls:
+ list_of_elem = cls(list_of_elem)
+ return deserialized.next_link or None, iter(list_of_elem)
+
+ def get_next(next_link=None):
+ request = prepare_request(next_link)
+
+ pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ return pipeline_response
+
+
+ return ItemPaged(
+ get_next, extract_data
+ )
+ get_all_dataset_definitions.metadata = {'url': '/dataset/v1.2/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datasets/{datasetId}/definitions'} # type: ignore
+
+ @distributed_trace
+ def update_definition(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ dataset_id, # type: str
+ register_as_pending=False, # type: Optional[bool]
+ force_update=False, # type: Optional[bool]
+ dataset_type=None, # type: Optional[str]
+ user_version_id=None, # type: Optional[str]
+ body=None, # type: Optional["_models.DatasetDefinition"]
+ **kwargs # type: Any
+ ):
+ # type: (...) -> "_models.Dataset"
+ """Update a dataset definition.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param dataset_id:
+ :type dataset_id: str
+ :param register_as_pending:
+ :type register_as_pending: bool
+ :param force_update:
+ :type force_update: bool
+ :param dataset_type:
+ :type dataset_type: str
+ :param user_version_id:
+ :type user_version_id: str
+ :param body:
+ :type body: ~azure.mgmt.machinelearningservices.models.DatasetDefinition
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: Dataset, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.Dataset
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.Dataset"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+ content_type = kwargs.pop('content_type', "application/json") # type: Optional[str]
+
+ if body is not None:
+ _json = self._serialize.body(body, 'DatasetDefinition')
+ else:
+ _json = None
+
+ request = build_update_definition_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ dataset_id=dataset_id,
+ content_type=content_type,
+ json=_json,
+ register_as_pending=register_as_pending,
+ force_update=force_update,
+ dataset_type=dataset_type,
+ user_version_id=user_version_id,
+ template_url=self.update_definition.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('Dataset', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ update_definition.metadata = {'url': '/dataset/v1.2/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datasets/{datasetId}/definitions'} # type: ignore
+
+
+ @distributed_trace
+ def get_all_dataset_versions(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ dataset_id, # type: str
+ continuation_token_parameter=None, # type: Optional[str]
+ page_size=None, # type: Optional[int]
+ **kwargs # type: Any
+ ):
+ # type: (...) -> Iterable["_models.PaginatedStringList"]
+ """Get all dataset versions for a given dataset.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param dataset_id:
+ :type dataset_id: str
+ :param continuation_token_parameter:
+ :type continuation_token_parameter: str
+ :param page_size:
+ :type page_size: int
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: An iterator like instance of either PaginatedStringList or the result of cls(response)
+ :rtype:
+ ~azure.core.paging.ItemPaged[~azure.mgmt.machinelearningservices.models.PaginatedStringList]
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.PaginatedStringList"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+ def prepare_request(next_link=None):
+ if not next_link:
+
+ request = build_get_all_dataset_versions_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ dataset_id=dataset_id,
+ continuation_token_parameter=continuation_token_parameter,
+ page_size=page_size,
+ template_url=self.get_all_dataset_versions.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ else:
+
+ request = build_get_all_dataset_versions_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ dataset_id=dataset_id,
+ continuation_token_parameter=continuation_token_parameter,
+ page_size=page_size,
+ template_url=next_link,
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+ request.method = "GET"
+ return request
+
+ def extract_data(pipeline_response):
+ deserialized = self._deserialize("PaginatedStringList", pipeline_response)
+ list_of_elem = deserialized.value
+ if cls:
+ list_of_elem = cls(list_of_elem)
+ return deserialized.next_link or None, iter(list_of_elem)
+
+ def get_next(next_link=None):
+ request = prepare_request(next_link)
+
+ pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ return pipeline_response
+
+
+ return ItemPaged(
+ get_next, extract_data
+ )
+ get_all_dataset_versions.metadata = {'url': '/dataset/v1.2/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datasets/{datasetId}/versions'} # type: ignore
+
+ @distributed_trace
+ def get_dataset_by_name(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ dataset_name, # type: str
+ version_id=None, # type: Optional[str]
+ include_latest_definition=True, # type: Optional[bool]
+ **kwargs # type: Any
+ ):
+ # type: (...) -> "_models.Dataset"
+ """Get a dataset for a given dataset name.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param dataset_name:
+ :type dataset_name: str
+ :param version_id:
+ :type version_id: str
+ :param include_latest_definition:
+ :type include_latest_definition: bool
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: Dataset, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.Dataset
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.Dataset"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+
+ request = build_get_dataset_by_name_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ dataset_name=dataset_name,
+ version_id=version_id,
+ include_latest_definition=include_latest_definition,
+ template_url=self.get_dataset_by_name.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('Dataset', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ get_dataset_by_name.metadata = {'url': '/dataset/v1.2/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datasets/query/name={datasetName}'} # type: ignore
+
+
+ @distributed_trace
+ def list(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ dataset_names=None, # type: Optional[List[str]]
+ search_text=None, # type: Optional[str]
+ include_invisible=False, # type: Optional[bool]
+ status=None, # type: Optional[str]
+ continuation_token_parameter=None, # type: Optional[str]
+ page_size=None, # type: Optional[int]
+ include_latest_definition=False, # type: Optional[bool]
+ order_by=None, # type: Optional[str]
+ order_by_asc=False, # type: Optional[bool]
+ dataset_types=None, # type: Optional[List[str]]
+ **kwargs # type: Any
+ ):
+ # type: (...) -> Iterable["_models.PaginatedDatasetList"]
+ """Get a list of datasets.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param dataset_names:
+ :type dataset_names: list[str]
+ :param search_text:
+ :type search_text: str
+ :param include_invisible:
+ :type include_invisible: bool
+ :param status:
+ :type status: str
+ :param continuation_token_parameter:
+ :type continuation_token_parameter: str
+ :param page_size:
+ :type page_size: int
+ :param include_latest_definition:
+ :type include_latest_definition: bool
+ :param order_by:
+ :type order_by: str
+ :param order_by_asc:
+ :type order_by_asc: bool
+ :param dataset_types:
+ :type dataset_types: list[str]
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: An iterator like instance of either PaginatedDatasetList or the result of
+ cls(response)
+ :rtype:
+ ~azure.core.paging.ItemPaged[~azure.mgmt.machinelearningservices.models.PaginatedDatasetList]
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.PaginatedDatasetList"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+ def prepare_request(next_link=None):
+ if not next_link:
+
+ request = build_list_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ dataset_names=dataset_names,
+ search_text=search_text,
+ include_invisible=include_invisible,
+ status=status,
+ continuation_token_parameter=continuation_token_parameter,
+ page_size=page_size,
+ include_latest_definition=include_latest_definition,
+ order_by=order_by,
+ order_by_asc=order_by_asc,
+ dataset_types=dataset_types,
+ template_url=self.list.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ else:
+
+ request = build_list_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ dataset_names=dataset_names,
+ search_text=search_text,
+ include_invisible=include_invisible,
+ status=status,
+ continuation_token_parameter=continuation_token_parameter,
+ page_size=page_size,
+ include_latest_definition=include_latest_definition,
+ order_by=order_by,
+ order_by_asc=order_by_asc,
+ dataset_types=dataset_types,
+ template_url=next_link,
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+ request.method = "GET"
+ return request
+
+ def extract_data(pipeline_response):
+ deserialized = self._deserialize("PaginatedDatasetList", pipeline_response)
+ list_of_elem = deserialized.value
+ if cls:
+ list_of_elem = cls(list_of_elem)
+ return deserialized.next_link or None, iter(list_of_elem)
+
+ def get_next(next_link=None):
+ request = prepare_request(next_link)
+
+ pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ return pipeline_response
+
+
+ return ItemPaged(
+ get_next, extract_data
+ )
+ list.metadata = {'url': '/dataset/v1.2/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datasets'} # type: ignore
+
+ @distributed_trace
+ def register(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ register_as_pending=False, # type: Optional[bool]
+ if_exists_ok=True, # type: Optional[bool]
+ update_definition_if_exists=False, # type: Optional[bool]
+ with_data_hash=False, # type: Optional[bool]
+ user_version_id=None, # type: Optional[str]
+ body=None, # type: Optional["_models.Dataset"]
+ **kwargs # type: Any
+ ):
+ # type: (...) -> "_models.Dataset"
+ """Register new dataset.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param register_as_pending:
+ :type register_as_pending: bool
