aboutsummaryrefslogtreecommitdiff
path: root/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane
diff options
context:
space:
mode:
Diffstat (limited to '.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane')
-rw-r--r--.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/__init__.py18
-rw-r--r--.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/_azure_machine_learning_workspaces.py117
-rw-r--r--.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/_configuration.py64
-rw-r--r--.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/_patch.py31
-rw-r--r--.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/_vendor.py27
-rw-r--r--.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/_version.py9
-rw-r--r--.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/aio/__init__.py15
-rw-r--r--.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/aio/_azure_machine_learning_workspaces.py111
-rw-r--r--.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/aio/_configuration.py60
-rw-r--r--.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/aio/_patch.py31
-rw-r--r--.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/aio/operations/__init__.py27
-rw-r--r--.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/aio/operations/_data_call_operations.py243
-rw-r--r--.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/aio/operations/_data_container_operations.py321
-rw-r--r--.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/aio/operations/_data_version_operations.py804
-rw-r--r--.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/aio/operations/_dataset_controller_v2_operations.py845
-rw-r--r--.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/aio/operations/_dataset_v2_operations.py592
-rw-r--r--.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/aio/operations/_datasets_v1_operations.py845
-rw-r--r--.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/aio/operations/_delete_operations.py104
-rw-r--r--.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/aio/operations/_get_operation_status_operations.py170
-rw-r--r--.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/models/__init__.py187
-rw-r--r--.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/models/_azure_machine_learning_workspaces_enums.py118
-rw-r--r--.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/models/_models.py2608
-rw-r--r--.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/models/_models_py3.py2916
-rw-r--r--.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/operations/__init__.py27
-rw-r--r--.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/operations/_data_call_operations.py356
-rw-r--r--.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/operations/_data_container_operations.py464
-rw-r--r--.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/operations/_data_version_operations.py1211
-rw-r--r--.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/operations/_dataset_controller_v2_operations.py1300
-rw-r--r--.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/operations/_dataset_v2_operations.py905
-rw-r--r--.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/operations/_datasets_v1_operations.py1300
-rw-r--r--.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/operations/_delete_operations.py145
-rw-r--r--.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/operations/_get_operation_status_operations.py212
-rw-r--r--.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/py.typed1
33 files changed, 16184 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/__init__.py b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/__init__.py
new file mode 100644
index 00000000..da466144
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/__init__.py
@@ -0,0 +1,18 @@
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) AutoRest Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+
+from ._azure_machine_learning_workspaces import AzureMachineLearningWorkspaces
+from ._version import VERSION
+
+__version__ = VERSION
+__all__ = ['AzureMachineLearningWorkspaces']
+
+# `._patch.py` is used for handwritten extensions to the generated code
+# Example: https://github.com/Azure/azure-sdk-for-python/blob/main/doc/dev/customize_code/how-to-patch-sdk-code.md
+from ._patch import patch_sdk
+patch_sdk()
diff --git a/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/_azure_machine_learning_workspaces.py b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/_azure_machine_learning_workspaces.py
new file mode 100644
index 00000000..faa760c5
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/_azure_machine_learning_workspaces.py
@@ -0,0 +1,117 @@
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) AutoRest Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+
+from copy import deepcopy
+from typing import TYPE_CHECKING
+
+from azure.mgmt.core import ARMPipelineClient
+from msrest import Deserializer, Serializer
+
+from . import models
+from ._configuration import AzureMachineLearningWorkspacesConfiguration
+from .operations import DataCallOperations, DataContainerOperations, DataVersionOperations, DatasetControllerV2Operations, DatasetV2Operations, DatasetsV1Operations, DeleteOperations, GetOperationStatusOperations
+
+if TYPE_CHECKING:
+ # pylint: disable=unused-import,ungrouped-imports
+ from typing import Any, Optional
+
+ from azure.core.credentials import TokenCredential
+ from azure.core.rest import HttpRequest, HttpResponse
+
+class AzureMachineLearningWorkspaces(object):
+ """AzureMachineLearningWorkspaces.
+
+ :ivar data_call: DataCallOperations operations
+ :vartype data_call: azure.mgmt.machinelearningservices.operations.DataCallOperations
+ :ivar data_container: DataContainerOperations operations
+ :vartype data_container: azure.mgmt.machinelearningservices.operations.DataContainerOperations
+ :ivar delete: DeleteOperations operations
+ :vartype delete: azure.mgmt.machinelearningservices.operations.DeleteOperations
+ :ivar datasets_v1: DatasetsV1Operations operations
+ :vartype datasets_v1: azure.mgmt.machinelearningservices.operations.DatasetsV1Operations
+ :ivar dataset_controller_v2: DatasetControllerV2Operations operations
+ :vartype dataset_controller_v2:
+ azure.mgmt.machinelearningservices.operations.DatasetControllerV2Operations
+ :ivar dataset_v2: DatasetV2Operations operations
+ :vartype dataset_v2: azure.mgmt.machinelearningservices.operations.DatasetV2Operations
+ :ivar data_version: DataVersionOperations operations
+ :vartype data_version: azure.mgmt.machinelearningservices.operations.DataVersionOperations
+ :ivar get_operation_status: GetOperationStatusOperations operations
+ :vartype get_operation_status:
+ azure.mgmt.machinelearningservices.operations.GetOperationStatusOperations
+ :param credential: Credential needed for the client to connect to Azure.
+ :type credential: ~azure.core.credentials.TokenCredential
+ :param base_url: Service URL. Default value is ''.
+ :type base_url: str
+ :keyword int polling_interval: Default waiting time between two polls for LRO operations if no
+ Retry-After header is present.
+ """
+
+ def __init__(
+ self,
+ credential, # type: "TokenCredential"
+ base_url="", # type: str
+ **kwargs # type: Any
+ ):
+ # type: (...) -> None
+ self._config = AzureMachineLearningWorkspacesConfiguration(credential=credential, **kwargs)
+ self._client = ARMPipelineClient(base_url=base_url, config=self._config, **kwargs)
+
+ client_models = {k: v for k, v in models.__dict__.items() if isinstance(v, type)}
+ self._serialize = Serializer(client_models)
+ self._deserialize = Deserializer(client_models)
+ self._serialize.client_side_validation = False
+ self.data_call = DataCallOperations(self._client, self._config, self._serialize, self._deserialize)
+ self.data_container = DataContainerOperations(self._client, self._config, self._serialize, self._deserialize)
+ self.delete = DeleteOperations(self._client, self._config, self._serialize, self._deserialize)
+ self.datasets_v1 = DatasetsV1Operations(self._client, self._config, self._serialize, self._deserialize)
+ self.dataset_controller_v2 = DatasetControllerV2Operations(self._client, self._config, self._serialize, self._deserialize)
+ self.dataset_v2 = DatasetV2Operations(self._client, self._config, self._serialize, self._deserialize)
+ self.data_version = DataVersionOperations(self._client, self._config, self._serialize, self._deserialize)
+ self.get_operation_status = GetOperationStatusOperations(self._client, self._config, self._serialize, self._deserialize)
+
+
+ def _send_request(
+ self,
+ request, # type: HttpRequest
+ **kwargs # type: Any
+ ):
+ # type: (...) -> HttpResponse
+ """Runs the network request through the client's chained policies.
+
+ >>> from azure.core.rest import HttpRequest
+ >>> request = HttpRequest("GET", "https://www.example.org/")
+ <HttpRequest [GET], url: 'https://www.example.org/'>
+ >>> response = client._send_request(request)
+ <HttpResponse: 200 OK>
+
+ For more information on this code flow, see https://aka.ms/azsdk/python/protocol/quickstart
+
+ :param request: The network request you want to make. Required.
+ :type request: ~azure.core.rest.HttpRequest
+ :keyword bool stream: Whether the response payload will be streamed. Defaults to False.
+ :return: The response of your network call. Does not do error handling on your response.
+ :rtype: ~azure.core.rest.HttpResponse
+ """
+
+ request_copy = deepcopy(request)
+ request_copy.url = self._client.format_url(request_copy.url)
+ return self._client.send_request(request_copy, **kwargs)
+
+ def close(self):
+ # type: () -> None
+ self._client.close()
+
+ def __enter__(self):
+ # type: () -> AzureMachineLearningWorkspaces
+ self._client.__enter__()
+ return self
+
+ def __exit__(self, *exc_details):
+ # type: (Any) -> None
+ self._client.__exit__(*exc_details)
diff --git a/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/_configuration.py b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/_configuration.py
new file mode 100644
index 00000000..2ec7eb9e
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/_configuration.py
@@ -0,0 +1,64 @@
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) AutoRest Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+
+from typing import TYPE_CHECKING
+
+from azure.core.configuration import Configuration
+from azure.core.pipeline import policies
+from azure.mgmt.core.policies import ARMChallengeAuthenticationPolicy, ARMHttpLoggingPolicy
+
+from ._version import VERSION
+
+if TYPE_CHECKING:
+ # pylint: disable=unused-import,ungrouped-imports
+ from typing import Any
+
+ from azure.core.credentials import TokenCredential
+
+
+class AzureMachineLearningWorkspacesConfiguration(Configuration):
+ """Configuration for AzureMachineLearningWorkspaces.
+
+ Note that all parameters used to create this instance are saved as instance
+ attributes.
+
+ :param credential: Credential needed for the client to connect to Azure.
+ :type credential: ~azure.core.credentials.TokenCredential
+ """
+
+ def __init__(
+ self,
+ credential, # type: "TokenCredential"
+ **kwargs # type: Any
+ ):
+ # type: (...) -> None
+ super(AzureMachineLearningWorkspacesConfiguration, self).__init__(**kwargs)
+ if credential is None:
+ raise ValueError("Parameter 'credential' must not be None.")
+
+ self.credential = credential
+ self.credential_scopes = kwargs.pop('credential_scopes', ['https://management.azure.com/.default'])
+ kwargs.setdefault('sdk_moniker', 'mgmt-machinelearningservices/{}'.format(VERSION))
+ self._configure(**kwargs)
+
+ def _configure(
+ self,
+ **kwargs # type: Any
+ ):
+ # type: (...) -> None
+ self.user_agent_policy = kwargs.get('user_agent_policy') or policies.UserAgentPolicy(**kwargs)
+ self.headers_policy = kwargs.get('headers_policy') or policies.HeadersPolicy(**kwargs)
+ self.proxy_policy = kwargs.get('proxy_policy') or policies.ProxyPolicy(**kwargs)
+ self.logging_policy = kwargs.get('logging_policy') or policies.NetworkTraceLoggingPolicy(**kwargs)
+ self.http_logging_policy = kwargs.get('http_logging_policy') or ARMHttpLoggingPolicy(**kwargs)
+ self.retry_policy = kwargs.get('retry_policy') or policies.RetryPolicy(**kwargs)
+ self.custom_hook_policy = kwargs.get('custom_hook_policy') or policies.CustomHookPolicy(**kwargs)
+ self.redirect_policy = kwargs.get('redirect_policy') or policies.RedirectPolicy(**kwargs)
+ self.authentication_policy = kwargs.get('authentication_policy')
+ if self.credential and not self.authentication_policy:
+ self.authentication_policy = ARMChallengeAuthenticationPolicy(self.credential, *self.credential_scopes, **kwargs)
diff --git a/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/_patch.py b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/_patch.py
new file mode 100644
index 00000000..74e48ecd
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/_patch.py
@@ -0,0 +1,31 @@
+# coding=utf-8
+# --------------------------------------------------------------------------
+#
+# Copyright (c) Microsoft Corporation. All rights reserved.
+#
+# The MIT License (MIT)
+#
+# Permission is hereby granted, free of charge, to any person obtaining a copy
+# of this software and associated documentation files (the ""Software""), to
+# deal in the Software without restriction, including without limitation the
+# rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+# sell copies of the Software, and to permit persons to whom the Software is
+# furnished to do so, subject to the following conditions:
+#
+# The above copyright notice and this permission notice shall be included in
+# all copies or substantial portions of the Software.
+#
+# THE SOFTWARE IS PROVIDED *AS IS*, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
+# FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
+# IN THE SOFTWARE.
+#
+# --------------------------------------------------------------------------
+
+# This file is used for handwritten extensions to the generated code. Example:
+# https://github.com/Azure/azure-sdk-for-python/blob/main/doc/dev/customize_code/how-to-patch-sdk-code.md
+def patch_sdk():
+ pass \ No newline at end of file
diff --git a/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/_vendor.py b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/_vendor.py
new file mode 100644
index 00000000..138f663c
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/_vendor.py
@@ -0,0 +1,27 @@
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) AutoRest Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+
+from azure.core.pipeline.transport import HttpRequest
+
+def _convert_request(request, files=None):
+ data = request.content if not files else None
+ request = HttpRequest(method=request.method, url=request.url, headers=request.headers, data=data)
+ if files:
+ request.set_formdata_body(files)
+ return request
+
+def _format_url_section(template, **kwargs):
+ components = template.split("/")
+ while components:
+ try:
+ return template.format(**kwargs)
+ except KeyError as key:
+ formatted_components = template.split("/")
+ components = [
+ c for c in formatted_components if "{}".format(key.args[0]) not in c
+ ]
+ template = "/".join(components)
diff --git a/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/_version.py b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/_version.py
new file mode 100644
index 00000000..eae7c95b
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/_version.py
@@ -0,0 +1,9 @@
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) AutoRest Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+
+VERSION = "0.1.0"
diff --git a/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/aio/__init__.py b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/aio/__init__.py
new file mode 100644
index 00000000..f67ccda9
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/aio/__init__.py
@@ -0,0 +1,15 @@
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) AutoRest Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+
+from ._azure_machine_learning_workspaces import AzureMachineLearningWorkspaces
+__all__ = ['AzureMachineLearningWorkspaces']
+
+# `._patch.py` is used for handwritten extensions to the generated code
+# Example: https://github.com/Azure/azure-sdk-for-python/blob/main/doc/dev/customize_code/how-to-patch-sdk-code.md
+from ._patch import patch_sdk
+patch_sdk()
diff --git a/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/aio/_azure_machine_learning_workspaces.py b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/aio/_azure_machine_learning_workspaces.py
new file mode 100644
index 00000000..597cca3d
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/aio/_azure_machine_learning_workspaces.py
@@ -0,0 +1,111 @@
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) AutoRest Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+
+from copy import deepcopy
+from typing import Any, Awaitable, Optional, TYPE_CHECKING
+
+from azure.core.rest import AsyncHttpResponse, HttpRequest
+from azure.mgmt.core import AsyncARMPipelineClient
+from msrest import Deserializer, Serializer
+
+from .. import models
+from ._configuration import AzureMachineLearningWorkspacesConfiguration
+from .operations import DataCallOperations, DataContainerOperations, DataVersionOperations, DatasetControllerV2Operations, DatasetV2Operations, DatasetsV1Operations, DeleteOperations, GetOperationStatusOperations
+
+if TYPE_CHECKING:
+ # pylint: disable=unused-import,ungrouped-imports
+ from azure.core.credentials_async import AsyncTokenCredential
+
+class AzureMachineLearningWorkspaces:
+ """AzureMachineLearningWorkspaces.
+
+ :ivar data_call: DataCallOperations operations
+ :vartype data_call: azure.mgmt.machinelearningservices.aio.operations.DataCallOperations
+ :ivar data_container: DataContainerOperations operations
+ :vartype data_container:
+ azure.mgmt.machinelearningservices.aio.operations.DataContainerOperations
+ :ivar delete: DeleteOperations operations
+ :vartype delete: azure.mgmt.machinelearningservices.aio.operations.DeleteOperations
+ :ivar datasets_v1: DatasetsV1Operations operations
+ :vartype datasets_v1: azure.mgmt.machinelearningservices.aio.operations.DatasetsV1Operations
+ :ivar dataset_controller_v2: DatasetControllerV2Operations operations
+ :vartype dataset_controller_v2:
+ azure.mgmt.machinelearningservices.aio.operations.DatasetControllerV2Operations
+ :ivar dataset_v2: DatasetV2Operations operations
+ :vartype dataset_v2: azure.mgmt.machinelearningservices.aio.operations.DatasetV2Operations
+ :ivar data_version: DataVersionOperations operations
+ :vartype data_version: azure.mgmt.machinelearningservices.aio.operations.DataVersionOperations
+ :ivar get_operation_status: GetOperationStatusOperations operations
+ :vartype get_operation_status:
+ azure.mgmt.machinelearningservices.aio.operations.GetOperationStatusOperations
+ :param credential: Credential needed for the client to connect to Azure.
+ :type credential: ~azure.core.credentials_async.AsyncTokenCredential
+ :param base_url: Service URL. Default value is ''.
+ :type base_url: str
+ :keyword int polling_interval: Default waiting time between two polls for LRO operations if no
+ Retry-After header is present.
+ """
+
+ def __init__(
+ self,
+ credential: "AsyncTokenCredential",
+ base_url: str = "",
+ **kwargs: Any
+ ) -> None:
+ self._config = AzureMachineLearningWorkspacesConfiguration(credential=credential, **kwargs)
+ self._client = AsyncARMPipelineClient(base_url=base_url, config=self._config, **kwargs)
+
+ client_models = {k: v for k, v in models.__dict__.items() if isinstance(v, type)}
+ self._serialize = Serializer(client_models)
+ self._deserialize = Deserializer(client_models)
+ self._serialize.client_side_validation = False
+ self.data_call = DataCallOperations(self._client, self._config, self._serialize, self._deserialize)
+ self.data_container = DataContainerOperations(self._client, self._config, self._serialize, self._deserialize)
+ self.delete = DeleteOperations(self._client, self._config, self._serialize, self._deserialize)
+ self.datasets_v1 = DatasetsV1Operations(self._client, self._config, self._serialize, self._deserialize)
+ self.dataset_controller_v2 = DatasetControllerV2Operations(self._client, self._config, self._serialize, self._deserialize)
+ self.dataset_v2 = DatasetV2Operations(self._client, self._config, self._serialize, self._deserialize)
+ self.data_version = DataVersionOperations(self._client, self._config, self._serialize, self._deserialize)
+ self.get_operation_status = GetOperationStatusOperations(self._client, self._config, self._serialize, self._deserialize)
+
+
+ def _send_request(
+ self,
+ request: HttpRequest,
+ **kwargs: Any
+ ) -> Awaitable[AsyncHttpResponse]:
+ """Runs the network request through the client's chained policies.
+
+ >>> from azure.core.rest import HttpRequest
+ >>> request = HttpRequest("GET", "https://www.example.org/")
+ <HttpRequest [GET], url: 'https://www.example.org/'>
+ >>> response = await client._send_request(request)
+ <AsyncHttpResponse: 200 OK>
+
+ For more information on this code flow, see https://aka.ms/azsdk/python/protocol/quickstart
+
+ :param request: The network request you want to make. Required.
+ :type request: ~azure.core.rest.HttpRequest
+ :keyword bool stream: Whether the response payload will be streamed. Defaults to False.
+ :return: The response of your network call. Does not do error handling on your response.
+ :rtype: ~azure.core.rest.AsyncHttpResponse
+ """
+
+ request_copy = deepcopy(request)
+ request_copy.url = self._client.format_url(request_copy.url)
+ return self._client.send_request(request_copy, **kwargs)
+
+ async def close(self) -> None:
+ await self._client.close()
+
+ async def __aenter__(self) -> "AzureMachineLearningWorkspaces":
+ await self._client.__aenter__()
+ return self
+
+ async def __aexit__(self, *exc_details) -> None:
+ await self._client.__aexit__(*exc_details)
diff --git a/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/aio/_configuration.py b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/aio/_configuration.py
new file mode 100644
index 00000000..26def54e
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/aio/_configuration.py
@@ -0,0 +1,60 @@
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) AutoRest Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+
+from typing import Any, TYPE_CHECKING
+
+from azure.core.configuration import Configuration
+from azure.core.pipeline import policies
+from azure.mgmt.core.policies import ARMHttpLoggingPolicy, AsyncARMChallengeAuthenticationPolicy
+
+from .._version import VERSION
+
+if TYPE_CHECKING:
+ # pylint: disable=unused-import,ungrouped-imports
+ from azure.core.credentials_async import AsyncTokenCredential
+
+
+class AzureMachineLearningWorkspacesConfiguration(Configuration):
+ """Configuration for AzureMachineLearningWorkspaces.
+
+ Note that all parameters used to create this instance are saved as instance
+ attributes.
+
+ :param credential: Credential needed for the client to connect to Azure.
+ :type credential: ~azure.core.credentials_async.AsyncTokenCredential
+ """
+
+ def __init__(
+ self,
+ credential: "AsyncTokenCredential",
+ **kwargs: Any
+ ) -> None:
+ super(AzureMachineLearningWorkspacesConfiguration, self).__init__(**kwargs)
+ if credential is None:
+ raise ValueError("Parameter 'credential' must not be None.")
+
+ self.credential = credential
+ self.credential_scopes = kwargs.pop('credential_scopes', ['https://management.azure.com/.default'])
+ kwargs.setdefault('sdk_moniker', 'mgmt-machinelearningservices/{}'.format(VERSION))
+ self._configure(**kwargs)
+
+ def _configure(
+ self,
+ **kwargs: Any
+ ) -> None:
+ self.user_agent_policy = kwargs.get('user_agent_policy') or policies.UserAgentPolicy(**kwargs)
+ self.headers_policy = kwargs.get('headers_policy') or policies.HeadersPolicy(**kwargs)
+ self.proxy_policy = kwargs.get('proxy_policy') or policies.ProxyPolicy(**kwargs)
+ self.logging_policy = kwargs.get('logging_policy') or policies.NetworkTraceLoggingPolicy(**kwargs)
+ self.http_logging_policy = kwargs.get('http_logging_policy') or ARMHttpLoggingPolicy(**kwargs)
+ self.retry_policy = kwargs.get('retry_policy') or policies.AsyncRetryPolicy(**kwargs)
+ self.custom_hook_policy = kwargs.get('custom_hook_policy') or policies.CustomHookPolicy(**kwargs)
+ self.redirect_policy = kwargs.get('redirect_policy') or policies.AsyncRedirectPolicy(**kwargs)
+ self.authentication_policy = kwargs.get('authentication_policy')
+ if self.credential and not self.authentication_policy:
+ self.authentication_policy = AsyncARMChallengeAuthenticationPolicy(self.credential, *self.credential_scopes, **kwargs)
diff --git a/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/aio/_patch.py b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/aio/_patch.py
new file mode 100644
index 00000000..74e48ecd
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/aio/_patch.py
@@ -0,0 +1,31 @@
+# coding=utf-8
+# --------------------------------------------------------------------------
+#
+# Copyright (c) Microsoft Corporation. All rights reserved.
+#
+# The MIT License (MIT)
+#
+# Permission is hereby granted, free of charge, to any person obtaining a copy
+# of this software and associated documentation files (the ""Software""), to
+# deal in the Software without restriction, including without limitation the
+# rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+# sell copies of the Software, and to permit persons to whom the Software is
+# furnished to do so, subject to the following conditions:
+#
+# The above copyright notice and this permission notice shall be included in
+# all copies or substantial portions of the Software.
+#
+# THE SOFTWARE IS PROVIDED *AS IS*, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
+# FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
+# IN THE SOFTWARE.
+#
+# --------------------------------------------------------------------------
+
+# This file is used for handwritten extensions to the generated code. Example:
+# https://github.com/Azure/azure-sdk-for-python/blob/main/doc/dev/customize_code/how-to-patch-sdk-code.md
+def patch_sdk():
+ pass \ No newline at end of file
diff --git a/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/aio/operations/__init__.py b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/aio/operations/__init__.py
new file mode 100644
index 00000000..f0340813
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/aio/operations/__init__.py
@@ -0,0 +1,27 @@
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) AutoRest Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+
+from ._data_call_operations import DataCallOperations
+from ._data_container_operations import DataContainerOperations
+from ._delete_operations import DeleteOperations
+from ._datasets_v1_operations import DatasetsV1Operations
+from ._dataset_controller_v2_operations import DatasetControllerV2Operations
+from ._dataset_v2_operations import DatasetV2Operations
+from ._data_version_operations import DataVersionOperations
+from ._get_operation_status_operations import GetOperationStatusOperations
+
+__all__ = [
+ 'DataCallOperations',
+ 'DataContainerOperations',
+ 'DeleteOperations',
+ 'DatasetsV1Operations',
+ 'DatasetControllerV2Operations',
+ 'DatasetV2Operations',
+ 'DataVersionOperations',
+ 'GetOperationStatusOperations',
+]
diff --git a/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/aio/operations/_data_call_operations.py b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/aio/operations/_data_call_operations.py
new file mode 100644
index 00000000..cf00280c
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/aio/operations/_data_call_operations.py
@@ -0,0 +1,243 @@
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) AutoRest Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+import functools
+from typing import Any, Callable, Dict, Generic, List, Optional, TypeVar
+import warnings
+
+from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error
+from azure.core.pipeline import PipelineResponse
+from azure.core.pipeline.transport import AsyncHttpResponse
+from azure.core.rest import HttpRequest
+from azure.core.tracing.decorator_async import distributed_trace_async
+from azure.mgmt.core.exceptions import ARMErrorFormat
+
+from ... import models as _models
+from ..._vendor import _convert_request
+from ...operations._data_call_operations import build_get_preview_for_ml_table_request, build_get_quick_profile_for_ml_table_request, build_get_schema_for_ml_table_request
+T = TypeVar('T')
+ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]]
+
+class DataCallOperations:
+ """DataCallOperations async operations.
+
+ You should not instantiate this class directly. Instead, you should create a Client instance that
+ instantiates it for you and attaches it as an attribute.
+
+ :ivar models: Alias to model classes used in this operation group.
+ :type models: ~azure.mgmt.machinelearningservices.models
+ :param client: Client for service requests.
+ :param config: Configuration of service client.
+ :param serializer: An object model serializer.
+ :param deserializer: An object model deserializer.
+ """
+
+ models = _models
+
+ def __init__(self, client, config, serializer, deserializer) -> None:
+ self._client = client
+ self._serialize = serializer
+ self._deserialize = deserializer
+ self._config = config
+
+ @distributed_trace_async
+ async def get_schema_for_ml_table(
+ self,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ body: Optional["_models.DataCallRequest"] = None,
+ **kwargs: Any
+ ) -> List["_models.ColumnDefinition"]:
+ """Get schema for a specific MLTable.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param body:
+ :type body: ~azure.mgmt.machinelearningservices.models.DataCallRequest
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: list of ColumnDefinition, or the result of cls(response)
+ :rtype: list[~azure.mgmt.machinelearningservices.models.ColumnDefinition]
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType[List["_models.ColumnDefinition"]]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+ content_type = kwargs.pop('content_type', "application/json") # type: Optional[str]
+
+ if body is not None:
+ _json = self._serialize.body(body, 'DataCallRequest')
+ else:
+ _json = None
+
+ request = build_get_schema_for_ml_table_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ content_type=content_type,
+ json=_json,
+ template_url=self.get_schema_for_ml_table.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('[ColumnDefinition]', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ get_schema_for_ml_table.metadata = {'url': '/data/v2.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datacall/schema'} # type: ignore
+
+
+ @distributed_trace_async
+ async def get_preview_for_ml_table(
+ self,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ body: Optional["_models.DataCallRequest"] = None,
+ **kwargs: Any
+ ) -> "_models.DataViewSetResult":
+ """Get preview for a specific MLTable.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param body:
+ :type body: ~azure.mgmt.machinelearningservices.models.DataCallRequest
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: DataViewSetResult, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.DataViewSetResult
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.DataViewSetResult"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+ content_type = kwargs.pop('content_type', "application/json") # type: Optional[str]
+
+ if body is not None:
+ _json = self._serialize.body(body, 'DataCallRequest')
+ else:
+ _json = None
+
+ request = build_get_preview_for_ml_table_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ content_type=content_type,
+ json=_json,
+ template_url=self.get_preview_for_ml_table.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('DataViewSetResult', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ get_preview_for_ml_table.metadata = {'url': '/data/v2.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datacall/preview'} # type: ignore
+
+
+ @distributed_trace_async
+ async def get_quick_profile_for_ml_table(
+ self,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ body: Optional["_models.DataCallRequest"] = None,
+ **kwargs: Any
+ ) -> List["_models.ProfileResult"]:
+ """Get quick profile for a specific MLTable.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param body:
+ :type body: ~azure.mgmt.machinelearningservices.models.DataCallRequest
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: list of ProfileResult, or the result of cls(response)
+ :rtype: list[~azure.mgmt.machinelearningservices.models.ProfileResult]
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType[List["_models.ProfileResult"]]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+ content_type = kwargs.pop('content_type', "application/json") # type: Optional[str]
+
+ if body is not None:
+ _json = self._serialize.body(body, 'DataCallRequest')
+ else:
+ _json = None
+
+ request = build_get_quick_profile_for_ml_table_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ content_type=content_type,
+ json=_json,
+ template_url=self.get_quick_profile_for_ml_table.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('[ProfileResult]', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ get_quick_profile_for_ml_table.metadata = {'url': '/data/v2.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datacall/quickprofile'} # type: ignore
+
diff --git a/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/aio/operations/_data_container_operations.py b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/aio/operations/_data_container_operations.py
new file mode 100644
index 00000000..c4c78abb
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/aio/operations/_data_container_operations.py
@@ -0,0 +1,321 @@
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) AutoRest Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+import functools
+from typing import Any, AsyncIterable, Callable, Dict, Generic, Optional, TypeVar
+import warnings
+
+from azure.core.async_paging import AsyncItemPaged, AsyncList
+from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error
+from azure.core.pipeline import PipelineResponse
+from azure.core.pipeline.transport import AsyncHttpResponse
+from azure.core.rest import HttpRequest
+from azure.core.tracing.decorator import distributed_trace
+from azure.core.tracing.decorator_async import distributed_trace_async
+from azure.mgmt.core.exceptions import ARMErrorFormat
+
+from ... import models as _models
+from ..._vendor import _convert_request
+from ...operations._data_container_operations import build_create_data_container_request, build_get_data_container_request, build_list_data_container_request, build_modify_data_container_request
+T = TypeVar('T')
+ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]]
+
+class DataContainerOperations:
+ """DataContainerOperations async operations.
+
+ You should not instantiate this class directly. Instead, you should create a Client instance that
+ instantiates it for you and attaches it as an attribute.
+
+ :ivar models: Alias to model classes used in this operation group.
+ :type models: ~azure.mgmt.machinelearningservices.models
+ :param client: Client for service requests.
+ :param config: Configuration of service client.
+ :param serializer: An object model serializer.
+ :param deserializer: An object model deserializer.
+ """
+
+ models = _models
+
+ def __init__(self, client, config, serializer, deserializer) -> None:
+ self._client = client
+ self._serialize = serializer
+ self._deserialize = deserializer
+ self._config = config
+
+ @distributed_trace_async
+ async def create_data_container(
+ self,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ body: Optional["_models.DataContainer"] = None,
+ **kwargs: Any
+ ) -> "_models.DataContainerEntity":
+ """create_data_container.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param body:
+ :type body: ~azure.mgmt.machinelearningservices.models.DataContainer
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: DataContainerEntity, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.DataContainerEntity
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.DataContainerEntity"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+ content_type = kwargs.pop('content_type', "application/json") # type: Optional[str]
+
+ if body is not None:
+ _json = self._serialize.body(body, 'DataContainer')
+ else:
+ _json = None
+
+ request = build_create_data_container_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ content_type=content_type,
+ json=_json,
+ template_url=self.create_data_container.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('DataContainerEntity', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ create_data_container.metadata = {'url': '/data/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datacontainer'} # type: ignore
+
+
+ @distributed_trace
+ def list_data_container(
+ self,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ **kwargs: Any
+ ) -> AsyncIterable["_models.PaginatedDataContainerEntityList"]:
+ """list_data_container.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: An iterator like instance of either PaginatedDataContainerEntityList or the result of
+ cls(response)
+ :rtype:
+ ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.machinelearningservices.models.PaginatedDataContainerEntityList]
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.PaginatedDataContainerEntityList"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+ def prepare_request(next_link=None):
+ if not next_link:
+
+ request = build_list_data_container_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ template_url=self.list_data_container.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ else:
+
+ request = build_list_data_container_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ template_url=next_link,
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+ request.method = "GET"
+ return request
+
+ async def extract_data(pipeline_response):
+ deserialized = self._deserialize("PaginatedDataContainerEntityList", pipeline_response)
+ list_of_elem = deserialized.value
+ if cls:
+ list_of_elem = cls(list_of_elem)
+ return deserialized.next_link or None, AsyncList(list_of_elem)
+
+ async def get_next(next_link=None):
+ request = prepare_request(next_link)
+
+ pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ return pipeline_response
+
+
+ return AsyncItemPaged(
+ get_next, extract_data
+ )
+ list_data_container.metadata = {'url': '/data/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datacontainer'} # type: ignore
+
+ @distributed_trace_async
+ async def get_data_container(
+ self,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ name: str,
+ **kwargs: Any
+ ) -> "_models.DataContainerEntity":
+ """get_data_container.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param name:
+ :type name: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: DataContainerEntity, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.DataContainerEntity
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.DataContainerEntity"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+
+ request = build_get_data_container_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ name=name,
+ template_url=self.get_data_container.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('DataContainerEntity', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ get_data_container.metadata = {'url': '/data/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datacontainer/{name}'} # type: ignore
+
+
+ @distributed_trace_async
+ async def modify_data_container(
+ self,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ name: str,
+ body: Optional["_models.DataContainerMutable"] = None,
+ **kwargs: Any
+ ) -> "_models.DataContainerEntity":
+ """modify_data_container.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param name:
+ :type name: str
+ :param body:
+ :type body: ~azure.mgmt.machinelearningservices.models.DataContainerMutable
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: DataContainerEntity, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.DataContainerEntity
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.DataContainerEntity"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+ content_type = kwargs.pop('content_type', "application/json") # type: Optional[str]
+
+ if body is not None:
+ _json = self._serialize.body(body, 'DataContainerMutable')
+ else:
+ _json = None
+
+ request = build_modify_data_container_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ name=name,
+ content_type=content_type,
+ json=_json,
+ template_url=self.modify_data_container.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('DataContainerEntity', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ modify_data_container.metadata = {'url': '/data/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datacontainer/{name}'} # type: ignore
+
diff --git a/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/aio/operations/_data_version_operations.py b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/aio/operations/_data_version_operations.py
new file mode 100644
index 00000000..9f375aeb
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/aio/operations/_data_version_operations.py
@@ -0,0 +1,804 @@
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) AutoRest Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+import functools
+from typing import Any, AsyncIterable, Callable, Dict, Generic, Optional, TypeVar
+import warnings
+
+from azure.core.async_paging import AsyncItemPaged, AsyncList
+from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error
+from azure.core.pipeline import PipelineResponse
+from azure.core.pipeline.transport import AsyncHttpResponse
+from azure.core.rest import HttpRequest
+from azure.core.tracing.decorator import distributed_trace
+from azure.core.tracing.decorator_async import distributed_trace_async
+from azure.mgmt.core.exceptions import ARMErrorFormat
+
+from ... import models as _models
+from ..._vendor import _convert_request
+from ...operations._data_version_operations import build_batch_get_resolved_uris_request, build_create_request, build_create_unregistered_input_data_request, build_create_unregistered_output_data_request, build_delete_request, build_exists_request, build_get_by_asset_id_request, build_get_request, build_list_request, build_modify_request, build_registered_existing_data_request
+T = TypeVar('T')
+ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]]
+
+class DataVersionOperations:
+ """DataVersionOperations async operations.
+
+ You should not instantiate this class directly. Instead, you should create a Client instance that
+ instantiates it for you and attaches it as an attribute.
+
+ :ivar models: Alias to model classes used in this operation group.
+ :type models: ~azure.mgmt.machinelearningservices.models
+ :param client: Client for service requests.
+ :param config: Configuration of service client.
+ :param serializer: An object model serializer.
+ :param deserializer: An object model deserializer.
+ """
+
+ models = _models
+
+ def __init__(self, client, config, serializer, deserializer) -> None:
+ self._client = client
+ self._serialize = serializer
+ self._deserialize = deserializer
+ self._config = config
+
+ @distributed_trace_async
+ async def create(
+ self,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ name: str,
+ body: Optional["_models.DataVersion"] = None,
+ **kwargs: Any
+ ) -> "_models.DataVersionEntity":
+ """create.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param name:
+ :type name: str
+ :param body:
+ :type body: ~azure.mgmt.machinelearningservices.models.DataVersion
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: DataVersionEntity, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.DataVersionEntity
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.DataVersionEntity"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+ content_type = kwargs.pop('content_type', "application/json") # type: Optional[str]
+
+ if body is not None:
+ _json = self._serialize.body(body, 'DataVersion')
+ else:
+ _json = None
+
+ request = build_create_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ name=name,
+ content_type=content_type,
+ json=_json,
+ template_url=self.create.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('DataVersionEntity', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ create.metadata = {'url': '/data/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/dataversion/{name}/versions'} # type: ignore
+
+
+ @distributed_trace
+ def list(
+ self,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ name: str,
+ order_by: Optional[str] = None,
+ top: Optional[int] = None,
+ **kwargs: Any
+ ) -> AsyncIterable["_models.PaginatedDataVersionEntityList"]:
+ """list.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param name:
+ :type name: str
+ :param order_by:
+ :type order_by: str
+ :param top:
+ :type top: int
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: An iterator like instance of either PaginatedDataVersionEntityList or the result of
+ cls(response)
+ :rtype:
+ ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.machinelearningservices.models.PaginatedDataVersionEntityList]
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.PaginatedDataVersionEntityList"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+ def prepare_request(next_link=None):
+ if not next_link:
+
+ request = build_list_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ name=name,
+ order_by=order_by,
+ top=top,
+ template_url=self.list.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ else:
+
+ request = build_list_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ name=name,
+ order_by=order_by,
+ top=top,
+ template_url=next_link,
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+ request.method = "GET"
+ return request
+
+ async def extract_data(pipeline_response):
+ deserialized = self._deserialize("PaginatedDataVersionEntityList", pipeline_response)
+ list_of_elem = deserialized.value
+ if cls:
+ list_of_elem = cls(list_of_elem)
+ return deserialized.next_link or None, AsyncList(list_of_elem)
+
+ async def get_next(next_link=None):
+ request = prepare_request(next_link)
+
+ pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ return pipeline_response
+
+
+ return AsyncItemPaged(
+ get_next, extract_data
+ )
+ list.metadata = {'url': '/data/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/dataversion/{name}/versions'} # type: ignore
+
+ @distributed_trace_async
+ async def get(
+ self,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ name: str,
+ version: str,
+ **kwargs: Any
+ ) -> "_models.DataVersionEntity":
+ """get.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param name:
+ :type name: str
+ :param version:
+ :type version: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: DataVersionEntity, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.DataVersionEntity
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.DataVersionEntity"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+
+ request = build_get_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ name=name,
+ version=version,
+ template_url=self.get.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('DataVersionEntity', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ get.metadata = {'url': '/data/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/dataversion/{name}/versions/{version}'} # type: ignore
+
+
+ @distributed_trace_async
+ async def modify(
+ self,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ name: str,
+ version: str,
+ body: Optional["_models.DataVersionMutable"] = None,
+ **kwargs: Any
+ ) -> "_models.DataVersionEntity":
+ """modify.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param name:
+ :type name: str
+ :param version:
+ :type version: str
+ :param body:
+ :type body: ~azure.mgmt.machinelearningservices.models.DataVersionMutable
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: DataVersionEntity, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.DataVersionEntity
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.DataVersionEntity"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+ content_type = kwargs.pop('content_type', "application/json") # type: Optional[str]
+
+ if body is not None:
+ _json = self._serialize.body(body, 'DataVersionMutable')
+ else:
+ _json = None
+
+ request = build_modify_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ name=name,
+ version=version,
+ content_type=content_type,
+ json=_json,
+ template_url=self.modify.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('DataVersionEntity', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ modify.metadata = {'url': '/data/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/dataversion/{name}/versions/{version}'} # type: ignore
+
+
+ @distributed_trace_async
+ async def delete(
+ self,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ name: str,
+ version: str,
+ **kwargs: Any
+ ) -> "_models.HttpResponseMessage":
+ """delete.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param name:
+ :type name: str
+ :param version:
+ :type version: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: HttpResponseMessage, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.HttpResponseMessage
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.HttpResponseMessage"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+
+ request = build_delete_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ name=name,
+ version=version,
+ template_url=self.delete.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('HttpResponseMessage', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ delete.metadata = {'url': '/data/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/dataversion/{name}/versions/{version}'} # type: ignore
+
+
+ @distributed_trace_async
+ async def exists(
+ self,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ name: str,
+ version: str,
+ **kwargs: Any
+ ) -> bool:
+ """exists.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param name:
+ :type name: str
+ :param version:
+ :type version: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: bool, or the result of cls(response)
+ :rtype: bool
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType[bool]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+
+ request = build_exists_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ name=name,
+ version=version,
+ template_url=self.exists.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('bool', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ exists.metadata = {'url': '/data/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/dataversion/{name}/versions/{version}/exists'} # type: ignore
+
+
+ @distributed_trace_async
+ async def get_by_asset_id(
+ self,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ body: Optional["_models.AssetId"] = None,
+ **kwargs: Any
+ ) -> "_models.DataVersionEntity":
+ """get_by_asset_id.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param body:
+ :type body: ~azure.mgmt.machinelearningservices.models.AssetId
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: DataVersionEntity, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.DataVersionEntity
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.DataVersionEntity"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+ content_type = kwargs.pop('content_type', "application/json") # type: Optional[str]
+
+ if body is not None:
+ _json = self._serialize.body(body, 'AssetId')
+ else:
+ _json = None
+
+ request = build_get_by_asset_id_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ content_type=content_type,
+ json=_json,
+ template_url=self.get_by_asset_id.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('DataVersionEntity', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ get_by_asset_id.metadata = {'url': '/data/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/dataversion/getByAssetId'} # type: ignore
+
+
+ @distributed_trace_async
+ async def create_unregistered_input_data(
+ self,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ body: Optional["_models.CreateUnregisteredInputData"] = None,
+ **kwargs: Any
+ ) -> "_models.DataContainerEntity":
+ """create_unregistered_input_data.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param body:
+ :type body: ~azure.mgmt.machinelearningservices.models.CreateUnregisteredInputData
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: DataContainerEntity, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.DataContainerEntity
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.DataContainerEntity"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+ content_type = kwargs.pop('content_type', "application/json") # type: Optional[str]
+
+ if body is not None:
+ _json = self._serialize.body(body, 'CreateUnregisteredInputData')
+ else:
+ _json = None
+
+ request = build_create_unregistered_input_data_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ content_type=content_type,
+ json=_json,
+ template_url=self.create_unregistered_input_data.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('DataContainerEntity', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ create_unregistered_input_data.metadata = {'url': '/data/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/dataversion/createUnregisteredInput'} # type: ignore
+
+
+ @distributed_trace_async
+ async def create_unregistered_output_data(
+ self,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ body: Optional["_models.CreateUnregisteredOutputData"] = None,
+ **kwargs: Any
+ ) -> "_models.DataContainerEntity":
+ """create_unregistered_output_data.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param body:
+ :type body: ~azure.mgmt.machinelearningservices.models.CreateUnregisteredOutputData
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: DataContainerEntity, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.DataContainerEntity
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.DataContainerEntity"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+ content_type = kwargs.pop('content_type', "application/json") # type: Optional[str]
+
+ if body is not None:
+ _json = self._serialize.body(body, 'CreateUnregisteredOutputData')
+ else:
+ _json = None
+
+ request = build_create_unregistered_output_data_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ content_type=content_type,
+ json=_json,
+ template_url=self.create_unregistered_output_data.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('DataContainerEntity', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ create_unregistered_output_data.metadata = {'url': '/data/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/dataversion/createUnregisteredOutput'} # type: ignore
+
+
+ @distributed_trace_async
+ async def registered_existing_data(
+ self,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ body: Optional["_models.RegisterExistingData"] = None,
+ **kwargs: Any
+ ) -> "_models.DataContainerEntity":
+ """registered_existing_data.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param body:
+ :type body: ~azure.mgmt.machinelearningservices.models.RegisterExistingData
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: DataContainerEntity, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.DataContainerEntity
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.DataContainerEntity"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+ content_type = kwargs.pop('content_type', "application/json") # type: Optional[str]
+
+ if body is not None:
+ _json = self._serialize.body(body, 'RegisterExistingData')
+ else:
+ _json = None
+
+ request = build_registered_existing_data_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ content_type=content_type,
+ json=_json,
+ template_url=self.registered_existing_data.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('DataContainerEntity', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ registered_existing_data.metadata = {'url': '/data/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/dataversion/registerExisting'} # type: ignore
+
+
+ @distributed_trace_async
+ async def batch_get_resolved_uris(
+ self,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ body: Optional["_models.BatchGetResolvedURIs"] = None,
+ **kwargs: Any
+ ) -> "_models.BatchDataUriResponse":
+ """batch_get_resolved_uris.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param body:
+ :type body: ~azure.mgmt.machinelearningservices.models.BatchGetResolvedURIs
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: BatchDataUriResponse, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.BatchDataUriResponse
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.BatchDataUriResponse"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+ content_type = kwargs.pop('content_type', "application/json") # type: Optional[str]
+
+ if body is not None:
+ _json = self._serialize.body(body, 'BatchGetResolvedURIs')
+ else:
+ _json = None
+
+ request = build_batch_get_resolved_uris_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ content_type=content_type,
+ json=_json,
+ template_url=self.batch_get_resolved_uris.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('BatchDataUriResponse', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ batch_get_resolved_uris.metadata = {'url': '/data/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/dataversion/batchGetResolvedUris'} # type: ignore
+
diff --git a/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/aio/operations/_dataset_controller_v2_operations.py b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/aio/operations/_dataset_controller_v2_operations.py
new file mode 100644
index 00000000..a3574be3
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/aio/operations/_dataset_controller_v2_operations.py
@@ -0,0 +1,845 @@
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) AutoRest Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+import functools
+from typing import Any, AsyncIterable, Callable, Dict, Generic, List, Optional, TypeVar
+import warnings
+
+from azure.core.async_paging import AsyncItemPaged, AsyncList
+from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error
+from azure.core.pipeline import PipelineResponse
+from azure.core.pipeline.transport import AsyncHttpResponse
+from azure.core.rest import HttpRequest
+from azure.core.tracing.decorator import distributed_trace
+from azure.core.tracing.decorator_async import distributed_trace_async
+from azure.mgmt.core.exceptions import ARMErrorFormat
+
+from ... import models as _models
+from ..._vendor import _convert_request
+from ...operations._dataset_controller_v2_operations import build_delete_all_datasets_request, build_get_all_dataset_definitions_request, build_get_all_dataset_versions_request, build_get_dataset_by_name_request, build_get_dataset_definition_request, build_list_request, build_register_request, build_unregister_dataset_request, build_update_dataset_request, build_update_definition_request
+T = TypeVar('T')
+ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]]
+
+class DatasetControllerV2Operations:
+ """DatasetControllerV2Operations async operations.
+
+ You should not instantiate this class directly. Instead, you should create a Client instance that
+ instantiates it for you and attaches it as an attribute.
+
+ :ivar models: Alias to model classes used in this operation group.
+ :type models: ~azure.mgmt.machinelearningservices.models
+ :param client: Client for service requests.
+ :param config: Configuration of service client.
+ :param serializer: An object model serializer.
+ :param deserializer: An object model deserializer.
+ """
+
+ models = _models
+
+ def __init__(self, client, config, serializer, deserializer) -> None:
+ self._client = client
+ self._serialize = serializer
+ self._deserialize = deserializer
+ self._config = config
+
+ @distributed_trace_async
+ async def get_dataset_definition(
+ self,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ dataset_id: str,
+ version: str,
+ **kwargs: Any
+ ) -> "_models.DatasetDefinition":
+ """Get a specific dataset definition.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param dataset_id:
+ :type dataset_id: str
+ :param version:
+ :type version: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: DatasetDefinition, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.DatasetDefinition
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.DatasetDefinition"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+
+ request = build_get_dataset_definition_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ dataset_id=dataset_id,
+ version=version,
+ template_url=self.get_dataset_definition.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('DatasetDefinition', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ get_dataset_definition.metadata = {'url': '/dataset/v1.2/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datasets/{datasetId}/definitions/{version}'} # type: ignore
+
+
+ @distributed_trace
+ def get_all_dataset_definitions(
+ self,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ dataset_id: str,
+ continuation_token_parameter: Optional[str] = None,
+ page_size: Optional[int] = None,
+ **kwargs: Any
+ ) -> AsyncIterable["_models.PaginatedDatasetDefinitionList"]:
+ """Get all dataset definitions for a given dataset.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param dataset_id:
+ :type dataset_id: str
+ :param continuation_token_parameter:
+ :type continuation_token_parameter: str
+ :param page_size:
+ :type page_size: int
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: An iterator like instance of either PaginatedDatasetDefinitionList or the result of
+ cls(response)
+ :rtype:
+ ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.machinelearningservices.models.PaginatedDatasetDefinitionList]
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.PaginatedDatasetDefinitionList"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+ def prepare_request(next_link=None):
+ if not next_link:
+
+ request = build_get_all_dataset_definitions_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ dataset_id=dataset_id,
+ continuation_token_parameter=continuation_token_parameter,
+ page_size=page_size,
+ template_url=self.get_all_dataset_definitions.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ else:
+
+ request = build_get_all_dataset_definitions_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ dataset_id=dataset_id,
+ continuation_token_parameter=continuation_token_parameter,
+ page_size=page_size,
+ template_url=next_link,
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+ request.method = "GET"
+ return request
+
+ async def extract_data(pipeline_response):
+ deserialized = self._deserialize("PaginatedDatasetDefinitionList", pipeline_response)
+ list_of_elem = deserialized.value
+ if cls:
+ list_of_elem = cls(list_of_elem)
+ return deserialized.next_link or None, AsyncList(list_of_elem)
+
+ async def get_next(next_link=None):
+ request = prepare_request(next_link)
+
+ pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ return pipeline_response
+
+
+ return AsyncItemPaged(
+ get_next, extract_data
+ )
+ get_all_dataset_definitions.metadata = {'url': '/dataset/v1.2/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datasets/{datasetId}/definitions'} # type: ignore
+
+ @distributed_trace_async
+ async def update_definition(
+ self,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ dataset_id: str,
+ register_as_pending: Optional[bool] = False,
+ force_update: Optional[bool] = False,
+ dataset_type: Optional[str] = None,
+ user_version_id: Optional[str] = None,
+ body: Optional["_models.DatasetDefinition"] = None,
+ **kwargs: Any
+ ) -> "_models.Dataset":
+ """Update a dataset definition.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param dataset_id:
+ :type dataset_id: str
+ :param register_as_pending:
+ :type register_as_pending: bool
+ :param force_update:
+ :type force_update: bool
+ :param dataset_type:
+ :type dataset_type: str
+ :param user_version_id:
+ :type user_version_id: str
+ :param body:
+ :type body: ~azure.mgmt.machinelearningservices.models.DatasetDefinition
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: Dataset, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.Dataset
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.Dataset"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+ content_type = kwargs.pop('content_type', "application/json") # type: Optional[str]
+
+ if body is not None:
+ _json = self._serialize.body(body, 'DatasetDefinition')
+ else:
+ _json = None
+
+ request = build_update_definition_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ dataset_id=dataset_id,
+ content_type=content_type,
+ json=_json,
+ register_as_pending=register_as_pending,
+ force_update=force_update,
+ dataset_type=dataset_type,
+ user_version_id=user_version_id,
+ template_url=self.update_definition.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('Dataset', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ update_definition.metadata = {'url': '/dataset/v1.2/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datasets/{datasetId}/definitions'} # type: ignore
+
+
+ @distributed_trace
+ def get_all_dataset_versions(
+ self,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ dataset_id: str,
+ continuation_token_parameter: Optional[str] = None,
+ page_size: Optional[int] = None,
+ **kwargs: Any
+ ) -> AsyncIterable["_models.PaginatedStringList"]:
+ """Get all dataset versions for a given dataset.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param dataset_id:
+ :type dataset_id: str
+ :param continuation_token_parameter:
+ :type continuation_token_parameter: str
+ :param page_size:
+ :type page_size: int
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: An iterator like instance of either PaginatedStringList or the result of cls(response)
+ :rtype:
+ ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.machinelearningservices.models.PaginatedStringList]
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.PaginatedStringList"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+ def prepare_request(next_link=None):
+ if not next_link:
+
+ request = build_get_all_dataset_versions_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ dataset_id=dataset_id,
+ continuation_token_parameter=continuation_token_parameter,
+ page_size=page_size,
+ template_url=self.get_all_dataset_versions.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ else:
+
+ request = build_get_all_dataset_versions_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ dataset_id=dataset_id,
+ continuation_token_parameter=continuation_token_parameter,
+ page_size=page_size,
+ template_url=next_link,
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+ request.method = "GET"
+ return request
+
+ async def extract_data(pipeline_response):
+ deserialized = self._deserialize("PaginatedStringList", pipeline_response)
+ list_of_elem = deserialized.value
+ if cls:
+ list_of_elem = cls(list_of_elem)
+ return deserialized.next_link or None, AsyncList(list_of_elem)
+
+ async def get_next(next_link=None):
+ request = prepare_request(next_link)
+
+ pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ return pipeline_response
+
+
+ return AsyncItemPaged(
+ get_next, extract_data
+ )
+ get_all_dataset_versions.metadata = {'url': '/dataset/v1.2/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datasets/{datasetId}/versions'} # type: ignore
+
+ @distributed_trace_async
+ async def get_dataset_by_name(
+ self,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ dataset_name: str,
+ version_id: Optional[str] = None,
+ include_latest_definition: Optional[bool] = True,
+ **kwargs: Any
+ ) -> "_models.Dataset":
+ """Get a dataset for a given dataset name.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param dataset_name:
+ :type dataset_name: str
+ :param version_id:
+ :type version_id: str
+ :param include_latest_definition:
+ :type include_latest_definition: bool
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: Dataset, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.Dataset
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.Dataset"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+
+ request = build_get_dataset_by_name_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ dataset_name=dataset_name,
+ version_id=version_id,
+ include_latest_definition=include_latest_definition,
+ template_url=self.get_dataset_by_name.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('Dataset', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ get_dataset_by_name.metadata = {'url': '/dataset/v1.2/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datasets/query/name={datasetName}'} # type: ignore
+
+
+ @distributed_trace
+ def list(
+ self,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ dataset_names: Optional[List[str]] = None,
+ search_text: Optional[str] = None,
+ include_invisible: Optional[bool] = False,
+ status: Optional[str] = None,
+ continuation_token_parameter: Optional[str] = None,
+ page_size: Optional[int] = None,
+ include_latest_definition: Optional[bool] = False,
+ order_by: Optional[str] = None,
+ order_by_asc: Optional[bool] = False,
+ dataset_types: Optional[List[str]] = None,
+ **kwargs: Any
+ ) -> AsyncIterable["_models.PaginatedDatasetList"]:
+ """Get a list of datasets.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param dataset_names:
+ :type dataset_names: list[str]
+ :param search_text:
+ :type search_text: str
+ :param include_invisible:
+ :type include_invisible: bool
+ :param status:
+ :type status: str
+ :param continuation_token_parameter:
+ :type continuation_token_parameter: str
+ :param page_size:
+ :type page_size: int
+ :param include_latest_definition:
+ :type include_latest_definition: bool
+ :param order_by:
+ :type order_by: str
+ :param order_by_asc:
+ :type order_by_asc: bool
+ :param dataset_types:
+ :type dataset_types: list[str]
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: An iterator like instance of either PaginatedDatasetList or the result of
+ cls(response)
+ :rtype:
+ ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.machinelearningservices.models.PaginatedDatasetList]
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.PaginatedDatasetList"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+ def prepare_request(next_link=None):
+ if not next_link:
+
+ request = build_list_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ dataset_names=dataset_names,
+ search_text=search_text,
+ include_invisible=include_invisible,
+ status=status,
+ continuation_token_parameter=continuation_token_parameter,
+ page_size=page_size,
+ include_latest_definition=include_latest_definition,
+ order_by=order_by,
+ order_by_asc=order_by_asc,
+ dataset_types=dataset_types,
+ template_url=self.list.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ else:
+
+ request = build_list_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ dataset_names=dataset_names,
+ search_text=search_text,
+ include_invisible=include_invisible,
+ status=status,
+ continuation_token_parameter=continuation_token_parameter,
+ page_size=page_size,
+ include_latest_definition=include_latest_definition,
+ order_by=order_by,
+ order_by_asc=order_by_asc,
+ dataset_types=dataset_types,
+ template_url=next_link,
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+ request.method = "GET"
+ return request
+
+ async def extract_data(pipeline_response):
+ deserialized = self._deserialize("PaginatedDatasetList", pipeline_response)
+ list_of_elem = deserialized.value
+ if cls:
+ list_of_elem = cls(list_of_elem)
+ return deserialized.next_link or None, AsyncList(list_of_elem)
+
+ async def get_next(next_link=None):
+ request = prepare_request(next_link)
+
+ pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ return pipeline_response
+
+
+ return AsyncItemPaged(
+ get_next, extract_data
+ )
+ list.metadata = {'url': '/dataset/v1.2/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datasets'} # type: ignore
+
+ @distributed_trace_async
+ async def register(
+ self,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ register_as_pending: Optional[bool] = False,
+ if_exists_ok: Optional[bool] = True,
+ update_definition_if_exists: Optional[bool] = False,
+ with_data_hash: Optional[bool] = False,
+ user_version_id: Optional[str] = None,
+ body: Optional["_models.Dataset"] = None,
+ **kwargs: Any
+ ) -> "_models.Dataset":
+ """Register new dataset.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param register_as_pending:
+ :type register_as_pending: bool
+ :param if_exists_ok:
+ :type if_exists_ok: bool
+ :param update_definition_if_exists:
+ :type update_definition_if_exists: bool
+ :param with_data_hash:
+ :type with_data_hash: bool
+ :param user_version_id:
+ :type user_version_id: str
+ :param body:
+ :type body: ~azure.mgmt.machinelearningservices.models.Dataset
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: Dataset, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.Dataset
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.Dataset"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+ content_type = kwargs.pop('content_type', "application/json") # type: Optional[str]
+
+ if body is not None:
+ _json = self._serialize.body(body, 'Dataset')
+ else:
+ _json = None
+
+ request = build_register_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ content_type=content_type,
+ json=_json,
+ register_as_pending=register_as_pending,
+ if_exists_ok=if_exists_ok,
+ update_definition_if_exists=update_definition_if_exists,
+ with_data_hash=with_data_hash,
+ user_version_id=user_version_id,
+ template_url=self.register.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('Dataset', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ register.metadata = {'url': '/dataset/v1.2/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datasets'} # type: ignore
+
+
+ @distributed_trace_async
+ async def delete_all_datasets(
+ self,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ **kwargs: Any
+ ) -> None:
+ """Unregister all datasets in the workspace.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: None, or the result of cls(response)
+ :rtype: None
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType[None]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+
+ request = build_delete_all_datasets_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ template_url=self.delete_all_datasets.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in []:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ if cls:
+ return cls(pipeline_response, None, {})
+
+ delete_all_datasets.metadata = {'url': '/dataset/v1.2/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datasets'} # type: ignore
+
+
+ @distributed_trace_async
+ async def update_dataset(
+ self,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ dataset_id: str,
+ force_update: Optional[bool] = False,
+ body: Optional["_models.Dataset"] = None,
+ **kwargs: Any
+ ) -> "_models.Dataset":
+ """Update a dataset.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param dataset_id:
+ :type dataset_id: str
+ :param force_update:
+ :type force_update: bool
+ :param body:
+ :type body: ~azure.mgmt.machinelearningservices.models.Dataset
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: Dataset, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.Dataset
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.Dataset"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+ content_type = kwargs.pop('content_type', "application/json") # type: Optional[str]
+
+ if body is not None:
+ _json = self._serialize.body(body, 'Dataset')
+ else:
+ _json = None
+
+ request = build_update_dataset_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ dataset_id=dataset_id,
+ content_type=content_type,
+ json=_json,
+ force_update=force_update,
+ template_url=self.update_dataset.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('Dataset', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ update_dataset.metadata = {'url': '/dataset/v1.2/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datasets/{datasetId}'} # type: ignore
+
+
+ @distributed_trace_async
+ async def unregister_dataset(
+ self,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ name: str,
+ **kwargs: Any
+ ) -> None:
+ """Unregister a dataset.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param name:
+ :type name: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: None, or the result of cls(response)
+ :rtype: None
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType[None]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+
+ request = build_unregister_dataset_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ name=name,
+ template_url=self.unregister_dataset.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in []:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ if cls:
+ return cls(pipeline_response, None, {})
+
+ unregister_dataset.metadata = {'url': '/dataset/v1.2/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datasets/{name}'} # type: ignore
+
diff --git a/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/aio/operations/_dataset_v2_operations.py b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/aio/operations/_dataset_v2_operations.py
new file mode 100644
index 00000000..584122c1
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/aio/operations/_dataset_v2_operations.py
@@ -0,0 +1,592 @@
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) AutoRest Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+import functools
+from typing import Any, AsyncIterable, Callable, Dict, Generic, List, Optional, TypeVar
+import warnings
+
+from azure.core.async_paging import AsyncItemPaged, AsyncList
+from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error
+from azure.core.pipeline import PipelineResponse
+from azure.core.pipeline.transport import AsyncHttpResponse
+from azure.core.rest import HttpRequest
+from azure.core.tracing.decorator import distributed_trace
+from azure.core.tracing.decorator_async import distributed_trace_async
+from azure.mgmt.core.exceptions import ARMErrorFormat
+
+from ... import models as _models
+from ..._vendor import _convert_request
+from ...operations._dataset_v2_operations import build_create_request, build_delete_all_datasets_request, build_delete_dataset_by_name_request, build_get_dataset_by_id_request, build_get_dataset_by_name_request, build_list_request, build_update_dataset_by_name_and_version_request, build_update_dataset_request
+T = TypeVar('T')
+ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]]
+
+class DatasetV2Operations:
+ """DatasetV2Operations async operations.
+
+ You should not instantiate this class directly. Instead, you should create a Client instance that
+ instantiates it for you and attaches it as an attribute.
+
+ :ivar models: Alias to model classes used in this operation group.
+ :type models: ~azure.mgmt.machinelearningservices.models
+ :param client: Client for service requests.
+ :param config: Configuration of service client.
+ :param serializer: An object model serializer.
+ :param deserializer: An object model deserializer.
+ """
+
+ models = _models
+
+ def __init__(self, client, config, serializer, deserializer) -> None:
+ self._client = client
+ self._serialize = serializer
+ self._deserialize = deserializer
+ self._config = config
+
+ @distributed_trace_async
+ async def create(
+ self,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ if_exists_update: Optional[bool] = False,
+ body: Optional["_models.DatasetV2"] = None,
+ **kwargs: Any
+ ) -> "_models.DatasetV2":
+ """Create new dataset.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param if_exists_update:
+ :type if_exists_update: bool
+ :param body:
+ :type body: ~azure.mgmt.machinelearningservices.models.DatasetV2
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: DatasetV2, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.DatasetV2
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.DatasetV2"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+ content_type = kwargs.pop('content_type', "application/json") # type: Optional[str]
+
+ if body is not None:
+ _json = self._serialize.body(body, 'DatasetV2')
+ else:
+ _json = None
+
+ request = build_create_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ content_type=content_type,
+ json=_json,
+ if_exists_update=if_exists_update,
+ template_url=self.create.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('DatasetV2', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ create.metadata = {'url': '/dataset/v2.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datasets'} # type: ignore
+
+
+ @distributed_trace_async
+ async def delete_all_datasets(
+ self,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ **kwargs: Any
+ ) -> None:
+ """Delete all datasets in the workspace.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: None, or the result of cls(response)
+ :rtype: None
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType[None]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+
+ request = build_delete_all_datasets_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ template_url=self.delete_all_datasets.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in []:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ if cls:
+ return cls(pipeline_response, None, {})
+
+ delete_all_datasets.metadata = {'url': '/dataset/v2.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datasets'} # type: ignore
+
+
+ @distributed_trace
+ def list(
+ self,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ names: Optional[List[str]] = None,
+ search_text: Optional[str] = None,
+ continuation_token_parameter: Optional[str] = None,
+ page_size: Optional[int] = None,
+ **kwargs: Any
+ ) -> AsyncIterable["_models.PaginatedDatasetV2List"]:
+ """Get a list of datasets.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param names:
+ :type names: list[str]
+ :param search_text:
+ :type search_text: str
+ :param continuation_token_parameter:
+ :type continuation_token_parameter: str
+ :param page_size:
+ :type page_size: int
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: An iterator like instance of either PaginatedDatasetV2List or the result of
+ cls(response)
+ :rtype:
+ ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.machinelearningservices.models.PaginatedDatasetV2List]
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.PaginatedDatasetV2List"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+ def prepare_request(next_link=None):
+ if not next_link:
+
+ request = build_list_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ names=names,
+ search_text=search_text,
+ continuation_token_parameter=continuation_token_parameter,
+ page_size=page_size,
+ template_url=self.list.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ else:
+
+ request = build_list_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ names=names,
+ search_text=search_text,
+ continuation_token_parameter=continuation_token_parameter,
+ page_size=page_size,
+ template_url=next_link,
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+ request.method = "GET"
+ return request
+
+ async def extract_data(pipeline_response):
+ deserialized = self._deserialize("PaginatedDatasetV2List", pipeline_response)
+ list_of_elem = deserialized.value
+ if cls:
+ list_of_elem = cls(list_of_elem)
+ return deserialized.next_link or None, AsyncList(list_of_elem)
+
+ async def get_next(next_link=None):
+ request = prepare_request(next_link)
+
+ pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ return pipeline_response
+
+
+ return AsyncItemPaged(
+ get_next, extract_data
+ )
+ list.metadata = {'url': '/dataset/v2.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datasets'} # type: ignore
+
+ @distributed_trace_async
+ async def delete_dataset_by_name(
+ self,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ name: str,
+ version_id: str,
+ **kwargs: Any
+ ) -> None:
+ """Delete a dataset.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param name:
+ :type name: str
+ :param version_id:
+ :type version_id: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: None, or the result of cls(response)
+ :rtype: None
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType[None]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+
+ request = build_delete_dataset_by_name_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ name=name,
+ version_id=version_id,
+ template_url=self.delete_dataset_by_name.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in []:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ if cls:
+ return cls(pipeline_response, None, {})
+
+ delete_dataset_by_name.metadata = {'url': '/dataset/v2.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datasets/{name}/versions/{versionId}'} # type: ignore
+
+
+ @distributed_trace_async
+ async def update_dataset_by_name_and_version(
+ self,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ name: str,
+ version_id: str,
+ body: Optional["_models.DatasetV2"] = None,
+ **kwargs: Any
+ ) -> "_models.DatasetV2":
+ """Update a dataset by its name and version.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param name:
+ :type name: str
+ :param version_id:
+ :type version_id: str
+ :param body:
+ :type body: ~azure.mgmt.machinelearningservices.models.DatasetV2
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: DatasetV2, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.DatasetV2
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.DatasetV2"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+ content_type = kwargs.pop('content_type', "application/json") # type: Optional[str]
+
+ if body is not None:
+ _json = self._serialize.body(body, 'DatasetV2')
+ else:
+ _json = None
+
+ request = build_update_dataset_by_name_and_version_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ name=name,
+ version_id=version_id,
+ content_type=content_type,
+ json=_json,
+ template_url=self.update_dataset_by_name_and_version.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('DatasetV2', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ update_dataset_by_name_and_version.metadata = {'url': '/dataset/v2.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datasets/{name}/versions/{versionId}'} # type: ignore
+
+
+ @distributed_trace_async
+ async def get_dataset_by_id(
+ self,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ dataset_id: str,
+ **kwargs: Any
+ ) -> "_models.DatasetV2":
+ """Get a dataset for a given dataset id.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param dataset_id:
+ :type dataset_id: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: DatasetV2, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.DatasetV2
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.DatasetV2"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+
+ request = build_get_dataset_by_id_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ dataset_id=dataset_id,
+ template_url=self.get_dataset_by_id.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('DatasetV2', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ get_dataset_by_id.metadata = {'url': '/dataset/v2.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datasets/{datasetId}'} # type: ignore
+
+
+ @distributed_trace_async
+ async def update_dataset(
+ self,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ dataset_id: str,
+ body: Optional["_models.DatasetV2"] = None,
+ **kwargs: Any
+ ) -> "_models.DatasetV2":
+ """Update a dataset.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param dataset_id:
+ :type dataset_id: str
+ :param body:
+ :type body: ~azure.mgmt.machinelearningservices.models.DatasetV2
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: DatasetV2, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.DatasetV2
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.DatasetV2"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+ content_type = kwargs.pop('content_type', "application/json") # type: Optional[str]
+
+ if body is not None:
+ _json = self._serialize.body(body, 'DatasetV2')
+ else:
+ _json = None
+
+ request = build_update_dataset_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ dataset_id=dataset_id,
+ content_type=content_type,
+ json=_json,
+ template_url=self.update_dataset.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('DatasetV2', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ update_dataset.metadata = {'url': '/dataset/v2.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datasets/{datasetId}'} # type: ignore
+
+
+ @distributed_trace_async
+ async def get_dataset_by_name(
+ self,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ dataset_name: str,
+ version_id: Optional[str] = None,
+ **kwargs: Any
+ ) -> "_models.DatasetV2":
+ """Get a dataset for a given dataset name.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param dataset_name:
+ :type dataset_name: str
+ :param version_id:
+ :type version_id: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: DatasetV2, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.DatasetV2
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.DatasetV2"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+
+ request = build_get_dataset_by_name_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ dataset_name=dataset_name,
+ version_id=version_id,
+ template_url=self.get_dataset_by_name.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('DatasetV2', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ get_dataset_by_name.metadata = {'url': '/dataset/v2.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datasets/query/name={datasetName}'} # type: ignore
+
diff --git a/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/aio/operations/_datasets_v1_operations.py b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/aio/operations/_datasets_v1_operations.py
new file mode 100644
index 00000000..97e74d53
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/aio/operations/_datasets_v1_operations.py
@@ -0,0 +1,845 @@
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) AutoRest Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+import functools
+from typing import Any, AsyncIterable, Callable, Dict, Generic, List, Optional, TypeVar
+import warnings
+
+from azure.core.async_paging import AsyncItemPaged, AsyncList
+from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error
+from azure.core.pipeline import PipelineResponse
+from azure.core.pipeline.transport import AsyncHttpResponse
+from azure.core.rest import HttpRequest
+from azure.core.tracing.decorator import distributed_trace
+from azure.core.tracing.decorator_async import distributed_trace_async
+from azure.mgmt.core.exceptions import ARMErrorFormat
+
+from ... import models as _models
+from ..._vendor import _convert_request
+from ...operations._datasets_v1_operations import build_delete_all_datasets_request, build_get_all_dataset_definitions_request, build_get_all_dataset_versions_request, build_get_dataset_by_name_request, build_get_dataset_definition_request, build_list_request, build_register_request, build_unregister_dataset_request, build_update_dataset_request, build_update_definition_request
+T = TypeVar('T')
+ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]]
+
+class DatasetsV1Operations:
+ """DatasetsV1Operations async operations.
+
+ You should not instantiate this class directly. Instead, you should create a Client instance that
+ instantiates it for you and attaches it as an attribute.
+
+ :ivar models: Alias to model classes used in this operation group.
+ :type models: ~azure.mgmt.machinelearningservices.models
+ :param client: Client for service requests.
+ :param config: Configuration of service client.
+ :param serializer: An object model serializer.
+ :param deserializer: An object model deserializer.
+ """
+
+ models = _models
+
+ def __init__(self, client, config, serializer, deserializer) -> None:
+ self._client = client
+ self._serialize = serializer
+ self._deserialize = deserializer
+ self._config = config
+
+ @distributed_trace_async
+ async def get_dataset_definition(
+ self,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ dataset_id: str,
+ version: str,
+ **kwargs: Any
+ ) -> "_models.DatasetDefinition":
+ """Get a specific dataset definition.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param dataset_id:
+ :type dataset_id: str
+ :param version:
+ :type version: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: DatasetDefinition, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.DatasetDefinition
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.DatasetDefinition"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+
+ request = build_get_dataset_definition_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ dataset_id=dataset_id,
+ version=version,
+ template_url=self.get_dataset_definition.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('DatasetDefinition', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ get_dataset_definition.metadata = {'url': '/dataset/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datasets/{datasetId}/definitions/{version}'} # type: ignore
+
+
+ @distributed_trace
+ def get_all_dataset_definitions(
+ self,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ dataset_id: str,
+ continuation_token_parameter: Optional[str] = None,
+ page_size: Optional[int] = None,
+ **kwargs: Any
+ ) -> AsyncIterable["_models.PaginatedDatasetDefinitionList"]:
+ """Get all dataset definitions for a given dataset.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param dataset_id:
+ :type dataset_id: str
+ :param continuation_token_parameter:
+ :type continuation_token_parameter: str
+ :param page_size:
+ :type page_size: int
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: An iterator like instance of either PaginatedDatasetDefinitionList or the result of
+ cls(response)
+ :rtype:
+ ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.machinelearningservices.models.PaginatedDatasetDefinitionList]
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.PaginatedDatasetDefinitionList"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+ def prepare_request(next_link=None):
+ if not next_link:
+
+ request = build_get_all_dataset_definitions_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ dataset_id=dataset_id,
+ continuation_token_parameter=continuation_token_parameter,
+ page_size=page_size,
+ template_url=self.get_all_dataset_definitions.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ else:
+
+ request = build_get_all_dataset_definitions_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ dataset_id=dataset_id,
+ continuation_token_parameter=continuation_token_parameter,
+ page_size=page_size,
+ template_url=next_link,
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+ request.method = "GET"
+ return request
+
+ async def extract_data(pipeline_response):
+ deserialized = self._deserialize("PaginatedDatasetDefinitionList", pipeline_response)
+ list_of_elem = deserialized.value
+ if cls:
+ list_of_elem = cls(list_of_elem)
+ return deserialized.next_link or None, AsyncList(list_of_elem)
+
+ async def get_next(next_link=None):
+ request = prepare_request(next_link)
+
+ pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ return pipeline_response
+
+
+ return AsyncItemPaged(
+ get_next, extract_data
+ )
+ get_all_dataset_definitions.metadata = {'url': '/dataset/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datasets/{datasetId}/definitions'} # type: ignore
+
+ @distributed_trace_async
+ async def update_definition(
+ self,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ dataset_id: str,
+ register_as_pending: Optional[bool] = False,
+ force_update: Optional[bool] = False,
+ dataset_type: Optional[str] = None,
+ user_version_id: Optional[str] = None,
+ body: Optional["_models.DatasetDefinition"] = None,
+ **kwargs: Any
+ ) -> "_models.Dataset":
+ """Update a dataset definition.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param dataset_id:
+ :type dataset_id: str
+ :param register_as_pending:
+ :type register_as_pending: bool
+ :param force_update:
+ :type force_update: bool
+ :param dataset_type:
+ :type dataset_type: str
+ :param user_version_id:
+ :type user_version_id: str
+ :param body:
+ :type body: ~azure.mgmt.machinelearningservices.models.DatasetDefinition
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: Dataset, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.Dataset
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.Dataset"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+ content_type = kwargs.pop('content_type', "application/json") # type: Optional[str]
+
+ if body is not None:
+ _json = self._serialize.body(body, 'DatasetDefinition')
+ else:
+ _json = None
+
+ request = build_update_definition_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ dataset_id=dataset_id,
+ content_type=content_type,
+ json=_json,
+ register_as_pending=register_as_pending,
+ force_update=force_update,
+ dataset_type=dataset_type,
+ user_version_id=user_version_id,
+ template_url=self.update_definition.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('Dataset', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ update_definition.metadata = {'url': '/dataset/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datasets/{datasetId}/definitions'} # type: ignore
+
+
+ @distributed_trace
+ def get_all_dataset_versions(
+ self,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ dataset_id: str,
+ continuation_token_parameter: Optional[str] = None,
+ page_size: Optional[int] = None,
+ **kwargs: Any
+ ) -> AsyncIterable["_models.PaginatedStringList"]:
+ """Get all dataset versions for a given dataset.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param dataset_id:
+ :type dataset_id: str
+ :param continuation_token_parameter:
+ :type continuation_token_parameter: str
+ :param page_size:
+ :type page_size: int
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: An iterator like instance of either PaginatedStringList or the result of cls(response)
+ :rtype:
+ ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.machinelearningservices.models.PaginatedStringList]
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.PaginatedStringList"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+ def prepare_request(next_link=None):
+ if not next_link:
+
+ request = build_get_all_dataset_versions_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ dataset_id=dataset_id,
+ continuation_token_parameter=continuation_token_parameter,
+ page_size=page_size,
+ template_url=self.get_all_dataset_versions.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ else:
+
+ request = build_get_all_dataset_versions_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ dataset_id=dataset_id,
+ continuation_token_parameter=continuation_token_parameter,
+ page_size=page_size,
+ template_url=next_link,
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+ request.method = "GET"
+ return request
+
+ async def extract_data(pipeline_response):
+ deserialized = self._deserialize("PaginatedStringList", pipeline_response)
+ list_of_elem = deserialized.value
+ if cls:
+ list_of_elem = cls(list_of_elem)
+ return deserialized.next_link or None, AsyncList(list_of_elem)
+
+ async def get_next(next_link=None):
+ request = prepare_request(next_link)
+
+ pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ return pipeline_response
+
+
+ return AsyncItemPaged(
+ get_next, extract_data
+ )
+ get_all_dataset_versions.metadata = {'url': '/dataset/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datasets/{datasetId}/versions'} # type: ignore
+
+ @distributed_trace_async
+ async def get_dataset_by_name(
+ self,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ dataset_name: str,
+ version_id: Optional[str] = None,
+ include_latest_definition: Optional[bool] = True,
+ **kwargs: Any
+ ) -> "_models.Dataset":
+ """Get a dataset for a given dataset name.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param dataset_name:
+ :type dataset_name: str
+ :param version_id:
+ :type version_id: str
+ :param include_latest_definition:
+ :type include_latest_definition: bool
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: Dataset, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.Dataset
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.Dataset"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+
+ request = build_get_dataset_by_name_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ dataset_name=dataset_name,
+ version_id=version_id,
+ include_latest_definition=include_latest_definition,
+ template_url=self.get_dataset_by_name.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('Dataset', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ get_dataset_by_name.metadata = {'url': '/dataset/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datasets/query/name={datasetName}'} # type: ignore
+
+
+ @distributed_trace
+ def list(
+ self,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ dataset_names: Optional[List[str]] = None,
+ search_text: Optional[str] = None,
+ include_invisible: Optional[bool] = False,
+ status: Optional[str] = None,
+ continuation_token_parameter: Optional[str] = None,
+ page_size: Optional[int] = None,
+ include_latest_definition: Optional[bool] = False,
+ order_by: Optional[str] = None,
+ order_by_asc: Optional[bool] = False,
+ dataset_types: Optional[List[str]] = None,
+ **kwargs: Any
+ ) -> AsyncIterable["_models.PaginatedDatasetList"]:
+ """Get a list of datasets.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param dataset_names:
+ :type dataset_names: list[str]
+ :param search_text:
+ :type search_text: str
+ :param include_invisible:
+ :type include_invisible: bool
+ :param status:
+ :type status: str
+ :param continuation_token_parameter:
+ :type continuation_token_parameter: str
+ :param page_size:
+ :type page_size: int
+ :param include_latest_definition:
+ :type include_latest_definition: bool
+ :param order_by:
+ :type order_by: str
+ :param order_by_asc:
+ :type order_by_asc: bool
+ :param dataset_types:
+ :type dataset_types: list[str]
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: An iterator like instance of either PaginatedDatasetList or the result of
+ cls(response)
+ :rtype:
+ ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.machinelearningservices.models.PaginatedDatasetList]
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.PaginatedDatasetList"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+ def prepare_request(next_link=None):
+ if not next_link:
+
+ request = build_list_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ dataset_names=dataset_names,
+ search_text=search_text,
+ include_invisible=include_invisible,
+ status=status,
+ continuation_token_parameter=continuation_token_parameter,
+ page_size=page_size,
+ include_latest_definition=include_latest_definition,
+ order_by=order_by,
+ order_by_asc=order_by_asc,
+ dataset_types=dataset_types,
+ template_url=self.list.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ else:
+
+ request = build_list_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ dataset_names=dataset_names,
+ search_text=search_text,
+ include_invisible=include_invisible,
+ status=status,
+ continuation_token_parameter=continuation_token_parameter,
+ page_size=page_size,
+ include_latest_definition=include_latest_definition,
+ order_by=order_by,
+ order_by_asc=order_by_asc,
+ dataset_types=dataset_types,
+ template_url=next_link,
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+ request.method = "GET"
+ return request
+
+ async def extract_data(pipeline_response):
+ deserialized = self._deserialize("PaginatedDatasetList", pipeline_response)
+ list_of_elem = deserialized.value
+ if cls:
+ list_of_elem = cls(list_of_elem)
+ return deserialized.next_link or None, AsyncList(list_of_elem)
+
+ async def get_next(next_link=None):
+ request = prepare_request(next_link)
+
+ pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ return pipeline_response
+
+
+ return AsyncItemPaged(
+ get_next, extract_data
+ )
+ list.metadata = {'url': '/dataset/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datasets'} # type: ignore
+
+ @distributed_trace_async
+ async def register(
+ self,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ register_as_pending: Optional[bool] = False,
+ if_exists_ok: Optional[bool] = True,
+ update_definition_if_exists: Optional[bool] = False,
+ with_data_hash: Optional[bool] = False,
+ user_version_id: Optional[str] = None,
+ body: Optional["_models.Dataset"] = None,
+ **kwargs: Any
+ ) -> "_models.Dataset":
+ """Register new dataset.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param register_as_pending:
+ :type register_as_pending: bool
+ :param if_exists_ok:
+ :type if_exists_ok: bool
+ :param update_definition_if_exists:
+ :type update_definition_if_exists: bool
+ :param with_data_hash:
+ :type with_data_hash: bool
+ :param user_version_id:
+ :type user_version_id: str
+ :param body:
+ :type body: ~azure.mgmt.machinelearningservices.models.Dataset
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: Dataset, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.Dataset
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.Dataset"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+ content_type = kwargs.pop('content_type', "application/json") # type: Optional[str]
+
+ if body is not None:
+ _json = self._serialize.body(body, 'Dataset')
+ else:
+ _json = None
+
+ request = build_register_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ content_type=content_type,
+ json=_json,
+ register_as_pending=register_as_pending,
+ if_exists_ok=if_exists_ok,
+ update_definition_if_exists=update_definition_if_exists,
+ with_data_hash=with_data_hash,
+ user_version_id=user_version_id,
+ template_url=self.register.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('Dataset', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ register.metadata = {'url': '/dataset/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datasets'} # type: ignore
+
+
+ @distributed_trace_async
+ async def delete_all_datasets(
+ self,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ **kwargs: Any
+ ) -> None:
+ """Unregister all datasets in the workspace.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: None, or the result of cls(response)
+ :rtype: None
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType[None]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+
+ request = build_delete_all_datasets_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ template_url=self.delete_all_datasets.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in []:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ if cls:
+ return cls(pipeline_response, None, {})
+
+ delete_all_datasets.metadata = {'url': '/dataset/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datasets'} # type: ignore
+
+
+ @distributed_trace_async
+ async def update_dataset(
+ self,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ dataset_id: str,
+ force_update: Optional[bool] = False,
+ body: Optional["_models.Dataset"] = None,
+ **kwargs: Any
+ ) -> "_models.Dataset":
+ """Update a dataset.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param dataset_id:
+ :type dataset_id: str
+ :param force_update:
+ :type force_update: bool
+ :param body:
+ :type body: ~azure.mgmt.machinelearningservices.models.Dataset
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: Dataset, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.Dataset
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.Dataset"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+ content_type = kwargs.pop('content_type', "application/json") # type: Optional[str]
+
+ if body is not None:
+ _json = self._serialize.body(body, 'Dataset')
+ else:
+ _json = None
+
+ request = build_update_dataset_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ dataset_id=dataset_id,
+ content_type=content_type,
+ json=_json,
+ force_update=force_update,
+ template_url=self.update_dataset.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('Dataset', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ update_dataset.metadata = {'url': '/dataset/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datasets/{datasetId}'} # type: ignore
+
+
+ @distributed_trace_async
+ async def unregister_dataset(
+ self,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ name: str,
+ **kwargs: Any
+ ) -> None:
+ """Unregister a dataset.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param name:
+ :type name: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: None, or the result of cls(response)
+ :rtype: None
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType[None]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+
+ request = build_unregister_dataset_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ name=name,
+ template_url=self.unregister_dataset.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in []:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ if cls:
+ return cls(pipeline_response, None, {})
+
+ unregister_dataset.metadata = {'url': '/dataset/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datasets/{name}'} # type: ignore
+
diff --git a/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/aio/operations/_delete_operations.py b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/aio/operations/_delete_operations.py
new file mode 100644
index 00000000..9bb293a5
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/aio/operations/_delete_operations.py
@@ -0,0 +1,104 @@
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) AutoRest Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+import functools
+from typing import Any, Callable, Dict, Generic, Optional, TypeVar
+import warnings
+
+from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error
+from azure.core.pipeline import PipelineResponse
+from azure.core.pipeline.transport import AsyncHttpResponse
+from azure.core.rest import HttpRequest
+from azure.core.tracing.decorator_async import distributed_trace_async
+from azure.mgmt.core.exceptions import ARMErrorFormat
+
+from ... import models as _models
+from ..._vendor import _convert_request
+from ...operations._delete_operations import build_data_container_request
+T = TypeVar('T')
+ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]]
+
+class DeleteOperations:
+ """DeleteOperations async operations.
+
+ You should not instantiate this class directly. Instead, you should create a Client instance that
+ instantiates it for you and attaches it as an attribute.
+
+ :ivar models: Alias to model classes used in this operation group.
+ :type models: ~azure.mgmt.machinelearningservices.models
+ :param client: Client for service requests.
+ :param config: Configuration of service client.
+ :param serializer: An object model serializer.
+ :param deserializer: An object model deserializer.
+ """
+
+ models = _models
+
+ def __init__(self, client, config, serializer, deserializer) -> None:
+ self._client = client
+ self._serialize = serializer
+ self._deserialize = deserializer
+ self._config = config
+
+ @distributed_trace_async
+ async def data_container(
+ self,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ name: str,
+ **kwargs: Any
+ ) -> "_models.HttpResponseMessage":
+ """data_container.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param name:
+ :type name: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: HttpResponseMessage, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.HttpResponseMessage
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.HttpResponseMessage"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+
+ request = build_data_container_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ name=name,
+ template_url=self.data_container.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('HttpResponseMessage', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ data_container.metadata = {'url': '/data/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datacontainer/{name}'} # type: ignore
+
diff --git a/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/aio/operations/_get_operation_status_operations.py b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/aio/operations/_get_operation_status_operations.py
new file mode 100644
index 00000000..273b307f
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/aio/operations/_get_operation_status_operations.py
@@ -0,0 +1,170 @@
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) AutoRest Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+import functools
+from typing import Any, Callable, Dict, Generic, Optional, TypeVar, Union
+import warnings
+
+from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error
+from azure.core.pipeline import PipelineResponse
+from azure.core.pipeline.transport import AsyncHttpResponse
+from azure.core.polling import AsyncLROPoller, AsyncNoPolling, AsyncPollingMethod
+from azure.core.rest import HttpRequest
+from azure.core.tracing.decorator_async import distributed_trace_async
+from azure.mgmt.core.exceptions import ARMErrorFormat
+from azure.mgmt.core.polling.async_arm_polling import AsyncARMPolling
+
+from ... import models as _models
+from ..._vendor import _convert_request
+from ...operations._get_operation_status_operations import build_get_dataset_operation_status_request_initial
+T = TypeVar('T')
+ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]]
+
+class GetOperationStatusOperations:
+ """GetOperationStatusOperations async operations.
+
+ You should not instantiate this class directly. Instead, you should create a Client instance that
+ instantiates it for you and attaches it as an attribute.
+
+ :ivar models: Alias to model classes used in this operation group.
+ :type models: ~azure.mgmt.machinelearningservices.models
+ :param client: Client for service requests.
+ :param config: Configuration of service client.
+ :param serializer: An object model serializer.
+ :param deserializer: An object model deserializer.
+ """
+
+ models = _models
+
+ def __init__(self, client, config, serializer, deserializer) -> None:
+ self._client = client
+ self._serialize = serializer
+ self._deserialize = deserializer
+ self._config = config
+
+ async def _get_dataset_operation_status_initial(
+ self,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ operation_id: str,
+ **kwargs: Any
+ ) -> Optional["_models.LongRunningOperationResponse1LongRunningOperationResponseObject"]:
+ cls = kwargs.pop('cls', None) # type: ClsType[Optional["_models.LongRunningOperationResponse1LongRunningOperationResponseObject"]]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+
+ request = build_get_dataset_operation_status_request_initial(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ operation_id=operation_id,
+ template_url=self._get_dataset_operation_status_initial.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200, 202]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ raise HttpResponseError(response=response, error_format=ARMErrorFormat)
+
+ deserialized = None
+ response_headers = {}
+ if response.status_code == 200:
+ deserialized = self._deserialize('LongRunningOperationResponse1LongRunningOperationResponseObject', pipeline_response)
+
+ if response.status_code == 202:
+ response_headers['Location']=self._deserialize('str', response.headers.get('Location'))
+
+
+ if cls:
+ return cls(pipeline_response, deserialized, response_headers)
+
+ return deserialized
+
+ _get_dataset_operation_status_initial.metadata = {'url': '/dataset/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/operations/{operationId}'} # type: ignore
+
+
+ @distributed_trace_async
+ async def begin_get_dataset_operation_status(
+ self,
+ subscription_id: str,
+ resource_group_name: str,
+ workspace_name: str,
+ operation_id: str,
+ **kwargs: Any
+ ) -> AsyncLROPoller["_models.LongRunningOperationResponse1LongRunningOperationResponseObject"]:
+ """get_dataset_operation_status.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param operation_id:
+ :type operation_id: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :keyword str continuation_token: A continuation token to restart a poller from a saved state.
+ :keyword polling: By default, your polling method will be AsyncARMPolling. Pass in False for
+ this operation to not poll, or pass in your own initialized polling object for a personal
+ polling strategy.
+ :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod
+ :keyword int polling_interval: Default waiting time between two polls for LRO operations if no
+ Retry-After header is present.