+ :param if_exists_ok:
+ :type if_exists_ok: bool
+ :param update_definition_if_exists:
+ :type update_definition_if_exists: bool
+ :param with_data_hash:
+ :type with_data_hash: bool
+ :param user_version_id:
+ :type user_version_id: str
+ :param body:
+ :type body: ~azure.mgmt.machinelearningservices.models.Dataset
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: Dataset, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.Dataset
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.Dataset"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+ content_type = kwargs.pop('content_type', "application/json") # type: Optional[str]
+
+ if body is not None:
+ _json = self._serialize.body(body, 'Dataset')
+ else:
+ _json = None
+
+ request = build_register_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ content_type=content_type,
+ json=_json,
+ register_as_pending=register_as_pending,
+ if_exists_ok=if_exists_ok,
+ update_definition_if_exists=update_definition_if_exists,
+ with_data_hash=with_data_hash,
+ user_version_id=user_version_id,
+ template_url=self.register.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('Dataset', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ register.metadata = {'url': '/dataset/v1.2/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datasets'} # type: ignore
+
+
+ @distributed_trace
+ def delete_all_datasets(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ **kwargs # type: Any
+ ):
+ # type: (...) -> None
+ """Unregister all datasets in the workspace.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: None, or the result of cls(response)
+ :rtype: None
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType[None]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+
+ request = build_delete_all_datasets_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ template_url=self.delete_all_datasets.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in []:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ if cls:
+ return cls(pipeline_response, None, {})
+
+ delete_all_datasets.metadata = {'url': '/dataset/v1.2/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datasets'} # type: ignore
+
+
+ @distributed_trace
+ def update_dataset(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ dataset_id, # type: str
+ force_update=False, # type: Optional[bool]
+ body=None, # type: Optional["_models.Dataset"]
+ **kwargs # type: Any
+ ):
+ # type: (...) -> "_models.Dataset"
+ """Update a dataset.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param dataset_id:
+ :type dataset_id: str
+ :param force_update:
+ :type force_update: bool
+ :param body:
+ :type body: ~azure.mgmt.machinelearningservices.models.Dataset
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: Dataset, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.Dataset
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.Dataset"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+ content_type = kwargs.pop('content_type', "application/json") # type: Optional[str]
+
+ if body is not None:
+ _json = self._serialize.body(body, 'Dataset')
+ else:
+ _json = None
+
+ request = build_update_dataset_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ dataset_id=dataset_id,
+ content_type=content_type,
+ json=_json,
+ force_update=force_update,
+ template_url=self.update_dataset.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('Dataset', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ update_dataset.metadata = {'url': '/dataset/v1.2/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datasets/{datasetId}'} # type: ignore
+
+
+ @distributed_trace
+ def unregister_dataset(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ name, # type: str
+ **kwargs # type: Any
+ ):
+ # type: (...) -> None
+ """Unregister a dataset.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param name:
+ :type name: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: None, or the result of cls(response)
+ :rtype: None
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType[None]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+
+ request = build_unregister_dataset_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ name=name,
+ template_url=self.unregister_dataset.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in []:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ if cls:
+ return cls(pipeline_response, None, {})
+
+ unregister_dataset.metadata = {'url': '/dataset/v1.2/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datasets/{name}'} # type: ignore
+
diff --git a/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/operations/_dataset_v2_operations.py b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/operations/_dataset_v2_operations.py
new file mode 100644
index 00000000..7f686ab6
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/operations/_dataset_v2_operations.py
@@ -0,0 +1,905 @@
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) AutoRest Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+import functools
+from typing import TYPE_CHECKING
+import warnings
+
+from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error
+from azure.core.paging import ItemPaged
+from azure.core.pipeline import PipelineResponse
+from azure.core.pipeline.transport import HttpResponse
+from azure.core.rest import HttpRequest
+from azure.core.tracing.decorator import distributed_trace
+from azure.mgmt.core.exceptions import ARMErrorFormat
+from msrest import Serializer
+
+from .. import models as _models
+from .._vendor import _convert_request, _format_url_section
+
+if TYPE_CHECKING:
+ # pylint: disable=unused-import,ungrouped-imports
+ from typing import Any, Callable, Dict, Generic, Iterable, List, Optional, TypeVar
+ T = TypeVar('T')
+ ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]]
+
+_SERIALIZER = Serializer()
+_SERIALIZER.client_side_validation = False
+# fmt: off
+
+def build_create_request(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ content_type = kwargs.pop('content_type', None) # type: Optional[str]
+ if_exists_update = kwargs.pop('if_exists_update', False) # type: Optional[bool]
+
+ accept = "application/json"
+ # Construct URL
+ url = kwargs.pop("template_url", '/dataset/v2.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datasets')
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ }
+
+ url = _format_url_section(url, **path_format_arguments)
+
+ # Construct parameters
+ query_parameters = kwargs.pop("params", {}) # type: Dict[str, Any]
+ if if_exists_update is not None:
+ query_parameters['ifExistsUpdate'] = _SERIALIZER.query("if_exists_update", if_exists_update, 'bool')
+
+ # Construct headers
+ header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ if content_type is not None:
+ header_parameters['Content-Type'] = _SERIALIZER.header("content_type", content_type, 'str')
+ header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="POST",
+ url=url,
+ params=query_parameters,
+ headers=header_parameters,
+ **kwargs
+ )
+
+
+def build_delete_all_datasets_request(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ accept = "application/json"
+ # Construct URL
+ url = kwargs.pop("template_url", '/dataset/v2.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datasets')
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ }
+
+ url = _format_url_section(url, **path_format_arguments)
+
+ # Construct headers
+ header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="DELETE",
+ url=url,
+ headers=header_parameters,
+ **kwargs
+ )
+
+
+def build_list_request(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ names = kwargs.pop('names', None) # type: Optional[List[str]]
+ search_text = kwargs.pop('search_text', None) # type: Optional[str]
+ continuation_token_parameter = kwargs.pop('continuation_token_parameter', None) # type: Optional[str]
+ page_size = kwargs.pop('page_size', None) # type: Optional[int]
+
+ accept = "application/json"
+ # Construct URL
+ url = kwargs.pop("template_url", '/dataset/v2.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datasets')
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ }
+
+ url = _format_url_section(url, **path_format_arguments)
+
+ # Construct parameters
+ query_parameters = kwargs.pop("params", {}) # type: Dict[str, Any]
+ if names is not None:
+ query_parameters['names'] = _SERIALIZER.query("names", names, '[str]')
+ if search_text is not None:
+ query_parameters['searchText'] = _SERIALIZER.query("search_text", search_text, 'str')
+ if continuation_token_parameter is not None:
+ query_parameters['continuationToken'] = _SERIALIZER.query("continuation_token_parameter", continuation_token_parameter, 'str')
+ if page_size is not None:
+ query_parameters['pageSize'] = _SERIALIZER.query("page_size", page_size, 'int')
+
+ # Construct headers
+ header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="GET",
+ url=url,
+ params=query_parameters,
+ headers=header_parameters,
+ **kwargs
+ )
+
+
+def build_delete_dataset_by_name_request(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ name, # type: str
+ version_id, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ accept = "application/json"
+ # Construct URL
+ url = kwargs.pop("template_url", '/dataset/v2.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datasets/{name}/versions/{versionId}')
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ "name": _SERIALIZER.url("name", name, 'str'),
+ "versionId": _SERIALIZER.url("version_id", version_id, 'str'),
+ }
+
+ url = _format_url_section(url, **path_format_arguments)
+
+ # Construct headers
+ header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="DELETE",
+ url=url,
+ headers=header_parameters,
+ **kwargs
+ )
+
+
+def build_update_dataset_by_name_and_version_request(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ name, # type: str
+ version_id, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ content_type = kwargs.pop('content_type', None) # type: Optional[str]
+
+ accept = "application/json"
+ # Construct URL
+ url = kwargs.pop("template_url", '/dataset/v2.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datasets/{name}/versions/{versionId}')
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ "name": _SERIALIZER.url("name", name, 'str'),
+ "versionId": _SERIALIZER.url("version_id", version_id, 'str'),
+ }
+
+ url = _format_url_section(url, **path_format_arguments)
+
+ # Construct headers
+ header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ if content_type is not None:
+ header_parameters['Content-Type'] = _SERIALIZER.header("content_type", content_type, 'str')
+ header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="PUT",
+ url=url,
+ headers=header_parameters,
+ **kwargs
+ )
+
+
+def build_get_dataset_by_id_request(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ dataset_id, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ accept = "application/json"
+ # Construct URL
+ url = kwargs.pop("template_url", '/dataset/v2.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datasets/{datasetId}')
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ "datasetId": _SERIALIZER.url("dataset_id", dataset_id, 'str'),
+ }
+
+ url = _format_url_section(url, **path_format_arguments)
+
+ # Construct headers
+ header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="GET",
+ url=url,
+ headers=header_parameters,
+ **kwargs
+ )
+
+
+def build_update_dataset_request(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ dataset_id, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ content_type = kwargs.pop('content_type', None) # type: Optional[str]
+
+ accept = "application/json"
+ # Construct URL
+ url = kwargs.pop("template_url", '/dataset/v2.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datasets/{datasetId}')
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ "datasetId": _SERIALIZER.url("dataset_id", dataset_id, 'str'),
+ }
+
+ url = _format_url_section(url, **path_format_arguments)
+
+ # Construct headers
+ header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ if content_type is not None:
+ header_parameters['Content-Type'] = _SERIALIZER.header("content_type", content_type, 'str')
+ header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="PUT",
+ url=url,
+ headers=header_parameters,
+ **kwargs
+ )
+
+
+def build_get_dataset_by_name_request(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ dataset_name, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ version_id = kwargs.pop('version_id', None) # type: Optional[str]
+
+ accept = "application/json"
+ # Construct URL
+ url = kwargs.pop("template_url", '/dataset/v2.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datasets/query/name={datasetName}')
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ "datasetName": _SERIALIZER.url("dataset_name", dataset_name, 'str'),
+ }
+
+ url = _format_url_section(url, **path_format_arguments)
+
+ # Construct parameters
+ query_parameters = kwargs.pop("params", {}) # type: Dict[str, Any]
+ if version_id is not None:
+ query_parameters['versionId'] = _SERIALIZER.query("version_id", version_id, 'str')
+
+ # Construct headers
+ header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="GET",
+ url=url,
+ params=query_parameters,
+ headers=header_parameters,
+ **kwargs
+ )
+
+# fmt: on
+class DatasetV2Operations(object):
+ """DatasetV2Operations operations.
+
+ You should not instantiate this class directly. Instead, you should create a Client instance that
+ instantiates it for you and attaches it as an attribute.
+
+ :ivar models: Alias to model classes used in this operation group.
+ :type models: ~azure.mgmt.machinelearningservices.models
+ :param client: Client for service requests.
+ :param config: Configuration of service client.
+ :param serializer: An object model serializer.
+ :param deserializer: An object model deserializer.
+ """
+
+ models = _models
+
+ def __init__(self, client, config, serializer, deserializer):
+ self._client = client
+ self._serialize = serializer
+ self._deserialize = deserializer
+ self._config = config
+
+ @distributed_trace
+ def create(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ if_exists_update=False, # type: Optional[bool]
+ body=None, # type: Optional["_models.DatasetV2"]
+ **kwargs # type: Any
+ ):
+ # type: (...) -> "_models.DatasetV2"
+ """Create new dataset.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param if_exists_update:
+ :type if_exists_update: bool
+ :param body:
+ :type body: ~azure.mgmt.machinelearningservices.models.DatasetV2
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: DatasetV2, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.DatasetV2
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.DatasetV2"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+ content_type = kwargs.pop('content_type', "application/json") # type: Optional[str]
+
+ if body is not None:
+ _json = self._serialize.body(body, 'DatasetV2')
+ else:
+ _json = None
+
+ request = build_create_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ content_type=content_type,
+ json=_json,
+ if_exists_update=if_exists_update,
+ template_url=self.create.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('DatasetV2', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ create.metadata = {'url': '/dataset/v2.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datasets'} # type: ignore
+
+
+ @distributed_trace
+ def delete_all_datasets(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ **kwargs # type: Any
+ ):
+ # type: (...) -> None
+ """Delete all datasets in the workspace.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: None, or the result of cls(response)
+ :rtype: None
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType[None]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+
+ request = build_delete_all_datasets_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ template_url=self.delete_all_datasets.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in []:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ if cls:
+ return cls(pipeline_response, None, {})
+
+ delete_all_datasets.metadata = {'url': '/dataset/v2.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datasets'} # type: ignore
+
+
+ @distributed_trace
+ def list(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ names=None, # type: Optional[List[str]]
+ search_text=None, # type: Optional[str]
+ continuation_token_parameter=None, # type: Optional[str]
+ page_size=None, # type: Optional[int]
+ **kwargs # type: Any
+ ):
+ # type: (...) -> Iterable["_models.PaginatedDatasetV2List"]
+ """Get a list of datasets.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param names:
+ :type names: list[str]
+ :param search_text:
+ :type search_text: str
+ :param continuation_token_parameter:
+ :type continuation_token_parameter: str
+ :param page_size:
+ :type page_size: int
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: An iterator like instance of either PaginatedDatasetV2List or the result of
+ cls(response)
+ :rtype:
+ ~azure.core.paging.ItemPaged[~azure.mgmt.machinelearningservices.models.PaginatedDatasetV2List]
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.PaginatedDatasetV2List"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+ def prepare_request(next_link=None):
+ if not next_link:
+
+ request = build_list_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ names=names,
+ search_text=search_text,
+ continuation_token_parameter=continuation_token_parameter,
+ page_size=page_size,
+ template_url=self.list.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ else:
+
+ request = build_list_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ names=names,
+ search_text=search_text,
+ continuation_token_parameter=continuation_token_parameter,
+ page_size=page_size,
+ template_url=next_link,
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+ request.method = "GET"
+ return request
+
+ def extract_data(pipeline_response):
+ deserialized = self._deserialize("PaginatedDatasetV2List", pipeline_response)
+ list_of_elem = deserialized.value
+ if cls:
+ list_of_elem = cls(list_of_elem)
+ return deserialized.next_link or None, iter(list_of_elem)
+
+ def get_next(next_link=None):
+ request = prepare_request(next_link)
+
+ pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ return pipeline_response
+
+
+ return ItemPaged(
+ get_next, extract_data
+ )
+ list.metadata = {'url': '/dataset/v2.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datasets'} # type: ignore
+
+ @distributed_trace
+ def delete_dataset_by_name(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ name, # type: str
+ version_id, # type: str
+ **kwargs # type: Any
+ ):
+ # type: (...) -> None
+ """Delete a dataset.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param name:
+ :type name: str
+ :param version_id:
+ :type version_id: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: None, or the result of cls(response)
+ :rtype: None
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType[None]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+
+ request = build_delete_dataset_by_name_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ name=name,
+ version_id=version_id,
+ template_url=self.delete_dataset_by_name.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in []:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ if cls:
+ return cls(pipeline_response, None, {})
+
+ delete_dataset_by_name.metadata = {'url': '/dataset/v2.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datasets/{name}/versions/{versionId}'} # type: ignore
+
+
+ @distributed_trace
+ def update_dataset_by_name_and_version(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ name, # type: str