+ :return: An instance of AsyncLROPoller that returns either
+ LongRunningOperationResponse1LongRunningOperationResponseObject or the result of cls(response)
+ :rtype:
+ ~azure.core.polling.AsyncLROPoller[~azure.mgmt.machinelearningservices.models.LongRunningOperationResponse1LongRunningOperationResponseObject]
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ polling = kwargs.pop('polling', True) # type: Union[bool, azure.core.polling.AsyncPollingMethod]
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.LongRunningOperationResponse1LongRunningOperationResponseObject"]
+ lro_delay = kwargs.pop(
+ 'polling_interval',
+ self._config.polling_interval
+ )
+ cont_token = kwargs.pop('continuation_token', None) # type: Optional[str]
+ if cont_token is None:
+ raw_result = await self._get_dataset_operation_status_initial(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ operation_id=operation_id,
+ cls=lambda x,y,z: x,
+ **kwargs
+ )
+ kwargs.pop('error_map', None)
+
+ def get_long_running_output(pipeline_response):
+ response = pipeline_response.http_response
+ deserialized = self._deserialize('LongRunningOperationResponse1LongRunningOperationResponseObject', pipeline_response)
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+ return deserialized
+
+
+ if polling is True: polling_method = AsyncARMPolling(lro_delay, lro_options={'final-state-via': 'location'}, **kwargs)
+ elif polling is False: polling_method = AsyncNoPolling()
+ else: polling_method = polling
+ if cont_token:
+ return AsyncLROPoller.from_continuation_token(
+ polling_method=polling_method,
+ continuation_token=cont_token,
+ client=self._client,
+ deserialization_callback=get_long_running_output
+ )
+ else:
+ return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method)
+
+ begin_get_dataset_operation_status.metadata = {'url': '/dataset/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/operations/{operationId}'} # type: ignore
diff --git a/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/models/__init__.py b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/models/__init__.py
new file mode 100644
index 00000000..42488e7c
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/models/__init__.py
@@ -0,0 +1,187 @@
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) AutoRest Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+
+try:
+ from ._models_py3 import ActionResult
+ from ._models_py3 import AssetId
+ from ._models_py3 import BatchDataUriResponse
+ from ._models_py3 import BatchGetResolvedURIs
+ from ._models_py3 import ColumnDefinition
+ from ._models_py3 import CreateUnregisteredInputData
+ from ._models_py3 import CreateUnregisteredOutputData
+ from ._models_py3 import DataCallRequest
+ from ._models_py3 import DataContainer
+ from ._models_py3 import DataContainerEntity
+ from ._models_py3 import DataContainerMutable
+ from ._models_py3 import DataField
+ from ._models_py3 import DataUriV2Response
+ from ._models_py3 import DataVersion
+ from ._models_py3 import DataVersionEntity
+ from ._models_py3 import DataVersionMutable
+ from ._models_py3 import DataViewSetResult
+ from ._models_py3 import Dataset
+ from ._models_py3 import DatasetDefinition
+ from ._models_py3 import DatasetDefinitionReference
+ from ._models_py3 import DatasetPath
+ from ._models_py3 import DatasetState
+ from ._models_py3 import DatasetV2
+ from ._models_py3 import EntityMetadata
+ from ._models_py3 import ErrorAdditionalInfo
+ from ._models_py3 import ErrorResponse
+ from ._models_py3 import HistogramBin
+ from ._models_py3 import HttpContent
+ from ._models_py3 import HttpMethod
+ from ._models_py3 import HttpRequestMessage
+ from ._models_py3 import HttpResponseMessage
+ from ._models_py3 import InnerErrorResponse
+ from ._models_py3 import KeyValuePairStringIEnumerable1
+ from ._models_py3 import LongRunningOperationResponse1LongRunningOperationResponseObject
+ from ._models_py3 import Moments
+ from ._models_py3 import PaginatedDataContainerEntityList
+ from ._models_py3 import PaginatedDataVersionEntityList
+ from ._models_py3 import PaginatedDatasetDefinitionList
+ from ._models_py3 import PaginatedDatasetList
+ from ._models_py3 import PaginatedDatasetV2List
+ from ._models_py3 import PaginatedStringList
+ from ._models_py3 import ProfileActionResult
+ from ._models_py3 import ProfileResult
+ from ._models_py3 import Quantiles
+ from ._models_py3 import RegisterExistingData
+ from ._models_py3 import RootError
+ from ._models_py3 import STypeCount
+ from ._models_py3 import SqlDataPath
+ from ._models_py3 import StoredProcedureParameter
+ from ._models_py3 import StringLengthCount
+ from ._models_py3 import TypeCount
+ from ._models_py3 import User
+ from ._models_py3 import ValueCount
+except (SyntaxError, ImportError):
+ from ._models import ActionResult # type: ignore
+ from ._models import AssetId # type: ignore
+ from ._models import BatchDataUriResponse # type: ignore
+ from ._models import BatchGetResolvedURIs # type: ignore
+ from ._models import ColumnDefinition # type: ignore
+ from ._models import CreateUnregisteredInputData # type: ignore
+ from ._models import CreateUnregisteredOutputData # type: ignore
+ from ._models import DataCallRequest # type: ignore
+ from ._models import DataContainer # type: ignore
+ from ._models import DataContainerEntity # type: ignore
+ from ._models import DataContainerMutable # type: ignore
+ from ._models import DataField # type: ignore
+ from ._models import DataUriV2Response # type: ignore
+ from ._models import DataVersion # type: ignore
+ from ._models import DataVersionEntity # type: ignore
+ from ._models import DataVersionMutable # type: ignore
+ from ._models import DataViewSetResult # type: ignore
+ from ._models import Dataset # type: ignore
+ from ._models import DatasetDefinition # type: ignore
+ from ._models import DatasetDefinitionReference # type: ignore
+ from ._models import DatasetPath # type: ignore
+ from ._models import DatasetState # type: ignore
+ from ._models import DatasetV2 # type: ignore
+ from ._models import EntityMetadata # type: ignore
+ from ._models import ErrorAdditionalInfo # type: ignore
+ from ._models import ErrorResponse # type: ignore
+ from ._models import HistogramBin # type: ignore
+ from ._models import HttpContent # type: ignore
+ from ._models import HttpMethod # type: ignore
+ from ._models import HttpRequestMessage # type: ignore
+ from ._models import HttpResponseMessage # type: ignore
+ from ._models import InnerErrorResponse # type: ignore
+ from ._models import KeyValuePairStringIEnumerable1 # type: ignore
+ from ._models import LongRunningOperationResponse1LongRunningOperationResponseObject # type: ignore
+ from ._models import Moments # type: ignore
+ from ._models import PaginatedDataContainerEntityList # type: ignore
+ from ._models import PaginatedDataVersionEntityList # type: ignore
+ from ._models import PaginatedDatasetDefinitionList # type: ignore
+ from ._models import PaginatedDatasetList # type: ignore
+ from ._models import PaginatedDatasetV2List # type: ignore
+ from ._models import PaginatedStringList # type: ignore
+ from ._models import ProfileActionResult # type: ignore
+ from ._models import ProfileResult # type: ignore
+ from ._models import Quantiles # type: ignore
+ from ._models import RegisterExistingData # type: ignore
+ from ._models import RootError # type: ignore
+ from ._models import STypeCount # type: ignore
+ from ._models import SqlDataPath # type: ignore
+ from ._models import StoredProcedureParameter # type: ignore
+ from ._models import StringLengthCount # type: ignore
+ from ._models import TypeCount # type: ignore
+ from ._models import User # type: ignore
+ from ._models import ValueCount # type: ignore
+
+from ._azure_machine_learning_workspaces_enums import (
+ DataflowType,
+ FieldType,
+ HttpStatusCode,
+ HttpVersionPolicy,
+ SType,
+ StoredProcedureParameterType,
+)
+
+__all__ = [
+ 'ActionResult',
+ 'AssetId',
+ 'BatchDataUriResponse',
+ 'BatchGetResolvedURIs',
+ 'ColumnDefinition',
+ 'CreateUnregisteredInputData',
+ 'CreateUnregisteredOutputData',
+ 'DataCallRequest',
+ 'DataContainer',
+ 'DataContainerEntity',
+ 'DataContainerMutable',
+ 'DataField',
+ 'DataUriV2Response',
+ 'DataVersion',
+ 'DataVersionEntity',
+ 'DataVersionMutable',
+ 'DataViewSetResult',
+ 'Dataset',
+ 'DatasetDefinition',
+ 'DatasetDefinitionReference',
+ 'DatasetPath',
+ 'DatasetState',
+ 'DatasetV2',
+ 'EntityMetadata',
+ 'ErrorAdditionalInfo',
+ 'ErrorResponse',
+ 'HistogramBin',
+ 'HttpContent',
+ 'HttpMethod',
+ 'HttpRequestMessage',
+ 'HttpResponseMessage',
+ 'InnerErrorResponse',
+ 'KeyValuePairStringIEnumerable1',
+ 'LongRunningOperationResponse1LongRunningOperationResponseObject',
+ 'Moments',
+ 'PaginatedDataContainerEntityList',
+ 'PaginatedDataVersionEntityList',
+ 'PaginatedDatasetDefinitionList',
+ 'PaginatedDatasetList',
+ 'PaginatedDatasetV2List',
+ 'PaginatedStringList',
+ 'ProfileActionResult',
+ 'ProfileResult',
+ 'Quantiles',
+ 'RegisterExistingData',
+ 'RootError',
+ 'STypeCount',
+ 'SqlDataPath',
+ 'StoredProcedureParameter',
+ 'StringLengthCount',
+ 'TypeCount',
+ 'User',
+ 'ValueCount',
+ 'DataflowType',
+ 'FieldType',
+ 'HttpStatusCode',
+ 'HttpVersionPolicy',
+ 'SType',
+ 'StoredProcedureParameterType',
+]
diff --git a/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/models/_azure_machine_learning_workspaces_enums.py b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/models/_azure_machine_learning_workspaces_enums.py
new file mode 100644
index 00000000..b06eab55
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/models/_azure_machine_learning_workspaces_enums.py
@@ -0,0 +1,118 @@
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) AutoRest Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+
+from enum import Enum
+from azure.core import CaseInsensitiveEnumMeta
+
+
+class DataflowType(str, Enum, metaclass=CaseInsensitiveEnumMeta):
+
+ JSON = "Json"
+ YAML = "Yaml"
+
+class FieldType(str, Enum, metaclass=CaseInsensitiveEnumMeta):
+
+ STRING = "String"
+ BOOLEAN = "Boolean"
+ INTEGER = "Integer"
+ DECIMAL = "Decimal"
+ DATE = "Date"
+ UNKNOWN = "Unknown"
+ ERROR = "Error"
+ NULL = "Null"
+ DATA_ROW = "DataRow"
+ LIST = "List"
+ STREAM = "Stream"
+
+class HttpStatusCode(str, Enum, metaclass=CaseInsensitiveEnumMeta):
+
+ CONTINUE_ENUM = "Continue"
+ SWITCHING_PROTOCOLS = "SwitchingProtocols"
+ PROCESSING = "Processing"
+ EARLY_HINTS = "EarlyHints"
+ OK = "OK"
+ CREATED = "Created"
+ ACCEPTED = "Accepted"
+ NON_AUTHORITATIVE_INFORMATION = "NonAuthoritativeInformation"
+ NO_CONTENT = "NoContent"
+ RESET_CONTENT = "ResetContent"
+ PARTIAL_CONTENT = "PartialContent"
+ MULTI_STATUS = "MultiStatus"
+ ALREADY_REPORTED = "AlreadyReported"
+ IM_USED = "IMUsed"
+ AMBIGUOUS = "Ambiguous"
+ MOVED = "Moved"
+ REDIRECT = "Redirect"
+ REDIRECT_METHOD = "RedirectMethod"
+ NOT_MODIFIED = "NotModified"
+ USE_PROXY = "UseProxy"
+ UNUSED = "Unused"
+ TEMPORARY_REDIRECT = "TemporaryRedirect"
+ PERMANENT_REDIRECT = "PermanentRedirect"
+ BAD_REQUEST = "BadRequest"
+ UNAUTHORIZED = "Unauthorized"
+ PAYMENT_REQUIRED = "PaymentRequired"
+ FORBIDDEN = "Forbidden"
+ NOT_FOUND = "NotFound"
+ METHOD_NOT_ALLOWED = "MethodNotAllowed"
+ NOT_ACCEPTABLE = "NotAcceptable"
+ PROXY_AUTHENTICATION_REQUIRED = "ProxyAuthenticationRequired"
+ REQUEST_TIMEOUT = "RequestTimeout"
+ CONFLICT = "Conflict"
+ GONE = "Gone"
+ LENGTH_REQUIRED = "LengthRequired"
+ PRECONDITION_FAILED = "PreconditionFailed"
+ REQUEST_ENTITY_TOO_LARGE = "RequestEntityTooLarge"
+ REQUEST_URI_TOO_LONG = "RequestUriTooLong"
+ UNSUPPORTED_MEDIA_TYPE = "UnsupportedMediaType"
+ REQUESTED_RANGE_NOT_SATISFIABLE = "RequestedRangeNotSatisfiable"
+ EXPECTATION_FAILED = "ExpectationFailed"
+ MISDIRECTED_REQUEST = "MisdirectedRequest"
+ UNPROCESSABLE_ENTITY = "UnprocessableEntity"
+ LOCKED = "Locked"
+ FAILED_DEPENDENCY = "FailedDependency"
+ UPGRADE_REQUIRED = "UpgradeRequired"
+ PRECONDITION_REQUIRED = "PreconditionRequired"
+ TOO_MANY_REQUESTS = "TooManyRequests"
+ REQUEST_HEADER_FIELDS_TOO_LARGE = "RequestHeaderFieldsTooLarge"
+ UNAVAILABLE_FOR_LEGAL_REASONS = "UnavailableForLegalReasons"
+ INTERNAL_SERVER_ERROR = "InternalServerError"
+ NOT_IMPLEMENTED = "NotImplemented"
+ BAD_GATEWAY = "BadGateway"
+ SERVICE_UNAVAILABLE = "ServiceUnavailable"
+ GATEWAY_TIMEOUT = "GatewayTimeout"
+ HTTP_VERSION_NOT_SUPPORTED = "HttpVersionNotSupported"
+ VARIANT_ALSO_NEGOTIATES = "VariantAlsoNegotiates"
+ INSUFFICIENT_STORAGE = "InsufficientStorage"
+ LOOP_DETECTED = "LoopDetected"
+ NOT_EXTENDED = "NotExtended"
+ NETWORK_AUTHENTICATION_REQUIRED = "NetworkAuthenticationRequired"
+
+class HttpVersionPolicy(str, Enum, metaclass=CaseInsensitiveEnumMeta):
+
+ REQUEST_VERSION_OR_LOWER = "RequestVersionOrLower"
+ REQUEST_VERSION_OR_HIGHER = "RequestVersionOrHigher"
+ REQUEST_VERSION_EXACT = "RequestVersionExact"
+
+class StoredProcedureParameterType(str, Enum, metaclass=CaseInsensitiveEnumMeta):
+
+ STRING = "String"
+ INT = "Int"
+ DECIMAL = "Decimal"
+ GUID = "Guid"
+ BOOLEAN = "Boolean"
+ DATE = "Date"
+
+class SType(str, Enum, metaclass=CaseInsensitiveEnumMeta):
+
+ EMAIL_ADDRESS = "EmailAddress"
+ GEOGRAPHIC_COORDINATE = "GeographicCoordinate"
+ IPV4_ADDRESS = "Ipv4Address"
+ IPV6_ADDRESS = "Ipv6Address"
+ US_PHONE_NUMBER = "UsPhoneNumber"
+ ZIP_CODE = "ZipCode"
diff --git a/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/models/_models.py b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/models/_models.py
new file mode 100644
index 00000000..9bc1f683
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/models/_models.py
@@ -0,0 +1,2608 @@
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) AutoRest Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+
+from azure.core.exceptions import HttpResponseError
+import msrest.serialization
+
+
+class ActionResult(msrest.serialization.Model):
+ """ActionResult.
+
+ :ivar is_up_to_date:
+ :vartype is_up_to_date: bool
+ :ivar is_up_to_date_error:
+ :vartype is_up_to_date_error: str
+ :ivar result_artifact_ids:
+ :vartype result_artifact_ids: list[str]
+ :ivar in_progress_action_id:
+ :vartype in_progress_action_id: str
+ :ivar run_id:
+ :vartype run_id: str
+ :ivar experiment_name:
+ :vartype experiment_name: str
+ :ivar datastore_name:
+ :vartype datastore_name: str
+ """
+
+ _attribute_map = {
+ 'is_up_to_date': {'key': 'isUpToDate', 'type': 'bool'},
+ 'is_up_to_date_error': {'key': 'isUpToDateError', 'type': 'str'},
+ 'result_artifact_ids': {'key': 'resultArtifactIds', 'type': '[str]'},
+ 'in_progress_action_id': {'key': 'inProgressActionId', 'type': 'str'},
+ 'run_id': {'key': 'runId', 'type': 'str'},
+ 'experiment_name': {'key': 'experimentName', 'type': 'str'},
+ 'datastore_name': {'key': 'datastoreName', 'type': 'str'},
+ }
+
+ def __init__(
+ self,
+ **kwargs
+ ):
+ """
+ :keyword is_up_to_date:
+ :paramtype is_up_to_date: bool
+ :keyword is_up_to_date_error:
+ :paramtype is_up_to_date_error: str
+ :keyword result_artifact_ids:
+ :paramtype result_artifact_ids: list[str]
+ :keyword in_progress_action_id:
+ :paramtype in_progress_action_id: str
+ :keyword run_id:
+ :paramtype run_id: str
+ :keyword experiment_name:
+ :paramtype experiment_name: str
+ :keyword datastore_name:
+ :paramtype datastore_name: str
+ """
+ super(ActionResult, self).__init__(**kwargs)
+ self.is_up_to_date = kwargs.get('is_up_to_date', None)
+ self.is_up_to_date_error = kwargs.get('is_up_to_date_error', None)
+ self.result_artifact_ids = kwargs.get('result_artifact_ids', None)
+ self.in_progress_action_id = kwargs.get('in_progress_action_id', None)
+ self.run_id = kwargs.get('run_id', None)
+ self.experiment_name = kwargs.get('experiment_name', None)
+ self.datastore_name = kwargs.get('datastore_name', None)
+
+
+class AssetId(msrest.serialization.Model):
+ """AssetId.
+
+ All required parameters must be populated in order to send to Azure.
+
+ :ivar value: Required.
+ :vartype value: str
+ """
+
+ _validation = {
+ 'value': {'required': True},
+ }
+
+ _attribute_map = {
+ 'value': {'key': 'value', 'type': 'str'},
+ }
+
+ def __init__(
+ self,
+ **kwargs
+ ):
+ """
+ :keyword value: Required.
+ :paramtype value: str
+ """
+ super(AssetId, self).__init__(**kwargs)
+ self.value = kwargs['value']
+
+
+class BatchDataUriResponse(msrest.serialization.Model):
+ """BatchDataUriResponse.
+
+ :ivar values: Dictionary of :code:`<DataUriV2Response>`.
+ :vartype values: dict[str, ~azure.mgmt.machinelearningservices.models.DataUriV2Response]
+ """
+
+ _attribute_map = {
+ 'values': {'key': 'values', 'type': '{DataUriV2Response}'},
+ }
+
+ def __init__(
+ self,
+ **kwargs
+ ):
+ """
+ :keyword values: Dictionary of :code:`<DataUriV2Response>`.
+ :paramtype values: dict[str, ~azure.mgmt.machinelearningservices.models.DataUriV2Response]
+ """
+ super(BatchDataUriResponse, self).__init__(**kwargs)
+ self.values = kwargs.get('values', None)
+
+
+class BatchGetResolvedURIs(msrest.serialization.Model):
+ """BatchGetResolvedURIs.
+
+ All required parameters must be populated in order to send to Azure.
+
+ :ivar values: Required.
+ :vartype values: list[str]
+ """
+
+ _validation = {
+ 'values': {'required': True},
+ }
+
+ _attribute_map = {
+ 'values': {'key': 'values', 'type': '[str]'},
+ }
+
+ def __init__(
+ self,
+ **kwargs
+ ):
+ """
+ :keyword values: Required.
+ :paramtype values: list[str]
+ """
+ super(BatchGetResolvedURIs, self).__init__(**kwargs)
+ self.values = kwargs['values']
+
+
+class ColumnDefinition(msrest.serialization.Model):
+ """ColumnDefinition.
+
+ :ivar id:
+ :vartype id: str
+ :ivar type: Possible values include: "String", "Boolean", "Integer", "Decimal", "Date",
+ "Unknown", "Error", "Null", "DataRow", "List", "Stream".
+ :vartype type: str or ~azure.mgmt.machinelearningservices.models.FieldType
+ """
+
+ _attribute_map = {
+ 'id': {'key': 'id', 'type': 'str'},
+ 'type': {'key': 'type', 'type': 'str'},
+ }
+
+ def __init__(
+ self,
+ **kwargs
+ ):
+ """
+ :keyword id:
+ :paramtype id: str
+ :keyword type: Possible values include: "String", "Boolean", "Integer", "Decimal", "Date",
+ "Unknown", "Error", "Null", "DataRow", "List", "Stream".
+ :paramtype type: str or ~azure.mgmt.machinelearningservices.models.FieldType
+ """
+ super(ColumnDefinition, self).__init__(**kwargs)
+ self.id = kwargs.get('id', None)
+ self.type = kwargs.get('type', None)
+
+
+class CreateUnregisteredInputData(msrest.serialization.Model):
+ """CreateUnregisteredInputData.
+
+ All required parameters must be populated in order to send to Azure.
+
+ :ivar run_id: Required.
+ :vartype run_id: str
+ :ivar input_name: Required.
+ :vartype input_name: str
+ :ivar uri: Required.
+ :vartype uri: str
+ :ivar type: Required.
+ :vartype type: str
+ """
+
+ _validation = {
+ 'run_id': {'required': True},
+ 'input_name': {'required': True},
+ 'uri': {'required': True},
+ 'type': {'required': True},
+ }
+
+ _attribute_map = {
+ 'run_id': {'key': 'runId', 'type': 'str'},
+ 'input_name': {'key': 'inputName', 'type': 'str'},
+ 'uri': {'key': 'uri', 'type': 'str'},
+ 'type': {'key': 'type', 'type': 'str'},
+ }
+
+ def __init__(
+ self,
+ **kwargs
+ ):
+ """
+ :keyword run_id: Required.
+ :paramtype run_id: str
+ :keyword input_name: Required.
+ :paramtype input_name: str
+ :keyword uri: Required.
+ :paramtype uri: str
+ :keyword type: Required.
+ :paramtype type: str
+ """
+ super(CreateUnregisteredInputData, self).__init__(**kwargs)
+ self.run_id = kwargs['run_id']
+ self.input_name = kwargs['input_name']
+ self.uri = kwargs['uri']
+ self.type = kwargs['type']
+
+
+class CreateUnregisteredOutputData(msrest.serialization.Model):
+ """CreateUnregisteredOutputData.
+
+ All required parameters must be populated in order to send to Azure.
+
+ :ivar run_id: Required.
+ :vartype run_id: str
+ :ivar output_name: Required.
+ :vartype output_name: str
+ :ivar uri: Required.
+ :vartype uri: str
+ :ivar type: Required.
+ :vartype type: str
+ """
+
+ _validation = {
+ 'run_id': {'required': True},
+ 'output_name': {'required': True},
+ 'uri': {'required': True},
+ 'type': {'required': True},
+ }
+
+ _attribute_map = {
+ 'run_id': {'key': 'runId', 'type': 'str'},
+ 'output_name': {'key': 'outputName', 'type': 'str'},
+ 'uri': {'key': 'uri', 'type': 'str'},
+ 'type': {'key': 'type', 'type': 'str'},
+ }
+
+ def __init__(
+ self,
+ **kwargs
+ ):
+ """
+ :keyword run_id: Required.
+ :paramtype run_id: str
+ :keyword output_name: Required.
+ :paramtype output_name: str
+ :keyword uri: Required.
+ :paramtype uri: str
+ :keyword type: Required.
+ :paramtype type: str
+ """
+ super(CreateUnregisteredOutputData, self).__init__(**kwargs)
+ self.run_id = kwargs['run_id']
+ self.output_name = kwargs['output_name']
+ self.uri = kwargs['uri']
+ self.type = kwargs['type']
+
+
+class DataCallRequest(msrest.serialization.Model):
+ """DataCallRequest.
+
+ :ivar data_uri:
+ :vartype data_uri: str
+ :ivar data_type:
+ :vartype data_type: str
+ :ivar asset_id:
+ :vartype asset_id: str
+ :ivar data_container_name:
+ :vartype data_container_name: str
+ :ivar version_id:
+ :vartype version_id: str
+ """
+
+ _attribute_map = {
+ 'data_uri': {'key': 'dataUri', 'type': 'str'},
+ 'data_type': {'key': 'dataType', 'type': 'str'},
+ 'asset_id': {'key': 'assetId', 'type': 'str'},
+ 'data_container_name': {'key': 'dataContainerName', 'type': 'str'},
+ 'version_id': {'key': 'versionId', 'type': 'str'},
+ }
+
+ def __init__(
+ self,
+ **kwargs
+ ):
+ """
+ :keyword data_uri:
+ :paramtype data_uri: str
+ :keyword data_type:
+ :paramtype data_type: str
+ :keyword asset_id:
+ :paramtype asset_id: str
+ :keyword data_container_name:
+ :paramtype data_container_name: str
+ :keyword version_id:
+ :paramtype version_id: str
+ """
+ super(DataCallRequest, self).__init__(**kwargs)
+ self.data_uri = kwargs.get('data_uri', None)
+ self.data_type = kwargs.get('data_type', None)
+ self.asset_id = kwargs.get('asset_id', None)
+ self.data_container_name = kwargs.get('data_container_name', None)
+ self.version_id = kwargs.get('version_id', None)
+
+
+class DataContainer(msrest.serialization.Model):
+ """DataContainer.
+
+ All required parameters must be populated in order to send to Azure.
+
+ :ivar name: Required.
+ :vartype name: str
+ :ivar data_type: Required.
+ :vartype data_type: str
+ :ivar mutable_props:
+ :vartype mutable_props: ~azure.mgmt.machinelearningservices.models.DataContainerMutable
+ :ivar is_registered:
+ :vartype is_registered: bool
+ """
+
+ _validation = {
+ 'name': {'required': True},
+ 'data_type': {'required': True},
+ }
+
+ _attribute_map = {
+ 'name': {'key': 'name', 'type': 'str'},
+ 'data_type': {'key': 'dataType', 'type': 'str'},
+ 'mutable_props': {'key': 'mutableProps', 'type': 'DataContainerMutable'},
+ 'is_registered': {'key': 'isRegistered', 'type': 'bool'},
+ }
+
+ def __init__(
+ self,
+ **kwargs
+ ):
+ """
+ :keyword name: Required.
+ :paramtype name: str
+ :keyword data_type: Required.
+ :paramtype data_type: str
+ :keyword mutable_props:
+ :paramtype mutable_props: ~azure.mgmt.machinelearningservices.models.DataContainerMutable
+ :keyword is_registered:
+ :paramtype is_registered: bool
+ """
+ super(DataContainer, self).__init__(**kwargs)
+ self.name = kwargs['name']
+ self.data_type = kwargs['data_type']
+ self.mutable_props = kwargs.get('mutable_props', None)
+ self.is_registered = kwargs.get('is_registered', None)
+
+
+class DataContainerEntity(msrest.serialization.Model):
+ """DataContainerEntity.
+
+ :ivar data_container:
+ :vartype data_container: ~azure.mgmt.machinelearningservices.models.DataContainer
+ :ivar entity_metadata:
+ :vartype entity_metadata: ~azure.mgmt.machinelearningservices.models.EntityMetadata
+ :ivar latest_version:
+ :vartype latest_version: ~azure.mgmt.machinelearningservices.models.DataVersionEntity
+ :ivar next_version_id:
+ :vartype next_version_id: str
+ :ivar legacy_dataset_type:
+ :vartype legacy_dataset_type: str
+ """
+
+ _attribute_map = {
+ 'data_container': {'key': 'dataContainer', 'type': 'DataContainer'},
+ 'entity_metadata': {'key': 'entityMetadata', 'type': 'EntityMetadata'},
+ 'latest_version': {'key': 'latestVersion', 'type': 'DataVersionEntity'},
+ 'next_version_id': {'key': 'nextVersionId', 'type': 'str'},
+ 'legacy_dataset_type': {'key': 'legacyDatasetType', 'type': 'str'},
+ }
+
+ def __init__(
+ self,
+ **kwargs
+ ):
+ """
+ :keyword data_container:
+ :paramtype data_container: ~azure.mgmt.machinelearningservices.models.DataContainer
+ :keyword entity_metadata:
+ :paramtype entity_metadata: ~azure.mgmt.machinelearningservices.models.EntityMetadata
+ :keyword latest_version:
+ :paramtype latest_version: ~azure.mgmt.machinelearningservices.models.DataVersionEntity
+ :keyword next_version_id:
+ :paramtype next_version_id: str
+ :keyword legacy_dataset_type:
+ :paramtype legacy_dataset_type: str
+ """
+ super(DataContainerEntity, self).__init__(**kwargs)
+ self.data_container = kwargs.get('data_container', None)
+ self.entity_metadata = kwargs.get('entity_metadata', None)
+ self.latest_version = kwargs.get('latest_version', None)
+ self.next_version_id = kwargs.get('next_version_id', None)
+ self.legacy_dataset_type = kwargs.get('legacy_dataset_type', None)
+
+
+class DataContainerMutable(msrest.serialization.Model):
+ """DataContainerMutable.
+
+ :ivar description:
+ :vartype description: str
+ :ivar tags: A set of tags. Dictionary of :code:`<string>`.
+ :vartype tags: dict[str, str]
+ :ivar is_archived:
+ :vartype is_archived: bool
+ """
+
+ _attribute_map = {
+ 'description': {'key': 'description', 'type': 'str'},
+ 'tags': {'key': 'tags', 'type': '{str}'},
+ 'is_archived': {'key': 'isArchived', 'type': 'bool'},
+ }
+
+ def __init__(
+ self,
+ **kwargs
+ ):
+ """
+ :keyword description:
+ :paramtype description: str
+ :keyword tags: A set of tags. Dictionary of :code:`<string>`.
+ :paramtype tags: dict[str, str]
+ :keyword is_archived:
+ :paramtype is_archived: bool
+ """
+ super(DataContainerMutable, self).__init__(**kwargs)
+ self.description = kwargs.get('description', None)
+ self.tags = kwargs.get('tags', None)
+ self.is_archived = kwargs.get('is_archived', None)
+
+
+class DataField(msrest.serialization.Model):
+ """DataField.
+
+ :ivar type: Possible values include: "String", "Boolean", "Integer", "Decimal", "Date",
+ "Unknown", "Error", "Null", "DataRow", "List", "Stream".
+ :vartype type: str or ~azure.mgmt.machinelearningservices.models.FieldType
+ :ivar value: Anything.
+ :vartype value: any
+ """
+
+ _attribute_map = {
+ 'type': {'key': 'type', 'type': 'str'},
+ 'value': {'key': 'value', 'type': 'object'},
+ }
+
+ def __init__(
+ self,
+ **kwargs
+ ):
+ """
+ :keyword type: Possible values include: "String", "Boolean", "Integer", "Decimal", "Date",
+ "Unknown", "Error", "Null", "DataRow", "List", "Stream".
+ :paramtype type: str or ~azure.mgmt.machinelearningservices.models.FieldType
+ :keyword value: Anything.
+ :paramtype value: any
+ """
+ super(DataField, self).__init__(**kwargs)
+ self.type = kwargs.get('type', None)
+ self.value = kwargs.get('value', None)
+
+
+class Dataset(msrest.serialization.Model):
+ """Dataset.
+
+ :ivar dataset_id:
+ :vartype dataset_id: str
+ :ivar dataset_state:
+ :vartype dataset_state: ~azure.mgmt.machinelearningservices.models.DatasetState
+ :ivar latest:
+ :vartype latest: ~azure.mgmt.machinelearningservices.models.DatasetDefinition
+ :ivar next_version_id:
+ :vartype next_version_id: str
+ :ivar created_time:
+ :vartype created_time: ~datetime.datetime
+ :ivar modified_time:
+ :vartype modified_time: ~datetime.datetime
+ :ivar etag:
+ :vartype etag: str
+ :ivar name:
+ :vartype name: str
+ :ivar description:
+ :vartype description: str
+ :ivar tags: A set of tags. Dictionary of :code:`<string>`.
+ :vartype tags: dict[str, str]
+ :ivar is_visible:
+ :vartype is_visible: bool
+ :ivar default_compute:
+ :vartype default_compute: str
+ :ivar dataset_type:
+ :vartype dataset_type: str
+ """
+
+ _attribute_map = {
+ 'dataset_id': {'key': 'datasetId', 'type': 'str'},
+ 'dataset_state': {'key': 'datasetState', 'type': 'DatasetState'},
+ 'latest': {'key': 'latest', 'type': 'DatasetDefinition'},
+ 'next_version_id': {'key': 'nextVersionId', 'type': 'str'},
+ 'created_time': {'key': 'createdTime', 'type': 'iso-8601'},
+ 'modified_time': {'key': 'modifiedTime', 'type': 'iso-8601'},
+ 'etag': {'key': 'etag', 'type': 'str'},
+ 'name': {'key': 'name', 'type': 'str'},
+ 'description': {'key': 'description', 'type': 'str'},
+ 'tags': {'key': 'tags', 'type': '{str}'},
+ 'is_visible': {'key': 'isVisible', 'type': 'bool'},
+ 'default_compute': {'key': 'defaultCompute', 'type': 'str'},
+ 'dataset_type': {'key': 'datasetType', 'type': 'str'},
+ }
+
+ def __init__(
+ self,
+ **kwargs
+ ):
+ """
+ :keyword dataset_id:
+ :paramtype dataset_id: str
+ :keyword dataset_state:
+ :paramtype dataset_state: ~azure.mgmt.machinelearningservices.models.DatasetState
+ :keyword latest:
+ :paramtype latest: ~azure.mgmt.machinelearningservices.models.DatasetDefinition
+ :keyword next_version_id:
+ :paramtype next_version_id: str
+ :keyword created_time:
+ :paramtype created_time: ~datetime.datetime
+ :keyword modified_time:
+ :paramtype modified_time: ~datetime.datetime
+ :keyword etag:
+ :paramtype etag: str
+ :keyword name:
+ :paramtype name: str
+ :keyword description:
+ :paramtype description: str
+ :keyword tags: A set of tags. Dictionary of :code:`<string>`.
+ :paramtype tags: dict[str, str]
+ :keyword is_visible:
+ :paramtype is_visible: bool
+ :keyword default_compute:
+ :paramtype default_compute: str
+ :keyword dataset_type:
+ :paramtype dataset_type: str
+ """
+ super(Dataset, self).__init__(**kwargs)
+ self.dataset_id = kwargs.get('dataset_id', None)
+ self.dataset_state = kwargs.get('dataset_state', None)
+ self.latest = kwargs.get('latest', None)
+ self.next_version_id = kwargs.get('next_version_id', None)
+ self.created_time = kwargs.get('created_time', None)
+ self.modified_time = kwargs.get('modified_time', None)
+ self.etag = kwargs.get('etag', None)
+ self.name = kwargs.get('name', None)
+ self.description = kwargs.get('description', None)
+ self.tags = kwargs.get('tags', None)
+ self.is_visible = kwargs.get('is_visible', None)
+ self.default_compute = kwargs.get('default_compute', None)
+ self.dataset_type = kwargs.get('dataset_type', None)
+
+
+class DatasetDefinition(msrest.serialization.Model):
+ """DatasetDefinition.
+
+ :ivar dataset_id:
+ :vartype dataset_id: str
+ :ivar version_id:
+ :vartype version_id: str
+ :ivar dataset_definition_state:
+ :vartype dataset_definition_state: ~azure.mgmt.machinelearningservices.models.DatasetState
+ :ivar dataflow:
+ :vartype dataflow: str
+ :ivar dataflow_type: Possible values include: "Json", "Yaml".
+ :vartype dataflow_type: str or ~azure.mgmt.machinelearningservices.models.DataflowType
+ :ivar data_path:
+ :vartype data_path: ~azure.mgmt.machinelearningservices.models.DatasetPath
+ :ivar partition_format_in_path:
+ :vartype partition_format_in_path: str
+ :ivar profile_action_result:
+ :vartype profile_action_result: ~azure.mgmt.machinelearningservices.models.ProfileActionResult
+ :ivar notes:
+ :vartype notes: str
+ :ivar etag:
+ :vartype etag: str
+ :ivar created_time:
+ :vartype created_time: ~datetime.datetime
+ :ivar modified_time:
+ :vartype modified_time: ~datetime.datetime
+ :ivar data_expiry_time:
+ :vartype data_expiry_time: ~datetime.datetime
+ :ivar created_by:
+ :vartype created_by: ~azure.mgmt.machinelearningservices.models.User
+ :ivar modified_by:
+ :vartype modified_by: ~azure.mgmt.machinelearningservices.models.User
+ :ivar file_type:
+ :vartype file_type: str
+ :ivar properties: Dictionary of :code:`<any>`.
+ :vartype properties: dict[str, any]
+ :ivar saved_dataset_id:
+ :vartype saved_dataset_id: str
+ :ivar telemetry_info: Dictionary of :code:`<string>`.
+ :vartype telemetry_info: dict[str, str]
+ :ivar use_description_tags_from_definition:
+ :vartype use_description_tags_from_definition: bool
+ :ivar description:
+ :vartype description: str
+ :ivar tags: A set of tags. Dictionary of :code:`<string>`.
+ :vartype tags: dict[str, str]
+ """
+
+ _attribute_map = {
+ 'dataset_id': {'key': 'datasetId', 'type': 'str'},
+ 'version_id': {'key': 'versionId', 'type': 'str'},
+ 'dataset_definition_state': {'key': 'datasetDefinitionState', 'type': 'DatasetState'},
+ 'dataflow': {'key': 'dataflow', 'type': 'str'},
+ 'dataflow_type': {'key': 'dataflowType', 'type': 'str'},
+ 'data_path': {'key': 'dataPath', 'type': 'DatasetPath'},
+ 'partition_format_in_path': {'key': 'partitionFormatInPath', 'type': 'str'},
+ 'profile_action_result': {'key': 'profileActionResult', 'type': 'ProfileActionResult'},
+ 'notes': {'key': 'notes', 'type': 'str'},
+ 'etag': {'key': 'etag', 'type': 'str'},
+ 'created_time': {'key': 'createdTime', 'type': 'iso-8601'},
+ 'modified_time': {'key': 'modifiedTime', 'type': 'iso-8601'},
+ 'data_expiry_time': {'key': 'dataExpiryTime', 'type': 'iso-8601'},
+ 'created_by': {'key': 'createdBy', 'type': 'User'},
+ 'modified_by': {'key': 'modifiedBy', 'type': 'User'},
+ 'file_type': {'key': 'fileType', 'type': 'str'},
+ 'properties': {'key': 'properties', 'type': '{object}'},
+ 'saved_dataset_id': {'key': 'savedDatasetId', 'type': 'str'},
+ 'telemetry_info': {'key': 'telemetryInfo', 'type': '{str}'},
+ 'use_description_tags_from_definition': {'key': 'useDescriptionTagsFromDefinition', 'type': 'bool'},
+ 'description': {'key': 'description', 'type': 'str'},
+ 'tags': {'key': 'tags', 'type': '{str}'},
+ }
+
+ def __init__(
+ self,
+ **kwargs
+ ):
+ """
+ :keyword dataset_id:
+ :paramtype dataset_id: str
+ :keyword version_id:
+ :paramtype version_id: str
+ :keyword dataset_definition_state:
+ :paramtype dataset_definition_state: ~azure.mgmt.machinelearningservices.models.DatasetState
+ :keyword dataflow:
+ :paramtype dataflow: str
+ :keyword dataflow_type: Possible values include: "Json", "Yaml".
+ :paramtype dataflow_type: str or ~azure.mgmt.machinelearningservices.models.DataflowType
+ :keyword data_path:
+ :paramtype data_path: ~azure.mgmt.machinelearningservices.models.DatasetPath
+ :keyword partition_format_in_path:
+ :paramtype partition_format_in_path: str
+ :keyword profile_action_result:
+ :paramtype profile_action_result:
+ ~azure.mgmt.machinelearningservices.models.ProfileActionResult
+ :keyword notes:
+ :paramtype notes: str
+ :keyword etag:
+ :paramtype etag: str
+ :keyword created_time:
+ :paramtype created_time: ~datetime.datetime
+ :keyword modified_time:
+ :paramtype modified_time: ~datetime.datetime
+ :keyword data_expiry_time:
+ :paramtype data_expiry_time: ~datetime.datetime
+ :keyword created_by:
+ :paramtype created_by: ~azure.mgmt.machinelearningservices.models.User
+ :keyword modified_by:
+ :paramtype modified_by: ~azure.mgmt.machinelearningservices.models.User
+ :keyword file_type:
+ :paramtype file_type: str
+ :keyword properties: Dictionary of :code:`<any>`.
+ :paramtype properties: dict[str, any]
+ :keyword saved_dataset_id:
+ :paramtype saved_dataset_id: str
+ :keyword telemetry_info: Dictionary of :code:`<string>`.
+ :paramtype telemetry_info: dict[str, str]
+ :keyword use_description_tags_from_definition:
+ :paramtype use_description_tags_from_definition: bool
+ :keyword description:
+ :paramtype description: str
+ :keyword tags: A set of tags. Dictionary of :code:`<string>`.
+ :paramtype tags: dict[str, str]
+ """
+ super(DatasetDefinition, self).__init__(**kwargs)
+ self.dataset_id = kwargs.get('dataset_id', None)
+ self.version_id = kwargs.get('version_id', None)
+ self.dataset_definition_state = kwargs.get('dataset_definition_state', None)
+ self.dataflow = kwargs.get('dataflow', None)
+ self.dataflow_type = kwargs.get('dataflow_type', None)
+ self.data_path = kwargs.get('data_path', None)
+ self.partition_format_in_path = kwargs.get('partition_format_in_path', None)
+ self.profile_action_result = kwargs.get('profile_action_result', None)
+ self.notes = kwargs.get('notes', None)
+ self.etag = kwargs.get('etag', None)
+ self.created_time = kwargs.get('created_time', None)
+ self.modified_time = kwargs.get('modified_time', None)
+ self.data_expiry_time = kwargs.get('data_expiry_time', None)
+ self.created_by = kwargs.get('created_by', None)
+ self.modified_by = kwargs.get('modified_by', None)
+ self.file_type = kwargs.get('file_type', None)
+ self.properties = kwargs.get('properties', None)
+ self.saved_dataset_id = kwargs.get('saved_dataset_id', None)
+ self.telemetry_info = kwargs.get('telemetry_info', None)
+ self.use_description_tags_from_definition = kwargs.get('use_description_tags_from_definition', None)
+ self.description = kwargs.get('description', None)
+ self.tags = kwargs.get('tags', None)
+
+
+class DatasetDefinitionReference(msrest.serialization.Model):
+ """DatasetDefinitionReference.
+
+ :ivar dataset_id:
+ :vartype dataset_id: str
+ :ivar definition_version:
+ :vartype definition_version: str
+ """
+
+ _attribute_map = {
+ 'dataset_id': {'key': 'datasetId', 'type': 'str'},
+ 'definition_version': {'key': 'definitionVersion', 'type': 'str'},
+ }
+
+ def __init__(
+ self,
+ **kwargs
+ ):
+ """
+ :keyword dataset_id:
+ :paramtype dataset_id: str
+ :keyword definition_version:
+ :paramtype definition_version: str
+ """
+ super(DatasetDefinitionReference, self).__init__(**kwargs)
+ self.dataset_id = kwargs.get('dataset_id', None)
+ self.definition_version = kwargs.get('definition_version', None)
+
+
+class DatasetPath(msrest.serialization.Model):
+ """DatasetPath.
+
+ :ivar datastore_name:
+ :vartype datastore_name: str
+ :ivar relative_path:
+ :vartype relative_path: str
+ :ivar azure_file_path:
+ :vartype azure_file_path: str
+ :ivar paths:
+ :vartype paths: list[str]
+ :ivar sql_data_path:
+ :vartype sql_data_path: ~azure.mgmt.machinelearningservices.models.SqlDataPath
+ :ivar http_url:
+ :vartype http_url: str
+ :ivar additional_properties: Dictionary of :code:`<any>`.
+ :vartype additional_properties: dict[str, any]
+ :ivar partition_format:
+ :vartype partition_format: str
+ :ivar partition_format_ignore_error:
+ :vartype partition_format_ignore_error: bool
+ """
+
+ _attribute_map = {
+ 'datastore_name': {'key': 'datastoreName', 'type': 'str'},
+ 'relative_path': {'key': 'relativePath', 'type': 'str'},
+ 'azure_file_path': {'key': 'azureFilePath', 'type': 'str'},
+ 'paths': {'key': 'paths', 'type': '[str]'},
+ 'sql_data_path': {'key': 'sqlDataPath', 'type': 'SqlDataPath'},
+ 'http_url': {'key': 'httpUrl', 'type': 'str'},
+ 'additional_properties': {'key': 'additionalProperties', 'type': '{object}'},
+ 'partition_format': {'key': 'partitionFormat', 'type': 'str'},
+ 'partition_format_ignore_error': {'key': 'partitionFormatIgnoreError', 'type': 'bool'},
+ }
+
+ def __init__(
+ self,
+ **kwargs
+ ):
+ """
+ :keyword datastore_name:
+ :paramtype datastore_name: str
+ :keyword relative_path:
+ :paramtype relative_path: str
+ :keyword azure_file_path:
+ :paramtype azure_file_path: str
+ :keyword paths:
+ :paramtype paths: list[str]
+ :keyword sql_data_path:
+ :paramtype sql_data_path: ~azure.mgmt.machinelearningservices.models.SqlDataPath
+ :keyword http_url:
+ :paramtype http_url: str
+ :keyword additional_properties: Dictionary of :code:`<any>`.
+ :paramtype additional_properties: dict[str, any]
+ :keyword partition_format:
+ :paramtype partition_format: str
+ :keyword partition_format_ignore_error:
+ :paramtype partition_format_ignore_error: bool
+ """
+ super(DatasetPath, self).__init__(**kwargs)
+ self.datastore_name = kwargs.get('datastore_name', None)
+ self.relative_path = kwargs.get('relative_path', None)
+ self.azure_file_path = kwargs.get('azure_file_path', None)
+ self.paths = kwargs.get('paths', None)
+ self.sql_data_path = kwargs.get('sql_data_path', None)
+ self.http_url = kwargs.get('http_url', None)
+ self.additional_properties = kwargs.get('additional_properties', None)
+ self.partition_format = kwargs.get('partition_format', None)
+ self.partition_format_ignore_error = kwargs.get('partition_format_ignore_error', None)
+
+
+class DatasetState(msrest.serialization.Model):
+ """DatasetState.
+
+ :ivar state:
+ :vartype state: str
+ :ivar deprecated_by:
+ :vartype deprecated_by: ~azure.mgmt.machinelearningservices.models.DatasetDefinitionReference
+ :ivar etag:
+ :vartype etag: str
+ """
+
+ _attribute_map = {
+ 'state': {'key': 'state', 'type': 'str'},
+ 'deprecated_by': {'key': 'deprecatedBy', 'type': 'DatasetDefinitionReference'},
+ 'etag': {'key': 'etag', 'type': 'str'},
+ }
+
+ def __init__(
+ self,
+ **kwargs
+ ):
+ """
+ :keyword state:
+ :paramtype state: str
+ :keyword deprecated_by:
+ :paramtype deprecated_by: ~azure.mgmt.machinelearningservices.models.DatasetDefinitionReference
+ :keyword etag:
+ :paramtype etag: str
+ """
+ super(DatasetState, self).__init__(**kwargs)
+ self.state = kwargs.get('state', None)
+ self.deprecated_by = kwargs.get('deprecated_by', None)
+ self.etag = kwargs.get('etag', None)
+
+
+class DatasetV2(msrest.serialization.Model):
+ """DatasetV2.
+
+ :ivar dataset_id:
+ :vartype dataset_id: str
+ :ivar name:
+ :vartype name: str
+ :ivar version_id:
+ :vartype version_id: str
+ :ivar dataflow:
+ :vartype dataflow: str
+ :ivar created_time:
+ :vartype created_time: ~datetime.datetime
+ :ivar modified_time:
+ :vartype modified_time: ~datetime.datetime
+ :ivar created_by:
+ :vartype created_by: ~azure.mgmt.machinelearningservices.models.User
+ :ivar modified_by:
+ :vartype modified_by: ~azure.mgmt.machinelearningservices.models.User
+ :ivar properties: Dictionary of :code:`<string>`.
+ :vartype properties: dict[str, str]
+ :ivar telemetry_info: Dictionary of :code:`<string>`.
+ :vartype telemetry_info: dict[str, str]
+ :ivar description:
+ :vartype description: str
+ :ivar is_anonymous:
+ :vartype is_anonymous: bool
+ :ivar tags: A set of tags. Dictionary of :code:`<string>`.
+ :vartype tags: dict[str, str]
+ :ivar legacy_properties: Dictionary of :code:`<any>`.
+ :vartype legacy_properties: dict[str, any]
+ :ivar data_expiry_time:
+ :vartype data_expiry_time: ~datetime.datetime
+ :ivar legacy: Dictionary of :code:`<any>`.
+ :vartype legacy: dict[str, any]
+ """
+
+ _attribute_map = {
+ 'dataset_id': {'key': 'datasetId', 'type': 'str'},
+ 'name': {'key': 'name', 'type': 'str'},
+ 'version_id': {'key': 'versionId', 'type': 'str'},
+ 'dataflow': {'key': 'dataflow', 'type': 'str'},
+ 'created_time': {'key': 'createdTime', 'type': 'iso-8601'},
+ 'modified_time': {'key': 'modifiedTime', 'type': 'iso-8601'},
+ 'created_by': {'key': 'createdBy', 'type': 'User'},
+ 'modified_by': {'key': 'modifiedBy', 'type': 'User'},
+ 'properties': {'key': 'properties', 'type': '{str}'},
+ 'telemetry_info': {'key': 'telemetryInfo', 'type': '{str}'},
+ 'description': {'key': 'description', 'type': 'str'},
+ 'is_anonymous': {'key': 'isAnonymous', 'type': 'bool'},
+ 'tags': {'key': 'tags', 'type': '{str}'},
+ 'legacy_properties': {'key': 'legacyProperties', 'type': '{object}'},
+ 'data_expiry_time': {'key': 'dataExpiryTime', 'type': 'iso-8601'},
+ 'legacy': {'key': 'legacy', 'type': '{object}'},
+ }
+
+ def __init__(
+ self,
+ **kwargs
+ ):
+ """
+ :keyword dataset_id:
+ :paramtype dataset_id: str
+ :keyword name:
+ :paramtype name: str
+ :keyword version_id:
+ :paramtype version_id: str
+ :keyword dataflow:
+ :paramtype dataflow: str
+ :keyword created_time:
+ :paramtype created_time: ~datetime.datetime
+ :keyword modified_time:
+ :paramtype modified_time: ~datetime.datetime
+ :keyword created_by:
+ :paramtype created_by: ~azure.mgmt.machinelearningservices.models.User
+ :keyword modified_by:
+ :paramtype modified_by: ~azure.mgmt.machinelearningservices.models.User
+ :keyword properties: Dictionary of :code:`<string>`.
+ :paramtype properties: dict[str, str]
+ :keyword telemetry_info: Dictionary of :code:`<string>`.
+ :paramtype telemetry_info: dict[str, str]
+ :keyword description:
+ :paramtype description: str
+ :keyword is_anonymous:
+ :paramtype is_anonymous: bool
+ :keyword tags: A set of tags. Dictionary of :code:`<string>`.
+ :paramtype tags: dict[str, str]
+ :keyword legacy_properties: Dictionary of :code:`<any>`.
+ :paramtype legacy_properties: dict[str, any]
+ :keyword data_expiry_time:
+ :paramtype data_expiry_time: ~datetime.datetime
+ :keyword legacy: Dictionary of :code:`<any>`.
+ :paramtype legacy: dict[str, any]
+ """
+ super(DatasetV2, self).__init__(**kwargs)
+ self.dataset_id = kwargs.get('dataset_id', None)
+ self.name = kwargs.get('name', None)
+ self.version_id = kwargs.get('version_id', None)
+ self.dataflow = kwargs.get('dataflow', None)
+ self.created_time = kwargs.get('created_time', None)
+ self.modified_time = kwargs.get('modified_time', None)
+ self.created_by = kwargs.get('created_by', None)
+ self.modified_by = kwargs.get('modified_by', None)
+ self.properties = kwargs.get('properties', None)
+ self.telemetry_info = kwargs.get('telemetry_info', None)
+ self.description = kwargs.get('description', None)
+ self.is_anonymous = kwargs.get('is_anonymous', None)
+ self.tags = kwargs.get('tags', None)
+ self.legacy_properties = kwargs.get('legacy_properties', None)
+ self.data_expiry_time = kwargs.get('data_expiry_time', None)
+ self.legacy = kwargs.get('legacy', None)
+
+
+class DataUriV2Response(msrest.serialization.Model):
+ """DataUriV2Response.
+
+ :ivar uri:
+ :vartype uri: str
+ :ivar type:
+ :vartype type: str
+ """
+
+ _attribute_map = {
+ 'uri': {'key': 'uri', 'type': 'str'},
+ 'type': {'key': 'type', 'type': 'str'},
+ }
+
+ def __init__(
+ self,
+ **kwargs
+ ):
+ """
+ :keyword uri:
+ :paramtype uri: str
+ :keyword type:
+ :paramtype type: str
+ """
+ super(DataUriV2Response, self).__init__(**kwargs)
+ self.uri = kwargs.get('uri', None)
+ self.type = kwargs.get('type', None)
+
+
+class DataVersion(msrest.serialization.Model):
+ """DataVersion.
+
+ All required parameters must be populated in order to send to Azure.
+
+ :ivar asset_id:
+ :vartype asset_id: str
+ :ivar data_container_name: Required.
+ :vartype data_container_name: str
+ :ivar data_type: Required.
+ :vartype data_type: str
+ :ivar data_uri: Required.
+ :vartype data_uri: str
+ :ivar version_id: Required.
+ :vartype version_id: str
+ :ivar mutable_props:
+ :vartype mutable_props: ~azure.mgmt.machinelearningservices.models.DataVersionMutable
+ :ivar referenced_data_uris:
+ :vartype referenced_data_uris: list[str]
+ :ivar properties: Dictionary of :code:`<string>`.
+ :vartype properties: dict[str, str]
+ """
+
+ _validation = {
+ 'data_container_name': {'required': True},
+ 'data_type': {'required': True},
+ 'data_uri': {'required': True},
+ 'version_id': {'required': True},
+ }
+
+ _attribute_map = {
+ 'asset_id': {'key': 'assetId', 'type': 'str'},
+ 'data_container_name': {'key': 'dataContainerName', 'type': 'str'},
+ 'data_type': {'key': 'dataType', 'type': 'str'},
+ 'data_uri': {'key': 'dataUri', 'type': 'str'},
+ 'version_id': {'key': 'versionId', 'type': 'str'},
+ 'mutable_props': {'key': 'mutableProps', 'type': 'DataVersionMutable'},
+ 'referenced_data_uris': {'key': 'referencedDataUris', 'type': '[str]'},
+ 'properties': {'key': 'properties', 'type': '{str}'},
+ }
+
+ def __init__(
+ self,
+ **kwargs
+ ):
+ """
+ :keyword asset_id:
+ :paramtype asset_id: str
+ :keyword data_container_name: Required.
+ :paramtype data_container_name: str
+ :keyword data_type: Required.
+ :paramtype data_type: str
+ :keyword data_uri: Required.
+ :paramtype data_uri: str
+ :keyword version_id: Required.
+ :paramtype version_id: str
+ :keyword mutable_props:
+ :paramtype mutable_props: ~azure.mgmt.machinelearningservices.models.DataVersionMutable
+ :keyword referenced_data_uris:
+ :paramtype referenced_data_uris: list[str]
+ :keyword properties: Dictionary of :code:`<string>`.
+ :paramtype properties: dict[str, str]
+ """
+ super(DataVersion, self).__init__(**kwargs)
+ self.asset_id = kwargs.get('asset_id', None)
+ self.data_container_name = kwargs['data_container_name']
+ self.data_type = kwargs['data_type']
+ self.data_uri = kwargs['data_uri']
+ self.version_id = kwargs['version_id']
+ self.mutable_props = kwargs.get('mutable_props', None)
+ self.referenced_data_uris = kwargs.get('referenced_data_uris', None)
+ self.properties = kwargs.get('properties', None)
+
+
+class DataVersionEntity(msrest.serialization.Model):
+ """DataVersionEntity.
+
+ :ivar data_version:
+ :vartype data_version: ~azure.mgmt.machinelearningservices.models.DataVersion
+ :ivar entity_metadata:
+ :vartype entity_metadata: ~azure.mgmt.machinelearningservices.models.EntityMetadata
+ """
+
+ _attribute_map = {
+ 'data_version': {'key': 'dataVersion', 'type': 'DataVersion'},
+ 'entity_metadata': {'key': 'entityMetadata', 'type': 'EntityMetadata'},
+ }
+
+ def __init__(
+ self,
+ **kwargs
+ ):
+ """
+ :keyword data_version:
+ :paramtype data_version: ~azure.mgmt.machinelearningservices.models.DataVersion
+ :keyword entity_metadata:
+ :paramtype entity_metadata: ~azure.mgmt.machinelearningservices.models.EntityMetadata
+ """
+ super(DataVersionEntity, self).__init__(**kwargs)
+ self.data_version = kwargs.get('data_version', None)
+ self.entity_metadata = kwargs.get('entity_metadata', None)
+
+
+class DataVersionMutable(msrest.serialization.Model):
+ """DataVersionMutable.
+
+ :ivar data_expiry_time:
+ :vartype data_expiry_time: ~datetime.datetime
+ :ivar description:
+ :vartype description: str
+ :ivar tags: A set of tags. Dictionary of :code:`<string>`.
+ :vartype tags: dict[str, str]
+ :ivar is_archived:
+ :vartype is_archived: bool
+ """
+
+ _attribute_map = {
+ 'data_expiry_time': {'key': 'dataExpiryTime', 'type': 'iso-8601'},
+ 'description': {'key': 'description', 'type': 'str'},
+ 'tags': {'key': 'tags', 'type': '{str}'},
+ 'is_archived': {'key': 'isArchived', 'type': 'bool'},
+ }
+
+ def __init__(
+ self,
+ **kwargs
+ ):
+ """
+ :keyword data_expiry_time:
+ :paramtype data_expiry_time: ~datetime.datetime
+ :keyword description:
+ :paramtype description: str
+ :keyword tags: A set of tags. Dictionary of :code:`<string>`.
+ :paramtype tags: dict[str, str]
+ :keyword is_archived:
+ :paramtype is_archived: bool
+ """
+ super(DataVersionMutable, self).__init__(**kwargs)
+ self.data_expiry_time = kwargs.get('data_expiry_time', None)
+ self.description = kwargs.get('description', None)
+ self.tags = kwargs.get('tags', None)
+ self.is_archived = kwargs.get('is_archived', None)
+
+
+class DataViewSetResult(msrest.serialization.Model):
+ """DataViewSetResult.
+
+ :ivar schema:
+ :vartype schema: list[~azure.mgmt.machinelearningservices.models.ColumnDefinition]
+ :ivar rows:
+ :vartype rows: list[list[~azure.mgmt.machinelearningservices.models.DataField]]
+ """
+
+ _attribute_map = {
+ 'schema': {'key': 'schema', 'type': '[ColumnDefinition]'},
+ 'rows': {'key': 'rows', 'type': '[[DataField]]'},
+ }
+
+ def __init__(
+ self,
+ **kwargs
+ ):
+ """
+ :keyword schema:
+ :paramtype schema: list[~azure.mgmt.machinelearningservices.models.ColumnDefinition]
+ :keyword rows:
+ :paramtype rows: list[list[~azure.mgmt.machinelearningservices.models.DataField]]
+ """
+ super(DataViewSetResult, self).__init__(**kwargs)
+ self.schema = kwargs.get('schema', None)
+ self.rows = kwargs.get('rows', None)
+
+
+class EntityMetadata(msrest.serialization.Model):
+ """EntityMetadata.
+
+ :ivar etag:
+ :vartype etag: str
+ :ivar created_time:
+ :vartype created_time: ~datetime.datetime
+ :ivar modified_time:
+ :vartype modified_time: ~datetime.datetime
+ :ivar created_by:
+ :vartype created_by: ~azure.mgmt.machinelearningservices.models.User
+ :ivar modified_by:
+ :vartype modified_by: ~azure.mgmt.machinelearningservices.models.User
+ """
+
+ _attribute_map = {
+ 'etag': {'key': 'etag', 'type': 'str'},
+ 'created_time': {'key': 'createdTime', 'type': 'iso-8601'},
+ 'modified_time': {'key': 'modifiedTime', 'type': 'iso-8601'},
+ 'created_by': {'key': 'createdBy', 'type': 'User'},
+ 'modified_by': {'key': 'modifiedBy', 'type': 'User'},
+ }
+
+ def __init__(
+ self,
+ **kwargs
+ ):
+ """
+ :keyword etag:
+ :paramtype etag: str
+ :keyword created_time:
+ :paramtype created_time: ~datetime.datetime
+ :keyword modified_time:
+ :paramtype modified_time: ~datetime.datetime
+ :keyword created_by:
+ :paramtype created_by: ~azure.mgmt.machinelearningservices.models.User
+ :keyword modified_by:
+ :paramtype modified_by: ~azure.mgmt.machinelearningservices.models.User
+ """
+ super(EntityMetadata, self).__init__(**kwargs)
+ self.etag = kwargs.get('etag', None)
+ self.created_time = kwargs.get('created_time', None)
+ self.modified_time = kwargs.get('modified_time', None)
+ self.created_by = kwargs.get('created_by', None)
+ self.modified_by = kwargs.get('modified_by', None)
+
+
+class ErrorAdditionalInfo(msrest.serialization.Model):
+ """The resource management error additional info.
+
+ :ivar type: The additional info type.
+ :vartype type: str
+ :ivar info: The additional info.
+ :vartype info: any
+ """
+
+ _attribute_map = {
+ 'type': {'key': 'type', 'type': 'str'},
+ 'info': {'key': 'info', 'type': 'object'},
+ }
+
+ def __init__(
+ self,
+ **kwargs
+ ):
+ """
+ :keyword type: The additional info type.
+ :paramtype type: str
+ :keyword info: The additional info.
+ :paramtype info: any
+ """
+ super(ErrorAdditionalInfo, self).__init__(**kwargs)
+ self.type = kwargs.get('type', None)
+ self.info = kwargs.get('info', None)
+
+
+class ErrorResponse(msrest.serialization.Model):
+ """The error response.
+
+ :ivar error: The root error.
+ :vartype error: ~azure.mgmt.machinelearningservices.models.RootError
+ :ivar correlation: Dictionary containing correlation details for the error.
+ :vartype correlation: dict[str, str]
+ :ivar environment: The hosting environment.
+ :vartype environment: str
+ :ivar location: The Azure region.
+ :vartype location: str
+ :ivar time: The time in UTC.
+ :vartype time: ~datetime.datetime
+ :ivar component_name: Component name where error originated/encountered.
+ :vartype component_name: str
+ """
+
+ _attribute_map = {
+ 'error': {'key': 'error', 'type': 'RootError'},
+ 'correlation': {'key': 'correlation', 'type': '{str}'},
+ 'environment': {'key': 'environment', 'type': 'str'},
+ 'location': {'key': 'location', 'type': 'str'},
+ 'time': {'key': 'time', 'type': 'iso-8601'},
+ 'component_name': {'key': 'componentName', 'type': 'str'},
+ }
+
+ def __init__(
+ self,
+ **kwargs
+ ):
+ """
+ :keyword error: The root error.
+ :paramtype error: ~azure.mgmt.machinelearningservices.models.RootError
+ :keyword correlation: Dictionary containing correlation details for the error.
+ :paramtype correlation: dict[str, str]
+ :keyword environment: The hosting environment.
+ :paramtype environment: str
+ :keyword location: The Azure region.
+ :paramtype location: str
+ :keyword time: The time in UTC.
+ :paramtype time: ~datetime.datetime
+ :keyword component_name: Component name where error originated/encountered.
+ :paramtype component_name: str
+ """
+ super(ErrorResponse, self).__init__(**kwargs)
+ self.error = kwargs.get('error', None)
+ self.correlation = kwargs.get('correlation', None)
+ self.environment = kwargs.get('environment', None)
+ self.location = kwargs.get('location', None)
+ self.time = kwargs.get('time', None)
+ self.component_name = kwargs.get('component_name', None)
+
+
+class HistogramBin(msrest.serialization.Model):
+ """HistogramBin.
+
+ :ivar lower_bound:
+ :vartype lower_bound: float
+ :ivar upper_bound:
+ :vartype upper_bound: float
+ :ivar count:
+ :vartype count: float
+ """
+
+ _attribute_map = {
+ 'lower_bound': {'key': 'lowerBound', 'type': 'float'},
+ 'upper_bound': {'key': 'upperBound', 'type': 'float'},
+ 'count': {'key': 'count', 'type': 'float'},
+ }
+
+ def __init__(
+ self,
+ **kwargs
+ ):
+ """
+ :keyword lower_bound:
+ :paramtype lower_bound: float
+ :keyword upper_bound:
+ :paramtype upper_bound: float
+ :keyword count:
+ :paramtype count: float
+ """
+ super(HistogramBin, self).__init__(**kwargs)
+ self.lower_bound = kwargs.get('lower_bound', None)
+ self.upper_bound = kwargs.get('upper_bound', None)
+ self.count = kwargs.get('count', None)
+
+
+class HttpContent(msrest.serialization.Model):
+ """HttpContent.
+
+ Variables are only populated by the server, and will be ignored when sending a request.
+
+ :ivar headers:
+ :vartype headers:
+ list[~azure.mgmt.machinelearningservices.models.KeyValuePairStringIEnumerable1]
+ """
+
+ _validation = {
+ 'headers': {'readonly': True},
+ }
+
+ _attribute_map = {
+ 'headers': {'key': 'headers', 'type': '[KeyValuePairStringIEnumerable1]'},
+ }
+
+ def __init__(
+ self,
+ **kwargs
+ ):
+ """
+ """
+ super(HttpContent, self).__init__(**kwargs)
+ self.headers = None
+
+
+class HttpMethod(msrest.serialization.Model):
+ """HttpMethod.
+
+ :ivar method:
+ :vartype method: str
+ """
+
+ _attribute_map = {
+ 'method': {'key': 'method', 'type': 'str'},
+ }
+
+ def __init__(
+ self,
+ **kwargs
+ ):
+ """
+ :keyword method:
+ :paramtype method: str
+ """
+ super(HttpMethod, self).__init__(**kwargs)
+ self.method = kwargs.get('method', None)
+
+
+class HttpRequestMessage(msrest.serialization.Model):
+ """HttpRequestMessage.
+
+ Variables are only populated by the server, and will be ignored when sending a request.
+
+ :ivar version:
+ :vartype version: str
+ :ivar version_policy: Possible values include: "RequestVersionOrLower",
+ "RequestVersionOrHigher", "RequestVersionExact".
+ :vartype version_policy: str or ~azure.mgmt.machinelearningservices.models.HttpVersionPolicy
+ :ivar content:
+ :vartype content: ~azure.mgmt.machinelearningservices.models.HttpContent
+ :ivar method:
+ :vartype method: ~azure.mgmt.machinelearningservices.models.HttpMethod
+ :ivar request_uri:
+ :vartype request_uri: str
+ :ivar headers:
+ :vartype headers:
+ list[~azure.mgmt.machinelearningservices.models.KeyValuePairStringIEnumerable1]
+ :ivar options: Dictionary of :code:`<any>`.
+ :vartype options: dict[str, any]
+ """
+
+ _validation = {
+ 'headers': {'readonly': True},
+ 'options': {'readonly': True},
+ }
+
+ _attribute_map = {
+ 'version': {'key': 'version', 'type': 'str'},
+ 'version_policy': {'key': 'versionPolicy', 'type': 'str'},
+ 'content': {'key': 'content', 'type': 'HttpContent'},
+ 'method': {'key': 'method', 'type': 'HttpMethod'},
+ 'request_uri': {'key': 'requestUri', 'type': 'str'},
+ 'headers': {'key': 'headers', 'type': '[KeyValuePairStringIEnumerable1]'},
+ 'options': {'key': 'options', 'type': '{object}'},
+ }
+
+ def __init__(
+ self,
+ **kwargs
+ ):
+ """
+ :keyword version:
+ :paramtype version: str
+ :keyword version_policy: Possible values include: "RequestVersionOrLower",
+ "RequestVersionOrHigher", "RequestVersionExact".
+ :paramtype version_policy: str or ~azure.mgmt.machinelearningservices.models.HttpVersionPolicy
+ :keyword content:
+ :paramtype content: ~azure.mgmt.machinelearningservices.models.HttpContent
+ :keyword method:
+ :paramtype method: ~azure.mgmt.machinelearningservices.models.HttpMethod
+ :keyword request_uri:
+ :paramtype request_uri: str
+ """
+ super(HttpRequestMessage, self).__init__(**kwargs)
+ self.version = kwargs.get('version', None)
+ self.version_policy = kwargs.get('version_policy', None)
+ self.content = kwargs.get('content', None)
+ self.method = kwargs.get('method', None)
+ self.request_uri = kwargs.get('request_uri', None)
+ self.headers = None
+ self.options = None
+
+
+class HttpResponseMessage(msrest.serialization.Model):
+ """HttpResponseMessage.
+
+ Variables are only populated by the server, and will be ignored when sending a request.
+
+ :ivar version:
+ :vartype version: str
+ :ivar content:
+ :vartype content: ~azure.mgmt.machinelearningservices.models.HttpContent
+ :ivar status_code: Possible values include: "Continue", "SwitchingProtocols", "Processing",
+ "EarlyHints", "OK", "Created", "Accepted", "NonAuthoritativeInformation", "NoContent",
+ "ResetContent", "PartialContent", "MultiStatus", "AlreadyReported", "IMUsed", "Ambiguous",
+ "Moved", "Redirect", "RedirectMethod", "NotModified", "UseProxy", "Unused",
+ "TemporaryRedirect", "PermanentRedirect", "BadRequest", "Unauthorized", "PaymentRequired",
+ "Forbidden", "NotFound", "MethodNotAllowed", "NotAcceptable", "ProxyAuthenticationRequired",
+ "RequestTimeout", "Conflict", "Gone", "LengthRequired", "PreconditionFailed",
+ "RequestEntityTooLarge", "RequestUriTooLong", "UnsupportedMediaType",
+ "RequestedRangeNotSatisfiable", "ExpectationFailed", "MisdirectedRequest",
+ "UnprocessableEntity", "Locked", "FailedDependency", "UpgradeRequired", "PreconditionRequired",
+ "TooManyRequests", "RequestHeaderFieldsTooLarge", "UnavailableForLegalReasons",
+ "InternalServerError", "NotImplemented", "BadGateway", "ServiceUnavailable", "GatewayTimeout",
+ "HttpVersionNotSupported", "VariantAlsoNegotiates", "InsufficientStorage", "LoopDetected",
+ "NotExtended", "NetworkAuthenticationRequired".
+ :vartype status_code: str or ~azure.mgmt.machinelearningservices.models.HttpStatusCode
+ :ivar reason_phrase:
+ :vartype reason_phrase: str
+ :ivar headers:
+ :vartype headers:
+ list[~azure.mgmt.machinelearningservices.models.KeyValuePairStringIEnumerable1]
+ :ivar trailing_headers:
+ :vartype trailing_headers:
+ list[~azure.mgmt.machinelearningservices.models.KeyValuePairStringIEnumerable1]
+ :ivar request_message:
+ :vartype request_message: ~azure.mgmt.machinelearningservices.models.HttpRequestMessage
+ :ivar is_success_status_code:
+ :vartype is_success_status_code: bool
+ """
+
+ _validation = {
+ 'headers': {'readonly': True},
+ 'trailing_headers': {'readonly': True},
+ 'is_success_status_code': {'readonly': True},
+ }
+
+ _attribute_map = {
+ 'version': {'key': 'version', 'type': 'str'},
+ 'content': {'key': 'content', 'type': 'HttpContent'},
+ 'status_code': {'key': 'statusCode', 'type': 'str'},
+ 'reason_phrase': {'key': 'reasonPhrase', 'type': 'str'},
+ 'headers': {'key': 'headers', 'type': '[KeyValuePairStringIEnumerable1]'},
+ 'trailing_headers': {'key': 'trailingHeaders', 'type': '[KeyValuePairStringIEnumerable1]'},
+ 'request_message': {'key': 'requestMessage', 'type': 'HttpRequestMessage'},
+ 'is_success_status_code': {'key': 'isSuccessStatusCode', 'type': 'bool'},
+ }
+
+ def __init__(
+ self,
+ **kwargs
+ ):
+ """
+ :keyword version:
+ :paramtype version: str
+ :keyword content:
+ :paramtype content: ~azure.mgmt.machinelearningservices.models.HttpContent
+ :keyword status_code: Possible values include: "Continue", "SwitchingProtocols", "Processing",
+ "EarlyHints", "OK", "Created", "Accepted", "NonAuthoritativeInformation", "NoContent",
+ "ResetContent", "PartialContent", "MultiStatus", "AlreadyReported", "IMUsed", "Ambiguous",
+ "Moved", "Redirect", "RedirectMethod", "NotModified", "UseProxy", "Unused",
+ "TemporaryRedirect", "PermanentRedirect", "BadRequest", "Unauthorized", "PaymentRequired",
+ "Forbidden", "NotFound", "MethodNotAllowed", "NotAcceptable", "ProxyAuthenticationRequired",
+ "RequestTimeout", "Conflict", "Gone", "LengthRequired", "PreconditionFailed",
+ "RequestEntityTooLarge", "RequestUriTooLong", "UnsupportedMediaType",
+ "RequestedRangeNotSatisfiable", "ExpectationFailed", "MisdirectedRequest",
+ "UnprocessableEntity", "Locked", "FailedDependency", "UpgradeRequired", "PreconditionRequired",
+ "TooManyRequests", "RequestHeaderFieldsTooLarge", "UnavailableForLegalReasons",
+ "InternalServerError", "NotImplemented", "BadGateway", "ServiceUnavailable", "GatewayTimeout",
+ "HttpVersionNotSupported", "VariantAlsoNegotiates", "InsufficientStorage", "LoopDetected",
+ "NotExtended", "NetworkAuthenticationRequired".
+ :paramtype status_code: str or ~azure.mgmt.machinelearningservices.models.HttpStatusCode
+ :keyword reason_phrase:
+ :paramtype reason_phrase: str
+ :keyword request_message:
+ :paramtype request_message: ~azure.mgmt.machinelearningservices.models.HttpRequestMessage
+ """
+ super(HttpResponseMessage, self).__init__(**kwargs)
+ self.version = kwargs.get('version', None)
+ self.content = kwargs.get('content', None)
+ self.status_code = kwargs.get('status_code', None)
+ self.reason_phrase = kwargs.get('reason_phrase', None)
+ self.headers = None
+ self.trailing_headers = None
+ self.request_message = kwargs.get('request_message', None)
+ self.is_success_status_code = None
+
+
+class InnerErrorResponse(msrest.serialization.Model):
+ """A nested structure of errors.
+
+ :ivar code: The error code.
+ :vartype code: str
+ :ivar inner_error: A nested structure of errors.
+ :vartype inner_error: ~azure.mgmt.machinelearningservices.models.InnerErrorResponse
+ """
+
+ _attribute_map = {
+ 'code': {'key': 'code', 'type': 'str'},
+ 'inner_error': {'key': 'innerError', 'type': 'InnerErrorResponse'},
+ }
+
+ def __init__(
+ self,
+ **kwargs
+ ):
+ """
+ :keyword code: The error code.
+ :paramtype code: str
+ :keyword inner_error: A nested structure of errors.
+ :paramtype inner_error: ~azure.mgmt.machinelearningservices.models.InnerErrorResponse
+ """
+ super(InnerErrorResponse, self).__init__(**kwargs)
+ self.code = kwargs.get('code', None)
+ self.inner_error = kwargs.get('inner_error', None)
+
+
+class KeyValuePairStringIEnumerable1(msrest.serialization.Model):
+ """KeyValuePairStringIEnumerable1.
+
+ :ivar key:
+ :vartype key: str
+ :ivar value:
+ :vartype value: list[str]
+ """
+
+ _attribute_map = {
+ 'key': {'key': 'key', 'type': 'str'},
+ 'value': {'key': 'value', 'type': '[str]'},
+ }
+
+ def __init__(
+ self,
+ **kwargs
+ ):
+ """
+ :keyword key:
+ :paramtype key: str
+ :keyword value:
+ :paramtype value: list[str]
+ """
+ super(KeyValuePairStringIEnumerable1, self).__init__(**kwargs)
+ self.key = kwargs.get('key', None)
+ self.value = kwargs.get('value', None)
+
+
+class LongRunningOperationResponse1LongRunningOperationResponseObject(msrest.serialization.Model):
+ """LongRunningOperationResponse1LongRunningOperationResponseObject.
+
+ :ivar completion_result: Anything.
+ :vartype completion_result: any
+ :ivar location:
+ :vartype location: str
+ :ivar operation_result:
+ :vartype operation_result: str
+ """
+
+ _attribute_map = {
+ 'completion_result': {'key': 'completionResult', 'type': 'object'},
+ 'location': {'key': 'location', 'type': 'str'},
+ 'operation_result': {'key': 'operationResult', 'type': 'str'},
+ }
+
+ def __init__(
+ self,
+ **kwargs
+ ):
+ """
+ :keyword completion_result: Anything.
+ :paramtype completion_result: any
+ :keyword location:
+ :paramtype location: str
+ :keyword operation_result:
+ :paramtype operation_result: str
+ """
+ super(LongRunningOperationResponse1LongRunningOperationResponseObject, self).__init__(**kwargs)
+ self.completion_result = kwargs.get('completion_result', None)
+ self.location = kwargs.get('location', None)
+ self.operation_result = kwargs.get('operation_result', None)
+
+
+class Moments(msrest.serialization.Model):
+ """Moments.
+
+ :ivar mean:
+ :vartype mean: float
+ :ivar standard_deviation:
+ :vartype standard_deviation: float
+ :ivar variance:
+ :vartype variance: float
+ :ivar skewness:
+ :vartype skewness: float
+ :ivar kurtosis:
+ :vartype kurtosis: float
+ """
+
+ _attribute_map = {
+ 'mean': {'key': 'mean', 'type': 'float'},
+ 'standard_deviation': {'key': 'standardDeviation', 'type': 'float'},
+ 'variance': {'key': 'variance', 'type': 'float'},
+ 'skewness': {'key': 'skewness', 'type': 'float'},
+ 'kurtosis': {'key': 'kurtosis', 'type': 'float'},
+ }
+
+ def __init__(
+ self,
+ **kwargs
+ ):
+ """
+ :keyword mean:
+ :paramtype mean: float
+ :keyword standard_deviation:
+ :paramtype standard_deviation: float
+ :keyword variance:
+ :paramtype variance: float
+ :keyword skewness:
+ :paramtype skewness: float
+ :keyword kurtosis:
+ :paramtype kurtosis: float
+ """
+ super(Moments, self).__init__(**kwargs)
+ self.mean = kwargs.get('mean', None)
+ self.standard_deviation = kwargs.get('standard_deviation', None)
+ self.variance = kwargs.get('variance', None)
+ self.skewness = kwargs.get('skewness', None)
+ self.kurtosis = kwargs.get('kurtosis', None)
+
+
+class PaginatedDataContainerEntityList(msrest.serialization.Model):
+ """A paginated list of DataContainerEntitys.
+
+ :ivar value: An array of objects of type DataContainerEntity.
+ :vartype value: list[~azure.mgmt.machinelearningservices.models.DataContainerEntity]
+ :ivar continuation_token: The token used in retrieving the next page. If null, there are no
+ additional pages.
+ :vartype continuation_token: str
+ :ivar next_link: The link to the next page constructed using the continuationToken. If null,
+ there are no additional pages.
+ :vartype next_link: str
+ """
+
+ _attribute_map = {
+ 'value': {'key': 'value', 'type': '[DataContainerEntity]'},
+ 'continuation_token': {'key': 'continuationToken', 'type': 'str'},
+ 'next_link': {'key': 'nextLink', 'type': 'str'},
+ }
+
+ def __init__(
+ self,
+ **kwargs
+ ):
+ """
+ :keyword value: An array of objects of type DataContainerEntity.
+ :paramtype value: list[~azure.mgmt.machinelearningservices.models.DataContainerEntity]
+ :keyword continuation_token: The token used in retrieving the next page. If null, there are no
+ additional pages.
+ :paramtype continuation_token: str
+ :keyword next_link: The link to the next page constructed using the continuationToken. If
+ null, there are no additional pages.
+ :paramtype next_link: str
+ """
+ super(PaginatedDataContainerEntityList, self).__init__(**kwargs)
+ self.value = kwargs.get('value', None)
+ self.continuation_token = kwargs.get('continuation_token', None)
+ self.next_link = kwargs.get('next_link', None)
+
+
+class PaginatedDatasetDefinitionList(msrest.serialization.Model):
+ """A paginated list of DatasetDefinitions.
+
+ :ivar value: An array of objects of type DatasetDefinition.
+ :vartype value: list[~azure.mgmt.machinelearningservices.models.DatasetDefinition]
+ :ivar continuation_token: The token used in retrieving the next page. If null, there are no
+ additional pages.
+ :vartype continuation_token: str
+ :ivar next_link: The link to the next page constructed using the continuationToken. If null,
+ there are no additional pages.
+ :vartype next_link: str
+ """
+
+ _attribute_map = {
+ 'value': {'key': 'value', 'type': '[DatasetDefinition]'},
+ 'continuation_token': {'key': 'continuationToken', 'type': 'str'},
+ 'next_link': {'key': 'nextLink', 'type': 'str'},
+ }
+
+ def __init__(
+ self,
+ **kwargs
+ ):
+ """
+ :keyword value: An array of objects of type DatasetDefinition.
+ :paramtype value: list[~azure.mgmt.machinelearningservices.models.DatasetDefinition]
+ :keyword continuation_token: The token used in retrieving the next page. If null, there are no
+ additional pages.
+ :paramtype continuation_token: str
+ :keyword next_link: The link to the next page constructed using the continuationToken. If
+ null, there are no additional pages.
+ :paramtype next_link: str
+ """
+ super(PaginatedDatasetDefinitionList, self).__init__(**kwargs)
+ self.value = kwargs.get('value', None)
+ self.continuation_token = kwargs.get('continuation_token', None)
+ self.next_link = kwargs.get('next_link', None)
+
+
+class PaginatedDatasetList(msrest.serialization.Model):
+ """A paginated list of Datasets.
+
+ :ivar value: An array of objects of type Dataset.
+ :vartype value: list[~azure.mgmt.machinelearningservices.models.Dataset]
+ :ivar continuation_token: The token used in retrieving the next page. If null, there are no
+ additional pages.
+ :vartype continuation_token: str
+ :ivar next_link: The link to the next page constructed using the continuationToken. If null,
+ there are no additional pages.
+ :vartype next_link: str
+ """
+
+ _attribute_map = {
+ 'value': {'key': 'value', 'type': '[Dataset]'},
+ 'continuation_token': {'key': 'continuationToken', 'type': 'str'},
+ 'next_link': {'key': 'nextLink', 'type': 'str'},
+ }
+
+ def __init__(
+ self,
+ **kwargs
+ ):
+ """
+ :keyword value: An array of objects of type Dataset.
+ :paramtype value: list[~azure.mgmt.machinelearningservices.models.Dataset]
+ :keyword continuation_token: The token used in retrieving the next page. If null, there are no
+ additional pages.
+ :paramtype continuation_token: str
+ :keyword next_link: The link to the next page constructed using the continuationToken. If
+ null, there are no additional pages.
+ :paramtype next_link: str
+ """
+ super(PaginatedDatasetList, self).__init__(**kwargs)
+ self.value = kwargs.get('value', None)
+ self.continuation_token = kwargs.get('continuation_token', None)
+ self.next_link = kwargs.get('next_link', None)
+
+
+class PaginatedDatasetV2List(msrest.serialization.Model):
+ """A paginated list of DatasetV2s.
+
+ :ivar value: An array of objects of type DatasetV2.
+ :vartype value: list[~azure.mgmt.machinelearningservices.models.DatasetV2]
+ :ivar continuation_token: The token used in retrieving the next page. If null, there are no
+ additional pages.
+ :vartype continuation_token: str
+ :ivar next_link: The link to the next page constructed using the continuationToken. If null,
+ there are no additional pages.
+ :vartype next_link: str
+ """
+
+ _attribute_map = {
+ 'value': {'key': 'value', 'type': '[DatasetV2]'},
+ 'continuation_token': {'key': 'continuationToken', 'type': 'str'},
+ 'next_link': {'key': 'nextLink', 'type': 'str'},
+ }
+
+ def __init__(
+ self,
+ **kwargs
+ ):
+ """
+ :keyword value: An array of objects of type DatasetV2.
+ :paramtype value: list[~azure.mgmt.machinelearningservices.models.DatasetV2]
+ :keyword continuation_token: The token used in retrieving the next page. If null, there are no
+ additional pages.
+ :paramtype continuation_token: str
+ :keyword next_link: The link to the next page constructed using the continuationToken. If
+ null, there are no additional pages.
+ :paramtype next_link: str
+ """
+ super(PaginatedDatasetV2List, self).__init__(**kwargs)
+ self.value = kwargs.get('value', None)
+ self.continuation_token = kwargs.get('continuation_token', None)
+ self.next_link = kwargs.get('next_link', None)
+
+
+class PaginatedDataVersionEntityList(msrest.serialization.Model):
+ """A paginated list of DataVersionEntitys.
+
+ :ivar value: An array of objects of type DataVersionEntity.
+ :vartype value: list[~azure.mgmt.machinelearningservices.models.DataVersionEntity]
+ :ivar continuation_token: The token used in retrieving the next page. If null, there are no
+ additional pages.
+ :vartype continuation_token: str
+ :ivar next_link: The link to the next page constructed using the continuationToken. If null,
+ there are no additional pages.
+ :vartype next_link: str
+ """
+
+ _attribute_map = {
+ 'value': {'key': 'value', 'type': '[DataVersionEntity]'},
+ 'continuation_token': {'key': 'continuationToken', 'type': 'str'},
+ 'next_link': {'key': 'nextLink', 'type': 'str'},
+ }
+
+ def __init__(
+ self,
+ **kwargs
+ ):
+ """
+ :keyword value: An array of objects of type DataVersionEntity.
+ :paramtype value: list[~azure.mgmt.machinelearningservices.models.DataVersionEntity]
+ :keyword continuation_token: The token used in retrieving the next page. If null, there are no
+ additional pages.
+ :paramtype continuation_token: str
+ :keyword next_link: The link to the next page constructed using the continuationToken. If
+ null, there are no additional pages.
+ :paramtype next_link: str
+ """
+ super(PaginatedDataVersionEntityList, self).__init__(**kwargs)
+ self.value = kwargs.get('value', None)
+ self.continuation_token = kwargs.get('continuation_token', None)
+ self.next_link = kwargs.get('next_link', None)
+
+
+class PaginatedStringList(msrest.serialization.Model):
+ """A paginated list of Strings.
+
+ :ivar value: An array of objects of type String.
+ :vartype value: list[str]
+ :ivar continuation_token: The token used in retrieving the next page. If null, there are no
+ additional pages.
+ :vartype continuation_token: str
+ :ivar next_link: The link to the next page constructed using the continuationToken. If null,
+ there are no additional pages.
+ :vartype next_link: str
+ """
+
+ _attribute_map = {
+ 'value': {'key': 'value', 'type': '[str]'},
+ 'continuation_token': {'key': 'continuationToken', 'type': 'str'},
+ 'next_link': {'key': 'nextLink', 'type': 'str'},
+ }
+
+ def __init__(
+ self,
+ **kwargs
+ ):
+ """
+ :keyword value: An array of objects of type String.
+ :paramtype value: list[str]
+ :keyword continuation_token: The token used in retrieving the next page. If null, there are no
+ additional pages.
+ :paramtype continuation_token: str
+ :keyword next_link: The link to the next page constructed using the continuationToken. If
+ null, there are no additional pages.
+ :paramtype next_link: str
+ """
+ super(PaginatedStringList, self).__init__(**kwargs)
+ self.value = kwargs.get('value', None)
+ self.continuation_token = kwargs.get('continuation_token', None)
+ self.next_link = kwargs.get('next_link', None)
+
+
+class ProfileActionResult(msrest.serialization.Model):
+ """ProfileActionResult.
+
+ :ivar profile_action_id:
+ :vartype profile_action_id: str
+ :ivar status:
+ :vartype status: str
+ :ivar completed_on_utc:
+ :vartype completed_on_utc: ~datetime.datetime
+ :ivar action_result:
+ :vartype action_result: ~azure.mgmt.machinelearningservices.models.ActionResult
+ """
+
+ _attribute_map = {
+ 'profile_action_id': {'key': 'profileActionId', 'type': 'str'},
+ 'status': {'key': 'status', 'type': 'str'},
+ 'completed_on_utc': {'key': 'completedOnUtc', 'type': 'iso-8601'},
+ 'action_result': {'key': 'actionResult', 'type': 'ActionResult'},
+ }
+
+ def __init__(
+ self,
+ **kwargs
+ ):
+ """
+ :keyword profile_action_id:
+ :paramtype profile_action_id: str
+ :keyword status:
+ :paramtype status: str
+ :keyword completed_on_utc:
+ :paramtype completed_on_utc: ~datetime.datetime
+ :keyword action_result:
+ :paramtype action_result: ~azure.mgmt.machinelearningservices.models.ActionResult
+ """
+ super(ProfileActionResult, self).__init__(**kwargs)
+ self.profile_action_id = kwargs.get('profile_action_id', None)
+ self.status = kwargs.get('status', None)
+ self.completed_on_utc = kwargs.get('completed_on_utc', None)
+ self.action_result = kwargs.get('action_result', None)
+
+
+class ProfileResult(msrest.serialization.Model):
+ """ProfileResult.
+
+ :ivar column_name:
+ :vartype column_name: str
+ :ivar type: Possible values include: "String", "Boolean", "Integer", "Decimal", "Date",
+ "Unknown", "Error", "Null", "DataRow", "List", "Stream".
+ :vartype type: str or ~azure.mgmt.machinelearningservices.models.FieldType
+ :ivar min:
+ :vartype min: ~azure.mgmt.machinelearningservices.models.DataField
+ :ivar max:
+ :vartype max: ~azure.mgmt.machinelearningservices.models.DataField
+ :ivar count:
+ :vartype count: long
+ :ivar missing_count:
+ :vartype missing_count: long
+ :ivar not_missing_count:
+ :vartype not_missing_count: long
+ :ivar percent_missing:
+ :vartype percent_missing: float
+ :ivar error_count:
+ :vartype error_count: long
+ :ivar empty_count:
+ :vartype empty_count: long
+ :ivar quantiles:
+ :vartype quantiles: ~azure.mgmt.machinelearningservices.models.Quantiles
+ :ivar whisker_top:
+ :vartype whisker_top: float
+ :ivar whisker_bottom:
+ :vartype whisker_bottom: float
+ :ivar moments:
+ :vartype moments: ~azure.mgmt.machinelearningservices.models.Moments
+ :ivar type_counts:
+ :vartype type_counts: list[~azure.mgmt.machinelearningservices.models.TypeCount]
+ :ivar value_counts:
+ :vartype value_counts: list[~azure.mgmt.machinelearningservices.models.ValueCount]
+ :ivar unique_values:
+ :vartype unique_values: long
+ :ivar histogram:
+ :vartype histogram: list[~azure.mgmt.machinelearningservices.models.HistogramBin]
+ :ivar s_type_counts:
+ :vartype s_type_counts: list[~azure.mgmt.machinelearningservices.models.STypeCount]
+ :ivar average_spaces_count:
+ :vartype average_spaces_count: float
+ :ivar string_lengths:
+ :vartype string_lengths: list[~azure.mgmt.machinelearningservices.models.StringLengthCount]
+ """
+
+ _attribute_map = {
+ 'column_name': {'key': 'columnName', 'type': 'str'},
+ 'type': {'key': 'type', 'type': 'str'},
+ 'min': {'key': 'min', 'type': 'DataField'},
+ 'max': {'key': 'max', 'type': 'DataField'},
+ 'count': {'key': 'count', 'type': 'long'},
+ 'missing_count': {'key': 'missingCount', 'type': 'long'},
+ 'not_missing_count': {'key': 'notMissingCount', 'type': 'long'},
+ 'percent_missing': {'key': 'percentMissing', 'type': 'float'},
+ 'error_count': {'key': 'errorCount', 'type': 'long'},
+ 'empty_count': {'key': 'emptyCount', 'type': 'long'},
+ 'quantiles': {'key': 'quantiles', 'type': 'Quantiles'},
+ 'whisker_top': {'key': 'whiskerTop', 'type': 'float'},
+ 'whisker_bottom': {'key': 'whiskerBottom', 'type': 'float'},
+ 'moments': {'key': 'moments', 'type': 'Moments'},
+ 'type_counts': {'key': 'typeCounts', 'type': '[TypeCount]'},
+ 'value_counts': {'key': 'valueCounts', 'type': '[ValueCount]'},
+ 'unique_values': {'key': 'uniqueValues', 'type': 'long'},
+ 'histogram': {'key': 'histogram', 'type': '[HistogramBin]'},
+ 's_type_counts': {'key': 'sTypeCounts', 'type': '[STypeCount]'},
+ 'average_spaces_count': {'key': 'averageSpacesCount', 'type': 'float'},
+ 'string_lengths': {'key': 'stringLengths', 'type': '[StringLengthCount]'},
+ }
+
+ def __init__(
+ self,
+ **kwargs
+ ):
+ """
+ :keyword column_name:
+ :paramtype column_name: str
+ :keyword type: Possible values include: "String", "Boolean", "Integer", "Decimal", "Date",
+ "Unknown", "Error", "Null", "DataRow", "List", "Stream".
+ :paramtype type: str or ~azure.mgmt.machinelearningservices.models.FieldType
+ :keyword min:
+ :paramtype min: ~azure.mgmt.machinelearningservices.models.DataField
+ :keyword max:
+ :paramtype max: ~azure.mgmt.machinelearningservices.models.DataField
+ :keyword count:
+ :paramtype count: long
+ :keyword missing_count:
+ :paramtype missing_count: long
+ :keyword not_missing_count:
+ :paramtype not_missing_count: long
+ :keyword percent_missing:
+ :paramtype percent_missing: float
+ :keyword error_count:
+ :paramtype error_count: long
+ :keyword empty_count:
+ :paramtype empty_count: long
+ :keyword quantiles:
+ :paramtype quantiles: ~azure.mgmt.machinelearningservices.models.Quantiles
+ :keyword whisker_top:
+ :paramtype whisker_top: float
+ :keyword whisker_bottom:
+ :paramtype whisker_bottom: float
+ :keyword moments:
+ :paramtype moments: ~azure.mgmt.machinelearningservices.models.Moments
+ :keyword type_counts:
+ :paramtype type_counts: list[~azure.mgmt.machinelearningservices.models.TypeCount]
+ :keyword value_counts:
+ :paramtype value_counts: list[~azure.mgmt.machinelearningservices.models.ValueCount]
+ :keyword unique_values:
+ :paramtype unique_values: long
+ :keyword histogram:
+ :paramtype histogram: list[~azure.mgmt.machinelearningservices.models.HistogramBin]
+ :keyword s_type_counts:
+ :paramtype s_type_counts: list[~azure.mgmt.machinelearningservices.models.STypeCount]
+ :keyword average_spaces_count:
+ :paramtype average_spaces_count: float
+ :keyword string_lengths:
+ :paramtype string_lengths: list[~azure.mgmt.machinelearningservices.models.StringLengthCount]
+ """
+ super(ProfileResult, self).__init__(**kwargs)
+ self.column_name = kwargs.get('column_name', None)
+ self.type = kwargs.get('type', None)
+ self.min = kwargs.get('min', None)
+ self.max = kwargs.get('max', None)
+ self.count = kwargs.get('count', None)
+ self.missing_count = kwargs.get('missing_count', None)
+ self.not_missing_count = kwargs.get('not_missing_count', None)
+ self.percent_missing = kwargs.get('percent_missing', None)
+ self.error_count = kwargs.get('error_count', None)
+ self.empty_count = kwargs.get('empty_count', None)
+ self.quantiles = kwargs.get('quantiles', None)
+ self.whisker_top = kwargs.get('whisker_top', None)
+ self.whisker_bottom = kwargs.get('whisker_bottom', None)
+ self.moments = kwargs.get('moments', None)
+ self.type_counts = kwargs.get('type_counts', None)
+ self.value_counts = kwargs.get('value_counts', None)
+ self.unique_values = kwargs.get('unique_values', None)
+ self.histogram = kwargs.get('histogram', None)
+ self.s_type_counts = kwargs.get('s_type_counts', None)
+ self.average_spaces_count = kwargs.get('average_spaces_count', None)
+ self.string_lengths = kwargs.get('string_lengths', None)
+
+
+class Quantiles(msrest.serialization.Model):
+ """Quantiles.
+
+ :ivar p0_d1:
+ :vartype p0_d1: float
+ :ivar p1:
+ :vartype p1: float
+ :ivar p5:
+ :vartype p5: float
+ :ivar p25:
+ :vartype p25: float
+ :ivar p50:
+ :vartype p50: float
+ :ivar p75:
+ :vartype p75: float
+ :ivar p95:
+ :vartype p95: float
+ :ivar p99:
+ :vartype p99: float
+ :ivar p99_d9:
+ :vartype p99_d9: float
+ """
+
+ _attribute_map = {
+ 'p0_d1': {'key': 'p0D1', 'type': 'float'},
+ 'p1': {'key': 'p1', 'type': 'float'},
+ 'p5': {'key': 'p5', 'type': 'float'},
+ 'p25': {'key': 'p25', 'type': 'float'},
+ 'p50': {'key': 'p50', 'type': 'float'},
+ 'p75': {'key': 'p75', 'type': 'float'},
+ 'p95': {'key': 'p95', 'type': 'float'},
+ 'p99': {'key': 'p99', 'type': 'float'},
+ 'p99_d9': {'key': 'p99D9', 'type': 'float'},
+ }
+
+ def __init__(
+ self,
+ **kwargs
+ ):
+ """
+ :keyword p0_d1:
+ :paramtype p0_d1: float
+ :keyword p1:
+ :paramtype p1: float
+ :keyword p5:
+ :paramtype p5: float
+ :keyword p25:
+ :paramtype p25: float
+ :keyword p50:
+ :paramtype p50: float
+ :keyword p75:
+ :paramtype p75: float
+ :keyword p95:
+ :paramtype p95: float
+ :keyword p99:
+ :paramtype p99: float
+ :keyword p99_d9:
+ :paramtype p99_d9: float
+ """
+ super(Quantiles, self).__init__(**kwargs)
+ self.p0_d1 = kwargs.get('p0_d1', None)
+ self.p1 = kwargs.get('p1', None)
+ self.p5 = kwargs.get('p5', None)
+ self.p25 = kwargs.get('p25', None)
+ self.p50 = kwargs.get('p50', None)
+ self.p75 = kwargs.get('p75', None)
+ self.p95 = kwargs.get('p95', None)
+ self.p99 = kwargs.get('p99', None)
+ self.p99_d9 = kwargs.get('p99_d9', None)
+
+
+class RegisterExistingData(msrest.serialization.Model):
+ """RegisterExistingData.
+
+ All required parameters must be populated in order to send to Azure.
+
+ :ivar existing_unregistered_asset_id: Required.
+ :vartype existing_unregistered_asset_id: str
+ :ivar name: Required.
+ :vartype name: str
+ :ivar version:
+ :vartype version: str
+ """
+
+ _validation = {
+ 'existing_unregistered_asset_id': {'required': True},
+ 'name': {'required': True},
+ }
+
+ _attribute_map = {
+ 'existing_unregistered_asset_id': {'key': 'existingUnregisteredAssetId', 'type': 'str'},
+ 'name': {'key': 'name', 'type': 'str'},
+ 'version': {'key': 'version', 'type': 'str'},
+ }
+
+ def __init__(
+ self,
+ **kwargs
+ ):
+ """
+ :keyword existing_unregistered_asset_id: Required.
+ :paramtype existing_unregistered_asset_id: str
+ :keyword name: Required.
+ :paramtype name: str
+ :keyword version:
+ :paramtype version: str
+ """
+ super(RegisterExistingData, self).__init__(**kwargs)
+ self.existing_unregistered_asset_id = kwargs['existing_unregistered_asset_id']
+ self.name = kwargs['name']
+ self.version = kwargs.get('version', None)
+
+
+class RootError(msrest.serialization.Model):
+ """The root error.
+
+ :ivar code: The service-defined error code. Supported error codes: ServiceError, UserError,
+ ValidationError, AzureStorageError, TransientError, RequestThrottled.
+ :vartype code: str
+ :ivar severity: The Severity of error.
+ :vartype severity: int
+ :ivar message: A human-readable representation of the error.
+ :vartype message: str
+ :ivar message_format: An unformatted version of the message with no variable substitution.
+ :vartype message_format: str
+ :ivar message_parameters: Value substitutions corresponding to the contents of MessageFormat.
+ :vartype message_parameters: dict[str, str]
+ :ivar reference_code: This code can optionally be set by the system generating the error.
+ It should be used to classify the problem and identify the module and code area where the
+ failure occured.
+ :vartype reference_code: str
+ :ivar details_uri: A URI which points to more details about the context of the error.
+ :vartype details_uri: str
+ :ivar target: The target of the error (e.g., the name of the property in error).
+ :vartype target: str
+ :ivar details: The related errors that occurred during the request.
+ :vartype details: list[~azure.mgmt.machinelearningservices.models.RootError]
+ :ivar inner_error: A nested structure of errors.
+ :vartype inner_error: ~azure.mgmt.machinelearningservices.models.InnerErrorResponse
+ :ivar additional_info: The error additional info.