+ version_id, # type: str
+ body=None, # type: Optional["_models.DatasetV2"]
+ **kwargs # type: Any
+ ):
+ # type: (...) -> "_models.DatasetV2"
+ """Update a dataset by its name and version.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param name:
+ :type name: str
+ :param version_id:
+ :type version_id: str
+ :param body:
+ :type body: ~azure.mgmt.machinelearningservices.models.DatasetV2
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: DatasetV2, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.DatasetV2
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.DatasetV2"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+ content_type = kwargs.pop('content_type', "application/json") # type: Optional[str]
+
+ if body is not None:
+ _json = self._serialize.body(body, 'DatasetV2')
+ else:
+ _json = None
+
+ request = build_update_dataset_by_name_and_version_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ name=name,
+ version_id=version_id,
+ content_type=content_type,
+ json=_json,
+ template_url=self.update_dataset_by_name_and_version.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('DatasetV2', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ update_dataset_by_name_and_version.metadata = {'url': '/dataset/v2.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datasets/{name}/versions/{versionId}'} # type: ignore
+
+
+ @distributed_trace
+ def get_dataset_by_id(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ dataset_id, # type: str
+ **kwargs # type: Any
+ ):
+ # type: (...) -> "_models.DatasetV2"
+ """Get a dataset for a given dataset id.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param dataset_id:
+ :type dataset_id: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: DatasetV2, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.DatasetV2
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.DatasetV2"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+
+ request = build_get_dataset_by_id_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ dataset_id=dataset_id,
+ template_url=self.get_dataset_by_id.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('DatasetV2', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ get_dataset_by_id.metadata = {'url': '/dataset/v2.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datasets/{datasetId}'} # type: ignore
+
+
+ @distributed_trace
+ def update_dataset(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ dataset_id, # type: str
+ body=None, # type: Optional["_models.DatasetV2"]
+ **kwargs # type: Any
+ ):
+ # type: (...) -> "_models.DatasetV2"
+ """Update a dataset.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param dataset_id:
+ :type dataset_id: str
+ :param body:
+ :type body: ~azure.mgmt.machinelearningservices.models.DatasetV2
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: DatasetV2, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.DatasetV2
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.DatasetV2"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+ content_type = kwargs.pop('content_type', "application/json") # type: Optional[str]
+
+ if body is not None:
+ _json = self._serialize.body(body, 'DatasetV2')
+ else:
+ _json = None
+
+ request = build_update_dataset_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ dataset_id=dataset_id,
+ content_type=content_type,
+ json=_json,
+ template_url=self.update_dataset.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('DatasetV2', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ update_dataset.metadata = {'url': '/dataset/v2.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datasets/{datasetId}'} # type: ignore
+
+
+ @distributed_trace
+ def get_dataset_by_name(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ dataset_name, # type: str
+ version_id=None, # type: Optional[str]
+ **kwargs # type: Any
+ ):
+ # type: (...) -> "_models.DatasetV2"
+ """Get a dataset for a given dataset name.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param dataset_name:
+ :type dataset_name: str
+ :param version_id:
+ :type version_id: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: DatasetV2, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.DatasetV2
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.DatasetV2"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+
+ request = build_get_dataset_by_name_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ dataset_name=dataset_name,
+ version_id=version_id,
+ template_url=self.get_dataset_by_name.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('DatasetV2', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ get_dataset_by_name.metadata = {'url': '/dataset/v2.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datasets/query/name={datasetName}'} # type: ignore
+
diff --git a/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/operations/_datasets_v1_operations.py b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/operations/_datasets_v1_operations.py
new file mode 100644
index 00000000..df1b1710
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/operations/_datasets_v1_operations.py
@@ -0,0 +1,1300 @@
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) AutoRest Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+import functools
+from typing import TYPE_CHECKING
+import warnings
+
+from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error
+from azure.core.paging import ItemPaged
+from azure.core.pipeline import PipelineResponse
+from azure.core.pipeline.transport import HttpResponse
+from azure.core.rest import HttpRequest
+from azure.core.tracing.decorator import distributed_trace
+from azure.mgmt.core.exceptions import ARMErrorFormat
+from msrest import Serializer
+
+from .. import models as _models
+from .._vendor import _convert_request, _format_url_section
+
+if TYPE_CHECKING:
+ # pylint: disable=unused-import,ungrouped-imports
+ from typing import Any, Callable, Dict, Generic, Iterable, List, Optional, TypeVar
+ T = TypeVar('T')
+ ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]]
+
+_SERIALIZER = Serializer()
+_SERIALIZER.client_side_validation = False
+# fmt: off
+
+def build_get_dataset_definition_request(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ dataset_id, # type: str
+ version, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ accept = "application/json"
+ # Construct URL
+ url = kwargs.pop("template_url", '/dataset/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datasets/{datasetId}/definitions/{version}')
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ "datasetId": _SERIALIZER.url("dataset_id", dataset_id, 'str'),
+ "version": _SERIALIZER.url("version", version, 'str'),
+ }
+
+ url = _format_url_section(url, **path_format_arguments)
+
+ # Construct headers
+ header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="GET",
+ url=url,
+ headers=header_parameters,
+ **kwargs
+ )
+
+
+def build_get_all_dataset_definitions_request(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ dataset_id, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ continuation_token_parameter = kwargs.pop('continuation_token_parameter', None) # type: Optional[str]
+ page_size = kwargs.pop('page_size', None) # type: Optional[int]
+
+ accept = "application/json"
+ # Construct URL
+ url = kwargs.pop("template_url", '/dataset/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datasets/{datasetId}/definitions')
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ "datasetId": _SERIALIZER.url("dataset_id", dataset_id, 'str'),
+ }
+
+ url = _format_url_section(url, **path_format_arguments)
+
+ # Construct parameters
+ query_parameters = kwargs.pop("params", {}) # type: Dict[str, Any]
+ if continuation_token_parameter is not None:
+ query_parameters['continuationToken'] = _SERIALIZER.query("continuation_token_parameter", continuation_token_parameter, 'str')
+ if page_size is not None:
+ query_parameters['pageSize'] = _SERIALIZER.query("page_size", page_size, 'int')
+
+ # Construct headers
+ header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="GET",
+ url=url,
+ params=query_parameters,
+ headers=header_parameters,
+ **kwargs
+ )
+
+
+def build_update_definition_request(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ dataset_id, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ content_type = kwargs.pop('content_type', None) # type: Optional[str]
+ register_as_pending = kwargs.pop('register_as_pending', False) # type: Optional[bool]
+ force_update = kwargs.pop('force_update', False) # type: Optional[bool]
+ dataset_type = kwargs.pop('dataset_type', None) # type: Optional[str]
+ user_version_id = kwargs.pop('user_version_id', None) # type: Optional[str]
+
+ accept = "application/json"
+ # Construct URL
+ url = kwargs.pop("template_url", '/dataset/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datasets/{datasetId}/definitions')
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ "datasetId": _SERIALIZER.url("dataset_id", dataset_id, 'str'),
+ }
+
+ url = _format_url_section(url, **path_format_arguments)
+
+ # Construct parameters
+ query_parameters = kwargs.pop("params", {}) # type: Dict[str, Any]
+ if register_as_pending is not None:
+ query_parameters['registerAsPending'] = _SERIALIZER.query("register_as_pending", register_as_pending, 'bool')
+ if force_update is not None:
+ query_parameters['forceUpdate'] = _SERIALIZER.query("force_update", force_update, 'bool')
+ if dataset_type is not None:
+ query_parameters['datasetType'] = _SERIALIZER.query("dataset_type", dataset_type, 'str')
+ if user_version_id is not None:
+ query_parameters['userVersionId'] = _SERIALIZER.query("user_version_id", user_version_id, 'str')
+
+ # Construct headers
+ header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ if content_type is not None:
+ header_parameters['Content-Type'] = _SERIALIZER.header("content_type", content_type, 'str')