+ :vartype additional_info: list[~azure.mgmt.machinelearningservices.models.ErrorAdditionalInfo]
+ """
+
+ _attribute_map = {
+ 'code': {'key': 'code', 'type': 'str'},
+ 'severity': {'key': 'severity', 'type': 'int'},
+ 'message': {'key': 'message', 'type': 'str'},
+ 'message_format': {'key': 'messageFormat', 'type': 'str'},
+ 'message_parameters': {'key': 'messageParameters', 'type': '{str}'},
+ 'reference_code': {'key': 'referenceCode', 'type': 'str'},
+ 'details_uri': {'key': 'detailsUri', 'type': 'str'},
+ 'target': {'key': 'target', 'type': 'str'},
+ 'details': {'key': 'details', 'type': '[RootError]'},
+ 'inner_error': {'key': 'innerError', 'type': 'InnerErrorResponse'},
+ 'additional_info': {'key': 'additionalInfo', 'type': '[ErrorAdditionalInfo]'},
+ }
+
+ def __init__(
+ self,
+ **kwargs
+ ):
+ """
+ :keyword code: The service-defined error code. Supported error codes: ServiceError, UserError,
+ ValidationError, AzureStorageError, TransientError, RequestThrottled.
+ :paramtype code: str
+ :keyword severity: The Severity of error.
+ :paramtype severity: int
+ :keyword message: A human-readable representation of the error.
+ :paramtype message: str
+ :keyword message_format: An unformatted version of the message with no variable substitution.
+ :paramtype message_format: str
+ :keyword message_parameters: Value substitutions corresponding to the contents of
+ MessageFormat.
+ :paramtype message_parameters: dict[str, str]
+ :keyword reference_code: This code can optionally be set by the system generating the error.
+ It should be used to classify the problem and identify the module and code area where the
+ failure occured.
+ :paramtype reference_code: str
+ :keyword details_uri: A URI which points to more details about the context of the error.
+ :paramtype details_uri: str
+ :keyword target: The target of the error (e.g., the name of the property in error).
+ :paramtype target: str
+ :keyword details: The related errors that occurred during the request.
+ :paramtype details: list[~azure.mgmt.machinelearningservices.models.RootError]
+ :keyword inner_error: A nested structure of errors.
+ :paramtype inner_error: ~azure.mgmt.machinelearningservices.models.InnerErrorResponse
+ :keyword additional_info: The error additional info.
+ :paramtype additional_info:
+ list[~azure.mgmt.machinelearningservices.models.ErrorAdditionalInfo]
+ """
+ super(RootError, self).__init__(**kwargs)
+ self.code = kwargs.get('code', None)
+ self.severity = kwargs.get('severity', None)
+ self.message = kwargs.get('message', None)
+ self.message_format = kwargs.get('message_format', None)
+ self.message_parameters = kwargs.get('message_parameters', None)
+ self.reference_code = kwargs.get('reference_code', None)
+ self.details_uri = kwargs.get('details_uri', None)
+ self.target = kwargs.get('target', None)
+ self.details = kwargs.get('details', None)
+ self.inner_error = kwargs.get('inner_error', None)
+ self.additional_info = kwargs.get('additional_info', None)
+
+
+class SqlDataPath(msrest.serialization.Model):
+ """SqlDataPath.
+
+ :ivar sql_table_name:
+ :vartype sql_table_name: str
+ :ivar sql_query:
+ :vartype sql_query: str
+ :ivar sql_stored_procedure_name:
+ :vartype sql_stored_procedure_name: str
+ :ivar sql_stored_procedure_params:
+ :vartype sql_stored_procedure_params:
+ list[~azure.mgmt.machinelearningservices.models.StoredProcedureParameter]
+ :ivar query_timeout:
+ :vartype query_timeout: long
+ """
+
+ _attribute_map = {
+ 'sql_table_name': {'key': 'sqlTableName', 'type': 'str'},
+ 'sql_query': {'key': 'sqlQuery', 'type': 'str'},
+ 'sql_stored_procedure_name': {'key': 'sqlStoredProcedureName', 'type': 'str'},
+ 'sql_stored_procedure_params': {'key': 'sqlStoredProcedureParams', 'type': '[StoredProcedureParameter]'},
+ 'query_timeout': {'key': 'queryTimeout', 'type': 'long'},
+ }
+
+ def __init__(
+ self,
+ **kwargs
+ ):
+ """
+ :keyword sql_table_name:
+ :paramtype sql_table_name: str
+ :keyword sql_query:
+ :paramtype sql_query: str
+ :keyword sql_stored_procedure_name:
+ :paramtype sql_stored_procedure_name: str
+ :keyword sql_stored_procedure_params:
+ :paramtype sql_stored_procedure_params:
+ list[~azure.mgmt.machinelearningservices.models.StoredProcedureParameter]
+ :keyword query_timeout:
+ :paramtype query_timeout: long
+ """
+ super(SqlDataPath, self).__init__(**kwargs)
+ self.sql_table_name = kwargs.get('sql_table_name', None)
+ self.sql_query = kwargs.get('sql_query', None)
+ self.sql_stored_procedure_name = kwargs.get('sql_stored_procedure_name', None)
+ self.sql_stored_procedure_params = kwargs.get('sql_stored_procedure_params', None)
+ self.query_timeout = kwargs.get('query_timeout', None)
+
+
+class StoredProcedureParameter(msrest.serialization.Model):
+ """StoredProcedureParameter.
+
+ :ivar name:
+ :vartype name: str
+ :ivar value:
+ :vartype value: str
+ :ivar type: Possible values include: "String", "Int", "Decimal", "Guid", "Boolean", "Date".
+ :vartype type: str or ~azure.mgmt.machinelearningservices.models.StoredProcedureParameterType
+ """
+
+ _attribute_map = {
+ 'name': {'key': 'name', 'type': 'str'},
+ 'value': {'key': 'value', 'type': 'str'},
+ 'type': {'key': 'type', 'type': 'str'},
+ }
+
+ def __init__(
+ self,
+ **kwargs
+ ):
+ """
+ :keyword name:
+ :paramtype name: str
+ :keyword value:
+ :paramtype value: str
+ :keyword type: Possible values include: "String", "Int", "Decimal", "Guid", "Boolean", "Date".
+ :paramtype type: str or ~azure.mgmt.machinelearningservices.models.StoredProcedureParameterType
+ """
+ super(StoredProcedureParameter, self).__init__(**kwargs)
+ self.name = kwargs.get('name', None)
+ self.value = kwargs.get('value', None)
+ self.type = kwargs.get('type', None)
+
+
+class StringLengthCount(msrest.serialization.Model):
+ """StringLengthCount.
+
+ :ivar length:
+ :vartype length: long
+ :ivar count:
+ :vartype count: long
+ """
+
+ _attribute_map = {
+ 'length': {'key': 'length', 'type': 'long'},
+ 'count': {'key': 'count', 'type': 'long'},
+ }
+
+ def __init__(
+ self,
+ **kwargs
+ ):
+ """
+ :keyword length:
+ :paramtype length: long
+ :keyword count:
+ :paramtype count: long
+ """
+ super(StringLengthCount, self).__init__(**kwargs)
+ self.length = kwargs.get('length', None)
+ self.count = kwargs.get('count', None)
+
+
+class STypeCount(msrest.serialization.Model):
+ """STypeCount.
+
+ :ivar s_type: Possible values include: "EmailAddress", "GeographicCoordinate", "Ipv4Address",
+ "Ipv6Address", "UsPhoneNumber", "ZipCode".
+ :vartype s_type: str or ~azure.mgmt.machinelearningservices.models.SType
+ :ivar count:
+ :vartype count: long
+ """
+
+ _attribute_map = {
+ 's_type': {'key': 'sType', 'type': 'str'},
+ 'count': {'key': 'count', 'type': 'long'},
+ }
+
+ def __init__(
+ self,
+ **kwargs
+ ):
+ """
+ :keyword s_type: Possible values include: "EmailAddress", "GeographicCoordinate",
+ "Ipv4Address", "Ipv6Address", "UsPhoneNumber", "ZipCode".
+ :paramtype s_type: str or ~azure.mgmt.machinelearningservices.models.SType
+ :keyword count:
+ :paramtype count: long
+ """
+ super(STypeCount, self).__init__(**kwargs)
+ self.s_type = kwargs.get('s_type', None)
+ self.count = kwargs.get('count', None)
+
+
+class TypeCount(msrest.serialization.Model):
+ """TypeCount.
+
+ :ivar type: Possible values include: "String", "Boolean", "Integer", "Decimal", "Date",
+ "Unknown", "Error", "Null", "DataRow", "List", "Stream".
+ :vartype type: str or ~azure.mgmt.machinelearningservices.models.FieldType
+ :ivar count:
+ :vartype count: long
+ """
+
+ _attribute_map = {
+ 'type': {'key': 'type', 'type': 'str'},
+ 'count': {'key': 'count', 'type': 'long'},
+ }
+
+ def __init__(
+ self,
+ **kwargs
+ ):
+ """
+ :keyword type: Possible values include: "String", "Boolean", "Integer", "Decimal", "Date",
+ "Unknown", "Error", "Null", "DataRow", "List", "Stream".
+ :paramtype type: str or ~azure.mgmt.machinelearningservices.models.FieldType
+ :keyword count:
+ :paramtype count: long
+ """
+ super(TypeCount, self).__init__(**kwargs)
+ self.type = kwargs.get('type', None)
+ self.count = kwargs.get('count', None)
+
+
+class User(msrest.serialization.Model):
+ """User.
+
+ :ivar user_object_id: A user or service principal's object ID.
+ This is EUPI and may only be logged to warm path telemetry.
+ :vartype user_object_id: str
+ :ivar user_pu_id: A user or service principal's PuID.
+ This is PII and should never be logged.
+ :vartype user_pu_id: str
+ :ivar user_idp: A user identity provider. Eg live.com
+ This is PII and should never be logged.
+ :vartype user_idp: str
+ :ivar user_alt_sec_id: A user alternate sec id. This represents the user in a different
+ identity provider system Eg.1:live.com:puid
+ This is PII and should never be logged.
+ :vartype user_alt_sec_id: str
+ :ivar user_iss: The issuer which issed the token for this user.
+ This is PII and should never be logged.
+ :vartype user_iss: str
+ :ivar user_tenant_id: A user or service principal's tenant ID.
+ :vartype user_tenant_id: str
+ :ivar user_name: A user's full name or a service principal's app ID.
+ This is PII and should never be logged.
+ :vartype user_name: str
+ :ivar upn: A user's Principal name (upn)
+ This is PII andshould never be logged.
+ :vartype upn: str
+ """
+
+ _attribute_map = {
+ 'user_object_id': {'key': 'userObjectId', 'type': 'str'},
+ 'user_pu_id': {'key': 'userPuId', 'type': 'str'},
+ 'user_idp': {'key': 'userIdp', 'type': 'str'},
+ 'user_alt_sec_id': {'key': 'userAltSecId', 'type': 'str'},
+ 'user_iss': {'key': 'userIss', 'type': 'str'},
+ 'user_tenant_id': {'key': 'userTenantId', 'type': 'str'},
+ 'user_name': {'key': 'userName', 'type': 'str'},
+ 'upn': {'key': 'upn', 'type': 'str'},
+ }
+
+ def __init__(
+ self,
+ **kwargs
+ ):
+ """
+ :keyword user_object_id: A user or service principal's object ID.
+ This is EUPI and may only be logged to warm path telemetry.
+ :paramtype user_object_id: str
+ :keyword user_pu_id: A user or service principal's PuID.
+ This is PII and should never be logged.
+ :paramtype user_pu_id: str
+ :keyword user_idp: A user identity provider. Eg live.com
+ This is PII and should never be logged.
+ :paramtype user_idp: str
+ :keyword user_alt_sec_id: A user alternate sec id. This represents the user in a different
+ identity provider system Eg.1:live.com:puid
+ This is PII and should never be logged.
+ :paramtype user_alt_sec_id: str
+ :keyword user_iss: The issuer which issed the token for this user.
+ This is PII and should never be logged.
+ :paramtype user_iss: str
+ :keyword user_tenant_id: A user or service principal's tenant ID.
+ :paramtype user_tenant_id: str
+ :keyword user_name: A user's full name or a service principal's app ID.
+ This is PII and should never be logged.
+ :paramtype user_name: str
+ :keyword upn: A user's Principal name (upn)
+ This is PII andshould never be logged.
+ :paramtype upn: str
+ """
+ super(User, self).__init__(**kwargs)
+ self.user_object_id = kwargs.get('user_object_id', None)
+ self.user_pu_id = kwargs.get('user_pu_id', None)
+ self.user_idp = kwargs.get('user_idp', None)
+ self.user_alt_sec_id = kwargs.get('user_alt_sec_id', None)
+ self.user_iss = kwargs.get('user_iss', None)
+ self.user_tenant_id = kwargs.get('user_tenant_id', None)
+ self.user_name = kwargs.get('user_name', None)
+ self.upn = kwargs.get('upn', None)
+
+
+class ValueCount(msrest.serialization.Model):
+ """ValueCount.
+
+ :ivar value:
+ :vartype value: ~azure.mgmt.machinelearningservices.models.DataField
+ :ivar count:
+ :vartype count: long
+ """
+
+ _attribute_map = {
+ 'value': {'key': 'value', 'type': 'DataField'},
+ 'count': {'key': 'count', 'type': 'long'},
+ }
+
+ def __init__(
+ self,
+ **kwargs
+ ):
+ """
+ :keyword value:
+ :paramtype value: ~azure.mgmt.machinelearningservices.models.DataField
+ :keyword count:
+ :paramtype count: long
+ """
+ super(ValueCount, self).__init__(**kwargs)
+ self.value = kwargs.get('value', None)
+ self.count = kwargs.get('count', None)
diff --git a/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/models/_models_py3.py b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/models/_models_py3.py
new file mode 100644
index 00000000..159fd205
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/models/_models_py3.py
@@ -0,0 +1,2916 @@
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) AutoRest Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+
+import datetime
+from typing import Any, Dict, List, Optional, Union
+
+from azure.core.exceptions import HttpResponseError
+import msrest.serialization
+
+from ._azure_machine_learning_workspaces_enums import *
+
+
+class ActionResult(msrest.serialization.Model):
+ """ActionResult.
+
+ :ivar is_up_to_date:
+ :vartype is_up_to_date: bool
+ :ivar is_up_to_date_error:
+ :vartype is_up_to_date_error: str
+ :ivar result_artifact_ids:
+ :vartype result_artifact_ids: list[str]
+ :ivar in_progress_action_id:
+ :vartype in_progress_action_id: str
+ :ivar run_id:
+ :vartype run_id: str
+ :ivar experiment_name:
+ :vartype experiment_name: str
+ :ivar datastore_name:
+ :vartype datastore_name: str
+ """
+
+ _attribute_map = {
+ 'is_up_to_date': {'key': 'isUpToDate', 'type': 'bool'},
+ 'is_up_to_date_error': {'key': 'isUpToDateError', 'type': 'str'},
+ 'result_artifact_ids': {'key': 'resultArtifactIds', 'type': '[str]'},
+ 'in_progress_action_id': {'key': 'inProgressActionId', 'type': 'str'},
+ 'run_id': {'key': 'runId', 'type': 'str'},
+ 'experiment_name': {'key': 'experimentName', 'type': 'str'},
+ 'datastore_name': {'key': 'datastoreName', 'type': 'str'},
+ }
+
+ def __init__(
+ self,
+ *,
+ is_up_to_date: Optional[bool] = None,
+ is_up_to_date_error: Optional[str] = None,
+ result_artifact_ids: Optional[List[str]] = None,
+ in_progress_action_id: Optional[str] = None,
+ run_id: Optional[str] = None,
+ experiment_name: Optional[str] = None,
+ datastore_name: Optional[str] = None,
+ **kwargs
+ ):
+ """
+ :keyword is_up_to_date:
+ :paramtype is_up_to_date: bool
+ :keyword is_up_to_date_error:
+ :paramtype is_up_to_date_error: str
+ :keyword result_artifact_ids:
+ :paramtype result_artifact_ids: list[str]
+ :keyword in_progress_action_id:
+ :paramtype in_progress_action_id: str
+ :keyword run_id:
+ :paramtype run_id: str
+ :keyword experiment_name:
+ :paramtype experiment_name: str
+ :keyword datastore_name:
+ :paramtype datastore_name: str
+ """
+ super(ActionResult, self).__init__(**kwargs)
+ self.is_up_to_date = is_up_to_date
+ self.is_up_to_date_error = is_up_to_date_error
+ self.result_artifact_ids = result_artifact_ids
+ self.in_progress_action_id = in_progress_action_id
+ self.run_id = run_id
+ self.experiment_name = experiment_name
+ self.datastore_name = datastore_name
+
+
+class AssetId(msrest.serialization.Model):
+ """AssetId.
+
+ All required parameters must be populated in order to send to Azure.
+
+ :ivar value: Required.
+ :vartype value: str
+ """
+
+ _validation = {
+ 'value': {'required': True},
+ }
+
+ _attribute_map = {
+ 'value': {'key': 'value', 'type': 'str'},
+ }
+
+ def __init__(
+ self,
+ *,
+ value: str,
+ **kwargs
+ ):
+ """
+ :keyword value: Required.
+ :paramtype value: str
+ """
+ super(AssetId, self).__init__(**kwargs)
+ self.value = value
+
+
+class BatchDataUriResponse(msrest.serialization.Model):
+ """BatchDataUriResponse.
+
+ :ivar values: Dictionary of :code:`<DataUriV2Response>`.
+ :vartype values: dict[str, ~azure.mgmt.machinelearningservices.models.DataUriV2Response]
+ """
+
+ _attribute_map = {
+ 'values': {'key': 'values', 'type': '{DataUriV2Response}'},
+ }
+
+ def __init__(
+ self,
+ *,
+ values: Optional[Dict[str, "DataUriV2Response"]] = None,
+ **kwargs
+ ):
+ """
+ :keyword values: Dictionary of :code:`<DataUriV2Response>`.
+ :paramtype values: dict[str, ~azure.mgmt.machinelearningservices.models.DataUriV2Response]
+ """
+ super(BatchDataUriResponse, self).__init__(**kwargs)
+ self.values = values
+
+
+class BatchGetResolvedURIs(msrest.serialization.Model):
+ """BatchGetResolvedURIs.
+
+ All required parameters must be populated in order to send to Azure.
+
+ :ivar values: Required.
+ :vartype values: list[str]
+ """
+
+ _validation = {
+ 'values': {'required': True},
+ }
+
+ _attribute_map = {
+ 'values': {'key': 'values', 'type': '[str]'},
+ }
+
+ def __init__(
+ self,
+ *,
+ values: List[str],
+ **kwargs
+ ):
+ """
+ :keyword values: Required.
+ :paramtype values: list[str]
+ """
+ super(BatchGetResolvedURIs, self).__init__(**kwargs)
+ self.values = values
+
+
+class ColumnDefinition(msrest.serialization.Model):
+ """ColumnDefinition.
+
+ :ivar id:
+ :vartype id: str
+ :ivar type: Possible values include: "String", "Boolean", "Integer", "Decimal", "Date",
+ "Unknown", "Error", "Null", "DataRow", "List", "Stream".
+ :vartype type: str or ~azure.mgmt.machinelearningservices.models.FieldType
+ """
+
+ _attribute_map = {
+ 'id': {'key': 'id', 'type': 'str'},
+ 'type': {'key': 'type', 'type': 'str'},
+ }
+
+ def __init__(
+ self,
+ *,
+ id: Optional[str] = None,
+ type: Optional[Union[str, "FieldType"]] = None,
+ **kwargs
+ ):
+ """
+ :keyword id:
+ :paramtype id: str
+ :keyword type: Possible values include: "String", "Boolean", "Integer", "Decimal", "Date",
+ "Unknown", "Error", "Null", "DataRow", "List", "Stream".
+ :paramtype type: str or ~azure.mgmt.machinelearningservices.models.FieldType
+ """
+ super(ColumnDefinition, self).__init__(**kwargs)
+ self.id = id
+ self.type = type
+
+
+class CreateUnregisteredInputData(msrest.serialization.Model):
+ """CreateUnregisteredInputData.
+
+ All required parameters must be populated in order to send to Azure.
+
+ :ivar run_id: Required.
+ :vartype run_id: str
+ :ivar input_name: Required.
+ :vartype input_name: str
+ :ivar uri: Required.
+ :vartype uri: str
+ :ivar type: Required.
+ :vartype type: str
+ """
+
+ _validation = {
+ 'run_id': {'required': True},
+ 'input_name': {'required': True},
+ 'uri': {'required': True},
+ 'type': {'required': True},
+ }
+
+ _attribute_map = {
+ 'run_id': {'key': 'runId', 'type': 'str'},
+ 'input_name': {'key': 'inputName', 'type': 'str'},
+ 'uri': {'key': 'uri', 'type': 'str'},
+ 'type': {'key': 'type', 'type': 'str'},
+ }
+
+ def __init__(
+ self,
+ *,
+ run_id: str,
+ input_name: str,
+ uri: str,
+ type: str,
+ **kwargs
+ ):
+ """
+ :keyword run_id: Required.
+ :paramtype run_id: str
+ :keyword input_name: Required.
+ :paramtype input_name: str
+ :keyword uri: Required.
+ :paramtype uri: str
+ :keyword type: Required.
+ :paramtype type: str
+ """
+ super(CreateUnregisteredInputData, self).__init__(**kwargs)
+ self.run_id = run_id
+ self.input_name = input_name
+ self.uri = uri
+ self.type = type
+
+
+class CreateUnregisteredOutputData(msrest.serialization.Model):
+ """CreateUnregisteredOutputData.
+
+ All required parameters must be populated in order to send to Azure.
+
+ :ivar run_id: Required.
+ :vartype run_id: str
+ :ivar output_name: Required.
+ :vartype output_name: str
+ :ivar uri: Required.
+ :vartype uri: str
+ :ivar type: Required.
+ :vartype type: str
+ """
+
+ _validation = {
+ 'run_id': {'required': True},
+ 'output_name': {'required': True},
+ 'uri': {'required': True},
+ 'type': {'required': True},
+ }
+
+ _attribute_map = {
+ 'run_id': {'key': 'runId', 'type': 'str'},
+ 'output_name': {'key': 'outputName', 'type': 'str'},
+ 'uri': {'key': 'uri', 'type': 'str'},
+ 'type': {'key': 'type', 'type': 'str'},
+ }
+
+ def __init__(
+ self,
+ *,
+ run_id: str,
+ output_name: str,
+ uri: str,
+ type: str,
+ **kwargs
+ ):
+ """
+ :keyword run_id: Required.
+ :paramtype run_id: str
+ :keyword output_name: Required.
+ :paramtype output_name: str
+ :keyword uri: Required.
+ :paramtype uri: str
+ :keyword type: Required.
+ :paramtype type: str
+ """
+ super(CreateUnregisteredOutputData, self).__init__(**kwargs)
+ self.run_id = run_id
+ self.output_name = output_name
+ self.uri = uri
+ self.type = type
+
+
+class DataCallRequest(msrest.serialization.Model):
+ """DataCallRequest.
+
+ :ivar data_uri:
+ :vartype data_uri: str
+ :ivar data_type:
+ :vartype data_type: str
+ :ivar asset_id:
+ :vartype asset_id: str
+ :ivar data_container_name:
+ :vartype data_container_name: str
+ :ivar version_id:
+ :vartype version_id: str
+ """
+
+ _attribute_map = {
+ 'data_uri': {'key': 'dataUri', 'type': 'str'},
+ 'data_type': {'key': 'dataType', 'type': 'str'},
+ 'asset_id': {'key': 'assetId', 'type': 'str'},
+ 'data_container_name': {'key': 'dataContainerName', 'type': 'str'},
+ 'version_id': {'key': 'versionId', 'type': 'str'},
+ }
+
+ def __init__(
+ self,
+ *,
+ data_uri: Optional[str] = None,
+ data_type: Optional[str] = None,
+ asset_id: Optional[str] = None,
+ data_container_name: Optional[str] = None,
+ version_id: Optional[str] = None,
+ **kwargs
+ ):
+ """
+ :keyword data_uri:
+ :paramtype data_uri: str
+ :keyword data_type:
+ :paramtype data_type: str
+ :keyword asset_id:
+ :paramtype asset_id: str
+ :keyword data_container_name:
+ :paramtype data_container_name: str
+ :keyword version_id:
+ :paramtype version_id: str
+ """
+ super(DataCallRequest, self).__init__(**kwargs)
+ self.data_uri = data_uri
+ self.data_type = data_type
+ self.asset_id = asset_id
+ self.data_container_name = data_container_name
+ self.version_id = version_id
+
+
+class DataContainer(msrest.serialization.Model):
+ """DataContainer.
+
+ All required parameters must be populated in order to send to Azure.
+
+ :ivar name: Required.
+ :vartype name: str
+ :ivar data_type: Required.
+ :vartype data_type: str
+ :ivar mutable_props:
+ :vartype mutable_props: ~azure.mgmt.machinelearningservices.models.DataContainerMutable
+ :ivar is_registered:
+ :vartype is_registered: bool
+ """
+
+ _validation = {
+ 'name': {'required': True},
+ 'data_type': {'required': True},
+ }
+
+ _attribute_map = {
+ 'name': {'key': 'name', 'type': 'str'},
+ 'data_type': {'key': 'dataType', 'type': 'str'},
+ 'mutable_props': {'key': 'mutableProps', 'type': 'DataContainerMutable'},
+ 'is_registered': {'key': 'isRegistered', 'type': 'bool'},
+ }
+
+ def __init__(
+ self,
+ *,
+ name: str,
+ data_type: str,
+ mutable_props: Optional["DataContainerMutable"] = None,
+ is_registered: Optional[bool] = None,
+ **kwargs
+ ):
+ """
+ :keyword name: Required.
+ :paramtype name: str
+ :keyword data_type: Required.
+ :paramtype data_type: str
+ :keyword mutable_props:
+ :paramtype mutable_props: ~azure.mgmt.machinelearningservices.models.DataContainerMutable
+ :keyword is_registered:
+ :paramtype is_registered: bool
+ """
+ super(DataContainer, self).__init__(**kwargs)
+ self.name = name
+ self.data_type = data_type
+ self.mutable_props = mutable_props
+ self.is_registered = is_registered
+
+
+class DataContainerEntity(msrest.serialization.Model):
+ """DataContainerEntity.
+
+ :ivar data_container:
+ :vartype data_container: ~azure.mgmt.machinelearningservices.models.DataContainer
+ :ivar entity_metadata:
+ :vartype entity_metadata: ~azure.mgmt.machinelearningservices.models.EntityMetadata
+ :ivar latest_version:
+ :vartype latest_version: ~azure.mgmt.machinelearningservices.models.DataVersionEntity
+ :ivar next_version_id:
+ :vartype next_version_id: str
+ :ivar legacy_dataset_type:
+ :vartype legacy_dataset_type: str
+ """
+
+ _attribute_map = {
+ 'data_container': {'key': 'dataContainer', 'type': 'DataContainer'},
+ 'entity_metadata': {'key': 'entityMetadata', 'type': 'EntityMetadata'},
+ 'latest_version': {'key': 'latestVersion', 'type': 'DataVersionEntity'},
+ 'next_version_id': {'key': 'nextVersionId', 'type': 'str'},
+ 'legacy_dataset_type': {'key': 'legacyDatasetType', 'type': 'str'},
+ }
+
+ def __init__(
+ self,
+ *,
+ data_container: Optional["DataContainer"] = None,
+ entity_metadata: Optional["EntityMetadata"] = None,
+ latest_version: Optional["DataVersionEntity"] = None,
+ next_version_id: Optional[str] = None,
+ legacy_dataset_type: Optional[str] = None,
+ **kwargs
+ ):
+ """
+ :keyword data_container:
+ :paramtype data_container: ~azure.mgmt.machinelearningservices.models.DataContainer
+ :keyword entity_metadata:
+ :paramtype entity_metadata: ~azure.mgmt.machinelearningservices.models.EntityMetadata
+ :keyword latest_version:
+ :paramtype latest_version: ~azure.mgmt.machinelearningservices.models.DataVersionEntity
+ :keyword next_version_id:
+ :paramtype next_version_id: str
+ :keyword legacy_dataset_type:
+ :paramtype legacy_dataset_type: str
+ """
+ super(DataContainerEntity, self).__init__(**kwargs)
+ self.data_container = data_container
+ self.entity_metadata = entity_metadata
+ self.latest_version = latest_version
+ self.next_version_id = next_version_id
+ self.legacy_dataset_type = legacy_dataset_type
+
+
+class DataContainerMutable(msrest.serialization.Model):
+ """DataContainerMutable.
+
+ :ivar description:
+ :vartype description: str
+ :ivar tags: A set of tags. Dictionary of :code:`<string>`.
+ :vartype tags: dict[str, str]
+ :ivar is_archived:
+ :vartype is_archived: bool
+ """
+
+ _attribute_map = {
+ 'description': {'key': 'description', 'type': 'str'},
+ 'tags': {'key': 'tags', 'type': '{str}'},
+ 'is_archived': {'key': 'isArchived', 'type': 'bool'},
+ }
+
+ def __init__(
+ self,
+ *,
+ description: Optional[str] = None,
+ tags: Optional[Dict[str, str]] = None,
+ is_archived: Optional[bool] = None,
+ **kwargs
+ ):
+ """
+ :keyword description:
+ :paramtype description: str
+ :keyword tags: A set of tags. Dictionary of :code:`<string>`.
+ :paramtype tags: dict[str, str]
+ :keyword is_archived:
+ :paramtype is_archived: bool
+ """
+ super(DataContainerMutable, self).__init__(**kwargs)
+ self.description = description
+ self.tags = tags
+ self.is_archived = is_archived
+
+
+class DataField(msrest.serialization.Model):
+ """DataField.
+
+ :ivar type: Possible values include: "String", "Boolean", "Integer", "Decimal", "Date",
+ "Unknown", "Error", "Null", "DataRow", "List", "Stream".
+ :vartype type: str or ~azure.mgmt.machinelearningservices.models.FieldType
+ :ivar value: Anything.
+ :vartype value: any
+ """
+
+ _attribute_map = {
+ 'type': {'key': 'type', 'type': 'str'},
+ 'value': {'key': 'value', 'type': 'object'},
+ }
+
+ def __init__(
+ self,
+ *,
+ type: Optional[Union[str, "FieldType"]] = None,
+ value: Optional[Any] = None,
+ **kwargs
+ ):
+ """
+ :keyword type: Possible values include: "String", "Boolean", "Integer", "Decimal", "Date",
+ "Unknown", "Error", "Null", "DataRow", "List", "Stream".
+ :paramtype type: str or ~azure.mgmt.machinelearningservices.models.FieldType
+ :keyword value: Anything.
+ :paramtype value: any
+ """
+ super(DataField, self).__init__(**kwargs)
+ self.type = type
+ self.value = value
+
+
+class Dataset(msrest.serialization.Model):
+ """Dataset.
+
+ :ivar dataset_id:
+ :vartype dataset_id: str
+ :ivar dataset_state:
+ :vartype dataset_state: ~azure.mgmt.machinelearningservices.models.DatasetState
+ :ivar latest:
+ :vartype latest: ~azure.mgmt.machinelearningservices.models.DatasetDefinition
+ :ivar next_version_id:
+ :vartype next_version_id: str
+ :ivar created_time:
+ :vartype created_time: ~datetime.datetime
+ :ivar modified_time:
+ :vartype modified_time: ~datetime.datetime
+ :ivar etag:
+ :vartype etag: str
+ :ivar name:
+ :vartype name: str
+ :ivar description:
+ :vartype description: str
+ :ivar tags: A set of tags. Dictionary of :code:`<string>`.
+ :vartype tags: dict[str, str]
+ :ivar is_visible:
+ :vartype is_visible: bool
+ :ivar default_compute:
+ :vartype default_compute: str
+ :ivar dataset_type:
+ :vartype dataset_type: str
+ """
+
+ _attribute_map = {
+ 'dataset_id': {'key': 'datasetId', 'type': 'str'},
+ 'dataset_state': {'key': 'datasetState', 'type': 'DatasetState'},
+ 'latest': {'key': 'latest', 'type': 'DatasetDefinition'},
+ 'next_version_id': {'key': 'nextVersionId', 'type': 'str'},
+ 'created_time': {'key': 'createdTime', 'type': 'iso-8601'},
+ 'modified_time': {'key': 'modifiedTime', 'type': 'iso-8601'},
+ 'etag': {'key': 'etag', 'type': 'str'},
+ 'name': {'key': 'name', 'type': 'str'},
+ 'description': {'key': 'description', 'type': 'str'},
+ 'tags': {'key': 'tags', 'type': '{str}'},
+ 'is_visible': {'key': 'isVisible', 'type': 'bool'},
+ 'default_compute': {'key': 'defaultCompute', 'type': 'str'},
+ 'dataset_type': {'key': 'datasetType', 'type': 'str'},
+ }
+
+ def __init__(
+ self,
+ *,
+ dataset_id: Optional[str] = None,
+ dataset_state: Optional["DatasetState"] = None,
+ latest: Optional["DatasetDefinition"] = None,
+ next_version_id: Optional[str] = None,
+ created_time: Optional[datetime.datetime] = None,
+ modified_time: Optional[datetime.datetime] = None,
+ etag: Optional[str] = None,
+ name: Optional[str] = None,
+ description: Optional[str] = None,
+ tags: Optional[Dict[str, str]] = None,
+ is_visible: Optional[bool] = None,
+ default_compute: Optional[str] = None,
+ dataset_type: Optional[str] = None,
+ **kwargs
+ ):
+ """
+ :keyword dataset_id:
+ :paramtype dataset_id: str
+ :keyword dataset_state:
+ :paramtype dataset_state: ~azure.mgmt.machinelearningservices.models.DatasetState
+ :keyword latest:
+ :paramtype latest: ~azure.mgmt.machinelearningservices.models.DatasetDefinition
+ :keyword next_version_id:
+ :paramtype next_version_id: str
+ :keyword created_time:
+ :paramtype created_time: ~datetime.datetime
+ :keyword modified_time:
+ :paramtype modified_time: ~datetime.datetime
+ :keyword etag:
+ :paramtype etag: str
+ :keyword name:
+ :paramtype name: str
+ :keyword description:
+ :paramtype description: str
+ :keyword tags: A set of tags. Dictionary of :code:`<string>`.
+ :paramtype tags: dict[str, str]
+ :keyword is_visible:
+ :paramtype is_visible: bool
+ :keyword default_compute:
+ :paramtype default_compute: str
+ :keyword dataset_type:
+ :paramtype dataset_type: str
+ """
+ super(Dataset, self).__init__(**kwargs)
+ self.dataset_id = dataset_id
+ self.dataset_state = dataset_state
+ self.latest = latest
+ self.next_version_id = next_version_id
+ self.created_time = created_time
+ self.modified_time = modified_time
+ self.etag = etag
+ self.name = name
+ self.description = description
+ self.tags = tags
+ self.is_visible = is_visible
+ self.default_compute = default_compute
+ self.dataset_type = dataset_type
+
+
+class DatasetDefinition(msrest.serialization.Model):
+ """DatasetDefinition.
+
+ :ivar dataset_id:
+ :vartype dataset_id: str
+ :ivar version_id:
+ :vartype version_id: str
+ :ivar dataset_definition_state:
+ :vartype dataset_definition_state: ~azure.mgmt.machinelearningservices.models.DatasetState
+ :ivar dataflow:
+ :vartype dataflow: str
+ :ivar dataflow_type: Possible values include: "Json", "Yaml".
+ :vartype dataflow_type: str or ~azure.mgmt.machinelearningservices.models.DataflowType
+ :ivar data_path:
+ :vartype data_path: ~azure.mgmt.machinelearningservices.models.DatasetPath
+ :ivar partition_format_in_path:
+ :vartype partition_format_in_path: str
+ :ivar profile_action_result:
+ :vartype profile_action_result: ~azure.mgmt.machinelearningservices.models.ProfileActionResult
+ :ivar notes:
+ :vartype notes: str
+ :ivar etag:
+ :vartype etag: str
+ :ivar created_time:
+ :vartype created_time: ~datetime.datetime
+ :ivar modified_time:
+ :vartype modified_time: ~datetime.datetime
+ :ivar data_expiry_time:
+ :vartype data_expiry_time: ~datetime.datetime
+ :ivar created_by:
+ :vartype created_by: ~azure.mgmt.machinelearningservices.models.User
+ :ivar modified_by:
+ :vartype modified_by: ~azure.mgmt.machinelearningservices.models.User
+ :ivar file_type:
+ :vartype file_type: str
+ :ivar properties: Dictionary of :code:`<any>`.
+ :vartype properties: dict[str, any]
+ :ivar saved_dataset_id:
+ :vartype saved_dataset_id: str
+ :ivar telemetry_info: Dictionary of :code:`<string>`.
+ :vartype telemetry_info: dict[str, str]
+ :ivar use_description_tags_from_definition:
+ :vartype use_description_tags_from_definition: bool
+ :ivar description:
+ :vartype description: str
+ :ivar tags: A set of tags. Dictionary of :code:`<string>`.
+ :vartype tags: dict[str, str]
+ """
+
+ _attribute_map = {
+ 'dataset_id': {'key': 'datasetId', 'type': 'str'},
+ 'version_id': {'key': 'versionId', 'type': 'str'},
+ 'dataset_definition_state': {'key': 'datasetDefinitionState', 'type': 'DatasetState'},
+ 'dataflow': {'key': 'dataflow', 'type': 'str'},
+ 'dataflow_type': {'key': 'dataflowType', 'type': 'str'},
+ 'data_path': {'key': 'dataPath', 'type': 'DatasetPath'},
+ 'partition_format_in_path': {'key': 'partitionFormatInPath', 'type': 'str'},
+ 'profile_action_result': {'key': 'profileActionResult', 'type': 'ProfileActionResult'},
+ 'notes': {'key': 'notes', 'type': 'str'},
+ 'etag': {'key': 'etag', 'type': 'str'},
+ 'created_time': {'key': 'createdTime', 'type': 'iso-8601'},
+ 'modified_time': {'key': 'modifiedTime', 'type': 'iso-8601'},
+ 'data_expiry_time': {'key': 'dataExpiryTime', 'type': 'iso-8601'},
+ 'created_by': {'key': 'createdBy', 'type': 'User'},
+ 'modified_by': {'key': 'modifiedBy', 'type': 'User'},
+ 'file_type': {'key': 'fileType', 'type': 'str'},
+ 'properties': {'key': 'properties', 'type': '{object}'},
+ 'saved_dataset_id': {'key': 'savedDatasetId', 'type': 'str'},
+ 'telemetry_info': {'key': 'telemetryInfo', 'type': '{str}'},
+ 'use_description_tags_from_definition': {'key': 'useDescriptionTagsFromDefinition', 'type': 'bool'},
+ 'description': {'key': 'description', 'type': 'str'},
+ 'tags': {'key': 'tags', 'type': '{str}'},
+ }
+
+ def __init__(
+ self,
+ *,
+ dataset_id: Optional[str] = None,
+ version_id: Optional[str] = None,
+ dataset_definition_state: Optional["DatasetState"] = None,
+ dataflow: Optional[str] = None,
+ dataflow_type: Optional[Union[str, "DataflowType"]] = None,
+ data_path: Optional["DatasetPath"] = None,
+ partition_format_in_path: Optional[str] = None,
+ profile_action_result: Optional["ProfileActionResult"] = None,
+ notes: Optional[str] = None,
+ etag: Optional[str] = None,
+ created_time: Optional[datetime.datetime] = None,
+ modified_time: Optional[datetime.datetime] = None,
+ data_expiry_time: Optional[datetime.datetime] = None,
+ created_by: Optional["User"] = None,
+ modified_by: Optional["User"] = None,
+ file_type: Optional[str] = None,
+ properties: Optional[Dict[str, Any]] = None,
+ saved_dataset_id: Optional[str] = None,
+ telemetry_info: Optional[Dict[str, str]] = None,
+ use_description_tags_from_definition: Optional[bool] = None,
+ description: Optional[str] = None,
+ tags: Optional[Dict[str, str]] = None,
+ **kwargs
+ ):
+ """
+ :keyword dataset_id:
+ :paramtype dataset_id: str
+ :keyword version_id:
+ :paramtype version_id: str
+ :keyword dataset_definition_state:
+ :paramtype dataset_definition_state: ~azure.mgmt.machinelearningservices.models.DatasetState
+ :keyword dataflow:
+ :paramtype dataflow: str
+ :keyword dataflow_type: Possible values include: "Json", "Yaml".
+ :paramtype dataflow_type: str or ~azure.mgmt.machinelearningservices.models.DataflowType
+ :keyword data_path:
+ :paramtype data_path: ~azure.mgmt.machinelearningservices.models.DatasetPath
+ :keyword partition_format_in_path:
+ :paramtype partition_format_in_path: str
+ :keyword profile_action_result:
+ :paramtype profile_action_result:
+ ~azure.mgmt.machinelearningservices.models.ProfileActionResult
+ :keyword notes:
+ :paramtype notes: str
+ :keyword etag:
+ :paramtype etag: str
+ :keyword created_time:
+ :paramtype created_time: ~datetime.datetime
+ :keyword modified_time:
+ :paramtype modified_time: ~datetime.datetime
+ :keyword data_expiry_time:
+ :paramtype data_expiry_time: ~datetime.datetime
+ :keyword created_by:
+ :paramtype created_by: ~azure.mgmt.machinelearningservices.models.User
+ :keyword modified_by:
+ :paramtype modified_by: ~azure.mgmt.machinelearningservices.models.User
+ :keyword file_type:
+ :paramtype file_type: str
+ :keyword properties: Dictionary of :code:`<any>`.
+ :paramtype properties: dict[str, any]
+ :keyword saved_dataset_id:
+ :paramtype saved_dataset_id: str
+ :keyword telemetry_info: Dictionary of :code:`<string>`.
+ :paramtype telemetry_info: dict[str, str]
+ :keyword use_description_tags_from_definition:
+ :paramtype use_description_tags_from_definition: bool
+ :keyword description:
+ :paramtype description: str
+ :keyword tags: A set of tags. Dictionary of :code:`<string>`.
+ :paramtype tags: dict[str, str]
+ """
+ super(DatasetDefinition, self).__init__(**kwargs)
+ self.dataset_id = dataset_id
+ self.version_id = version_id
+ self.dataset_definition_state = dataset_definition_state
+ self.dataflow = dataflow
+ self.dataflow_type = dataflow_type
+ self.data_path = data_path
+ self.partition_format_in_path = partition_format_in_path
+ self.profile_action_result = profile_action_result
+ self.notes = notes
+ self.etag = etag
+ self.created_time = created_time
+ self.modified_time = modified_time
+ self.data_expiry_time = data_expiry_time
+ self.created_by = created_by
+ self.modified_by = modified_by
+ self.file_type = file_type
+ self.properties = properties
+ self.saved_dataset_id = saved_dataset_id
+ self.telemetry_info = telemetry_info
+ self.use_description_tags_from_definition = use_description_tags_from_definition
+ self.description = description
+ self.tags = tags
+
+
+class DatasetDefinitionReference(msrest.serialization.Model):
+ """DatasetDefinitionReference.
+
+ :ivar dataset_id:
+ :vartype dataset_id: str
+ :ivar definition_version:
+ :vartype definition_version: str
+ """
+
+ _attribute_map = {
+ 'dataset_id': {'key': 'datasetId', 'type': 'str'},
+ 'definition_version': {'key': 'definitionVersion', 'type': 'str'},
+ }
+
+ def __init__(
+ self,
+ *,
+ dataset_id: Optional[str] = None,
+ definition_version: Optional[str] = None,
+ **kwargs
+ ):
+ """
+ :keyword dataset_id:
+ :paramtype dataset_id: str
+ :keyword definition_version:
+ :paramtype definition_version: str
+ """
+ super(DatasetDefinitionReference, self).__init__(**kwargs)
+ self.dataset_id = dataset_id
+ self.definition_version = definition_version
+
+
+class DatasetPath(msrest.serialization.Model):
+ """DatasetPath.
+
+ :ivar datastore_name:
+ :vartype datastore_name: str
+ :ivar relative_path:
+ :vartype relative_path: str
+ :ivar azure_file_path:
+ :vartype azure_file_path: str
+ :ivar paths:
+ :vartype paths: list[str]
+ :ivar sql_data_path:
+ :vartype sql_data_path: ~azure.mgmt.machinelearningservices.models.SqlDataPath
+ :ivar http_url:
+ :vartype http_url: str
+ :ivar additional_properties: Dictionary of :code:`<any>`.
+ :vartype additional_properties: dict[str, any]
+ :ivar partition_format:
+ :vartype partition_format: str
+ :ivar partition_format_ignore_error:
+ :vartype partition_format_ignore_error: bool
+ """
+
+ _attribute_map = {
+ 'datastore_name': {'key': 'datastoreName', 'type': 'str'},
+ 'relative_path': {'key': 'relativePath', 'type': 'str'},
+ 'azure_file_path': {'key': 'azureFilePath', 'type': 'str'},
+ 'paths': {'key': 'paths', 'type': '[str]'},
+ 'sql_data_path': {'key': 'sqlDataPath', 'type': 'SqlDataPath'},
+ 'http_url': {'key': 'httpUrl', 'type': 'str'},
+ 'additional_properties': {'key': 'additionalProperties', 'type': '{object}'},
+ 'partition_format': {'key': 'partitionFormat', 'type': 'str'},
+ 'partition_format_ignore_error': {'key': 'partitionFormatIgnoreError', 'type': 'bool'},
+ }
+
+ def __init__(
+ self,
+ *,
+ datastore_name: Optional[str] = None,
+ relative_path: Optional[str] = None,
+ azure_file_path: Optional[str] = None,
+ paths: Optional[List[str]] = None,
+ sql_data_path: Optional["SqlDataPath"] = None,
+ http_url: Optional[str] = None,
+ additional_properties: Optional[Dict[str, Any]] = None,
+ partition_format: Optional[str] = None,
+ partition_format_ignore_error: Optional[bool] = None,
+ **kwargs
+ ):
+ """
+ :keyword datastore_name:
+ :paramtype datastore_name: str
+ :keyword relative_path:
+ :paramtype relative_path: str
+ :keyword azure_file_path:
+ :paramtype azure_file_path: str
+ :keyword paths:
+ :paramtype paths: list[str]
+ :keyword sql_data_path:
+ :paramtype sql_data_path: ~azure.mgmt.machinelearningservices.models.SqlDataPath
+ :keyword http_url:
+ :paramtype http_url: str
+ :keyword additional_properties: Dictionary of :code:`<any>`.
+ :paramtype additional_properties: dict[str, any]
+ :keyword partition_format:
+ :paramtype partition_format: str
+ :keyword partition_format_ignore_error:
+ :paramtype partition_format_ignore_error: bool
+ """
+ super(DatasetPath, self).__init__(**kwargs)
+ self.datastore_name = datastore_name
+ self.relative_path = relative_path
+ self.azure_file_path = azure_file_path
+ self.paths = paths
+ self.sql_data_path = sql_data_path
+ self.http_url = http_url
+ self.additional_properties = additional_properties
+ self.partition_format = partition_format
+ self.partition_format_ignore_error = partition_format_ignore_error
+
+
+class DatasetState(msrest.serialization.Model):
+ """DatasetState.
+
+ :ivar state:
+ :vartype state: str
+ :ivar deprecated_by:
+ :vartype deprecated_by: ~azure.mgmt.machinelearningservices.models.DatasetDefinitionReference
+ :ivar etag:
+ :vartype etag: str
+ """
+
+ _attribute_map = {
+ 'state': {'key': 'state', 'type': 'str'},
+ 'deprecated_by': {'key': 'deprecatedBy', 'type': 'DatasetDefinitionReference'},
+ 'etag': {'key': 'etag', 'type': 'str'},
+ }
+
+ def __init__(
+ self,
+ *,
+ state: Optional[str] = None,
+ deprecated_by: Optional["DatasetDefinitionReference"] = None,
+ etag: Optional[str] = None,
+ **kwargs
+ ):
+ """
+ :keyword state:
+ :paramtype state: str
+ :keyword deprecated_by:
+ :paramtype deprecated_by: ~azure.mgmt.machinelearningservices.models.DatasetDefinitionReference
+ :keyword etag:
+ :paramtype etag: str
+ """
+ super(DatasetState, self).__init__(**kwargs)
+ self.state = state
+ self.deprecated_by = deprecated_by
+ self.etag = etag
+
+
+class DatasetV2(msrest.serialization.Model):
+ """DatasetV2.