+ header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="POST",
+ url=url,
+ params=query_parameters,
+ headers=header_parameters,
+ **kwargs
+ )
+
+
+def build_get_all_dataset_versions_request(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ dataset_id, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ continuation_token_parameter = kwargs.pop('continuation_token_parameter', None) # type: Optional[str]
+ page_size = kwargs.pop('page_size', None) # type: Optional[int]
+
+ accept = "application/json"
+ # Construct URL
+ url = kwargs.pop("template_url", '/dataset/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datasets/{datasetId}/versions')
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ "datasetId": _SERIALIZER.url("dataset_id", dataset_id, 'str'),
+ }
+
+ url = _format_url_section(url, **path_format_arguments)
+
+ # Construct parameters
+ query_parameters = kwargs.pop("params", {}) # type: Dict[str, Any]
+ if continuation_token_parameter is not None:
+ query_parameters['continuationToken'] = _SERIALIZER.query("continuation_token_parameter", continuation_token_parameter, 'str')
+ if page_size is not None:
+ query_parameters['pageSize'] = _SERIALIZER.query("page_size", page_size, 'int')
+
+ # Construct headers
+ header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="GET",
+ url=url,
+ params=query_parameters,
+ headers=header_parameters,
+ **kwargs
+ )
+
+
+def build_get_dataset_by_name_request(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ dataset_name, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ version_id = kwargs.pop('version_id', None) # type: Optional[str]
+ include_latest_definition = kwargs.pop('include_latest_definition', True) # type: Optional[bool]
+
+ accept = "application/json"
+ # Construct URL
+ url = kwargs.pop("template_url", '/dataset/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datasets/query/name={datasetName}')
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ "datasetName": _SERIALIZER.url("dataset_name", dataset_name, 'str'),
+ }
+
+ url = _format_url_section(url, **path_format_arguments)
+
+ # Construct parameters
+ query_parameters = kwargs.pop("params", {}) # type: Dict[str, Any]
+ if version_id is not None:
+ query_parameters['versionId'] = _SERIALIZER.query("version_id", version_id, 'str')
+ if include_latest_definition is not None:
+ query_parameters['includeLatestDefinition'] = _SERIALIZER.query("include_latest_definition", include_latest_definition, 'bool')
+
+ # Construct headers
+ header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="GET",
+ url=url,
+ params=query_parameters,
+ headers=header_parameters,
+ **kwargs
+ )
+
+
+def build_list_request(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ dataset_names = kwargs.pop('dataset_names', None) # type: Optional[List[str]]
+ search_text = kwargs.pop('search_text', None) # type: Optional[str]
+ include_invisible = kwargs.pop('include_invisible', False) # type: Optional[bool]
+ status = kwargs.pop('status', None) # type: Optional[str]
+ continuation_token_parameter = kwargs.pop('continuation_token_parameter', None) # type: Optional[str]
+ page_size = kwargs.pop('page_size', None) # type: Optional[int]
+ include_latest_definition = kwargs.pop('include_latest_definition', False) # type: Optional[bool]
+ order_by = kwargs.pop('order_by', None) # type: Optional[str]
+ order_by_asc = kwargs.pop('order_by_asc', False) # type: Optional[bool]
+ dataset_types = kwargs.pop('dataset_types', None) # type: Optional[List[str]]
+
+ accept = "application/json"
+ # Construct URL
+ url = kwargs.pop("template_url", '/dataset/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datasets')
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ }
+
+ url = _format_url_section(url, **path_format_arguments)
+
+ # Construct parameters
+ query_parameters = kwargs.pop("params", {}) # type: Dict[str, Any]
+ if dataset_names is not None:
+ query_parameters['datasetNames'] = _SERIALIZER.query("dataset_names", dataset_names, '[str]')
+ if search_text is not None:
+ query_parameters['searchText'] = _SERIALIZER.query("search_text", search_text, 'str')
+ if include_invisible is not None:
+ query_parameters['includeInvisible'] = _SERIALIZER.query("include_invisible", include_invisible, 'bool')
+ if status is not None:
+ query_parameters['status'] = _SERIALIZER.query("status", status, 'str')
+ if continuation_token_parameter is not None:
+ query_parameters['continuationToken'] = _SERIALIZER.query("continuation_token_parameter", continuation_token_parameter, 'str')
+ if page_size is not None:
+ query_parameters['pageSize'] = _SERIALIZER.query("page_size", page_size, 'int')
+ if include_latest_definition is not None:
+ query_parameters['includeLatestDefinition'] = _SERIALIZER.query("include_latest_definition", include_latest_definition, 'bool')
+ if order_by is not None:
+ query_parameters['orderBy'] = _SERIALIZER.query("order_by", order_by, 'str')
+ if order_by_asc is not None:
+ query_parameters['orderByAsc'] = _SERIALIZER.query("order_by_asc", order_by_asc, 'bool')
+ if dataset_types is not None:
+ query_parameters['datasetTypes'] = _SERIALIZER.query("dataset_types", dataset_types, '[str]')
+
+ # Construct headers
+ header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="GET",
+ url=url,
+ params=query_parameters,
+ headers=header_parameters,
+ **kwargs
+ )
+
+
+def build_register_request(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ content_type = kwargs.pop('content_type', None) # type: Optional[str]
+ register_as_pending = kwargs.pop('register_as_pending', False) # type: Optional[bool]
+ if_exists_ok = kwargs.pop('if_exists_ok', True) # type: Optional[bool]
+ update_definition_if_exists = kwargs.pop('update_definition_if_exists', False) # type: Optional[bool]
+ with_data_hash = kwargs.pop('with_data_hash', False) # type: Optional[bool]
+ user_version_id = kwargs.pop('user_version_id', None) # type: Optional[str]
+
+ accept = "application/json"
+ # Construct URL
+ url = kwargs.pop("template_url", '/dataset/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datasets')
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ }
+
+ url = _format_url_section(url, **path_format_arguments)
+
+ # Construct parameters
+ query_parameters = kwargs.pop("params", {}) # type: Dict[str, Any]
+ if register_as_pending is not None:
+ query_parameters['registerAsPending'] = _SERIALIZER.query("register_as_pending", register_as_pending, 'bool')
+ if if_exists_ok is not None:
+ query_parameters['ifExistsOk'] = _SERIALIZER.query("if_exists_ok", if_exists_ok, 'bool')
+ if update_definition_if_exists is not None:
+ query_parameters['updateDefinitionIfExists'] = _SERIALIZER.query("update_definition_if_exists", update_definition_if_exists, 'bool')
+ if with_data_hash is not None:
+ query_parameters['withDataHash'] = _SERIALIZER.query("with_data_hash", with_data_hash, 'bool')
+ if user_version_id is not None:
+ query_parameters['userVersionId'] = _SERIALIZER.query("user_version_id", user_version_id, 'str')
+
+ # Construct headers
+ header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ if content_type is not None:
+ header_parameters['Content-Type'] = _SERIALIZER.header("content_type", content_type, 'str')
+ header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="POST",
+ url=url,
+ params=query_parameters,
+ headers=header_parameters,
+ **kwargs
+ )
+
+
+def build_delete_all_datasets_request(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ accept = "application/json"
+ # Construct URL
+ url = kwargs.pop("template_url", '/dataset/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datasets')
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ }
+
+ url = _format_url_section(url, **path_format_arguments)
+
+ # Construct headers
+ header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="DELETE",
+ url=url,
+ headers=header_parameters,
+ **kwargs
+ )
+
+
+def build_update_dataset_request(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ dataset_id, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ content_type = kwargs.pop('content_type', None) # type: Optional[str]
+ force_update = kwargs.pop('force_update', False) # type: Optional[bool]
+
+ accept = "application/json"
+ # Construct URL
+ url = kwargs.pop("template_url", '/dataset/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datasets/{datasetId}')
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ "datasetId": _SERIALIZER.url("dataset_id", dataset_id, 'str'),
+ }
+
+ url = _format_url_section(url, **path_format_arguments)
+
+ # Construct parameters
+ query_parameters = kwargs.pop("params", {}) # type: Dict[str, Any]
+ if force_update is not None:
+ query_parameters['forceUpdate'] = _SERIALIZER.query("force_update", force_update, 'bool')
+
+ # Construct headers
+ header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ if content_type is not None:
+ header_parameters['Content-Type'] = _SERIALIZER.header("content_type", content_type, 'str')
+ header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="PUT",
+ url=url,
+ params=query_parameters,
+ headers=header_parameters,
+ **kwargs
+ )
+
+
+def build_unregister_dataset_request(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ name, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ accept = "application/json"
+ # Construct URL
+ url = kwargs.pop("template_url", '/dataset/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datasets/{name}')
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ "name": _SERIALIZER.url("name", name, 'str'),
+ }
+
+ url = _format_url_section(url, **path_format_arguments)
+
+ # Construct headers
+ header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="DELETE",
+ url=url,
+ headers=header_parameters,
+ **kwargs
+ )
+
+# fmt: on
+class DatasetsV1Operations(object):
+ """DatasetsV1Operations operations.
+
+ You should not instantiate this class directly. Instead, you should create a Client instance that
+ instantiates it for you and attaches it as an attribute.
+
+ :ivar models: Alias to model classes used in this operation group.
+ :type models: ~azure.mgmt.machinelearningservices.models
+ :param client: Client for service requests.
+ :param config: Configuration of service client.
+ :param serializer: An object model serializer.
+ :param deserializer: An object model deserializer.
+ """
+
+ models = _models
+
+ def __init__(self, client, config, serializer, deserializer):
+ self._client = client
+ self._serialize = serializer
+ self._deserialize = deserializer
+ self._config = config
+
+ @distributed_trace
+ def get_dataset_definition(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ dataset_id, # type: str
+ version, # type: str
+ **kwargs # type: Any
+ ):
+ # type: (...) -> "_models.DatasetDefinition"
+ """Get a specific dataset definition.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param dataset_id:
+ :type dataset_id: str
+ :param version:
+ :type version: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: DatasetDefinition, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.DatasetDefinition
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.DatasetDefinition"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+
+ request = build_get_dataset_definition_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ dataset_id=dataset_id,
+ version=version,
+ template_url=self.get_dataset_definition.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('DatasetDefinition', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ get_dataset_definition.metadata = {'url': '/dataset/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datasets/{datasetId}/definitions/{version}'} # type: ignore
+
+
+ @distributed_trace
+ def get_all_dataset_definitions(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ dataset_id, # type: str
+ continuation_token_parameter=None, # type: Optional[str]
+ page_size=None, # type: Optional[int]
+ **kwargs # type: Any
+ ):
+ # type: (...) -> Iterable["_models.PaginatedDatasetDefinitionList"]
+ """Get all dataset definitions for a given dataset.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param dataset_id:
+ :type dataset_id: str
+ :param continuation_token_parameter:
+ :type continuation_token_parameter: str
+ :param page_size:
+ :type page_size: int
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: An iterator like instance of either PaginatedDatasetDefinitionList or the result of
+ cls(response)
+ :rtype:
+ ~azure.core.paging.ItemPaged[~azure.mgmt.machinelearningservices.models.PaginatedDatasetDefinitionList]
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.PaginatedDatasetDefinitionList"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+ def prepare_request(next_link=None):
+ if not next_link:
+
+ request = build_get_all_dataset_definitions_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ dataset_id=dataset_id,
+ continuation_token_parameter=continuation_token_parameter,
+ page_size=page_size,
+ template_url=self.get_all_dataset_definitions.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ else:
+
+ request = build_get_all_dataset_definitions_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ dataset_id=dataset_id,
+ continuation_token_parameter=continuation_token_parameter,
+ page_size=page_size,
+ template_url=next_link,
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+ request.method = "GET"
+ return request
+
+ def extract_data(pipeline_response):
+ deserialized = self._deserialize("PaginatedDatasetDefinitionList", pipeline_response)
+ list_of_elem = deserialized.value
+ if cls:
+ list_of_elem = cls(list_of_elem)
+ return deserialized.next_link or None, iter(list_of_elem)
+
+ def get_next(next_link=None):
+ request = prepare_request(next_link)
+
+ pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ return pipeline_response
+
+
+ return ItemPaged(
+ get_next, extract_data
+ )
+ get_all_dataset_definitions.metadata = {'url': '/dataset/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datasets/{datasetId}/definitions'} # type: ignore
+
+ @distributed_trace
+ def update_definition(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ dataset_id, # type: str
+ register_as_pending=False, # type: Optional[bool]
+ force_update=False, # type: Optional[bool]
+ dataset_type=None, # type: Optional[str]
+ user_version_id=None, # type: Optional[str]
+ body=None, # type: Optional["_models.DatasetDefinition"]
+ **kwargs # type: Any
+ ):
+ # type: (...) -> "_models.Dataset"
+ """Update a dataset definition.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param dataset_id:
+ :type dataset_id: str
+ :param register_as_pending:
+ :type register_as_pending: bool
+ :param force_update:
+ :type force_update: bool
+ :param dataset_type:
+ :type dataset_type: str
+ :param user_version_id:
+ :type user_version_id: str
+ :param body:
+ :type body: ~azure.mgmt.machinelearningservices.models.DatasetDefinition
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: Dataset, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.Dataset
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.Dataset"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+ content_type = kwargs.pop('content_type', "application/json") # type: Optional[str]
+
+ if body is not None:
+ _json = self._serialize.body(body, 'DatasetDefinition')
+ else:
+ _json = None
+
+ request = build_update_definition_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ dataset_id=dataset_id,
+ content_type=content_type,
+ json=_json,
+ register_as_pending=register_as_pending,
+ force_update=force_update,
+ dataset_type=dataset_type,
+ user_version_id=user_version_id,
+ template_url=self.update_definition.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('Dataset', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ update_definition.metadata = {'url': '/dataset/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datasets/{datasetId}/definitions'} # type: ignore
+
+
+ @distributed_trace
+ def get_all_dataset_versions(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ dataset_id, # type: str
+ continuation_token_parameter=None, # type: Optional[str]
+ page_size=None, # type: Optional[int]
+ **kwargs # type: Any
+ ):
+ # type: (...) -> Iterable["_models.PaginatedStringList"]
+ """Get all dataset versions for a given dataset.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param dataset_id:
+ :type dataset_id: str
+ :param continuation_token_parameter:
+ :type continuation_token_parameter: str
+ :param page_size:
+ :type page_size: int
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: An iterator like instance of either PaginatedStringList or the result of cls(response)
+ :rtype:
+ ~azure.core.paging.ItemPaged[~azure.mgmt.machinelearningservices.models.PaginatedStringList]
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.PaginatedStringList"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+ def prepare_request(next_link=None):
+ if not next_link:
+
+ request = build_get_all_dataset_versions_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ dataset_id=dataset_id,
+ continuation_token_parameter=continuation_token_parameter,
+ page_size=page_size,
+ template_url=self.get_all_dataset_versions.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ else:
+
+ request = build_get_all_dataset_versions_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ dataset_id=dataset_id,
+ continuation_token_parameter=continuation_token_parameter,
+ page_size=page_size,
+ template_url=next_link,
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+ request.method = "GET"
+ return request
+
+ def extract_data(pipeline_response):
+ deserialized = self._deserialize("PaginatedStringList", pipeline_response)
+ list_of_elem = deserialized.value
+ if cls:
+ list_of_elem = cls(list_of_elem)
+ return deserialized.next_link or None, iter(list_of_elem)
+
+ def get_next(next_link=None):
+ request = prepare_request(next_link)
+
+ pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ return pipeline_response
+
+
+ return ItemPaged(
+ get_next, extract_data
+ )
+ get_all_dataset_versions.metadata = {'url': '/dataset/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datasets/{datasetId}/versions'} # type: ignore
+
+ @distributed_trace
+ def get_dataset_by_name(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ dataset_name, # type: str
+ version_id=None, # type: Optional[str]
+ include_latest_definition=True, # type: Optional[bool]
+ **kwargs # type: Any
+ ):
+ # type: (...) -> "_models.Dataset"
+ """Get a dataset for a given dataset name.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param dataset_name:
+ :type dataset_name: str
+ :param version_id:
+ :type version_id: str
+ :param include_latest_definition:
+ :type include_latest_definition: bool
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: Dataset, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.Dataset
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.Dataset"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+
+ request = build_get_dataset_by_name_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ dataset_name=dataset_name,
+ version_id=version_id,
+ include_latest_definition=include_latest_definition,
+ template_url=self.get_dataset_by_name.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('Dataset', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ get_dataset_by_name.metadata = {'url': '/dataset/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datasets/query/name={datasetName}'} # type: ignore
+
+
+ @distributed_trace
+ def list(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ dataset_names=None, # type: Optional[List[str]]
+ search_text=None, # type: Optional[str]
+ include_invisible=False, # type: Optional[bool]
+ status=None, # type: Optional[str]
+ continuation_token_parameter=None, # type: Optional[str]
+ page_size=None, # type: Optional[int]