+
+ :ivar dataset_id:
+ :vartype dataset_id: str
+ :ivar name:
+ :vartype name: str
+ :ivar version_id:
+ :vartype version_id: str
+ :ivar dataflow:
+ :vartype dataflow: str
+ :ivar created_time:
+ :vartype created_time: ~datetime.datetime
+ :ivar modified_time:
+ :vartype modified_time: ~datetime.datetime
+ :ivar created_by:
+ :vartype created_by: ~azure.mgmt.machinelearningservices.models.User
+ :ivar modified_by:
+ :vartype modified_by: ~azure.mgmt.machinelearningservices.models.User
+ :ivar properties: Dictionary of :code:`<string>`.
+ :vartype properties: dict[str, str]
+ :ivar telemetry_info: Dictionary of :code:`<string>`.
+ :vartype telemetry_info: dict[str, str]
+ :ivar description:
+ :vartype description: str
+ :ivar is_anonymous:
+ :vartype is_anonymous: bool
+ :ivar tags: A set of tags. Dictionary of :code:`<string>`.
+ :vartype tags: dict[str, str]
+ :ivar legacy_properties: Dictionary of :code:`<any>`.
+ :vartype legacy_properties: dict[str, any]
+ :ivar data_expiry_time:
+ :vartype data_expiry_time: ~datetime.datetime
+ :ivar legacy: Dictionary of :code:`<any>`.
+ :vartype legacy: dict[str, any]
+ """
+
+ _attribute_map = {
+ 'dataset_id': {'key': 'datasetId', 'type': 'str'},
+ 'name': {'key': 'name', 'type': 'str'},
+ 'version_id': {'key': 'versionId', 'type': 'str'},
+ 'dataflow': {'key': 'dataflow', 'type': 'str'},
+ 'created_time': {'key': 'createdTime', 'type': 'iso-8601'},
+ 'modified_time': {'key': 'modifiedTime', 'type': 'iso-8601'},
+ 'created_by': {'key': 'createdBy', 'type': 'User'},
+ 'modified_by': {'key': 'modifiedBy', 'type': 'User'},
+ 'properties': {'key': 'properties', 'type': '{str}'},
+ 'telemetry_info': {'key': 'telemetryInfo', 'type': '{str}'},
+ 'description': {'key': 'description', 'type': 'str'},
+ 'is_anonymous': {'key': 'isAnonymous', 'type': 'bool'},
+ 'tags': {'key': 'tags', 'type': '{str}'},
+ 'legacy_properties': {'key': 'legacyProperties', 'type': '{object}'},
+ 'data_expiry_time': {'key': 'dataExpiryTime', 'type': 'iso-8601'},
+ 'legacy': {'key': 'legacy', 'type': '{object}'},
+ }
+
+ def __init__(
+ self,
+ *,
+ dataset_id: Optional[str] = None,
+ name: Optional[str] = None,
+ version_id: Optional[str] = None,
+ dataflow: Optional[str] = None,
+ created_time: Optional[datetime.datetime] = None,
+ modified_time: Optional[datetime.datetime] = None,
+ created_by: Optional["User"] = None,
+ modified_by: Optional["User"] = None,
+ properties: Optional[Dict[str, str]] = None,
+ telemetry_info: Optional[Dict[str, str]] = None,
+ description: Optional[str] = None,
+ is_anonymous: Optional[bool] = None,
+ tags: Optional[Dict[str, str]] = None,
+ legacy_properties: Optional[Dict[str, Any]] = None,
+ data_expiry_time: Optional[datetime.datetime] = None,
+ legacy: Optional[Dict[str, Any]] = None,
+ **kwargs
+ ):
+ """
+ :keyword dataset_id:
+ :paramtype dataset_id: str
+ :keyword name:
+ :paramtype name: str
+ :keyword version_id:
+ :paramtype version_id: str
+ :keyword dataflow:
+ :paramtype dataflow: str
+ :keyword created_time:
+ :paramtype created_time: ~datetime.datetime
+ :keyword modified_time:
+ :paramtype modified_time: ~datetime.datetime
+ :keyword created_by:
+ :paramtype created_by: ~azure.mgmt.machinelearningservices.models.User
+ :keyword modified_by:
+ :paramtype modified_by: ~azure.mgmt.machinelearningservices.models.User
+ :keyword properties: Dictionary of :code:`<string>`.
+ :paramtype properties: dict[str, str]
+ :keyword telemetry_info: Dictionary of :code:`<string>`.
+ :paramtype telemetry_info: dict[str, str]
+ :keyword description:
+ :paramtype description: str
+ :keyword is_anonymous:
+ :paramtype is_anonymous: bool
+ :keyword tags: A set of tags. Dictionary of :code:`<string>`.
+ :paramtype tags: dict[str, str]
+ :keyword legacy_properties: Dictionary of :code:`<any>`.
+ :paramtype legacy_properties: dict[str, any]
+ :keyword data_expiry_time:
+ :paramtype data_expiry_time: ~datetime.datetime
+ :keyword legacy: Dictionary of :code:`<any>`.
+ :paramtype legacy: dict[str, any]
+ """
+ super(DatasetV2, self).__init__(**kwargs)
+ self.dataset_id = dataset_id
+ self.name = name
+ self.version_id = version_id
+ self.dataflow = dataflow
+ self.created_time = created_time
+ self.modified_time = modified_time
+ self.created_by = created_by
+ self.modified_by = modified_by
+ self.properties = properties
+ self.telemetry_info = telemetry_info
+ self.description = description
+ self.is_anonymous = is_anonymous
+ self.tags = tags
+ self.legacy_properties = legacy_properties
+ self.data_expiry_time = data_expiry_time
+ self.legacy = legacy
+
+
+class DataUriV2Response(msrest.serialization.Model):
+ """DataUriV2Response.
+
+ :ivar uri:
+ :vartype uri: str
+ :ivar type:
+ :vartype type: str
+ """
+
+ _attribute_map = {
+ 'uri': {'key': 'uri', 'type': 'str'},
+ 'type': {'key': 'type', 'type': 'str'},
+ }
+
+ def __init__(
+ self,
+ *,
+ uri: Optional[str] = None,
+ type: Optional[str] = None,
+ **kwargs
+ ):
+ """
+ :keyword uri:
+ :paramtype uri: str
+ :keyword type:
+ :paramtype type: str
+ """
+ super(DataUriV2Response, self).__init__(**kwargs)
+ self.uri = uri
+ self.type = type
+
+
+class DataVersion(msrest.serialization.Model):
+ """DataVersion.
+
+ All required parameters must be populated in order to send to Azure.
+
+ :ivar asset_id:
+ :vartype asset_id: str
+ :ivar data_container_name: Required.
+ :vartype data_container_name: str
+ :ivar data_type: Required.
+ :vartype data_type: str
+ :ivar data_uri: Required.
+ :vartype data_uri: str
+ :ivar version_id: Required.
+ :vartype version_id: str
+ :ivar mutable_props:
+ :vartype mutable_props: ~azure.mgmt.machinelearningservices.models.DataVersionMutable
+ :ivar referenced_data_uris:
+ :vartype referenced_data_uris: list[str]
+ :ivar properties: Dictionary of :code:`<string>`.
+ :vartype properties: dict[str, str]
+ """
+
+ _validation = {
+ 'data_container_name': {'required': True},
+ 'data_type': {'required': True},
+ 'data_uri': {'required': True},
+ 'version_id': {'required': True},
+ }
+
+ _attribute_map = {
+ 'asset_id': {'key': 'assetId', 'type': 'str'},
+ 'data_container_name': {'key': 'dataContainerName', 'type': 'str'},
+ 'data_type': {'key': 'dataType', 'type': 'str'},
+ 'data_uri': {'key': 'dataUri', 'type': 'str'},
+ 'version_id': {'key': 'versionId', 'type': 'str'},
+ 'mutable_props': {'key': 'mutableProps', 'type': 'DataVersionMutable'},
+ 'referenced_data_uris': {'key': 'referencedDataUris', 'type': '[str]'},
+ 'properties': {'key': 'properties', 'type': '{str}'},
+ }
+
+ def __init__(
+ self,
+ *,
+ data_container_name: str,
+ data_type: str,
+ data_uri: str,
+ version_id: str,
+ asset_id: Optional[str] = None,
+ mutable_props: Optional["DataVersionMutable"] = None,
+ referenced_data_uris: Optional[List[str]] = None,
+ properties: Optional[Dict[str, str]] = None,
+ **kwargs
+ ):
+ """
+ :keyword asset_id:
+ :paramtype asset_id: str
+ :keyword data_container_name: Required.
+ :paramtype data_container_name: str
+ :keyword data_type: Required.
+ :paramtype data_type: str
+ :keyword data_uri: Required.
+ :paramtype data_uri: str
+ :keyword version_id: Required.
+ :paramtype version_id: str
+ :keyword mutable_props:
+ :paramtype mutable_props: ~azure.mgmt.machinelearningservices.models.DataVersionMutable
+ :keyword referenced_data_uris:
+ :paramtype referenced_data_uris: list[str]
+ :keyword properties: Dictionary of :code:`<string>`.
+ :paramtype properties: dict[str, str]
+ """
+ super(DataVersion, self).__init__(**kwargs)
+ self.asset_id = asset_id
+ self.data_container_name = data_container_name
+ self.data_type = data_type
+ self.data_uri = data_uri
+ self.version_id = version_id
+ self.mutable_props = mutable_props
+ self.referenced_data_uris = referenced_data_uris
+ self.properties = properties
+
+
+class DataVersionEntity(msrest.serialization.Model):
+ """DataVersionEntity.
+
+ :ivar data_version:
+ :vartype data_version: ~azure.mgmt.machinelearningservices.models.DataVersion
+ :ivar entity_metadata:
+ :vartype entity_metadata: ~azure.mgmt.machinelearningservices.models.EntityMetadata
+ """
+
+ _attribute_map = {
+ 'data_version': {'key': 'dataVersion', 'type': 'DataVersion'},
+ 'entity_metadata': {'key': 'entityMetadata', 'type': 'EntityMetadata'},
+ }
+
+ def __init__(
+ self,
+ *,
+ data_version: Optional["DataVersion"] = None,
+ entity_metadata: Optional["EntityMetadata"] = None,
+ **kwargs
+ ):
+ """
+ :keyword data_version:
+ :paramtype data_version: ~azure.mgmt.machinelearningservices.models.DataVersion
+ :keyword entity_metadata:
+ :paramtype entity_metadata: ~azure.mgmt.machinelearningservices.models.EntityMetadata
+ """
+ super(DataVersionEntity, self).__init__(**kwargs)
+ self.data_version = data_version
+ self.entity_metadata = entity_metadata
+
+
+class DataVersionMutable(msrest.serialization.Model):
+ """DataVersionMutable.
+
+ :ivar data_expiry_time:
+ :vartype data_expiry_time: ~datetime.datetime
+ :ivar description:
+ :vartype description: str
+ :ivar tags: A set of tags. Dictionary of :code:`<string>`.
+ :vartype tags: dict[str, str]
+ :ivar is_archived:
+ :vartype is_archived: bool
+ """
+
+ _attribute_map = {
+ 'data_expiry_time': {'key': 'dataExpiryTime', 'type': 'iso-8601'},
+ 'description': {'key': 'description', 'type': 'str'},
+ 'tags': {'key': 'tags', 'type': '{str}'},
+ 'is_archived': {'key': 'isArchived', 'type': 'bool'},
+ }
+
+ def __init__(
+ self,
+ *,
+ data_expiry_time: Optional[datetime.datetime] = None,
+ description: Optional[str] = None,
+ tags: Optional[Dict[str, str]] = None,
+ is_archived: Optional[bool] = None,
+ **kwargs
+ ):
+ """
+ :keyword data_expiry_time:
+ :paramtype data_expiry_time: ~datetime.datetime
+ :keyword description:
+ :paramtype description: str
+ :keyword tags: A set of tags. Dictionary of :code:`<string>`.
+ :paramtype tags: dict[str, str]
+ :keyword is_archived:
+ :paramtype is_archived: bool
+ """
+ super(DataVersionMutable, self).__init__(**kwargs)
+ self.data_expiry_time = data_expiry_time
+ self.description = description
+ self.tags = tags
+ self.is_archived = is_archived
+
+
+class DataViewSetResult(msrest.serialization.Model):
+ """DataViewSetResult.
+
+ :ivar schema:
+ :vartype schema: list[~azure.mgmt.machinelearningservices.models.ColumnDefinition]
+ :ivar rows:
+ :vartype rows: list[list[~azure.mgmt.machinelearningservices.models.DataField]]
+ """
+
+ _attribute_map = {
+ 'schema': {'key': 'schema', 'type': '[ColumnDefinition]'},
+ 'rows': {'key': 'rows', 'type': '[[DataField]]'},
+ }
+
+ def __init__(
+ self,
+ *,
+ schema: Optional[List["ColumnDefinition"]] = None,
+ rows: Optional[List[List["DataField"]]] = None,
+ **kwargs
+ ):
+ """
+ :keyword schema:
+ :paramtype schema: list[~azure.mgmt.machinelearningservices.models.ColumnDefinition]
+ :keyword rows:
+ :paramtype rows: list[list[~azure.mgmt.machinelearningservices.models.DataField]]
+ """
+ super(DataViewSetResult, self).__init__(**kwargs)
+ self.schema = schema
+ self.rows = rows
+
+
+class EntityMetadata(msrest.serialization.Model):
+ """EntityMetadata.
+
+ :ivar etag:
+ :vartype etag: str
+ :ivar created_time:
+ :vartype created_time: ~datetime.datetime
+ :ivar modified_time:
+ :vartype modified_time: ~datetime.datetime
+ :ivar created_by:
+ :vartype created_by: ~azure.mgmt.machinelearningservices.models.User
+ :ivar modified_by:
+ :vartype modified_by: ~azure.mgmt.machinelearningservices.models.User
+ """
+
+ _attribute_map = {
+ 'etag': {'key': 'etag', 'type': 'str'},
+ 'created_time': {'key': 'createdTime', 'type': 'iso-8601'},
+ 'modified_time': {'key': 'modifiedTime', 'type': 'iso-8601'},
+ 'created_by': {'key': 'createdBy', 'type': 'User'},
+ 'modified_by': {'key': 'modifiedBy', 'type': 'User'},
+ }
+
+ def __init__(
+ self,
+ *,
+ etag: Optional[str] = None,
+ created_time: Optional[datetime.datetime] = None,
+ modified_time: Optional[datetime.datetime] = None,
+ created_by: Optional["User"] = None,
+ modified_by: Optional["User"] = None,
+ **kwargs
+ ):
+ """
+ :keyword etag:
+ :paramtype etag: str
+ :keyword created_time:
+ :paramtype created_time: ~datetime.datetime
+ :keyword modified_time:
+ :paramtype modified_time: ~datetime.datetime
+ :keyword created_by:
+ :paramtype created_by: ~azure.mgmt.machinelearningservices.models.User
+ :keyword modified_by:
+ :paramtype modified_by: ~azure.mgmt.machinelearningservices.models.User
+ """
+ super(EntityMetadata, self).__init__(**kwargs)
+ self.etag = etag
+ self.created_time = created_time
+ self.modified_time = modified_time
+ self.created_by = created_by
+ self.modified_by = modified_by
+
+
+class ErrorAdditionalInfo(msrest.serialization.Model):
+ """The resource management error additional info.
+
+ :ivar type: The additional info type.
+ :vartype type: str
+ :ivar info: The additional info.
+ :vartype info: any
+ """
+
+ _attribute_map = {
+ 'type': {'key': 'type', 'type': 'str'},
+ 'info': {'key': 'info', 'type': 'object'},
+ }
+
+ def __init__(
+ self,
+ *,
+ type: Optional[str] = None,
+ info: Optional[Any] = None,
+ **kwargs
+ ):
+ """
+ :keyword type: The additional info type.
+ :paramtype type: str
+ :keyword info: The additional info.
+ :paramtype info: any
+ """
+ super(ErrorAdditionalInfo, self).__init__(**kwargs)
+ self.type = type
+ self.info = info
+
+
+class ErrorResponse(msrest.serialization.Model):
+ """The error response.
+
+ :ivar error: The root error.
+ :vartype error: ~azure.mgmt.machinelearningservices.models.RootError
+ :ivar correlation: Dictionary containing correlation details for the error.
+ :vartype correlation: dict[str, str]
+ :ivar environment: The hosting environment.
+ :vartype environment: str
+ :ivar location: The Azure region.
+ :vartype location: str
+ :ivar time: The time in UTC.
+ :vartype time: ~datetime.datetime
+ :ivar component_name: Component name where error originated/encountered.
+ :vartype component_name: str
+ """
+
+ _attribute_map = {
+ 'error': {'key': 'error', 'type': 'RootError'},
+ 'correlation': {'key': 'correlation', 'type': '{str}'},
+ 'environment': {'key': 'environment', 'type': 'str'},
+ 'location': {'key': 'location', 'type': 'str'},
+ 'time': {'key': 'time', 'type': 'iso-8601'},
+ 'component_name': {'key': 'componentName', 'type': 'str'},
+ }
+
+ def __init__(
+ self,
+ *,
+ error: Optional["RootError"] = None,
+ correlation: Optional[Dict[str, str]] = None,
+ environment: Optional[str] = None,
+ location: Optional[str] = None,
+ time: Optional[datetime.datetime] = None,
+ component_name: Optional[str] = None,
+ **kwargs
+ ):
+ """
+ :keyword error: The root error.
+ :paramtype error: ~azure.mgmt.machinelearningservices.models.RootError
+ :keyword correlation: Dictionary containing correlation details for the error.
+ :paramtype correlation: dict[str, str]
+ :keyword environment: The hosting environment.
+ :paramtype environment: str
+ :keyword location: The Azure region.
+ :paramtype location: str
+ :keyword time: The time in UTC.
+ :paramtype time: ~datetime.datetime
+ :keyword component_name: Component name where error originated/encountered.
+ :paramtype component_name: str
+ """
+ super(ErrorResponse, self).__init__(**kwargs)
+ self.error = error
+ self.correlation = correlation
+ self.environment = environment
+ self.location = location
+ self.time = time
+ self.component_name = component_name
+
+
+class HistogramBin(msrest.serialization.Model):
+ """HistogramBin.
+
+ :ivar lower_bound:
+ :vartype lower_bound: float
+ :ivar upper_bound:
+ :vartype upper_bound: float
+ :ivar count:
+ :vartype count: float
+ """
+
+ _attribute_map = {
+ 'lower_bound': {'key': 'lowerBound', 'type': 'float'},
+ 'upper_bound': {'key': 'upperBound', 'type': 'float'},
+ 'count': {'key': 'count', 'type': 'float'},
+ }
+
+ def __init__(
+ self,
+ *,
+ lower_bound: Optional[float] = None,
+ upper_bound: Optional[float] = None,
+ count: Optional[float] = None,
+ **kwargs
+ ):
+ """
+ :keyword lower_bound:
+ :paramtype lower_bound: float
+ :keyword upper_bound:
+ :paramtype upper_bound: float
+ :keyword count:
+ :paramtype count: float
+ """
+ super(HistogramBin, self).__init__(**kwargs)
+ self.lower_bound = lower_bound
+ self.upper_bound = upper_bound
+ self.count = count
+
+
+class HttpContent(msrest.serialization.Model):
+ """HttpContent.
+
+ Variables are only populated by the server, and will be ignored when sending a request.
+
+ :ivar headers:
+ :vartype headers:
+ list[~azure.mgmt.machinelearningservices.models.KeyValuePairStringIEnumerable1]
+ """
+
+ _validation = {
+ 'headers': {'readonly': True},
+ }
+
+ _attribute_map = {
+ 'headers': {'key': 'headers', 'type': '[KeyValuePairStringIEnumerable1]'},
+ }
+
+ def __init__(
+ self,
+ **kwargs
+ ):
+ """
+ """
+ super(HttpContent, self).__init__(**kwargs)
+ self.headers = None
+
+
+class HttpMethod(msrest.serialization.Model):
+ """HttpMethod.
+
+ :ivar method:
+ :vartype method: str
+ """
+
+ _attribute_map = {
+ 'method': {'key': 'method', 'type': 'str'},
+ }
+
+ def __init__(
+ self,
+ *,
+ method: Optional[str] = None,
+ **kwargs
+ ):
+ """
+ :keyword method:
+ :paramtype method: str
+ """
+ super(HttpMethod, self).__init__(**kwargs)
+ self.method = method
+
+
+class HttpRequestMessage(msrest.serialization.Model):
+ """HttpRequestMessage.
+
+ Variables are only populated by the server, and will be ignored when sending a request.
+
+ :ivar version:
+ :vartype version: str
+ :ivar version_policy: Possible values include: "RequestVersionOrLower",
+ "RequestVersionOrHigher", "RequestVersionExact".
+ :vartype version_policy: str or ~azure.mgmt.machinelearningservices.models.HttpVersionPolicy
+ :ivar content:
+ :vartype content: ~azure.mgmt.machinelearningservices.models.HttpContent
+ :ivar method:
+ :vartype method: ~azure.mgmt.machinelearningservices.models.HttpMethod
+ :ivar request_uri:
+ :vartype request_uri: str
+ :ivar headers:
+ :vartype headers:
+ list[~azure.mgmt.machinelearningservices.models.KeyValuePairStringIEnumerable1]
+ :ivar options: Dictionary of :code:`<any>`.
+ :vartype options: dict[str, any]
+ """
+
+ _validation = {
+ 'headers': {'readonly': True},
+ 'options': {'readonly': True},
+ }
+
+ _attribute_map = {
+ 'version': {'key': 'version', 'type': 'str'},
+ 'version_policy': {'key': 'versionPolicy', 'type': 'str'},
+ 'content': {'key': 'content', 'type': 'HttpContent'},
+ 'method': {'key': 'method', 'type': 'HttpMethod'},
+ 'request_uri': {'key': 'requestUri', 'type': 'str'},
+ 'headers': {'key': 'headers', 'type': '[KeyValuePairStringIEnumerable1]'},
+ 'options': {'key': 'options', 'type': '{object}'},
+ }
+
+ def __init__(
+ self,
+ *,
+ version: Optional[str] = None,
+ version_policy: Optional[Union[str, "HttpVersionPolicy"]] = None,
+ content: Optional["HttpContent"] = None,
+ method: Optional["HttpMethod"] = None,
+ request_uri: Optional[str] = None,
+ **kwargs
+ ):
+ """
+ :keyword version:
+ :paramtype version: str
+ :keyword version_policy: Possible values include: "RequestVersionOrLower",
+ "RequestVersionOrHigher", "RequestVersionExact".
+ :paramtype version_policy: str or ~azure.mgmt.machinelearningservices.models.HttpVersionPolicy
+ :keyword content:
+ :paramtype content: ~azure.mgmt.machinelearningservices.models.HttpContent
+ :keyword method:
+ :paramtype method: ~azure.mgmt.machinelearningservices.models.HttpMethod
+ :keyword request_uri:
+ :paramtype request_uri: str
+ """
+ super(HttpRequestMessage, self).__init__(**kwargs)
+ self.version = version
+ self.version_policy = version_policy
+ self.content = content
+ self.method = method
+ self.request_uri = request_uri
+ self.headers = None
+ self.options = None
+
+
+class HttpResponseMessage(msrest.serialization.Model):
+ """HttpResponseMessage.
+
+ Variables are only populated by the server, and will be ignored when sending a request.
+
+ :ivar version:
+ :vartype version: str
+ :ivar content:
+ :vartype content: ~azure.mgmt.machinelearningservices.models.HttpContent
+ :ivar status_code: Possible values include: "Continue", "SwitchingProtocols", "Processing",
+ "EarlyHints", "OK", "Created", "Accepted", "NonAuthoritativeInformation", "NoContent",
+ "ResetContent", "PartialContent", "MultiStatus", "AlreadyReported", "IMUsed", "Ambiguous",
+ "Moved", "Redirect", "RedirectMethod", "NotModified", "UseProxy", "Unused",
+ "TemporaryRedirect", "PermanentRedirect", "BadRequest", "Unauthorized", "PaymentRequired",
+ "Forbidden", "NotFound", "MethodNotAllowed", "NotAcceptable", "ProxyAuthenticationRequired",
+ "RequestTimeout", "Conflict", "Gone", "LengthRequired", "PreconditionFailed",
+ "RequestEntityTooLarge", "RequestUriTooLong", "UnsupportedMediaType",
+ "RequestedRangeNotSatisfiable", "ExpectationFailed", "MisdirectedRequest",
+ "UnprocessableEntity", "Locked", "FailedDependency", "UpgradeRequired", "PreconditionRequired",
+ "TooManyRequests", "RequestHeaderFieldsTooLarge", "UnavailableForLegalReasons",
+ "InternalServerError", "NotImplemented", "BadGateway", "ServiceUnavailable", "GatewayTimeout",
+ "HttpVersionNotSupported", "VariantAlsoNegotiates", "InsufficientStorage", "LoopDetected",
+ "NotExtended", "NetworkAuthenticationRequired".
+ :vartype status_code: str or ~azure.mgmt.machinelearningservices.models.HttpStatusCode
+ :ivar reason_phrase:
+ :vartype reason_phrase: str
+ :ivar headers:
+ :vartype headers:
+ list[~azure.mgmt.machinelearningservices.models.KeyValuePairStringIEnumerable1]
+ :ivar trailing_headers:
+ :vartype trailing_headers:
+ list[~azure.mgmt.machinelearningservices.models.KeyValuePairStringIEnumerable1]
+ :ivar request_message:
+ :vartype request_message: ~azure.mgmt.machinelearningservices.models.HttpRequestMessage
+ :ivar is_success_status_code:
+ :vartype is_success_status_code: bool
+ """
+
+ _validation = {
+ 'headers': {'readonly': True},
+ 'trailing_headers': {'readonly': True},
+ 'is_success_status_code': {'readonly': True},
+ }
+
+ _attribute_map = {
+ 'version': {'key': 'version', 'type': 'str'},
+ 'content': {'key': 'content', 'type': 'HttpContent'},
+ 'status_code': {'key': 'statusCode', 'type': 'str'},
+ 'reason_phrase': {'key': 'reasonPhrase', 'type': 'str'},
+ 'headers': {'key': 'headers', 'type': '[KeyValuePairStringIEnumerable1]'},
+ 'trailing_headers': {'key': 'trailingHeaders', 'type': '[KeyValuePairStringIEnumerable1]'},
+ 'request_message': {'key': 'requestMessage', 'type': 'HttpRequestMessage'},
+ 'is_success_status_code': {'key': 'isSuccessStatusCode', 'type': 'bool'},
+ }
+
+ def __init__(
+ self,
+ *,
+ version: Optional[str] = None,
+ content: Optional["HttpContent"] = None,
+ status_code: Optional[Union[str, "HttpStatusCode"]] = None,
+ reason_phrase: Optional[str] = None,
+ request_message: Optional["HttpRequestMessage"] = None,
+ **kwargs
+ ):
+ """
+ :keyword version:
+ :paramtype version: str
+ :keyword content:
+ :paramtype content: ~azure.mgmt.machinelearningservices.models.HttpContent
+ :keyword status_code: Possible values include: "Continue", "SwitchingProtocols", "Processing",
+ "EarlyHints", "OK", "Created", "Accepted", "NonAuthoritativeInformation", "NoContent",
+ "ResetContent", "PartialContent", "MultiStatus", "AlreadyReported", "IMUsed", "Ambiguous",
+ "Moved", "Redirect", "RedirectMethod", "NotModified", "UseProxy", "Unused",
+ "TemporaryRedirect", "PermanentRedirect", "BadRequest", "Unauthorized", "PaymentRequired",
+ "Forbidden", "NotFound", "MethodNotAllowed", "NotAcceptable", "ProxyAuthenticationRequired",
+ "RequestTimeout", "Conflict", "Gone", "LengthRequired", "PreconditionFailed",
+ "RequestEntityTooLarge", "RequestUriTooLong", "UnsupportedMediaType",
+ "RequestedRangeNotSatisfiable", "ExpectationFailed", "MisdirectedRequest",
+ "UnprocessableEntity", "Locked", "FailedDependency", "UpgradeRequired", "PreconditionRequired",
+ "TooManyRequests", "RequestHeaderFieldsTooLarge", "UnavailableForLegalReasons",
+ "InternalServerError", "NotImplemented", "BadGateway", "ServiceUnavailable", "GatewayTimeout",
+ "HttpVersionNotSupported", "VariantAlsoNegotiates", "InsufficientStorage", "LoopDetected",
+ "NotExtended", "NetworkAuthenticationRequired".
+ :paramtype status_code: str or ~azure.mgmt.machinelearningservices.models.HttpStatusCode
+ :keyword reason_phrase:
+ :paramtype reason_phrase: str
+ :keyword request_message:
+ :paramtype request_message: ~azure.mgmt.machinelearningservices.models.HttpRequestMessage
+ """
+ super(HttpResponseMessage, self).__init__(**kwargs)
+ self.version = version
+ self.content = content
+ self.status_code = status_code
+ self.reason_phrase = reason_phrase
+ self.headers = None
+ self.trailing_headers = None
+ self.request_message = request_message
+ self.is_success_status_code = None
+
+
+class InnerErrorResponse(msrest.serialization.Model):
+ """A nested structure of errors.
+
+ :ivar code: The error code.
+ :vartype code: str
+ :ivar inner_error: A nested structure of errors.
+ :vartype inner_error: ~azure.mgmt.machinelearningservices.models.InnerErrorResponse
+ """
+
+ _attribute_map = {
+ 'code': {'key': 'code', 'type': 'str'},
+ 'inner_error': {'key': 'innerError', 'type': 'InnerErrorResponse'},
+ }
+
+ def __init__(
+ self,
+ *,
+ code: Optional[str] = None,
+ inner_error: Optional["InnerErrorResponse"] = None,
+ **kwargs
+ ):
+ """
+ :keyword code: The error code.
+ :paramtype code: str
+ :keyword inner_error: A nested structure of errors.
+ :paramtype inner_error: ~azure.mgmt.machinelearningservices.models.InnerErrorResponse
+ """
+ super(InnerErrorResponse, self).__init__(**kwargs)
+ self.code = code
+ self.inner_error = inner_error
+
+
+class KeyValuePairStringIEnumerable1(msrest.serialization.Model):
+ """KeyValuePairStringIEnumerable1.
+
+ :ivar key:
+ :vartype key: str
+ :ivar value:
+ :vartype value: list[str]
+ """
+
+ _attribute_map = {
+ 'key': {'key': 'key', 'type': 'str'},
+ 'value': {'key': 'value', 'type': '[str]'},
+ }
+
+ def __init__(
+ self,
+ *,
+ key: Optional[str] = None,
+ value: Optional[List[str]] = None,
+ **kwargs
+ ):
+ """
+ :keyword key:
+ :paramtype key: str
+ :keyword value:
+ :paramtype value: list[str]
+ """
+ super(KeyValuePairStringIEnumerable1, self).__init__(**kwargs)
+ self.key = key
+ self.value = value
+
+
+class LongRunningOperationResponse1LongRunningOperationResponseObject(msrest.serialization.Model):
+ """LongRunningOperationResponse1LongRunningOperationResponseObject.
+
+ :ivar completion_result: Anything.
+ :vartype completion_result: any
+ :ivar location:
+ :vartype location: str
+ :ivar operation_result:
+ :vartype operation_result: str
+ """
+
+ _attribute_map = {
+ 'completion_result': {'key': 'completionResult', 'type': 'object'},
+ 'location': {'key': 'location', 'type': 'str'},
+ 'operation_result': {'key': 'operationResult', 'type': 'str'},
+ }
+
+ def __init__(
+ self,
+ *,
+ completion_result: Optional[Any] = None,
+ location: Optional[str] = None,
+ operation_result: Optional[str] = None,
+ **kwargs
+ ):
+ """
+ :keyword completion_result: Anything.
+ :paramtype completion_result: any
+ :keyword location:
+ :paramtype location: str
+ :keyword operation_result:
+ :paramtype operation_result: str
+ """
+ super(LongRunningOperationResponse1LongRunningOperationResponseObject, self).__init__(**kwargs)
+ self.completion_result = completion_result
+ self.location = location
+ self.operation_result = operation_result
+
+
+class Moments(msrest.serialization.Model):
+ """Moments.
+
+ :ivar mean:
+ :vartype mean: float
+ :ivar standard_deviation:
+ :vartype standard_deviation: float
+ :ivar variance:
+ :vartype variance: float
+ :ivar skewness:
+ :vartype skewness: float
+ :ivar kurtosis:
+ :vartype kurtosis: float
+ """
+
+ _attribute_map = {
+ 'mean': {'key': 'mean', 'type': 'float'},
+ 'standard_deviation': {'key': 'standardDeviation', 'type': 'float'},
+ 'variance': {'key': 'variance', 'type': 'float'},
+ 'skewness': {'key': 'skewness', 'type': 'float'},
+ 'kurtosis': {'key': 'kurtosis', 'type': 'float'},
+ }
+
+ def __init__(
+ self,
+ *,
+ mean: Optional[float] = None,
+ standard_deviation: Optional[float] = None,
+ variance: Optional[float] = None,
+ skewness: Optional[float] = None,
+ kurtosis: Optional[float] = None,
+ **kwargs
+ ):
+ """
+ :keyword mean:
+ :paramtype mean: float
+ :keyword standard_deviation:
+ :paramtype standard_deviation: float
+ :keyword variance:
+ :paramtype variance: float
+ :keyword skewness:
+ :paramtype skewness: float
+ :keyword kurtosis:
+ :paramtype kurtosis: float
+ """
+ super(Moments, self).__init__(**kwargs)
+ self.mean = mean
+ self.standard_deviation = standard_deviation
+ self.variance = variance
+ self.skewness = skewness
+ self.kurtosis = kurtosis
+
+
+class PaginatedDataContainerEntityList(msrest.serialization.Model):
+ """A paginated list of DataContainerEntitys.
+
+ :ivar value: An array of objects of type DataContainerEntity.
+ :vartype value: list[~azure.mgmt.machinelearningservices.models.DataContainerEntity]
+ :ivar continuation_token: The token used in retrieving the next page. If null, there are no
+ additional pages.
+ :vartype continuation_token: str
+ :ivar next_link: The link to the next page constructed using the continuationToken. If null,
+ there are no additional pages.
+ :vartype next_link: str
+ """
+
+ _attribute_map = {
+ 'value': {'key': 'value', 'type': '[DataContainerEntity]'},
+ 'continuation_token': {'key': 'continuationToken', 'type': 'str'},
+ 'next_link': {'key': 'nextLink', 'type': 'str'},
+ }
+
+ def __init__(
+ self,
+ *,
+ value: Optional[List["DataContainerEntity"]] = None,
+ continuation_token: Optional[str] = None,
+ next_link: Optional[str] = None,
+ **kwargs
+ ):
+ """
+ :keyword value: An array of objects of type DataContainerEntity.
+ :paramtype value: list[~azure.mgmt.machinelearningservices.models.DataContainerEntity]
+ :keyword continuation_token: The token used in retrieving the next page. If null, there are no
+ additional pages.
+ :paramtype continuation_token: str
+ :keyword next_link: The link to the next page constructed using the continuationToken. If
+ null, there are no additional pages.
+ :paramtype next_link: str
+ """
+ super(PaginatedDataContainerEntityList, self).__init__(**kwargs)
+ self.value = value
+ self.continuation_token = continuation_token
+ self.next_link = next_link
+
+
+class PaginatedDatasetDefinitionList(msrest.serialization.Model):
+ """A paginated list of DatasetDefinitions.
+
+ :ivar value: An array of objects of type DatasetDefinition.
+ :vartype value: list[~azure.mgmt.machinelearningservices.models.DatasetDefinition]
+ :ivar continuation_token: The token used in retrieving the next page. If null, there are no
+ additional pages.
+ :vartype continuation_token: str
+ :ivar next_link: The link to the next page constructed using the continuationToken. If null,
+ there are no additional pages.
+ :vartype next_link: str
+ """
+
+ _attribute_map = {
+ 'value': {'key': 'value', 'type': '[DatasetDefinition]'},
+ 'continuation_token': {'key': 'continuationToken', 'type': 'str'},
+ 'next_link': {'key': 'nextLink', 'type': 'str'},
+ }
+
+ def __init__(
+ self,
+ *,
+ value: Optional[List["DatasetDefinition"]] = None,
+ continuation_token: Optional[str] = None,
+ next_link: Optional[str] = None,
+ **kwargs
+ ):
+ """
+ :keyword value: An array of objects of type DatasetDefinition.
+ :paramtype value: list[~azure.mgmt.machinelearningservices.models.DatasetDefinition]
+ :keyword continuation_token: The token used in retrieving the next page. If null, there are no
+ additional pages.
+ :paramtype continuation_token: str
+ :keyword next_link: The link to the next page constructed using the continuationToken. If
+ null, there are no additional pages.
+ :paramtype next_link: str
+ """
+ super(PaginatedDatasetDefinitionList, self).__init__(**kwargs)
+ self.value = value
+ self.continuation_token = continuation_token
+ self.next_link = next_link
+
+
+class PaginatedDatasetList(msrest.serialization.Model):
+ """A paginated list of Datasets.
+
+ :ivar value: An array of objects of type Dataset.
+ :vartype value: list[~azure.mgmt.machinelearningservices.models.Dataset]
+ :ivar continuation_token: The token used in retrieving the next page. If null, there are no
+ additional pages.
+ :vartype continuation_token: str
+ :ivar next_link: The link to the next page constructed using the continuationToken. If null,
+ there are no additional pages.
+ :vartype next_link: str
+ """
+
+ _attribute_map = {
+ 'value': {'key': 'value', 'type': '[Dataset]'},
+ 'continuation_token': {'key': 'continuationToken', 'type': 'str'},
+ 'next_link': {'key': 'nextLink', 'type': 'str'},
+ }
+
+ def __init__(
+ self,
+ *,
+ value: Optional[List["Dataset"]] = None,
+ continuation_token: Optional[str] = None,
+ next_link: Optional[str] = None,
+ **kwargs
+ ):
+ """
+ :keyword value: An array of objects of type Dataset.
+ :paramtype value: list[~azure.mgmt.machinelearningservices.models.Dataset]
+ :keyword continuation_token: The token used in retrieving the next page. If null, there are no
+ additional pages.
+ :paramtype continuation_token: str
+ :keyword next_link: The link to the next page constructed using the continuationToken. If
+ null, there are no additional pages.
+ :paramtype next_link: str
+ """
+ super(PaginatedDatasetList, self).__init__(**kwargs)
+ self.value = value
+ self.continuation_token = continuation_token
+ self.next_link = next_link
+
+
+class PaginatedDatasetV2List(msrest.serialization.Model):
+ """A paginated list of DatasetV2s.
+
+ :ivar value: An array of objects of type DatasetV2.
+ :vartype value: list[~azure.mgmt.machinelearningservices.models.DatasetV2]
+ :ivar continuation_token: The token used in retrieving the next page. If null, there are no
+ additional pages.
+ :vartype continuation_token: str
+ :ivar next_link: The link to the next page constructed using the continuationToken. If null,
+ there are no additional pages.
+ :vartype next_link: str
+ """
+
+ _attribute_map = {
+ 'value': {'key': 'value', 'type': '[DatasetV2]'},
+ 'continuation_token': {'key': 'continuationToken', 'type': 'str'},
+ 'next_link': {'key': 'nextLink', 'type': 'str'},
+ }
+
+ def __init__(
+ self,
+ *,
+ value: Optional[List["DatasetV2"]] = None,
+ continuation_token: Optional[str] = None,
+ next_link: Optional[str] = None,
+ **kwargs
+ ):
+ """
+ :keyword value: An array of objects of type DatasetV2.
+ :paramtype value: list[~azure.mgmt.machinelearningservices.models.DatasetV2]
+ :keyword continuation_token: The token used in retrieving the next page. If null, there are no
+ additional pages.
+ :paramtype continuation_token: str
+ :keyword next_link: The link to the next page constructed using the continuationToken. If
+ null, there are no additional pages.
+ :paramtype next_link: str
+ """
+ super(PaginatedDatasetV2List, self).__init__(**kwargs)
+ self.value = value
+ self.continuation_token = continuation_token
+ self.next_link = next_link
+
+
+class PaginatedDataVersionEntityList(msrest.serialization.Model):
+ """A paginated list of DataVersionEntitys.
+
+ :ivar value: An array of objects of type DataVersionEntity.
+ :vartype value: list[~azure.mgmt.machinelearningservices.models.DataVersionEntity]
+ :ivar continuation_token: The token used in retrieving the next page. If null, there are no
+ additional pages.
+ :vartype continuation_token: str
+ :ivar next_link: The link to the next page constructed using the continuationToken. If null,
+ there are no additional pages.
+ :vartype next_link: str
+ """
+
+ _attribute_map = {
+ 'value': {'key': 'value', 'type': '[DataVersionEntity]'},
+ 'continuation_token': {'key': 'continuationToken', 'type': 'str'},
+ 'next_link': {'key': 'nextLink', 'type': 'str'},
+ }
+
+ def __init__(
+ self,
+ *,
+ value: Optional[List["DataVersionEntity"]] = None,
+ continuation_token: Optional[str] = None,
+ next_link: Optional[str] = None,
+ **kwargs
+ ):
+ """
+ :keyword value: An array of objects of type DataVersionEntity.
+ :paramtype value: list[~azure.mgmt.machinelearningservices.models.DataVersionEntity]
+ :keyword continuation_token: The token used in retrieving the next page. If null, there are no
+ additional pages.
+ :paramtype continuation_token: str
+ :keyword next_link: The link to the next page constructed using the continuationToken. If
+ null, there are no additional pages.
+ :paramtype next_link: str
+ """
+ super(PaginatedDataVersionEntityList, self).__init__(**kwargs)
+ self.value = value
+ self.continuation_token = continuation_token
+ self.next_link = next_link
+
+
+class PaginatedStringList(msrest.serialization.Model):
+ """A paginated list of Strings.
+
+ :ivar value: An array of objects of type String.
+ :vartype value: list[str]
+ :ivar continuation_token: The token used in retrieving the next page. If null, there are no
+ additional pages.
+ :vartype continuation_token: str
+ :ivar next_link: The link to the next page constructed using the continuationToken. If null,
+ there are no additional pages.
+ :vartype next_link: str
+ """
+
+ _attribute_map = {
+ 'value': {'key': 'value', 'type': '[str]'},
+ 'continuation_token': {'key': 'continuationToken', 'type': 'str'},
+ 'next_link': {'key': 'nextLink', 'type': 'str'},
+ }
+
+ def __init__(
+ self,
+ *,
+ value: Optional[List[str]] = None,
+ continuation_token: Optional[str] = None,
+ next_link: Optional[str] = None,
+ **kwargs
+ ):
+ """
+ :keyword value: An array of objects of type String.
+ :paramtype value: list[str]
+ :keyword continuation_token: The token used in retrieving the next page. If null, there are no
+ additional pages.
+ :paramtype continuation_token: str
+ :keyword next_link: The link to the next page constructed using the continuationToken. If
+ null, there are no additional pages.
+ :paramtype next_link: str
+ """
+ super(PaginatedStringList, self).__init__(**kwargs)
+ self.value = value
+ self.continuation_token = continuation_token
+ self.next_link = next_link
+
+
+class ProfileActionResult(msrest.serialization.Model):
+ """ProfileActionResult.
+
+ :ivar profile_action_id:
+ :vartype profile_action_id: str
+ :ivar status:
+ :vartype status: str
+ :ivar completed_on_utc:
+ :vartype completed_on_utc: ~datetime.datetime
+ :ivar action_result:
+ :vartype action_result: ~azure.mgmt.machinelearningservices.models.ActionResult
+ """
+
+ _attribute_map = {
+ 'profile_action_id': {'key': 'profileActionId', 'type': 'str'},
+ 'status': {'key': 'status', 'type': 'str'},
+ 'completed_on_utc': {'key': 'completedOnUtc', 'type': 'iso-8601'},
+ 'action_result': {'key': 'actionResult', 'type': 'ActionResult'},
+ }
+
+ def __init__(
+ self,
+ *,
+ profile_action_id: Optional[str] = None,
+ status: Optional[str] = None,
+ completed_on_utc: Optional[datetime.datetime] = None,
+ action_result: Optional["ActionResult"] = None,
+ **kwargs
+ ):
+ """
+ :keyword profile_action_id:
+ :paramtype profile_action_id: str
+ :keyword status:
+ :paramtype status: str
+ :keyword completed_on_utc:
+ :paramtype completed_on_utc: ~datetime.datetime
+ :keyword action_result:
+ :paramtype action_result: ~azure.mgmt.machinelearningservices.models.ActionResult
+ """
+ super(ProfileActionResult, self).__init__(**kwargs)
+ self.profile_action_id = profile_action_id
+ self.status = status
+ self.completed_on_utc = completed_on_utc
+ self.action_result = action_result
+
+
+class ProfileResult(msrest.serialization.Model):
+ """ProfileResult.
+
+ :ivar column_name:
+ :vartype column_name: str
+ :ivar type: Possible values include: "String", "Boolean", "Integer", "Decimal", "Date",
+ "Unknown", "Error", "Null", "DataRow", "List", "Stream".
+ :vartype type: str or ~azure.mgmt.machinelearningservices.models.FieldType
+ :ivar min:
+ :vartype min: ~azure.mgmt.machinelearningservices.models.DataField
+ :ivar max:
+ :vartype max: ~azure.mgmt.machinelearningservices.models.DataField
+ :ivar count:
+ :vartype count: long
+ :ivar missing_count:
+ :vartype missing_count: long
+ :ivar not_missing_count:
+ :vartype not_missing_count: long
+ :ivar percent_missing:
+ :vartype percent_missing: float
+ :ivar error_count:
+ :vartype error_count: long
+ :ivar empty_count:
+ :vartype empty_count: long
+ :ivar quantiles:
+ :vartype quantiles: ~azure.mgmt.machinelearningservices.models.Quantiles
+ :ivar whisker_top:
+ :vartype whisker_top: float
+ :ivar whisker_bottom:
+ :vartype whisker_bottom: float
+ :ivar moments:
+ :vartype moments: ~azure.mgmt.machinelearningservices.models.Moments
+ :ivar type_counts:
+ :vartype type_counts: list[~azure.mgmt.machinelearningservices.models.TypeCount]
+ :ivar value_counts:
+ :vartype value_counts: list[~azure.mgmt.machinelearningservices.models.ValueCount]
+ :ivar unique_values:
+ :vartype unique_values: long
+ :ivar histogram:
+ :vartype histogram: list[~azure.mgmt.machinelearningservices.models.HistogramBin]
+ :ivar s_type_counts:
+ :vartype s_type_counts: list[~azure.mgmt.machinelearningservices.models.STypeCount]
+ :ivar average_spaces_count:
+ :vartype average_spaces_count: float
+ :ivar string_lengths:
+ :vartype string_lengths: list[~azure.mgmt.machinelearningservices.models.StringLengthCount]
+ """
+
+ _attribute_map = {
+ 'column_name': {'key': 'columnName', 'type': 'str'},
+ 'type': {'key': 'type', 'type': 'str'},
+ 'min': {'key': 'min', 'type': 'DataField'},
+ 'max': {'key': 'max', 'type': 'DataField'},
+ 'count': {'key': 'count', 'type': 'long'},
+ 'missing_count': {'key': 'missingCount', 'type': 'long'},
+ 'not_missing_count': {'key': 'notMissingCount', 'type': 'long'},
+ 'percent_missing': {'key': 'percentMissing', 'type': 'float'},
+ 'error_count': {'key': 'errorCount', 'type': 'long'},
+ 'empty_count': {'key': 'emptyCount', 'type': 'long'},
+ 'quantiles': {'key': 'quantiles', 'type': 'Quantiles'},
+ 'whisker_top': {'key': 'whiskerTop', 'type': 'float'},
+ 'whisker_bottom': {'key': 'whiskerBottom', 'type': 'float'},
+ 'moments': {'key': 'moments', 'type': 'Moments'},
+ 'type_counts': {'key': 'typeCounts', 'type': '[TypeCount]'},
+ 'value_counts': {'key': 'valueCounts', 'type': '[ValueCount]'},
+ 'unique_values': {'key': 'uniqueValues', 'type': 'long'},
+ 'histogram': {'key': 'histogram', 'type': '[HistogramBin]'},
+ 's_type_counts': {'key': 'sTypeCounts', 'type': '[STypeCount]'},
+ 'average_spaces_count': {'key': 'averageSpacesCount', 'type': 'float'},
+ 'string_lengths': {'key': 'stringLengths', 'type': '[StringLengthCount]'},
+ }
+
+ def __init__(
+ self,
+ *,
+ column_name: Optional[str] = None,
+ type: Optional[Union[str, "FieldType"]] = None,
+ min: Optional["DataField"] = None,
+ max: Optional["DataField"] = None,
+ count: Optional[int] = None,
+ missing_count: Optional[int] = None,
+ not_missing_count: Optional[int] = None,
+ percent_missing: Optional[float] = None,
+ error_count: Optional[int] = None,
+ empty_count: Optional[int] = None,
+ quantiles: Optional["Quantiles"] = None,
+ whisker_top: Optional[float] = None,
+ whisker_bottom: Optional[float] = None,
+ moments: Optional["Moments"] = None,
+ type_counts: Optional[List["TypeCount"]] = None,
+ value_counts: Optional[List["ValueCount"]] = None,
+ unique_values: Optional[int] = None,
+ histogram: Optional[List["HistogramBin"]] = None,
+ s_type_counts: Optional[List["STypeCount"]] = None,
+ average_spaces_count: Optional[float] = None,
+ string_lengths: Optional[List["StringLengthCount"]] = None,
+ **kwargs
+ ):
+ """
+ :keyword column_name:
+ :paramtype column_name: str
+ :keyword type: Possible values include: "String", "Boolean", "Integer", "Decimal", "Date",
+ "Unknown", "Error", "Null", "DataRow", "List", "Stream".