+ include_latest_definition=False, # type: Optional[bool]
+ order_by=None, # type: Optional[str]
+ order_by_asc=False, # type: Optional[bool]
+ dataset_types=None, # type: Optional[List[str]]
+ **kwargs # type: Any
+ ):
+ # type: (...) -> Iterable["_models.PaginatedDatasetList"]
+ """Get a list of datasets.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param dataset_names:
+ :type dataset_names: list[str]
+ :param search_text:
+ :type search_text: str
+ :param include_invisible:
+ :type include_invisible: bool
+ :param status:
+ :type status: str
+ :param continuation_token_parameter:
+ :type continuation_token_parameter: str
+ :param page_size:
+ :type page_size: int
+ :param include_latest_definition:
+ :type include_latest_definition: bool
+ :param order_by:
+ :type order_by: str
+ :param order_by_asc:
+ :type order_by_asc: bool
+ :param dataset_types:
+ :type dataset_types: list[str]
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: An iterator like instance of either PaginatedDatasetList or the result of
+ cls(response)
+ :rtype:
+ ~azure.core.paging.ItemPaged[~azure.mgmt.machinelearningservices.models.PaginatedDatasetList]
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.PaginatedDatasetList"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+ def prepare_request(next_link=None):
+ if not next_link:
+
+ request = build_list_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ dataset_names=dataset_names,
+ search_text=search_text,
+ include_invisible=include_invisible,
+ status=status,
+ continuation_token_parameter=continuation_token_parameter,
+ page_size=page_size,
+ include_latest_definition=include_latest_definition,
+ order_by=order_by,
+ order_by_asc=order_by_asc,
+ dataset_types=dataset_types,
+ template_url=self.list.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ else:
+
+ request = build_list_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ dataset_names=dataset_names,
+ search_text=search_text,
+ include_invisible=include_invisible,
+ status=status,
+ continuation_token_parameter=continuation_token_parameter,
+ page_size=page_size,
+ include_latest_definition=include_latest_definition,
+ order_by=order_by,
+ order_by_asc=order_by_asc,
+ dataset_types=dataset_types,
+ template_url=next_link,
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+ request.method = "GET"
+ return request
+
+ def extract_data(pipeline_response):
+ deserialized = self._deserialize("PaginatedDatasetList", pipeline_response)
+ list_of_elem = deserialized.value
+ if cls:
+ list_of_elem = cls(list_of_elem)
+ return deserialized.next_link or None, iter(list_of_elem)
+
+ def get_next(next_link=None):
+ request = prepare_request(next_link)
+
+ pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ return pipeline_response
+
+
+ return ItemPaged(
+ get_next, extract_data
+ )
+ list.metadata = {'url': '/dataset/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datasets'} # type: ignore
+
+ @distributed_trace
+ def register(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ register_as_pending=False, # type: Optional[bool]
+ if_exists_ok=True, # type: Optional[bool]
+ update_definition_if_exists=False, # type: Optional[bool]
+ with_data_hash=False, # type: Optional[bool]
+ user_version_id=None, # type: Optional[str]
+ body=None, # type: Optional["_models.Dataset"]
+ **kwargs # type: Any
+ ):
+ # type: (...) -> "_models.Dataset"
+ """Register new dataset.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param register_as_pending:
+ :type register_as_pending: bool
+ :param if_exists_ok:
+ :type if_exists_ok: bool
+ :param update_definition_if_exists:
+ :type update_definition_if_exists: bool
+ :param with_data_hash:
+ :type with_data_hash: bool
+ :param user_version_id:
+ :type user_version_id: str
+ :param body:
+ :type body: ~azure.mgmt.machinelearningservices.models.Dataset
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: Dataset, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.Dataset
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.Dataset"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+ content_type = kwargs.pop('content_type', "application/json") # type: Optional[str]
+
+ if body is not None:
+ _json = self._serialize.body(body, 'Dataset')
+ else:
+ _json = None
+
+ request = build_register_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ content_type=content_type,
+ json=_json,
+ register_as_pending=register_as_pending,
+ if_exists_ok=if_exists_ok,
+ update_definition_if_exists=update_definition_if_exists,
+ with_data_hash=with_data_hash,
+ user_version_id=user_version_id,
+ template_url=self.register.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('Dataset', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ register.metadata = {'url': '/dataset/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datasets'} # type: ignore
+
+
+ @distributed_trace
+ def delete_all_datasets(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ **kwargs # type: Any
+ ):
+ # type: (...) -> None
+ """Unregister all datasets in the workspace.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: None, or the result of cls(response)
+ :rtype: None
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType[None]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+
+ request = build_delete_all_datasets_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ template_url=self.delete_all_datasets.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in []:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ if cls:
+ return cls(pipeline_response, None, {})
+
+ delete_all_datasets.metadata = {'url': '/dataset/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datasets'} # type: ignore
+
+
+ @distributed_trace
+ def update_dataset(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ dataset_id, # type: str
+ force_update=False, # type: Optional[bool]
+ body=None, # type: Optional["_models.Dataset"]
+ **kwargs # type: Any
+ ):
+ # type: (...) -> "_models.Dataset"
+ """Update a dataset.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param dataset_id:
+ :type dataset_id: str
+ :param force_update:
+ :type force_update: bool
+ :param body:
+ :type body: ~azure.mgmt.machinelearningservices.models.Dataset
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: Dataset, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.Dataset
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.Dataset"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+ content_type = kwargs.pop('content_type', "application/json") # type: Optional[str]
+
+ if body is not None:
+ _json = self._serialize.body(body, 'Dataset')
+ else:
+ _json = None
+
+ request = build_update_dataset_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ dataset_id=dataset_id,
+ content_type=content_type,
+ json=_json,
+ force_update=force_update,
+ template_url=self.update_dataset.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('Dataset', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ update_dataset.metadata = {'url': '/dataset/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datasets/{datasetId}'} # type: ignore
+
+
+ @distributed_trace
+ def unregister_dataset(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ name, # type: str
+ **kwargs # type: Any
+ ):
+ # type: (...) -> None
+ """Unregister a dataset.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param name:
+ :type name: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: None, or the result of cls(response)
+ :rtype: None
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType[None]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+
+ request = build_unregister_dataset_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ name=name,
+ template_url=self.unregister_dataset.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in []:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ if cls:
+ return cls(pipeline_response, None, {})
+
+ unregister_dataset.metadata = {'url': '/dataset/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datasets/{name}'} # type: ignore
+
diff --git a/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/operations/_delete_operations.py b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/operations/_delete_operations.py
new file mode 100644
index 00000000..e1cd955c
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/operations/_delete_operations.py
@@ -0,0 +1,145 @@
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) AutoRest Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+import functools
+from typing import TYPE_CHECKING
+import warnings
+
+from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error
+from azure.core.pipeline import PipelineResponse
+from azure.core.pipeline.transport import HttpResponse
+from azure.core.rest import HttpRequest
+from azure.core.tracing.decorator import distributed_trace
+from azure.mgmt.core.exceptions import ARMErrorFormat
+from msrest import Serializer
+
+from .. import models as _models
+from .._vendor import _convert_request, _format_url_section
+
+if TYPE_CHECKING:
+ # pylint: disable=unused-import,ungrouped-imports
+ from typing import Any, Callable, Dict, Generic, Optional, TypeVar
+ T = TypeVar('T')
+ ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]]
+
+_SERIALIZER = Serializer()
+_SERIALIZER.client_side_validation = False
+# fmt: off
+
+def build_data_container_request(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ name, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ accept = "application/json"
+ # Construct URL
+ url = kwargs.pop("template_url", '/data/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datacontainer/{name}')
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ "name": _SERIALIZER.url("name", name, 'str'),
+ }
+
+ url = _format_url_section(url, **path_format_arguments)
+
+ # Construct headers
+ header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="DELETE",
+ url=url,
+ headers=header_parameters,
+ **kwargs
+ )
+
+# fmt: on
+class DeleteOperations(object):
+ """DeleteOperations operations.