+ :paramtype type: str or ~azure.mgmt.machinelearningservices.models.FieldType
+ :keyword min:
+ :paramtype min: ~azure.mgmt.machinelearningservices.models.DataField
+ :keyword max:
+ :paramtype max: ~azure.mgmt.machinelearningservices.models.DataField
+ :keyword count:
+ :paramtype count: long
+ :keyword missing_count:
+ :paramtype missing_count: long
+ :keyword not_missing_count:
+ :paramtype not_missing_count: long
+ :keyword percent_missing:
+ :paramtype percent_missing: float
+ :keyword error_count:
+ :paramtype error_count: long
+ :keyword empty_count:
+ :paramtype empty_count: long
+ :keyword quantiles:
+ :paramtype quantiles: ~azure.mgmt.machinelearningservices.models.Quantiles
+ :keyword whisker_top:
+ :paramtype whisker_top: float
+ :keyword whisker_bottom:
+ :paramtype whisker_bottom: float
+ :keyword moments:
+ :paramtype moments: ~azure.mgmt.machinelearningservices.models.Moments
+ :keyword type_counts:
+ :paramtype type_counts: list[~azure.mgmt.machinelearningservices.models.TypeCount]
+ :keyword value_counts:
+ :paramtype value_counts: list[~azure.mgmt.machinelearningservices.models.ValueCount]
+ :keyword unique_values:
+ :paramtype unique_values: long
+ :keyword histogram:
+ :paramtype histogram: list[~azure.mgmt.machinelearningservices.models.HistogramBin]
+ :keyword s_type_counts:
+ :paramtype s_type_counts: list[~azure.mgmt.machinelearningservices.models.STypeCount]
+ :keyword average_spaces_count:
+ :paramtype average_spaces_count: float
+ :keyword string_lengths:
+ :paramtype string_lengths: list[~azure.mgmt.machinelearningservices.models.StringLengthCount]
+ """
+ super(ProfileResult, self).__init__(**kwargs)
+ self.column_name = column_name
+ self.type = type
+ self.min = min
+ self.max = max
+ self.count = count
+ self.missing_count = missing_count
+ self.not_missing_count = not_missing_count
+ self.percent_missing = percent_missing
+ self.error_count = error_count
+ self.empty_count = empty_count
+ self.quantiles = quantiles
+ self.whisker_top = whisker_top
+ self.whisker_bottom = whisker_bottom
+ self.moments = moments
+ self.type_counts = type_counts
+ self.value_counts = value_counts
+ self.unique_values = unique_values
+ self.histogram = histogram
+ self.s_type_counts = s_type_counts
+ self.average_spaces_count = average_spaces_count
+ self.string_lengths = string_lengths
+
+
+class Quantiles(msrest.serialization.Model):
+ """Quantiles.
+
+ :ivar p0_d1:
+ :vartype p0_d1: float
+ :ivar p1:
+ :vartype p1: float
+ :ivar p5:
+ :vartype p5: float
+ :ivar p25:
+ :vartype p25: float
+ :ivar p50:
+ :vartype p50: float
+ :ivar p75:
+ :vartype p75: float
+ :ivar p95:
+ :vartype p95: float
+ :ivar p99:
+ :vartype p99: float
+ :ivar p99_d9:
+ :vartype p99_d9: float
+ """
+
+ _attribute_map = {
+ 'p0_d1': {'key': 'p0D1', 'type': 'float'},
+ 'p1': {'key': 'p1', 'type': 'float'},
+ 'p5': {'key': 'p5', 'type': 'float'},
+ 'p25': {'key': 'p25', 'type': 'float'},
+ 'p50': {'key': 'p50', 'type': 'float'},
+ 'p75': {'key': 'p75', 'type': 'float'},
+ 'p95': {'key': 'p95', 'type': 'float'},
+ 'p99': {'key': 'p99', 'type': 'float'},
+ 'p99_d9': {'key': 'p99D9', 'type': 'float'},
+ }
+
+ def __init__(
+ self,
+ *,
+ p0_d1: Optional[float] = None,
+ p1: Optional[float] = None,
+ p5: Optional[float] = None,
+ p25: Optional[float] = None,
+ p50: Optional[float] = None,
+ p75: Optional[float] = None,
+ p95: Optional[float] = None,
+ p99: Optional[float] = None,
+ p99_d9: Optional[float] = None,
+ **kwargs
+ ):
+ """
+ :keyword p0_d1:
+ :paramtype p0_d1: float
+ :keyword p1:
+ :paramtype p1: float
+ :keyword p5:
+ :paramtype p5: float
+ :keyword p25:
+ :paramtype p25: float
+ :keyword p50:
+ :paramtype p50: float
+ :keyword p75:
+ :paramtype p75: float
+ :keyword p95:
+ :paramtype p95: float
+ :keyword p99:
+ :paramtype p99: float
+ :keyword p99_d9:
+ :paramtype p99_d9: float
+ """
+ super(Quantiles, self).__init__(**kwargs)
+ self.p0_d1 = p0_d1
+ self.p1 = p1
+ self.p5 = p5
+ self.p25 = p25
+ self.p50 = p50
+ self.p75 = p75
+ self.p95 = p95
+ self.p99 = p99
+ self.p99_d9 = p99_d9
+
+
+class RegisterExistingData(msrest.serialization.Model):
+ """RegisterExistingData.
+
+ All required parameters must be populated in order to send to Azure.
+
+ :ivar existing_unregistered_asset_id: Required.
+ :vartype existing_unregistered_asset_id: str
+ :ivar name: Required.
+ :vartype name: str
+ :ivar version:
+ :vartype version: str
+ """
+
+ _validation = {
+ 'existing_unregistered_asset_id': {'required': True},
+ 'name': {'required': True},
+ }
+
+ _attribute_map = {
+ 'existing_unregistered_asset_id': {'key': 'existingUnregisteredAssetId', 'type': 'str'},
+ 'name': {'key': 'name', 'type': 'str'},
+ 'version': {'key': 'version', 'type': 'str'},
+ }
+
+ def __init__(
+ self,
+ *,
+ existing_unregistered_asset_id: str,
+ name: str,
+ version: Optional[str] = None,
+ **kwargs
+ ):
+ """
+ :keyword existing_unregistered_asset_id: Required.
+ :paramtype existing_unregistered_asset_id: str
+ :keyword name: Required.
+ :paramtype name: str
+ :keyword version:
+ :paramtype version: str
+ """
+ super(RegisterExistingData, self).__init__(**kwargs)
+ self.existing_unregistered_asset_id = existing_unregistered_asset_id
+ self.name = name
+ self.version = version
+
+
+class RootError(msrest.serialization.Model):
+ """The root error.
+
+ :ivar code: The service-defined error code. Supported error codes: ServiceError, UserError,
+ ValidationError, AzureStorageError, TransientError, RequestThrottled.
+ :vartype code: str
+ :ivar severity: The Severity of error.
+ :vartype severity: int
+ :ivar message: A human-readable representation of the error.
+ :vartype message: str
+ :ivar message_format: An unformatted version of the message with no variable substitution.
+ :vartype message_format: str
+ :ivar message_parameters: Value substitutions corresponding to the contents of MessageFormat.
+ :vartype message_parameters: dict[str, str]
+ :ivar reference_code: This code can optionally be set by the system generating the error.
+ It should be used to classify the problem and identify the module and code area where the
+ failure occured.
+ :vartype reference_code: str
+ :ivar details_uri: A URI which points to more details about the context of the error.
+ :vartype details_uri: str
+ :ivar target: The target of the error (e.g., the name of the property in error).
+ :vartype target: str
+ :ivar details: The related errors that occurred during the request.
+ :vartype details: list[~azure.mgmt.machinelearningservices.models.RootError]
+ :ivar inner_error: A nested structure of errors.
+ :vartype inner_error: ~azure.mgmt.machinelearningservices.models.InnerErrorResponse
+ :ivar additional_info: The error additional info.
+ :vartype additional_info: list[~azure.mgmt.machinelearningservices.models.ErrorAdditionalInfo]
+ """
+
+ _attribute_map = {
+ 'code': {'key': 'code', 'type': 'str'},
+ 'severity': {'key': 'severity', 'type': 'int'},
+ 'message': {'key': 'message', 'type': 'str'},
+ 'message_format': {'key': 'messageFormat', 'type': 'str'},
+ 'message_parameters': {'key': 'messageParameters', 'type': '{str}'},
+ 'reference_code': {'key': 'referenceCode', 'type': 'str'},
+ 'details_uri': {'key': 'detailsUri', 'type': 'str'},
+ 'target': {'key': 'target', 'type': 'str'},
+ 'details': {'key': 'details', 'type': '[RootError]'},
+ 'inner_error': {'key': 'innerError', 'type': 'InnerErrorResponse'},
+ 'additional_info': {'key': 'additionalInfo', 'type': '[ErrorAdditionalInfo]'},
+ }
+
+ def __init__(
+ self,
+ *,
+ code: Optional[str] = None,
+ severity: Optional[int] = None,
+ message: Optional[str] = None,
+ message_format: Optional[str] = None,
+ message_parameters: Optional[Dict[str, str]] = None,
+ reference_code: Optional[str] = None,
+ details_uri: Optional[str] = None,
+ target: Optional[str] = None,
+ details: Optional[List["RootError"]] = None,
+ inner_error: Optional["InnerErrorResponse"] = None,
+ additional_info: Optional[List["ErrorAdditionalInfo"]] = None,
+ **kwargs
+ ):
+ """
+ :keyword code: The service-defined error code. Supported error codes: ServiceError, UserError,
+ ValidationError, AzureStorageError, TransientError, RequestThrottled.
+ :paramtype code: str
+ :keyword severity: The Severity of error.
+ :paramtype severity: int
+ :keyword message: A human-readable representation of the error.
+ :paramtype message: str
+ :keyword message_format: An unformatted version of the message with no variable substitution.
+ :paramtype message_format: str
+ :keyword message_parameters: Value substitutions corresponding to the contents of
+ MessageFormat.
+ :paramtype message_parameters: dict[str, str]
+ :keyword reference_code: This code can optionally be set by the system generating the error.
+ It should be used to classify the problem and identify the module and code area where the
+ failure occured.
+ :paramtype reference_code: str
+ :keyword details_uri: A URI which points to more details about the context of the error.
+ :paramtype details_uri: str
+ :keyword target: The target of the error (e.g., the name of the property in error).
+ :paramtype target: str
+ :keyword details: The related errors that occurred during the request.
+ :paramtype details: list[~azure.mgmt.machinelearningservices.models.RootError]
+ :keyword inner_error: A nested structure of errors.
+ :paramtype inner_error: ~azure.mgmt.machinelearningservices.models.InnerErrorResponse
+ :keyword additional_info: The error additional info.
+ :paramtype additional_info:
+ list[~azure.mgmt.machinelearningservices.models.ErrorAdditionalInfo]
+ """
+ super(RootError, self).__init__(**kwargs)
+ self.code = code
+ self.severity = severity
+ self.message = message
+ self.message_format = message_format
+ self.message_parameters = message_parameters
+ self.reference_code = reference_code
+ self.details_uri = details_uri
+ self.target = target
+ self.details = details
+ self.inner_error = inner_error
+ self.additional_info = additional_info
+
+
+class SqlDataPath(msrest.serialization.Model):
+ """SqlDataPath.
+
+ :ivar sql_table_name:
+ :vartype sql_table_name: str
+ :ivar sql_query:
+ :vartype sql_query: str
+ :ivar sql_stored_procedure_name:
+ :vartype sql_stored_procedure_name: str
+ :ivar sql_stored_procedure_params:
+ :vartype sql_stored_procedure_params:
+ list[~azure.mgmt.machinelearningservices.models.StoredProcedureParameter]
+ :ivar query_timeout:
+ :vartype query_timeout: long
+ """
+
+ _attribute_map = {
+ 'sql_table_name': {'key': 'sqlTableName', 'type': 'str'},
+ 'sql_query': {'key': 'sqlQuery', 'type': 'str'},
+ 'sql_stored_procedure_name': {'key': 'sqlStoredProcedureName', 'type': 'str'},
+ 'sql_stored_procedure_params': {'key': 'sqlStoredProcedureParams', 'type': '[StoredProcedureParameter]'},
+ 'query_timeout': {'key': 'queryTimeout', 'type': 'long'},
+ }
+
+ def __init__(
+ self,
+ *,
+ sql_table_name: Optional[str] = None,
+ sql_query: Optional[str] = None,
+ sql_stored_procedure_name: Optional[str] = None,
+ sql_stored_procedure_params: Optional[List["StoredProcedureParameter"]] = None,
+ query_timeout: Optional[int] = None,
+ **kwargs
+ ):
+ """
+ :keyword sql_table_name:
+ :paramtype sql_table_name: str
+ :keyword sql_query:
+ :paramtype sql_query: str
+ :keyword sql_stored_procedure_name:
+ :paramtype sql_stored_procedure_name: str
+ :keyword sql_stored_procedure_params:
+ :paramtype sql_stored_procedure_params:
+ list[~azure.mgmt.machinelearningservices.models.StoredProcedureParameter]
+ :keyword query_timeout:
+ :paramtype query_timeout: long
+ """
+ super(SqlDataPath, self).__init__(**kwargs)
+ self.sql_table_name = sql_table_name
+ self.sql_query = sql_query
+ self.sql_stored_procedure_name = sql_stored_procedure_name
+ self.sql_stored_procedure_params = sql_stored_procedure_params
+ self.query_timeout = query_timeout
+
+
+class StoredProcedureParameter(msrest.serialization.Model):
+ """StoredProcedureParameter.
+
+ :ivar name:
+ :vartype name: str
+ :ivar value:
+ :vartype value: str
+ :ivar type: Possible values include: "String", "Int", "Decimal", "Guid", "Boolean", "Date".
+ :vartype type: str or ~azure.mgmt.machinelearningservices.models.StoredProcedureParameterType
+ """
+
+ _attribute_map = {
+ 'name': {'key': 'name', 'type': 'str'},
+ 'value': {'key': 'value', 'type': 'str'},
+ 'type': {'key': 'type', 'type': 'str'},
+ }
+
+ def __init__(
+ self,
+ *,
+ name: Optional[str] = None,
+ value: Optional[str] = None,
+ type: Optional[Union[str, "StoredProcedureParameterType"]] = None,
+ **kwargs
+ ):
+ """
+ :keyword name:
+ :paramtype name: str
+ :keyword value:
+ :paramtype value: str
+ :keyword type: Possible values include: "String", "Int", "Decimal", "Guid", "Boolean", "Date".
+ :paramtype type: str or ~azure.mgmt.machinelearningservices.models.StoredProcedureParameterType
+ """
+ super(StoredProcedureParameter, self).__init__(**kwargs)
+ self.name = name
+ self.value = value
+ self.type = type
+
+
+class StringLengthCount(msrest.serialization.Model):
+ """StringLengthCount.
+
+ :ivar length:
+ :vartype length: long
+ :ivar count:
+ :vartype count: long
+ """
+
+ _attribute_map = {
+ 'length': {'key': 'length', 'type': 'long'},
+ 'count': {'key': 'count', 'type': 'long'},
+ }
+
+ def __init__(
+ self,
+ *,
+ length: Optional[int] = None,
+ count: Optional[int] = None,
+ **kwargs
+ ):
+ """
+ :keyword length:
+ :paramtype length: long
+ :keyword count:
+ :paramtype count: long
+ """
+ super(StringLengthCount, self).__init__(**kwargs)
+ self.length = length
+ self.count = count
+
+
+class STypeCount(msrest.serialization.Model):
+ """STypeCount.
+
+ :ivar s_type: Possible values include: "EmailAddress", "GeographicCoordinate", "Ipv4Address",
+ "Ipv6Address", "UsPhoneNumber", "ZipCode".
+ :vartype s_type: str or ~azure.mgmt.machinelearningservices.models.SType
+ :ivar count:
+ :vartype count: long
+ """
+
+ _attribute_map = {
+ 's_type': {'key': 'sType', 'type': 'str'},
+ 'count': {'key': 'count', 'type': 'long'},
+ }
+
+ def __init__(
+ self,
+ *,
+ s_type: Optional[Union[str, "SType"]] = None,
+ count: Optional[int] = None,
+ **kwargs
+ ):
+ """
+ :keyword s_type: Possible values include: "EmailAddress", "GeographicCoordinate",
+ "Ipv4Address", "Ipv6Address", "UsPhoneNumber", "ZipCode".
+ :paramtype s_type: str or ~azure.mgmt.machinelearningservices.models.SType
+ :keyword count:
+ :paramtype count: long
+ """
+ super(STypeCount, self).__init__(**kwargs)
+ self.s_type = s_type
+ self.count = count
+
+
+class TypeCount(msrest.serialization.Model):
+ """TypeCount.
+
+ :ivar type: Possible values include: "String", "Boolean", "Integer", "Decimal", "Date",
+ "Unknown", "Error", "Null", "DataRow", "List", "Stream".
+ :vartype type: str or ~azure.mgmt.machinelearningservices.models.FieldType
+ :ivar count:
+ :vartype count: long
+ """
+
+ _attribute_map = {
+ 'type': {'key': 'type', 'type': 'str'},
+ 'count': {'key': 'count', 'type': 'long'},
+ }
+
+ def __init__(
+ self,
+ *,
+ type: Optional[Union[str, "FieldType"]] = None,
+ count: Optional[int] = None,
+ **kwargs
+ ):
+ """
+ :keyword type: Possible values include: "String", "Boolean", "Integer", "Decimal", "Date",
+ "Unknown", "Error", "Null", "DataRow", "List", "Stream".
+ :paramtype type: str or ~azure.mgmt.machinelearningservices.models.FieldType
+ :keyword count:
+ :paramtype count: long
+ """
+ super(TypeCount, self).__init__(**kwargs)
+ self.type = type
+ self.count = count
+
+
+class User(msrest.serialization.Model):
+ """User.
+
+ :ivar user_object_id: A user or service principal's object ID.
+ This is EUPI and may only be logged to warm path telemetry.
+ :vartype user_object_id: str
+ :ivar user_pu_id: A user or service principal's PuID.
+ This is PII and should never be logged.
+ :vartype user_pu_id: str
+ :ivar user_idp: A user identity provider. Eg live.com
+ This is PII and should never be logged.
+ :vartype user_idp: str
+ :ivar user_alt_sec_id: A user alternate sec id. This represents the user in a different
+ identity provider system Eg.1:live.com:puid
+ This is PII and should never be logged.
+ :vartype user_alt_sec_id: str
+ :ivar user_iss: The issuer which issed the token for this user.
+ This is PII and should never be logged.
+ :vartype user_iss: str
+ :ivar user_tenant_id: A user or service principal's tenant ID.
+ :vartype user_tenant_id: str
+ :ivar user_name: A user's full name or a service principal's app ID.
+ This is PII and should never be logged.
+ :vartype user_name: str
+ :ivar upn: A user's Principal name (upn)
+ This is PII andshould never be logged.
+ :vartype upn: str
+ """
+
+ _attribute_map = {
+ 'user_object_id': {'key': 'userObjectId', 'type': 'str'},
+ 'user_pu_id': {'key': 'userPuId', 'type': 'str'},
+ 'user_idp': {'key': 'userIdp', 'type': 'str'},
+ 'user_alt_sec_id': {'key': 'userAltSecId', 'type': 'str'},
+ 'user_iss': {'key': 'userIss', 'type': 'str'},
+ 'user_tenant_id': {'key': 'userTenantId', 'type': 'str'},
+ 'user_name': {'key': 'userName', 'type': 'str'},
+ 'upn': {'key': 'upn', 'type': 'str'},
+ }
+
+ def __init__(
+ self,
+ *,
+ user_object_id: Optional[str] = None,
+ user_pu_id: Optional[str] = None,
+ user_idp: Optional[str] = None,
+ user_alt_sec_id: Optional[str] = None,
+ user_iss: Optional[str] = None,
+ user_tenant_id: Optional[str] = None,
+ user_name: Optional[str] = None,
+ upn: Optional[str] = None,
+ **kwargs
+ ):
+ """
+ :keyword user_object_id: A user or service principal's object ID.
+ This is EUPI and may only be logged to warm path telemetry.
+ :paramtype user_object_id: str
+ :keyword user_pu_id: A user or service principal's PuID.
+ This is PII and should never be logged.
+ :paramtype user_pu_id: str
+ :keyword user_idp: A user identity provider. Eg live.com
+ This is PII and should never be logged.
+ :paramtype user_idp: str
+ :keyword user_alt_sec_id: A user alternate sec id. This represents the user in a different
+ identity provider system Eg.1:live.com:puid
+ This is PII and should never be logged.
+ :paramtype user_alt_sec_id: str
+ :keyword user_iss: The issuer which issed the token for this user.
+ This is PII and should never be logged.
+ :paramtype user_iss: str
+ :keyword user_tenant_id: A user or service principal's tenant ID.
+ :paramtype user_tenant_id: str
+ :keyword user_name: A user's full name or a service principal's app ID.
+ This is PII and should never be logged.
+ :paramtype user_name: str
+ :keyword upn: A user's Principal name (upn)
+ This is PII andshould never be logged.
+ :paramtype upn: str
+ """
+ super(User, self).__init__(**kwargs)
+ self.user_object_id = user_object_id
+ self.user_pu_id = user_pu_id
+ self.user_idp = user_idp
+ self.user_alt_sec_id = user_alt_sec_id
+ self.user_iss = user_iss
+ self.user_tenant_id = user_tenant_id
+ self.user_name = user_name
+ self.upn = upn
+
+
+class ValueCount(msrest.serialization.Model):
+ """ValueCount.
+
+ :ivar value:
+ :vartype value: ~azure.mgmt.machinelearningservices.models.DataField
+ :ivar count:
+ :vartype count: long
+ """
+
+ _attribute_map = {
+ 'value': {'key': 'value', 'type': 'DataField'},
+ 'count': {'key': 'count', 'type': 'long'},
+ }
+
+ def __init__(
+ self,
+ *,
+ value: Optional["DataField"] = None,
+ count: Optional[int] = None,
+ **kwargs
+ ):
+ """
+ :keyword value:
+ :paramtype value: ~azure.mgmt.machinelearningservices.models.DataField
+ :keyword count:
+ :paramtype count: long
+ """
+ super(ValueCount, self).__init__(**kwargs)
+ self.value = value
+ self.count = count
diff --git a/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/operations/__init__.py b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/operations/__init__.py
new file mode 100644
index 00000000..f0340813
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/operations/__init__.py
@@ -0,0 +1,27 @@
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) AutoRest Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+
+from ._data_call_operations import DataCallOperations
+from ._data_container_operations import DataContainerOperations
+from ._delete_operations import DeleteOperations
+from ._datasets_v1_operations import DatasetsV1Operations
+from ._dataset_controller_v2_operations import DatasetControllerV2Operations
+from ._dataset_v2_operations import DatasetV2Operations
+from ._data_version_operations import DataVersionOperations
+from ._get_operation_status_operations import GetOperationStatusOperations
+
+__all__ = [
+ 'DataCallOperations',
+ 'DataContainerOperations',
+ 'DeleteOperations',
+ 'DatasetsV1Operations',
+ 'DatasetControllerV2Operations',
+ 'DatasetV2Operations',
+ 'DataVersionOperations',
+ 'GetOperationStatusOperations',
+]
diff --git a/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/operations/_data_call_operations.py b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/operations/_data_call_operations.py
new file mode 100644
index 00000000..4e7865d1
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/operations/_data_call_operations.py
@@ -0,0 +1,356 @@
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) AutoRest Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+import functools
+from typing import TYPE_CHECKING
+import warnings
+
+from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error
+from azure.core.pipeline import PipelineResponse
+from azure.core.pipeline.transport import HttpResponse
+from azure.core.rest import HttpRequest
+from azure.core.tracing.decorator import distributed_trace
+from azure.mgmt.core.exceptions import ARMErrorFormat
+from msrest import Serializer
+
+from .. import models as _models
+from .._vendor import _convert_request, _format_url_section
+
+if TYPE_CHECKING:
+ # pylint: disable=unused-import,ungrouped-imports
+ from typing import Any, Callable, Dict, Generic, List, Optional, TypeVar
+ T = TypeVar('T')
+ ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]]
+
+_SERIALIZER = Serializer()
+_SERIALIZER.client_side_validation = False
+# fmt: off
+
+def build_get_schema_for_ml_table_request(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ content_type = kwargs.pop('content_type', None) # type: Optional[str]
+
+ accept = "application/json"
+ # Construct URL
+ url = kwargs.pop("template_url", '/data/v2.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datacall/schema')
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ }
+
+ url = _format_url_section(url, **path_format_arguments)
+
+ # Construct headers
+ header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ if content_type is not None:
+ header_parameters['Content-Type'] = _SERIALIZER.header("content_type", content_type, 'str')
+ header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="POST",
+ url=url,
+ headers=header_parameters,
+ **kwargs
+ )
+
+
+def build_get_preview_for_ml_table_request(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ content_type = kwargs.pop('content_type', None) # type: Optional[str]
+
+ accept = "application/json"
+ # Construct URL
+ url = kwargs.pop("template_url", '/data/v2.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datacall/preview')
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ }
+
+ url = _format_url_section(url, **path_format_arguments)
+
+ # Construct headers
+ header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ if content_type is not None:
+ header_parameters['Content-Type'] = _SERIALIZER.header("content_type", content_type, 'str')
+ header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="POST",
+ url=url,
+ headers=header_parameters,
+ **kwargs
+ )
+
+
+def build_get_quick_profile_for_ml_table_request(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ content_type = kwargs.pop('content_type', None) # type: Optional[str]
+
+ accept = "application/json"
+ # Construct URL
+ url = kwargs.pop("template_url", '/data/v2.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datacall/quickprofile')
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ }
+
+ url = _format_url_section(url, **path_format_arguments)
+
+ # Construct headers
+ header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ if content_type is not None:
+ header_parameters['Content-Type'] = _SERIALIZER.header("content_type", content_type, 'str')
+ header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="POST",
+ url=url,
+ headers=header_parameters,
+ **kwargs
+ )
+
+# fmt: on
+class DataCallOperations(object):
+ """DataCallOperations operations.
+
+ You should not instantiate this class directly. Instead, you should create a Client instance that
+ instantiates it for you and attaches it as an attribute.
+
+ :ivar models: Alias to model classes used in this operation group.
+ :type models: ~azure.mgmt.machinelearningservices.models
+ :param client: Client for service requests.
+ :param config: Configuration of service client.
+ :param serializer: An object model serializer.
+ :param deserializer: An object model deserializer.
+ """
+
+ models = _models
+
+ def __init__(self, client, config, serializer, deserializer):
+ self._client = client
+ self._serialize = serializer
+ self._deserialize = deserializer
+ self._config = config
+
+ @distributed_trace
+ def get_schema_for_ml_table(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ body=None, # type: Optional["_models.DataCallRequest"]
+ **kwargs # type: Any
+ ):
+ # type: (...) -> List["_models.ColumnDefinition"]
+ """Get schema for a specific MLTable.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param body:
+ :type body: ~azure.mgmt.machinelearningservices.models.DataCallRequest
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: list of ColumnDefinition, or the result of cls(response)
+ :rtype: list[~azure.mgmt.machinelearningservices.models.ColumnDefinition]
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType[List["_models.ColumnDefinition"]]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+ content_type = kwargs.pop('content_type', "application/json") # type: Optional[str]
+
+ if body is not None:
+ _json = self._serialize.body(body, 'DataCallRequest')
+ else:
+ _json = None
+
+ request = build_get_schema_for_ml_table_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ content_type=content_type,
+ json=_json,
+ template_url=self.get_schema_for_ml_table.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('[ColumnDefinition]', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ get_schema_for_ml_table.metadata = {'url': '/data/v2.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datacall/schema'} # type: ignore
+
+
+ @distributed_trace
+ def get_preview_for_ml_table(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ body=None, # type: Optional["_models.DataCallRequest"]
+ **kwargs # type: Any
+ ):
+ # type: (...) -> "_models.DataViewSetResult"
+ """Get preview for a specific MLTable.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param body:
+ :type body: ~azure.mgmt.machinelearningservices.models.DataCallRequest
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: DataViewSetResult, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.DataViewSetResult
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.DataViewSetResult"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+ content_type = kwargs.pop('content_type', "application/json") # type: Optional[str]
+
+ if body is not None:
+ _json = self._serialize.body(body, 'DataCallRequest')
+ else:
+ _json = None
+
+ request = build_get_preview_for_ml_table_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ content_type=content_type,
+ json=_json,
+ template_url=self.get_preview_for_ml_table.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('DataViewSetResult', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ get_preview_for_ml_table.metadata = {'url': '/data/v2.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datacall/preview'} # type: ignore
+
+
+ @distributed_trace
+ def get_quick_profile_for_ml_table(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ body=None, # type: Optional["_models.DataCallRequest"]
+ **kwargs # type: Any
+ ):
+ # type: (...) -> List["_models.ProfileResult"]
+ """Get quick profile for a specific MLTable.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param body:
+ :type body: ~azure.mgmt.machinelearningservices.models.DataCallRequest
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: list of ProfileResult, or the result of cls(response)
+ :rtype: list[~azure.mgmt.machinelearningservices.models.ProfileResult]
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType[List["_models.ProfileResult"]]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+ content_type = kwargs.pop('content_type', "application/json") # type: Optional[str]
+
+ if body is not None:
+ _json = self._serialize.body(body, 'DataCallRequest')
+ else:
+ _json = None
+
+ request = build_get_quick_profile_for_ml_table_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ content_type=content_type,
+ json=_json,
+ template_url=self.get_quick_profile_for_ml_table.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('[ProfileResult]', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ get_quick_profile_for_ml_table.metadata = {'url': '/data/v2.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datacall/quickprofile'} # type: ignore
+
diff --git a/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/operations/_data_container_operations.py b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/operations/_data_container_operations.py
new file mode 100644
index 00000000..ac3af23d
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/operations/_data_container_operations.py
@@ -0,0 +1,464 @@
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) AutoRest Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+import functools
+from typing import TYPE_CHECKING
+import warnings
+
+from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error
+from azure.core.paging import ItemPaged
+from azure.core.pipeline import PipelineResponse
+from azure.core.pipeline.transport import HttpResponse
+from azure.core.rest import HttpRequest
+from azure.core.tracing.decorator import distributed_trace
+from azure.mgmt.core.exceptions import ARMErrorFormat
+from msrest import Serializer
+
+from .. import models as _models
+from .._vendor import _convert_request, _format_url_section
+
+if TYPE_CHECKING:
+ # pylint: disable=unused-import,ungrouped-imports
+ from typing import Any, Callable, Dict, Generic, Iterable, Optional, TypeVar
+ T = TypeVar('T')
+ ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]]
+
+_SERIALIZER = Serializer()
+_SERIALIZER.client_side_validation = False
+# fmt: off
+
+def build_create_data_container_request(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ content_type = kwargs.pop('content_type', None) # type: Optional[str]
+
+ accept = "application/json"
+ # Construct URL
+ url = kwargs.pop("template_url", '/data/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datacontainer')
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ }
+
+ url = _format_url_section(url, **path_format_arguments)
+
+ # Construct headers
+ header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ if content_type is not None:
+ header_parameters['Content-Type'] = _SERIALIZER.header("content_type", content_type, 'str')
+ header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="POST",
+ url=url,
+ headers=header_parameters,
+ **kwargs
+ )
+
+
+def build_list_data_container_request(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ accept = "application/json"
+ # Construct URL
+ url = kwargs.pop("template_url", '/data/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datacontainer')
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ }
+
+ url = _format_url_section(url, **path_format_arguments)
+
+ # Construct headers
+ header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="GET",
+ url=url,
+ headers=header_parameters,
+ **kwargs
+ )
+
+
+def build_get_data_container_request(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ name, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ accept = "application/json"
+ # Construct URL
+ url = kwargs.pop("template_url", '/data/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datacontainer/{name}')
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ "name": _SERIALIZER.url("name", name, 'str'),
+ }
+
+ url = _format_url_section(url, **path_format_arguments)
+
+ # Construct headers
+ header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="GET",
+ url=url,
+ headers=header_parameters,
+ **kwargs
+ )
+
+
+def build_modify_data_container_request(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ name, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ content_type = kwargs.pop('content_type', None) # type: Optional[str]
+
+ accept = "application/json"
+ # Construct URL
+ url = kwargs.pop("template_url", '/data/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datacontainer/{name}')
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ "name": _SERIALIZER.url("name", name, 'str'),
+ }
+
+ url = _format_url_section(url, **path_format_arguments)
+
+ # Construct headers
+ header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ if content_type is not None:
+ header_parameters['Content-Type'] = _SERIALIZER.header("content_type", content_type, 'str')
+ header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="PATCH",
+ url=url,
+ headers=header_parameters,
+ **kwargs
+ )
+
+# fmt: on
+class DataContainerOperations(object):
+ """DataContainerOperations operations.
+
+ You should not instantiate this class directly. Instead, you should create a Client instance that
+ instantiates it for you and attaches it as an attribute.
+
+ :ivar models: Alias to model classes used in this operation group.
+ :type models: ~azure.mgmt.machinelearningservices.models
+ :param client: Client for service requests.
+ :param config: Configuration of service client.
+ :param serializer: An object model serializer.
+ :param deserializer: An object model deserializer.
+ """
+
+ models = _models
+
+ def __init__(self, client, config, serializer, deserializer):
+ self._client = client
+ self._serialize = serializer
+ self._deserialize = deserializer
+ self._config = config
+
+ @distributed_trace
+ def create_data_container(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ body=None, # type: Optional["_models.DataContainer"]
+ **kwargs # type: Any
+ ):
+ # type: (...) -> "_models.DataContainerEntity"
+ """create_data_container.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param body:
+ :type body: ~azure.mgmt.machinelearningservices.models.DataContainer
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: DataContainerEntity, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.DataContainerEntity
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.DataContainerEntity"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+ content_type = kwargs.pop('content_type', "application/json") # type: Optional[str]
+
+ if body is not None:
+ _json = self._serialize.body(body, 'DataContainer')
+ else:
+ _json = None
+
+ request = build_create_data_container_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ content_type=content_type,
+ json=_json,
+ template_url=self.create_data_container.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('DataContainerEntity', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ create_data_container.metadata = {'url': '/data/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datacontainer'} # type: ignore
+
+
+ @distributed_trace
+ def list_data_container(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ **kwargs # type: Any
+ ):
+ # type: (...) -> Iterable["_models.PaginatedDataContainerEntityList"]
+ """list_data_container.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: An iterator like instance of either PaginatedDataContainerEntityList or the result of
+ cls(response)
+ :rtype:
+ ~azure.core.paging.ItemPaged[~azure.mgmt.machinelearningservices.models.PaginatedDataContainerEntityList]
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.PaginatedDataContainerEntityList"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+ def prepare_request(next_link=None):
+ if not next_link:
+
+ request = build_list_data_container_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ template_url=self.list_data_container.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ else:
+
+ request = build_list_data_container_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ template_url=next_link,
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+ request.method = "GET"
+ return request
+
+ def extract_data(pipeline_response):
+ deserialized = self._deserialize("PaginatedDataContainerEntityList", pipeline_response)
+ list_of_elem = deserialized.value
+ if cls:
+ list_of_elem = cls(list_of_elem)
+ return deserialized.next_link or None, iter(list_of_elem)
+
+ def get_next(next_link=None):
+ request = prepare_request(next_link)
+
+ pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ return pipeline_response
+
+
+ return ItemPaged(
+ get_next, extract_data
+ )
+ list_data_container.metadata = {'url': '/data/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datacontainer'} # type: ignore
+
+ @distributed_trace
+ def get_data_container(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ name, # type: str
+ **kwargs # type: Any
+ ):
+ # type: (...) -> "_models.DataContainerEntity"
+ """get_data_container.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param name:
+ :type name: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: DataContainerEntity, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.DataContainerEntity
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.DataContainerEntity"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+
+ request = build_get_data_container_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ name=name,
+ template_url=self.get_data_container.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('DataContainerEntity', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ get_data_container.metadata = {'url': '/data/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datacontainer/{name}'} # type: ignore
+
+
+ @distributed_trace
+ def modify_data_container(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ name, # type: str
+ body=None, # type: Optional["_models.DataContainerMutable"]
+ **kwargs # type: Any
+ ):
+ # type: (...) -> "_models.DataContainerEntity"
+ """modify_data_container.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param name:
+ :type name: str
+ :param body:
+ :type body: ~azure.mgmt.machinelearningservices.models.DataContainerMutable
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: DataContainerEntity, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.DataContainerEntity
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.DataContainerEntity"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+ content_type = kwargs.pop('content_type', "application/json") # type: Optional[str]
+
+ if body is not None:
+ _json = self._serialize.body(body, 'DataContainerMutable')
+ else:
+ _json = None
+
+ request = build_modify_data_container_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ name=name,
+ content_type=content_type,
+ json=_json,
+ template_url=self.modify_data_container.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('DataContainerEntity', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ modify_data_container.metadata = {'url': '/data/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datacontainer/{name}'} # type: ignore
+
diff --git a/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/operations/_data_version_operations.py b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/operations/_data_version_operations.py
new file mode 100644
index 00000000..ae87ad4b
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/operations/_data_version_operations.py
@@ -0,0 +1,1211 @@
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) AutoRest Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+import functools
+from typing import TYPE_CHECKING
+import warnings
+
+from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error
+from azure.core.paging import ItemPaged
+from azure.core.pipeline import PipelineResponse
+from azure.core.pipeline.transport import HttpResponse
+from azure.core.rest import HttpRequest
+from azure.core.tracing.decorator import distributed_trace
+from azure.mgmt.core.exceptions import ARMErrorFormat
+from msrest import Serializer
+
+from .. import models as _models
+from .._vendor import _convert_request, _format_url_section
+
+if TYPE_CHECKING:
+ # pylint: disable=unused-import,ungrouped-imports
+ from typing import Any, Callable, Dict, Generic, Iterable, Optional, TypeVar
+ T = TypeVar('T')
+ ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]]
+
+_SERIALIZER = Serializer()
+_SERIALIZER.client_side_validation = False
+# fmt: off
+
+def build_create_request(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ name, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ content_type = kwargs.pop('content_type', None) # type: Optional[str]
+
+ accept = "application/json"
+ # Construct URL
+ url = kwargs.pop("template_url", '/data/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/dataversion/{name}/versions')
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ "name": _SERIALIZER.url("name", name, 'str'),
+ }
+
+ url = _format_url_section(url, **path_format_arguments)
+
+ # Construct headers
+ header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ if content_type is not None:
+ header_parameters['Content-Type'] = _SERIALIZER.header("content_type", content_type, 'str')
+ header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="POST",
+ url=url,
+ headers=header_parameters,
+ **kwargs
+ )
+
+
+def build_list_request(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ name, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ order_by = kwargs.pop('order_by', None) # type: Optional[str]
+ top = kwargs.pop('top', None) # type: Optional[int]
+
+ accept = "application/json"
+ # Construct URL
+ url = kwargs.pop("template_url", '/data/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/dataversion/{name}/versions')
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ "name": _SERIALIZER.url("name", name, 'str'),
+ }
+
+ url = _format_url_section(url, **path_format_arguments)
+
+ # Construct parameters
+ query_parameters = kwargs.pop("params", {}) # type: Dict[str, Any]
+ if order_by is not None:
+ query_parameters['orderBy'] = _SERIALIZER.query("order_by", order_by, 'str')
+ if top is not None:
+ query_parameters['top'] = _SERIALIZER.query("top", top, 'int')
+
+ # Construct headers
+ header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="GET",
+ url=url,
+ params=query_parameters,
+ headers=header_parameters,
+ **kwargs
+ )
+
+
+def build_get_request(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ name, # type: str
+ version, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ accept = "application/json"
+ # Construct URL
+ url = kwargs.pop("template_url", '/data/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/dataversion/{name}/versions/{version}')
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ "name": _SERIALIZER.url("name", name, 'str'),
+ "version": _SERIALIZER.url("version", version, 'str'),
+ }
+
+ url = _format_url_section(url, **path_format_arguments)
+
+ # Construct headers
+ header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="GET",
+ url=url,
+ headers=header_parameters,
+ **kwargs
+ )
+
+
+def build_modify_request(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ name, # type: str
+ version, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ content_type = kwargs.pop('content_type', None) # type: Optional[str]
+
+ accept = "application/json"
+ # Construct URL
+ url = kwargs.pop("template_url", '/data/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/dataversion/{name}/versions/{version}')
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ "name": _SERIALIZER.url("name", name, 'str'),
+ "version": _SERIALIZER.url("version", version, 'str'),
+ }
+
+ url = _format_url_section(url, **path_format_arguments)
+
+ # Construct headers
+ header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ if content_type is not None:
+ header_parameters['Content-Type'] = _SERIALIZER.header("content_type", content_type, 'str')
+ header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="PATCH",
+ url=url,
+ headers=header_parameters,
+ **kwargs
+ )
+
+
+def build_delete_request(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ name, # type: str
+ version, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ accept = "application/json"
+ # Construct URL
+ url = kwargs.pop("template_url", '/data/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/dataversion/{name}/versions/{version}')
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ "name": _SERIALIZER.url("name", name, 'str'),
+ "version": _SERIALIZER.url("version", version, 'str'),
+ }
+
+ url = _format_url_section(url, **path_format_arguments)
+
+ # Construct headers
+ header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="DELETE",
+ url=url,
+ headers=header_parameters,
+ **kwargs
+ )
+
+
+def build_exists_request(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ name, # type: str
+ version, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ accept = "application/json"
+ # Construct URL
+ url = kwargs.pop("template_url", '/data/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/dataversion/{name}/versions/{version}/exists')
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ "name": _SERIALIZER.url("name", name, 'str'),
+ "version": _SERIALIZER.url("version", version, 'str'),
+ }
+
+ url = _format_url_section(url, **path_format_arguments)
+
+ # Construct headers
+ header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="GET",
+ url=url,
+ headers=header_parameters,
+ **kwargs
+ )
+
+
+def build_get_by_asset_id_request(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ content_type = kwargs.pop('content_type', None) # type: Optional[str]
+
+ accept = "application/json"
+ # Construct URL
+ url = kwargs.pop("template_url", '/data/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/dataversion/getByAssetId')
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ }
+
+ url = _format_url_section(url, **path_format_arguments)
+
+ # Construct headers
+ header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ if content_type is not None:
+ header_parameters['Content-Type'] = _SERIALIZER.header("content_type", content_type, 'str')
+ header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="POST",
+ url=url,
+ headers=header_parameters,
+ **kwargs
+ )
+
+
+def build_create_unregistered_input_data_request(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ content_type = kwargs.pop('content_type', None) # type: Optional[str]
+
+ accept = "application/json"
+ # Construct URL
+ url = kwargs.pop("template_url", '/data/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/dataversion/createUnregisteredInput')
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ }
+
+ url = _format_url_section(url, **path_format_arguments)
+
+ # Construct headers
+ header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ if content_type is not None:
+ header_parameters['Content-Type'] = _SERIALIZER.header("content_type", content_type, 'str')
+ header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="POST",
+ url=url,
+ headers=header_parameters,
+ **kwargs
+ )
+
+
+def build_create_unregistered_output_data_request(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ content_type = kwargs.pop('content_type', None) # type: Optional[str]
+
+ accept = "application/json"
+ # Construct URL
+ url = kwargs.pop("template_url", '/data/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/dataversion/createUnregisteredOutput')
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ }
+
+ url = _format_url_section(url, **path_format_arguments)
+
+ # Construct headers
+ header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ if content_type is not None:
+ header_parameters['Content-Type'] = _SERIALIZER.header("content_type", content_type, 'str')
+ header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="POST",
+ url=url,
+ headers=header_parameters,
+ **kwargs
+ )
+
+
+def build_registered_existing_data_request(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ content_type = kwargs.pop('content_type', None) # type: Optional[str]
+
+ accept = "application/json"
+ # Construct URL
+ url = kwargs.pop("template_url", '/data/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/dataversion/registerExisting')
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ }
+
+ url = _format_url_section(url, **path_format_arguments)
+
+ # Construct headers
+ header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ if content_type is not None:
+ header_parameters['Content-Type'] = _SERIALIZER.header("content_type", content_type, 'str')
+ header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="POST",
+ url=url,
+ headers=header_parameters,
+ **kwargs
+ )
+
+
+def build_batch_get_resolved_uris_request(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ content_type = kwargs.pop('content_type', None) # type: Optional[str]
+
+ accept = "application/json"
+ # Construct URL
+ url = kwargs.pop("template_url", '/data/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/dataversion/batchGetResolvedUris')
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ }
+
+ url = _format_url_section(url, **path_format_arguments)
+
+ # Construct headers
+ header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ if content_type is not None:
+ header_parameters['Content-Type'] = _SERIALIZER.header("content_type", content_type, 'str')
+ header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="POST",
+ url=url,
+ headers=header_parameters,
+ **kwargs
+ )
+
+# fmt: on
+class DataVersionOperations(object):
+ """DataVersionOperations operations.
+
+ You should not instantiate this class directly. Instead, you should create a Client instance that
+ instantiates it for you and attaches it as an attribute.
+
+ :ivar models: Alias to model classes used in this operation group.
+ :type models: ~azure.mgmt.machinelearningservices.models
+ :param client: Client for service requests.
+ :param config: Configuration of service client.
+ :param serializer: An object model serializer.
+ :param deserializer: An object model deserializer.