+
+ You should not instantiate this class directly. Instead, you should create a Client instance that
+ instantiates it for you and attaches it as an attribute.
+
+ :ivar models: Alias to model classes used in this operation group.
+ :type models: ~azure.mgmt.machinelearningservices.models
+ :param client: Client for service requests.
+ :param config: Configuration of service client.
+ :param serializer: An object model serializer.
+ :param deserializer: An object model deserializer.
+ """
+
+ models = _models
+
+ def __init__(self, client, config, serializer, deserializer):
+ self._client = client
+ self._serialize = serializer
+ self._deserialize = deserializer
+ self._config = config
+
+ @distributed_trace
+ def data_container(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ name, # type: str
+ **kwargs # type: Any
+ ):
+ # type: (...) -> "_models.HttpResponseMessage"
+ """data_container.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param name:
+ :type name: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: HttpResponseMessage, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.HttpResponseMessage
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.HttpResponseMessage"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+
+ request = build_data_container_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ name=name,
+ template_url=self.data_container.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('HttpResponseMessage', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ data_container.metadata = {'url': '/data/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datacontainer/{name}'} # type: ignore
+
diff --git a/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/operations/_get_operation_status_operations.py b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/operations/_get_operation_status_operations.py
new file mode 100644
index 00000000..085f9749
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/operations/_get_operation_status_operations.py
@@ -0,0 +1,212 @@
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) AutoRest Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+import functools
+from typing import TYPE_CHECKING
+import warnings
+
+from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error
+from azure.core.pipeline import PipelineResponse
+from azure.core.pipeline.transport import HttpResponse
+from azure.core.polling import LROPoller, NoPolling, PollingMethod
+from azure.core.rest import HttpRequest
+from azure.core.tracing.decorator import distributed_trace
+from azure.mgmt.core.exceptions import ARMErrorFormat
+from azure.mgmt.core.polling.arm_polling import ARMPolling
+from msrest import Serializer
+
+from .. import models as _models
+from .._vendor import _convert_request, _format_url_section
+
+if TYPE_CHECKING:
+ # pylint: disable=unused-import,ungrouped-imports
+ from typing import Any, Callable, Dict, Generic, Optional, TypeVar, Union
+ T = TypeVar('T')
+ ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]]
+
+_SERIALIZER = Serializer()
+_SERIALIZER.client_side_validation = False
+# fmt: off
+
+def build_get_dataset_operation_status_request_initial(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ operation_id, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ accept = "application/json"
+ # Construct URL
+ url = kwargs.pop("template_url", '/dataset/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/operations/{operationId}')
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ "operationId": _SERIALIZER.url("operation_id", operation_id, 'str'),
+ }
+
+ url = _format_url_section(url, **path_format_arguments)
+
+ # Construct headers
+ header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="GET",
+ url=url,
+ headers=header_parameters,
+ **kwargs
+ )
+
+# fmt: on
+class GetOperationStatusOperations(object):
+ """GetOperationStatusOperations operations.
+
+ You should not instantiate this class directly. Instead, you should create a Client instance that
+ instantiates it for you and attaches it as an attribute.
+
+ :ivar models: Alias to model classes used in this operation group.
+ :type models: ~azure.mgmt.machinelearningservices.models
+ :param client: Client for service requests.
+ :param config: Configuration of service client.
+ :param serializer: An object model serializer.
+ :param deserializer: An object model deserializer.
+ """
+
+ models = _models
+
+ def __init__(self, client, config, serializer, deserializer):
+ self._client = client
+ self._serialize = serializer
+ self._deserialize = deserializer
+ self._config = config
+
+ def _get_dataset_operation_status_initial(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ operation_id, # type: str
+ **kwargs # type: Any
+ ):
+ # type: (...) -> Optional["_models.LongRunningOperationResponse1LongRunningOperationResponseObject"]
+ cls = kwargs.pop('cls', None) # type: ClsType[Optional["_models.LongRunningOperationResponse1LongRunningOperationResponseObject"]]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+
+ request = build_get_dataset_operation_status_request_initial(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ operation_id=operation_id,
+ template_url=self._get_dataset_operation_status_initial.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200, 202]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ raise HttpResponseError(response=response, error_format=ARMErrorFormat)
+
+ deserialized = None
+ response_headers = {}
+ if response.status_code == 200:
+ deserialized = self._deserialize('LongRunningOperationResponse1LongRunningOperationResponseObject', pipeline_response)
+
+ if response.status_code == 202:
+ response_headers['Location']=self._deserialize('str', response.headers.get('Location'))
+
+
+ if cls:
+ return cls(pipeline_response, deserialized, response_headers)
+
+ return deserialized
+
+ _get_dataset_operation_status_initial.metadata = {'url': '/dataset/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/operations/{operationId}'} # type: ignore
+
+
+ @distributed_trace
+ def begin_get_dataset_operation_status(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ operation_id, # type: str
+ **kwargs # type: Any
+ ):
+ # type: (...) -> LROPoller["_models.LongRunningOperationResponse1LongRunningOperationResponseObject"]
+ """get_dataset_operation_status.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param operation_id:
+ :type operation_id: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :keyword str continuation_token: A continuation token to restart a poller from a saved state.
+ :keyword polling: By default, your polling method will be ARMPolling. Pass in False for this
+ operation to not poll, or pass in your own initialized polling object for a personal polling
+ strategy.
+ :paramtype polling: bool or ~azure.core.polling.PollingMethod
+ :keyword int polling_interval: Default waiting time between two polls for LRO operations if no
+ Retry-After header is present.
+ :return: An instance of LROPoller that returns either
+ LongRunningOperationResponse1LongRunningOperationResponseObject or the result of cls(response)
+ :rtype:
+ ~azure.core.polling.LROPoller[~azure.mgmt.machinelearningservices.models.LongRunningOperationResponse1LongRunningOperationResponseObject]
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ polling = kwargs.pop('polling', True) # type: Union[bool, azure.core.polling.PollingMethod]
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.LongRunningOperationResponse1LongRunningOperationResponseObject"]
+ lro_delay = kwargs.pop(
+ 'polling_interval',
+ self._config.polling_interval
+ )
+ cont_token = kwargs.pop('continuation_token', None) # type: Optional[str]
+ if cont_token is None:
+ raw_result = self._get_dataset_operation_status_initial(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ operation_id=operation_id,
+ cls=lambda x,y,z: x,
+ **kwargs
+ )
+ kwargs.pop('error_map', None)
+
+ def get_long_running_output(pipeline_response):
+ response = pipeline_response.http_response
+ deserialized = self._deserialize('LongRunningOperationResponse1LongRunningOperationResponseObject', pipeline_response)
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+ return deserialized
+
+
+ if polling is True: polling_method = ARMPolling(lro_delay, lro_options={'final-state-via': 'location'}, **kwargs)
+ elif polling is False: polling_method = NoPolling()
+ else: polling_method = polling
+ if cont_token:
+ return LROPoller.from_continuation_token(
+ polling_method=polling_method,
+ continuation_token=cont_token,
+ client=self._client,
+ deserialization_callback=get_long_running_output
+ )
+ else:
+ return LROPoller(self._client, raw_result, get_long_running_output, polling_method)
+
+ begin_get_dataset_operation_status.metadata = {'url': '/dataset/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/operations/{operationId}'} # type: ignore