+ """
+
+ models = _models
+
+ def __init__(self, client, config, serializer, deserializer):
+ self._client = client
+ self._serialize = serializer
+ self._deserialize = deserializer
+ self._config = config
+
+ @distributed_trace
+ def create(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ name, # type: str
+ body=None, # type: Optional["_models.DataVersion"]
+ **kwargs # type: Any
+ ):
+ # type: (...) -> "_models.DataVersionEntity"
+ """create.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param name:
+ :type name: str
+ :param body:
+ :type body: ~azure.mgmt.machinelearningservices.models.DataVersion
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: DataVersionEntity, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.DataVersionEntity
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.DataVersionEntity"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+ content_type = kwargs.pop('content_type', "application/json") # type: Optional[str]
+
+ if body is not None:
+ _json = self._serialize.body(body, 'DataVersion')
+ else:
+ _json = None
+
+ request = build_create_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ name=name,
+ content_type=content_type,
+ json=_json,
+ template_url=self.create.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('DataVersionEntity', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ create.metadata = {'url': '/data/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/dataversion/{name}/versions'} # type: ignore
+
+
+ @distributed_trace
+ def list(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ name, # type: str
+ order_by=None, # type: Optional[str]
+ top=None, # type: Optional[int]
+ **kwargs # type: Any
+ ):
+ # type: (...) -> Iterable["_models.PaginatedDataVersionEntityList"]
+ """list.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param name:
+ :type name: str
+ :param order_by:
+ :type order_by: str
+ :param top:
+ :type top: int
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: An iterator like instance of either PaginatedDataVersionEntityList or the result of
+ cls(response)
+ :rtype:
+ ~azure.core.paging.ItemPaged[~azure.mgmt.machinelearningservices.models.PaginatedDataVersionEntityList]
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.PaginatedDataVersionEntityList"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+ def prepare_request(next_link=None):
+ if not next_link:
+
+ request = build_list_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ name=name,
+ order_by=order_by,
+ top=top,
+ template_url=self.list.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ else:
+
+ request = build_list_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ name=name,
+ order_by=order_by,
+ top=top,
+ template_url=next_link,
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+ request.method = "GET"
+ return request
+
+ def extract_data(pipeline_response):
+ deserialized = self._deserialize("PaginatedDataVersionEntityList", pipeline_response)
+ list_of_elem = deserialized.value
+ if cls:
+ list_of_elem = cls(list_of_elem)
+ return deserialized.next_link or None, iter(list_of_elem)
+
+ def get_next(next_link=None):
+ request = prepare_request(next_link)
+
+ pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ return pipeline_response
+
+
+ return ItemPaged(
+ get_next, extract_data
+ )
+ list.metadata = {'url': '/data/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/dataversion/{name}/versions'} # type: ignore
+
+ @distributed_trace
+ def get(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ name, # type: str
+ version, # type: str
+ **kwargs # type: Any
+ ):
+ # type: (...) -> "_models.DataVersionEntity"
+ """get.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param name:
+ :type name: str
+ :param version:
+ :type version: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: DataVersionEntity, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.DataVersionEntity
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.DataVersionEntity"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+
+ request = build_get_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ name=name,
+ version=version,
+ template_url=self.get.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('DataVersionEntity', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ get.metadata = {'url': '/data/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/dataversion/{name}/versions/{version}'} # type: ignore
+
+
+ @distributed_trace
+ def modify(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ name, # type: str
+ version, # type: str
+ body=None, # type: Optional["_models.DataVersionMutable"]
+ **kwargs # type: Any
+ ):
+ # type: (...) -> "_models.DataVersionEntity"
+ """modify.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param name:
+ :type name: str
+ :param version:
+ :type version: str
+ :param body:
+ :type body: ~azure.mgmt.machinelearningservices.models.DataVersionMutable
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: DataVersionEntity, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.DataVersionEntity
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.DataVersionEntity"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+ content_type = kwargs.pop('content_type', "application/json") # type: Optional[str]
+
+ if body is not None:
+ _json = self._serialize.body(body, 'DataVersionMutable')
+ else:
+ _json = None
+
+ request = build_modify_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ name=name,
+ version=version,
+ content_type=content_type,
+ json=_json,
+ template_url=self.modify.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('DataVersionEntity', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ modify.metadata = {'url': '/data/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/dataversion/{name}/versions/{version}'} # type: ignore
+
+
+ @distributed_trace
+ def delete(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ name, # type: str
+ version, # type: str
+ **kwargs # type: Any
+ ):
+ # type: (...) -> "_models.HttpResponseMessage"
+ """delete.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param name:
+ :type name: str
+ :param version:
+ :type version: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: HttpResponseMessage, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.HttpResponseMessage
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.HttpResponseMessage"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+
+ request = build_delete_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ name=name,
+ version=version,
+ template_url=self.delete.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('HttpResponseMessage', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ delete.metadata = {'url': '/data/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/dataversion/{name}/versions/{version}'} # type: ignore
+
+
+ @distributed_trace
+ def exists(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ name, # type: str
+ version, # type: str
+ **kwargs # type: Any
+ ):
+ # type: (...) -> bool
+ """exists.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param name:
+ :type name: str
+ :param version:
+ :type version: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: bool, or the result of cls(response)
+ :rtype: bool
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType[bool]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+
+ request = build_exists_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ name=name,
+ version=version,
+ template_url=self.exists.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('bool', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ exists.metadata = {'url': '/data/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/dataversion/{name}/versions/{version}/exists'} # type: ignore
+
+
+ @distributed_trace
+ def get_by_asset_id(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ body=None, # type: Optional["_models.AssetId"]
+ **kwargs # type: Any
+ ):
+ # type: (...) -> "_models.DataVersionEntity"
+ """get_by_asset_id.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param body:
+ :type body: ~azure.mgmt.machinelearningservices.models.AssetId
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: DataVersionEntity, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.DataVersionEntity
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.DataVersionEntity"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+ content_type = kwargs.pop('content_type', "application/json") # type: Optional[str]
+
+ if body is not None:
+ _json = self._serialize.body(body, 'AssetId')
+ else:
+ _json = None
+
+ request = build_get_by_asset_id_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ content_type=content_type,
+ json=_json,
+ template_url=self.get_by_asset_id.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('DataVersionEntity', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ get_by_asset_id.metadata = {'url': '/data/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/dataversion/getByAssetId'} # type: ignore
+
+
+ @distributed_trace
+ def create_unregistered_input_data(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ body=None, # type: Optional["_models.CreateUnregisteredInputData"]
+ **kwargs # type: Any
+ ):
+ # type: (...) -> "_models.DataContainerEntity"
+ """create_unregistered_input_data.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param body:
+ :type body: ~azure.mgmt.machinelearningservices.models.CreateUnregisteredInputData
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: DataContainerEntity, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.DataContainerEntity
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.DataContainerEntity"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+ content_type = kwargs.pop('content_type', "application/json") # type: Optional[str]
+
+ if body is not None:
+ _json = self._serialize.body(body, 'CreateUnregisteredInputData')
+ else:
+ _json = None
+
+ request = build_create_unregistered_input_data_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ content_type=content_type,
+ json=_json,
+ template_url=self.create_unregistered_input_data.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('DataContainerEntity', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ create_unregistered_input_data.metadata = {'url': '/data/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/dataversion/createUnregisteredInput'} # type: ignore
+
+
+ @distributed_trace
+ def create_unregistered_output_data(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ body=None, # type: Optional["_models.CreateUnregisteredOutputData"]
+ **kwargs # type: Any
+ ):
+ # type: (...) -> "_models.DataContainerEntity"
+ """create_unregistered_output_data.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param body:
+ :type body: ~azure.mgmt.machinelearningservices.models.CreateUnregisteredOutputData
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: DataContainerEntity, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.DataContainerEntity
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.DataContainerEntity"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+ content_type = kwargs.pop('content_type', "application/json") # type: Optional[str]
+
+ if body is not None:
+ _json = self._serialize.body(body, 'CreateUnregisteredOutputData')
+ else:
+ _json = None
+
+ request = build_create_unregistered_output_data_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ content_type=content_type,
+ json=_json,
+ template_url=self.create_unregistered_output_data.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('DataContainerEntity', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ create_unregistered_output_data.metadata = {'url': '/data/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/dataversion/createUnregisteredOutput'} # type: ignore
+
+
+ @distributed_trace
+ def registered_existing_data(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ body=None, # type: Optional["_models.RegisterExistingData"]
+ **kwargs # type: Any
+ ):
+ # type: (...) -> "_models.DataContainerEntity"
+ """registered_existing_data.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param body:
+ :type body: ~azure.mgmt.machinelearningservices.models.RegisterExistingData
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: DataContainerEntity, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.DataContainerEntity
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.DataContainerEntity"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+ content_type = kwargs.pop('content_type', "application/json") # type: Optional[str]
+
+ if body is not None:
+ _json = self._serialize.body(body, 'RegisterExistingData')
+ else:
+ _json = None
+
+ request = build_registered_existing_data_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ content_type=content_type,
+ json=_json,
+ template_url=self.registered_existing_data.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('DataContainerEntity', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ registered_existing_data.metadata = {'url': '/data/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/dataversion/registerExisting'} # type: ignore
+
+
+ @distributed_trace
+ def batch_get_resolved_uris(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ body=None, # type: Optional["_models.BatchGetResolvedURIs"]
+ **kwargs # type: Any
+ ):
+ # type: (...) -> "_models.BatchDataUriResponse"
+ """batch_get_resolved_uris.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param body:
+ :type body: ~azure.mgmt.machinelearningservices.models.BatchGetResolvedURIs
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: BatchDataUriResponse, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.BatchDataUriResponse
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.BatchDataUriResponse"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+ content_type = kwargs.pop('content_type', "application/json") # type: Optional[str]
+
+ if body is not None:
+ _json = self._serialize.body(body, 'BatchGetResolvedURIs')
+ else:
+ _json = None
+
+ request = build_batch_get_resolved_uris_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ content_type=content_type,
+ json=_json,
+ template_url=self.batch_get_resolved_uris.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('BatchDataUriResponse', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ batch_get_resolved_uris.metadata = {'url': '/data/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/dataversion/batchGetResolvedUris'} # type: ignore
+
diff --git a/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/operations/_dataset_controller_v2_operations.py b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/operations/_dataset_controller_v2_operations.py
new file mode 100644
index 00000000..05d64736
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/operations/_dataset_controller_v2_operations.py
@@ -0,0 +1,1300 @@
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) AutoRest Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+import functools
+from typing import TYPE_CHECKING
+import warnings
+
+from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error
+from azure.core.paging import ItemPaged
+from azure.core.pipeline import PipelineResponse
+from azure.core.pipeline.transport import HttpResponse
+from azure.core.rest import HttpRequest
+from azure.core.tracing.decorator import distributed_trace
+from azure.mgmt.core.exceptions import ARMErrorFormat
+from msrest import Serializer
+
+from .. import models as _models
+from .._vendor import _convert_request, _format_url_section
+
+if TYPE_CHECKING:
+ # pylint: disable=unused-import,ungrouped-imports
+ from typing import Any, Callable, Dict, Generic, Iterable, List, Optional, TypeVar
+ T = TypeVar('T')
+ ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]]
+
+_SERIALIZER = Serializer()
+_SERIALIZER.client_side_validation = False
+# fmt: off
+
+def build_get_dataset_definition_request(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ dataset_id, # type: str
+ version, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ accept = "application/json"
+ # Construct URL
+ url = kwargs.pop("template_url", '/dataset/v1.2/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datasets/{datasetId}/definitions/{version}')
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ "datasetId": _SERIALIZER.url("dataset_id", dataset_id, 'str'),
+ "version": _SERIALIZER.url("version", version, 'str'),
+ }
+
+ url = _format_url_section(url, **path_format_arguments)
+
+ # Construct headers
+ header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="GET",
+ url=url,
+ headers=header_parameters,
+ **kwargs
+ )
+
+
+def build_get_all_dataset_definitions_request(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ dataset_id, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ continuation_token_parameter = kwargs.pop('continuation_token_parameter', None) # type: Optional[str]
+ page_size = kwargs.pop('page_size', None) # type: Optional[int]
+
+ accept = "application/json"
+ # Construct URL
+ url = kwargs.pop("template_url", '/dataset/v1.2/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datasets/{datasetId}/definitions')
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ "datasetId": _SERIALIZER.url("dataset_id", dataset_id, 'str'),
+ }
+
+ url = _format_url_section(url, **path_format_arguments)
+
+ # Construct parameters
+ query_parameters = kwargs.pop("params", {}) # type: Dict[str, Any]
+ if continuation_token_parameter is not None:
+ query_parameters['continuationToken'] = _SERIALIZER.query("continuation_token_parameter", continuation_token_parameter, 'str')
+ if page_size is not None:
+ query_parameters['pageSize'] = _SERIALIZER.query("page_size", page_size, 'int')
+
+ # Construct headers
+ header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="GET",
+ url=url,
+ params=query_parameters,
+ headers=header_parameters,
+ **kwargs
+ )
+
+
+def build_update_definition_request(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ dataset_id, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ content_type = kwargs.pop('content_type', None) # type: Optional[str]
+ register_as_pending = kwargs.pop('register_as_pending', False) # type: Optional[bool]
+ force_update = kwargs.pop('force_update', False) # type: Optional[bool]
+ dataset_type = kwargs.pop('dataset_type', None) # type: Optional[str]
+ user_version_id = kwargs.pop('user_version_id', None) # type: Optional[str]
+
+ accept = "application/json"
+ # Construct URL
+ url = kwargs.pop("template_url", '/dataset/v1.2/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datasets/{datasetId}/definitions')
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ "datasetId": _SERIALIZER.url("dataset_id", dataset_id, 'str'),
+ }
+
+ url = _format_url_section(url, **path_format_arguments)
+
+ # Construct parameters
+ query_parameters = kwargs.pop("params", {}) # type: Dict[str, Any]
+ if register_as_pending is not None:
+ query_parameters['registerAsPending'] = _SERIALIZER.query("register_as_pending", register_as_pending, 'bool')
+ if force_update is not None:
+ query_parameters['forceUpdate'] = _SERIALIZER.query("force_update", force_update, 'bool')
+ if dataset_type is not None:
+ query_parameters['datasetType'] = _SERIALIZER.query("dataset_type", dataset_type, 'str')
+ if user_version_id is not None:
+ query_parameters['userVersionId'] = _SERIALIZER.query("user_version_id", user_version_id, 'str')
+
+ # Construct headers
+ header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ if content_type is not None:
+ header_parameters['Content-Type'] = _SERIALIZER.header("content_type", content_type, 'str')
+ header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="POST",
+ url=url,
+ params=query_parameters,
+ headers=header_parameters,
+ **kwargs
+ )
+
+
+def build_get_all_dataset_versions_request(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ dataset_id, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ continuation_token_parameter = kwargs.pop('continuation_token_parameter', None) # type: Optional[str]
+ page_size = kwargs.pop('page_size', None) # type: Optional[int]
+
+ accept = "application/json"
+ # Construct URL
+ url = kwargs.pop("template_url", '/dataset/v1.2/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datasets/{datasetId}/versions')
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ "datasetId": _SERIALIZER.url("dataset_id", dataset_id, 'str'),
+ }
+
+ url = _format_url_section(url, **path_format_arguments)
+
+ # Construct parameters
+ query_parameters = kwargs.pop("params", {}) # type: Dict[str, Any]
+ if continuation_token_parameter is not None:
+ query_parameters['continuationToken'] = _SERIALIZER.query("continuation_token_parameter", continuation_token_parameter, 'str')
+ if page_size is not None:
+ query_parameters['pageSize'] = _SERIALIZER.query("page_size", page_size, 'int')
+
+ # Construct headers
+ header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="GET",
+ url=url,
+ params=query_parameters,
+ headers=header_parameters,
+ **kwargs
+ )
+
+
+def build_get_dataset_by_name_request(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ dataset_name, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ version_id = kwargs.pop('version_id', None) # type: Optional[str]
+ include_latest_definition = kwargs.pop('include_latest_definition', True) # type: Optional[bool]
+
+ accept = "application/json"
+ # Construct URL
+ url = kwargs.pop("template_url", '/dataset/v1.2/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datasets/query/name={datasetName}')
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ "datasetName": _SERIALIZER.url("dataset_name", dataset_name, 'str'),
+ }
+
+ url = _format_url_section(url, **path_format_arguments)
+
+ # Construct parameters
+ query_parameters = kwargs.pop("params", {}) # type: Dict[str, Any]
+ if version_id is not None:
+ query_parameters['versionId'] = _SERIALIZER.query("version_id", version_id, 'str')
+ if include_latest_definition is not None:
+ query_parameters['includeLatestDefinition'] = _SERIALIZER.query("include_latest_definition", include_latest_definition, 'bool')
+
+ # Construct headers
+ header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="GET",
+ url=url,
+ params=query_parameters,
+ headers=header_parameters,
+ **kwargs
+ )
+
+
+def build_list_request(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ dataset_names = kwargs.pop('dataset_names', None) # type: Optional[List[str]]
+ search_text = kwargs.pop('search_text', None) # type: Optional[str]
+ include_invisible = kwargs.pop('include_invisible', False) # type: Optional[bool]
+ status = kwargs.pop('status', None) # type: Optional[str]
+ continuation_token_parameter = kwargs.pop('continuation_token_parameter', None) # type: Optional[str]
+ page_size = kwargs.pop('page_size', None) # type: Optional[int]
+ include_latest_definition = kwargs.pop('include_latest_definition', False) # type: Optional[bool]
+ order_by = kwargs.pop('order_by', None) # type: Optional[str]
+ order_by_asc = kwargs.pop('order_by_asc', False) # type: Optional[bool]
+ dataset_types = kwargs.pop('dataset_types', None) # type: Optional[List[str]]
+
+ accept = "application/json"
+ # Construct URL
+ url = kwargs.pop("template_url", '/dataset/v1.2/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datasets')
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ }
+
+ url = _format_url_section(url, **path_format_arguments)
+
+ # Construct parameters
+ query_parameters = kwargs.pop("params", {}) # type: Dict[str, Any]
+ if dataset_names is not None:
+ query_parameters['datasetNames'] = _SERIALIZER.query("dataset_names", dataset_names, '[str]')
+ if search_text is not None:
+ query_parameters['searchText'] = _SERIALIZER.query("search_text", search_text, 'str')
+ if include_invisible is not None:
+ query_parameters['includeInvisible'] = _SERIALIZER.query("include_invisible", include_invisible, 'bool')
+ if status is not None:
+ query_parameters['status'] = _SERIALIZER.query("status", status, 'str')
+ if continuation_token_parameter is not None:
+ query_parameters['continuationToken'] = _SERIALIZER.query("continuation_token_parameter", continuation_token_parameter, 'str')
+ if page_size is not None:
+ query_parameters['pageSize'] = _SERIALIZER.query("page_size", page_size, 'int')
+ if include_latest_definition is not None:
+ query_parameters['includeLatestDefinition'] = _SERIALIZER.query("include_latest_definition", include_latest_definition, 'bool')
+ if order_by is not None:
+ query_parameters['orderBy'] = _SERIALIZER.query("order_by", order_by, 'str')
+ if order_by_asc is not None:
+ query_parameters['orderByAsc'] = _SERIALIZER.query("order_by_asc", order_by_asc, 'bool')
+ if dataset_types is not None:
+ query_parameters['datasetTypes'] = _SERIALIZER.query("dataset_types", dataset_types, '[str]')
+
+ # Construct headers
+ header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="GET",
+ url=url,
+ params=query_parameters,
+ headers=header_parameters,
+ **kwargs
+ )
+
+
+def build_register_request(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ content_type = kwargs.pop('content_type', None) # type: Optional[str]
+ register_as_pending = kwargs.pop('register_as_pending', False) # type: Optional[bool]
+ if_exists_ok = kwargs.pop('if_exists_ok', True) # type: Optional[bool]
+ update_definition_if_exists = kwargs.pop('update_definition_if_exists', False) # type: Optional[bool]
+ with_data_hash = kwargs.pop('with_data_hash', False) # type: Optional[bool]
+ user_version_id = kwargs.pop('user_version_id', None) # type: Optional[str]
+
+ accept = "application/json"
+ # Construct URL
+ url = kwargs.pop("template_url", '/dataset/v1.2/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datasets')
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ }
+
+ url = _format_url_section(url, **path_format_arguments)
+
+ # Construct parameters
+ query_parameters = kwargs.pop("params", {}) # type: Dict[str, Any]
+ if register_as_pending is not None:
+ query_parameters['registerAsPending'] = _SERIALIZER.query("register_as_pending", register_as_pending, 'bool')
+ if if_exists_ok is not None:
+ query_parameters['ifExistsOk'] = _SERIALIZER.query("if_exists_ok", if_exists_ok, 'bool')
+ if update_definition_if_exists is not None:
+ query_parameters['updateDefinitionIfExists'] = _SERIALIZER.query("update_definition_if_exists", update_definition_if_exists, 'bool')
+ if with_data_hash is not None:
+ query_parameters['withDataHash'] = _SERIALIZER.query("with_data_hash", with_data_hash, 'bool')
+ if user_version_id is not None:
+ query_parameters['userVersionId'] = _SERIALIZER.query("user_version_id", user_version_id, 'str')
+
+ # Construct headers
+ header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ if content_type is not None:
+ header_parameters['Content-Type'] = _SERIALIZER.header("content_type", content_type, 'str')
+ header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="POST",
+ url=url,
+ params=query_parameters,
+ headers=header_parameters,
+ **kwargs
+ )
+
+
+def build_delete_all_datasets_request(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ accept = "application/json"
+ # Construct URL
+ url = kwargs.pop("template_url", '/dataset/v1.2/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datasets')
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ }
+
+ url = _format_url_section(url, **path_format_arguments)
+
+ # Construct headers
+ header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="DELETE",
+ url=url,
+ headers=header_parameters,
+ **kwargs
+ )
+
+
+def build_update_dataset_request(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ dataset_id, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ content_type = kwargs.pop('content_type', None) # type: Optional[str]
+ force_update = kwargs.pop('force_update', False) # type: Optional[bool]
+
+ accept = "application/json"
+ # Construct URL
+ url = kwargs.pop("template_url", '/dataset/v1.2/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datasets/{datasetId}')
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ "datasetId": _SERIALIZER.url("dataset_id", dataset_id, 'str'),
+ }
+
+ url = _format_url_section(url, **path_format_arguments)
+
+ # Construct parameters
+ query_parameters = kwargs.pop("params", {}) # type: Dict[str, Any]
+ if force_update is not None:
+ query_parameters['forceUpdate'] = _SERIALIZER.query("force_update", force_update, 'bool')
+
+ # Construct headers
+ header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ if content_type is not None:
+ header_parameters['Content-Type'] = _SERIALIZER.header("content_type", content_type, 'str')
+ header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="PUT",
+ url=url,
+ params=query_parameters,
+ headers=header_parameters,
+ **kwargs
+ )
+
+
+def build_unregister_dataset_request(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ name, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ accept = "application/json"
+ # Construct URL
+ url = kwargs.pop("template_url", '/dataset/v1.2/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datasets/{name}')
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ "name": _SERIALIZER.url("name", name, 'str'),
+ }
+
+ url = _format_url_section(url, **path_format_arguments)
+
+ # Construct headers
+ header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="DELETE",
+ url=url,
+ headers=header_parameters,
+ **kwargs
+ )
+
+# fmt: on
+class DatasetControllerV2Operations(object):
+ """DatasetControllerV2Operations operations.
+
+ You should not instantiate this class directly. Instead, you should create a Client instance that
+ instantiates it for you and attaches it as an attribute.
+
+ :ivar models: Alias to model classes used in this operation group.
+ :type models: ~azure.mgmt.machinelearningservices.models
+ :param client: Client for service requests.
+ :param config: Configuration of service client.
+ :param serializer: An object model serializer.
+ :param deserializer: An object model deserializer.
+ """
+
+ models = _models
+
+ def __init__(self, client, config, serializer, deserializer):
+ self._client = client
+ self._serialize = serializer
+ self._deserialize = deserializer
+ self._config = config
+
+ @distributed_trace
+ def get_dataset_definition(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ dataset_id, # type: str
+ version, # type: str
+ **kwargs # type: Any
+ ):
+ # type: (...) -> "_models.DatasetDefinition"
+ """Get a specific dataset definition.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param dataset_id:
+ :type dataset_id: str
+ :param version:
+ :type version: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: DatasetDefinition, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.DatasetDefinition
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.DatasetDefinition"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+
+ request = build_get_dataset_definition_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ dataset_id=dataset_id,
+ version=version,
+ template_url=self.get_dataset_definition.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('DatasetDefinition', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ get_dataset_definition.metadata = {'url': '/dataset/v1.2/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datasets/{datasetId}/definitions/{version}'} # type: ignore
+
+
+ @distributed_trace
+ def get_all_dataset_definitions(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ dataset_id, # type: str
+ continuation_token_parameter=None, # type: Optional[str]
+ page_size=None, # type: Optional[int]
+ **kwargs # type: Any
+ ):
+ # type: (...) -> Iterable["_models.PaginatedDatasetDefinitionList"]
+ """Get all dataset definitions for a given dataset.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param dataset_id:
+ :type dataset_id: str
+ :param continuation_token_parameter:
+ :type continuation_token_parameter: str
+ :param page_size:
+ :type page_size: int
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: An iterator like instance of either PaginatedDatasetDefinitionList or the result of
+ cls(response)
+ :rtype:
+ ~azure.core.paging.ItemPaged[~azure.mgmt.machinelearningservices.models.PaginatedDatasetDefinitionList]
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.PaginatedDatasetDefinitionList"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+ def prepare_request(next_link=None):
+ if not next_link:
+
+ request = build_get_all_dataset_definitions_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ dataset_id=dataset_id,
+ continuation_token_parameter=continuation_token_parameter,
+ page_size=page_size,
+ template_url=self.get_all_dataset_definitions.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ else:
+
+ request = build_get_all_dataset_definitions_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ dataset_id=dataset_id,
+ continuation_token_parameter=continuation_token_parameter,
+ page_size=page_size,
+ template_url=next_link,
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+ request.method = "GET"
+ return request
+
+ def extract_data(pipeline_response):
+ deserialized = self._deserialize("PaginatedDatasetDefinitionList", pipeline_response)
+ list_of_elem = deserialized.value
+ if cls:
+ list_of_elem = cls(list_of_elem)
+ return deserialized.next_link or None, iter(list_of_elem)
+
+ def get_next(next_link=None):
+ request = prepare_request(next_link)
+
+ pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ return pipeline_response
+
+
+ return ItemPaged(
+ get_next, extract_data
+ )
+ get_all_dataset_definitions.metadata = {'url': '/dataset/v1.2/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datasets/{datasetId}/definitions'} # type: ignore
+
+ @distributed_trace
+ def update_definition(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ dataset_id, # type: str
+ register_as_pending=False, # type: Optional[bool]
+ force_update=False, # type: Optional[bool]
+ dataset_type=None, # type: Optional[str]
+ user_version_id=None, # type: Optional[str]
+ body=None, # type: Optional["_models.DatasetDefinition"]
+ **kwargs # type: Any
+ ):
+ # type: (...) -> "_models.Dataset"
+ """Update a dataset definition.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param dataset_id:
+ :type dataset_id: str
+ :param register_as_pending:
+ :type register_as_pending: bool
+ :param force_update:
+ :type force_update: bool
+ :param dataset_type:
+ :type dataset_type: str
+ :param user_version_id:
+ :type user_version_id: str
+ :param body:
+ :type body: ~azure.mgmt.machinelearningservices.models.DatasetDefinition
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: Dataset, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.Dataset
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.Dataset"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+ content_type = kwargs.pop('content_type', "application/json") # type: Optional[str]
+
+ if body is not None:
+ _json = self._serialize.body(body, 'DatasetDefinition')
+ else:
+ _json = None
+
+ request = build_update_definition_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ dataset_id=dataset_id,
+ content_type=content_type,
+ json=_json,
+ register_as_pending=register_as_pending,
+ force_update=force_update,
+ dataset_type=dataset_type,
+ user_version_id=user_version_id,
+ template_url=self.update_definition.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('Dataset', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ update_definition.metadata = {'url': '/dataset/v1.2/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datasets/{datasetId}/definitions'} # type: ignore
+
+
+ @distributed_trace
+ def get_all_dataset_versions(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ dataset_id, # type: str
+ continuation_token_parameter=None, # type: Optional[str]
+ page_size=None, # type: Optional[int]
+ **kwargs # type: Any
+ ):
+ # type: (...) -> Iterable["_models.PaginatedStringList"]
+ """Get all dataset versions for a given dataset.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param dataset_id:
+ :type dataset_id: str
+ :param continuation_token_parameter:
+ :type continuation_token_parameter: str
+ :param page_size:
+ :type page_size: int
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: An iterator like instance of either PaginatedStringList or the result of cls(response)
+ :rtype:
+ ~azure.core.paging.ItemPaged[~azure.mgmt.machinelearningservices.models.PaginatedStringList]
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.PaginatedStringList"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+ def prepare_request(next_link=None):
+ if not next_link:
+
+ request = build_get_all_dataset_versions_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ dataset_id=dataset_id,
+ continuation_token_parameter=continuation_token_parameter,
+ page_size=page_size,
+ template_url=self.get_all_dataset_versions.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ else:
+
+ request = build_get_all_dataset_versions_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ dataset_id=dataset_id,
+ continuation_token_parameter=continuation_token_parameter,
+ page_size=page_size,
+ template_url=next_link,
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+ request.method = "GET"
+ return request
+
+ def extract_data(pipeline_response):
+ deserialized = self._deserialize("PaginatedStringList", pipeline_response)
+ list_of_elem = deserialized.value
+ if cls:
+ list_of_elem = cls(list_of_elem)
+ return deserialized.next_link or None, iter(list_of_elem)
+
+ def get_next(next_link=None):
+ request = prepare_request(next_link)
+
+ pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ return pipeline_response
+
+
+ return ItemPaged(
+ get_next, extract_data
+ )
+ get_all_dataset_versions.metadata = {'url': '/dataset/v1.2/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datasets/{datasetId}/versions'} # type: ignore
+
+ @distributed_trace
+ def get_dataset_by_name(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ dataset_name, # type: str
+ version_id=None, # type: Optional[str]
+ include_latest_definition=True, # type: Optional[bool]
+ **kwargs # type: Any
+ ):
+ # type: (...) -> "_models.Dataset"
+ """Get a dataset for a given dataset name.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param dataset_name:
+ :type dataset_name: str
+ :param version_id:
+ :type version_id: str
+ :param include_latest_definition:
+ :type include_latest_definition: bool
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: Dataset, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.Dataset
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.Dataset"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+
+ request = build_get_dataset_by_name_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ dataset_name=dataset_name,
+ version_id=version_id,
+ include_latest_definition=include_latest_definition,
+ template_url=self.get_dataset_by_name.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('Dataset', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ get_dataset_by_name.metadata = {'url': '/dataset/v1.2/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datasets/query/name={datasetName}'} # type: ignore
+
+
+ @distributed_trace
+ def list(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ dataset_names=None, # type: Optional[List[str]]
+ search_text=None, # type: Optional[str]
+ include_invisible=False, # type: Optional[bool]
+ status=None, # type: Optional[str]
+ continuation_token_parameter=None, # type: Optional[str]
+ page_size=None, # type: Optional[int]
+ include_latest_definition=False, # type: Optional[bool]
+ order_by=None, # type: Optional[str]
+ order_by_asc=False, # type: Optional[bool]
+ dataset_types=None, # type: Optional[List[str]]
+ **kwargs # type: Any
+ ):
+ # type: (...) -> Iterable["_models.PaginatedDatasetList"]
+ """Get a list of datasets.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param dataset_names:
+ :type dataset_names: list[str]
+ :param search_text:
+ :type search_text: str
+ :param include_invisible:
+ :type include_invisible: bool
+ :param status:
+ :type status: str
+ :param continuation_token_parameter:
+ :type continuation_token_parameter: str
+ :param page_size:
+ :type page_size: int
+ :param include_latest_definition:
+ :type include_latest_definition: bool
+ :param order_by:
+ :type order_by: str
+ :param order_by_asc:
+ :type order_by_asc: bool
+ :param dataset_types:
+ :type dataset_types: list[str]
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: An iterator like instance of either PaginatedDatasetList or the result of
+ cls(response)
+ :rtype:
+ ~azure.core.paging.ItemPaged[~azure.mgmt.machinelearningservices.models.PaginatedDatasetList]
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.PaginatedDatasetList"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+ def prepare_request(next_link=None):
+ if not next_link:
+
+ request = build_list_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ dataset_names=dataset_names,
+ search_text=search_text,
+ include_invisible=include_invisible,
+ status=status,
+ continuation_token_parameter=continuation_token_parameter,
+ page_size=page_size,
+ include_latest_definition=include_latest_definition,
+ order_by=order_by,
+ order_by_asc=order_by_asc,
+ dataset_types=dataset_types,
+ template_url=self.list.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ else:
+
+ request = build_list_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ dataset_names=dataset_names,
+ search_text=search_text,
+ include_invisible=include_invisible,
+ status=status,
+ continuation_token_parameter=continuation_token_parameter,
+ page_size=page_size,
+ include_latest_definition=include_latest_definition,
+ order_by=order_by,
+ order_by_asc=order_by_asc,
+ dataset_types=dataset_types,
+ template_url=next_link,
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+ request.method = "GET"
+ return request
+
+ def extract_data(pipeline_response):
+ deserialized = self._deserialize("PaginatedDatasetList", pipeline_response)
+ list_of_elem = deserialized.value
+ if cls:
+ list_of_elem = cls(list_of_elem)
+ return deserialized.next_link or None, iter(list_of_elem)
+
+ def get_next(next_link=None):
+ request = prepare_request(next_link)
+
+ pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ return pipeline_response
+
+
+ return ItemPaged(
+ get_next, extract_data
+ )
+ list.metadata = {'url': '/dataset/v1.2/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datasets'} # type: ignore
+
+ @distributed_trace
+ def register(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ register_as_pending=False, # type: Optional[bool]
+ if_exists_ok=True, # type: Optional[bool]
+ update_definition_if_exists=False, # type: Optional[bool]
+ with_data_hash=False, # type: Optional[bool]
+ user_version_id=None, # type: Optional[str]
+ body=None, # type: Optional["_models.Dataset"]
+ **kwargs # type: Any
+ ):
+ # type: (...) -> "_models.Dataset"
+ """Register new dataset.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param register_as_pending:
+ :type register_as_pending: bool
+ :param if_exists_ok:
+ :type if_exists_ok: bool
+ :param update_definition_if_exists:
+ :type update_definition_if_exists: bool
+ :param with_data_hash:
+ :type with_data_hash: bool
+ :param user_version_id:
+ :type user_version_id: str
+ :param body:
+ :type body: ~azure.mgmt.machinelearningservices.models.Dataset
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: Dataset, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.Dataset
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.Dataset"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+ content_type = kwargs.pop('content_type', "application/json") # type: Optional[str]
+
+ if body is not None:
+ _json = self._serialize.body(body, 'Dataset')
+ else:
+ _json = None
+
+ request = build_register_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ content_type=content_type,
+ json=_json,
+ register_as_pending=register_as_pending,
+ if_exists_ok=if_exists_ok,
+ update_definition_if_exists=update_definition_if_exists,
+ with_data_hash=with_data_hash,
+ user_version_id=user_version_id,
+ template_url=self.register.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('Dataset', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ register.metadata = {'url': '/dataset/v1.2/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datasets'} # type: ignore
+
+
+ @distributed_trace
+ def delete_all_datasets(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ **kwargs # type: Any
+ ):
+ # type: (...) -> None
+ """Unregister all datasets in the workspace.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: None, or the result of cls(response)
+ :rtype: None
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType[None]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+
+ request = build_delete_all_datasets_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ template_url=self.delete_all_datasets.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in []:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ if cls:
+ return cls(pipeline_response, None, {})
+
+ delete_all_datasets.metadata = {'url': '/dataset/v1.2/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datasets'} # type: ignore
+
+
+ @distributed_trace
+ def update_dataset(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ dataset_id, # type: str
+ force_update=False, # type: Optional[bool]
+ body=None, # type: Optional["_models.Dataset"]
+ **kwargs # type: Any
+ ):
+ # type: (...) -> "_models.Dataset"
+ """Update a dataset.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param dataset_id:
+ :type dataset_id: str
+ :param force_update:
+ :type force_update: bool
+ :param body:
+ :type body: ~azure.mgmt.machinelearningservices.models.Dataset
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: Dataset, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.Dataset
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.Dataset"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+ content_type = kwargs.pop('content_type', "application/json") # type: Optional[str]
+
+ if body is not None:
+ _json = self._serialize.body(body, 'Dataset')
+ else:
+ _json = None
+
+ request = build_update_dataset_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ dataset_id=dataset_id,
+ content_type=content_type,
+ json=_json,
+ force_update=force_update,
+ template_url=self.update_dataset.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('Dataset', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ update_dataset.metadata = {'url': '/dataset/v1.2/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datasets/{datasetId}'} # type: ignore
+
+
+ @distributed_trace
+ def unregister_dataset(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ name, # type: str
+ **kwargs # type: Any
+ ):
+ # type: (...) -> None
+ """Unregister a dataset.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param name:
+ :type name: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: None, or the result of cls(response)
+ :rtype: None
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType[None]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+
+ request = build_unregister_dataset_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ name=name,
+ template_url=self.unregister_dataset.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in []:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ if cls:
+ return cls(pipeline_response, None, {})
+
+ unregister_dataset.metadata = {'url': '/dataset/v1.2/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datasets/{name}'} # type: ignore
+
diff --git a/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/operations/_dataset_v2_operations.py b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/operations/_dataset_v2_operations.py
new file mode 100644
index 00000000..7f686ab6
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/operations/_dataset_v2_operations.py
@@ -0,0 +1,905 @@
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) AutoRest Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+import functools
+from typing import TYPE_CHECKING
+import warnings
+
+from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error
+from azure.core.paging import ItemPaged
+from azure.core.pipeline import PipelineResponse
+from azure.core.pipeline.transport import HttpResponse
+from azure.core.rest import HttpRequest
+from azure.core.tracing.decorator import distributed_trace
+from azure.mgmt.core.exceptions import ARMErrorFormat
+from msrest import Serializer
+
+from .. import models as _models
+from .._vendor import _convert_request, _format_url_section
+
+if TYPE_CHECKING:
+ # pylint: disable=unused-import,ungrouped-imports
+ from typing import Any, Callable, Dict, Generic, Iterable, List, Optional, TypeVar
+ T = TypeVar('T')
+ ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]]
+
+_SERIALIZER = Serializer()
+_SERIALIZER.client_side_validation = False
+# fmt: off
+
+def build_create_request(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ content_type = kwargs.pop('content_type', None) # type: Optional[str]
+ if_exists_update = kwargs.pop('if_exists_update', False) # type: Optional[bool]
+
+ accept = "application/json"
+ # Construct URL
+ url = kwargs.pop("template_url", '/dataset/v2.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datasets')
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ }
+
+ url = _format_url_section(url, **path_format_arguments)
+
+ # Construct parameters
+ query_parameters = kwargs.pop("params", {}) # type: Dict[str, Any]
+ if if_exists_update is not None:
+ query_parameters['ifExistsUpdate'] = _SERIALIZER.query("if_exists_update", if_exists_update, 'bool')
+
+ # Construct headers
+ header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ if content_type is not None:
+ header_parameters['Content-Type'] = _SERIALIZER.header("content_type", content_type, 'str')
+ header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="POST",
+ url=url,
+ params=query_parameters,
+ headers=header_parameters,
+ **kwargs
+ )
+
+
+def build_delete_all_datasets_request(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ accept = "application/json"
+ # Construct URL
+ url = kwargs.pop("template_url", '/dataset/v2.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datasets')
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ }
+
+ url = _format_url_section(url, **path_format_arguments)
+
+ # Construct headers
+ header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="DELETE",
+ url=url,
+ headers=header_parameters,
+ **kwargs
+ )
+
+
+def build_list_request(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ names = kwargs.pop('names', None) # type: Optional[List[str]]
+ search_text = kwargs.pop('search_text', None) # type: Optional[str]
+ continuation_token_parameter = kwargs.pop('continuation_token_parameter', None) # type: Optional[str]
+ page_size = kwargs.pop('page_size', None) # type: Optional[int]
+
+ accept = "application/json"
+ # Construct URL
+ url = kwargs.pop("template_url", '/dataset/v2.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datasets')
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ }
+
+ url = _format_url_section(url, **path_format_arguments)
+
+ # Construct parameters
+ query_parameters = kwargs.pop("params", {}) # type: Dict[str, Any]
+ if names is not None:
+ query_parameters['names'] = _SERIALIZER.query("names", names, '[str]')
+ if search_text is not None:
+ query_parameters['searchText'] = _SERIALIZER.query("search_text", search_text, 'str')
+ if continuation_token_parameter is not None:
+ query_parameters['continuationToken'] = _SERIALIZER.query("continuation_token_parameter", continuation_token_parameter, 'str')
+ if page_size is not None:
+ query_parameters['pageSize'] = _SERIALIZER.query("page_size", page_size, 'int')
+
+ # Construct headers
+ header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="GET",
+ url=url,
+ params=query_parameters,
+ headers=header_parameters,
+ **kwargs
+ )
+
+
+def build_delete_dataset_by_name_request(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ name, # type: str
+ version_id, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ accept = "application/json"
+ # Construct URL
+ url = kwargs.pop("template_url", '/dataset/v2.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datasets/{name}/versions/{versionId}')
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ "name": _SERIALIZER.url("name", name, 'str'),
+ "versionId": _SERIALIZER.url("version_id", version_id, 'str'),
+ }
+
+ url = _format_url_section(url, **path_format_arguments)
+
+ # Construct headers
+ header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="DELETE",
+ url=url,
+ headers=header_parameters,
+ **kwargs
+ )
+
+
+def build_update_dataset_by_name_and_version_request(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ name, # type: str
+ version_id, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ content_type = kwargs.pop('content_type', None) # type: Optional[str]
+
+ accept = "application/json"
+ # Construct URL
+ url = kwargs.pop("template_url", '/dataset/v2.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datasets/{name}/versions/{versionId}')
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ "name": _SERIALIZER.url("name", name, 'str'),
+ "versionId": _SERIALIZER.url("version_id", version_id, 'str'),
+ }
+
+ url = _format_url_section(url, **path_format_arguments)
+
+ # Construct headers
+ header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ if content_type is not None:
+ header_parameters['Content-Type'] = _SERIALIZER.header("content_type", content_type, 'str')
+ header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="PUT",
+ url=url,
+ headers=header_parameters,
+ **kwargs
+ )
+
+
+def build_get_dataset_by_id_request(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ dataset_id, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ accept = "application/json"
+ # Construct URL
+ url = kwargs.pop("template_url", '/dataset/v2.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datasets/{datasetId}')
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ "datasetId": _SERIALIZER.url("dataset_id", dataset_id, 'str'),
+ }
+
+ url = _format_url_section(url, **path_format_arguments)
+
+ # Construct headers
+ header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="GET",
+ url=url,
+ headers=header_parameters,
+ **kwargs
+ )
+
+
+def build_update_dataset_request(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ dataset_id, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ content_type = kwargs.pop('content_type', None) # type: Optional[str]
+
+ accept = "application/json"
+ # Construct URL
+ url = kwargs.pop("template_url", '/dataset/v2.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datasets/{datasetId}')
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ "datasetId": _SERIALIZER.url("dataset_id", dataset_id, 'str'),
+ }
+
+ url = _format_url_section(url, **path_format_arguments)
+
+ # Construct headers
+ header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ if content_type is not None:
+ header_parameters['Content-Type'] = _SERIALIZER.header("content_type", content_type, 'str')
+ header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="PUT",
+ url=url,
+ headers=header_parameters,
+ **kwargs
+ )
+
+
+def build_get_dataset_by_name_request(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ dataset_name, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ version_id = kwargs.pop('version_id', None) # type: Optional[str]
+
+ accept = "application/json"
+ # Construct URL
+ url = kwargs.pop("template_url", '/dataset/v2.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datasets/query/name={datasetName}')
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ "datasetName": _SERIALIZER.url("dataset_name", dataset_name, 'str'),
+ }
+
+ url = _format_url_section(url, **path_format_arguments)
+
+ # Construct parameters
+ query_parameters = kwargs.pop("params", {}) # type: Dict[str, Any]
+ if version_id is not None:
+ query_parameters['versionId'] = _SERIALIZER.query("version_id", version_id, 'str')
+
+ # Construct headers
+ header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="GET",
+ url=url,
+ params=query_parameters,
+ headers=header_parameters,
+ **kwargs
+ )
+
+# fmt: on
+class DatasetV2Operations(object):
+ """DatasetV2Operations operations.
+
+ You should not instantiate this class directly. Instead, you should create a Client instance that
+ instantiates it for you and attaches it as an attribute.
+
+ :ivar models: Alias to model classes used in this operation group.
+ :type models: ~azure.mgmt.machinelearningservices.models
+ :param client: Client for service requests.
+ :param config: Configuration of service client.
+ :param serializer: An object model serializer.
+ :param deserializer: An object model deserializer.
+ """
+
+ models = _models
+
+ def __init__(self, client, config, serializer, deserializer):
+ self._client = client
+ self._serialize = serializer
+ self._deserialize = deserializer
+ self._config = config
+
+ @distributed_trace
+ def create(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ if_exists_update=False, # type: Optional[bool]
+ body=None, # type: Optional["_models.DatasetV2"]
+ **kwargs # type: Any
+ ):
+ # type: (...) -> "_models.DatasetV2"
+ """Create new dataset.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param if_exists_update:
+ :type if_exists_update: bool
+ :param body:
+ :type body: ~azure.mgmt.machinelearningservices.models.DatasetV2
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: DatasetV2, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.DatasetV2
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.DatasetV2"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+ content_type = kwargs.pop('content_type', "application/json") # type: Optional[str]
+
+ if body is not None:
+ _json = self._serialize.body(body, 'DatasetV2')
+ else:
+ _json = None
+
+ request = build_create_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ content_type=content_type,
+ json=_json,
+ if_exists_update=if_exists_update,
+ template_url=self.create.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('DatasetV2', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ create.metadata = {'url': '/dataset/v2.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datasets'} # type: ignore
+
+
+ @distributed_trace
+ def delete_all_datasets(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ **kwargs # type: Any
+ ):
+ # type: (...) -> None
+ """Delete all datasets in the workspace.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: None, or the result of cls(response)
+ :rtype: None
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType[None]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+
+ request = build_delete_all_datasets_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ template_url=self.delete_all_datasets.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in []:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ if cls:
+ return cls(pipeline_response, None, {})
+
+ delete_all_datasets.metadata = {'url': '/dataset/v2.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datasets'} # type: ignore
+
+
+ @distributed_trace
+ def list(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ names=None, # type: Optional[List[str]]
+ search_text=None, # type: Optional[str]
+ continuation_token_parameter=None, # type: Optional[str]
+ page_size=None, # type: Optional[int]
+ **kwargs # type: Any
+ ):
+ # type: (...) -> Iterable["_models.PaginatedDatasetV2List"]
+ """Get a list of datasets.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param names:
+ :type names: list[str]
+ :param search_text:
+ :type search_text: str
+ :param continuation_token_parameter:
+ :type continuation_token_parameter: str
+ :param page_size:
+ :type page_size: int
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: An iterator like instance of either PaginatedDatasetV2List or the result of
+ cls(response)
+ :rtype:
+ ~azure.core.paging.ItemPaged[~azure.mgmt.machinelearningservices.models.PaginatedDatasetV2List]
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.PaginatedDatasetV2List"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+ def prepare_request(next_link=None):
+ if not next_link:
+
+ request = build_list_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ names=names,
+ search_text=search_text,
+ continuation_token_parameter=continuation_token_parameter,
+ page_size=page_size,
+ template_url=self.list.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ else:
+
+ request = build_list_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ names=names,
+ search_text=search_text,
+ continuation_token_parameter=continuation_token_parameter,
+ page_size=page_size,
+ template_url=next_link,
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+ request.method = "GET"
+ return request
+
+ def extract_data(pipeline_response):
+ deserialized = self._deserialize("PaginatedDatasetV2List", pipeline_response)
+ list_of_elem = deserialized.value
+ if cls:
+ list_of_elem = cls(list_of_elem)
+ return deserialized.next_link or None, iter(list_of_elem)
+
+ def get_next(next_link=None):
+ request = prepare_request(next_link)
+
+ pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ return pipeline_response
+
+
+ return ItemPaged(
+ get_next, extract_data
+ )
+ list.metadata = {'url': '/dataset/v2.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datasets'} # type: ignore
+
+ @distributed_trace
+ def delete_dataset_by_name(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ name, # type: str
+ version_id, # type: str
+ **kwargs # type: Any
+ ):
+ # type: (...) -> None
+ """Delete a dataset.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param name:
+ :type name: str
+ :param version_id:
+ :type version_id: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: None, or the result of cls(response)
+ :rtype: None
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType[None]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+
+ request = build_delete_dataset_by_name_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ name=name,
+ version_id=version_id,
+ template_url=self.delete_dataset_by_name.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in []:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ if cls:
+ return cls(pipeline_response, None, {})
+
+ delete_dataset_by_name.metadata = {'url': '/dataset/v2.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datasets/{name}/versions/{versionId}'} # type: ignore
+
+
+ @distributed_trace
+ def update_dataset_by_name_and_version(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ name, # type: str
+ version_id, # type: str
+ body=None, # type: Optional["_models.DatasetV2"]
+ **kwargs # type: Any
+ ):
+ # type: (...) -> "_models.DatasetV2"
+ """Update a dataset by its name and version.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param name:
+ :type name: str
+ :param version_id:
+ :type version_id: str
+ :param body:
+ :type body: ~azure.mgmt.machinelearningservices.models.DatasetV2
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: DatasetV2, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.DatasetV2
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.DatasetV2"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+ content_type = kwargs.pop('content_type', "application/json") # type: Optional[str]
+
+ if body is not None:
+ _json = self._serialize.body(body, 'DatasetV2')
+ else:
+ _json = None
+
+ request = build_update_dataset_by_name_and_version_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ name=name,
+ version_id=version_id,
+ content_type=content_type,
+ json=_json,
+ template_url=self.update_dataset_by_name_and_version.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('DatasetV2', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ update_dataset_by_name_and_version.metadata = {'url': '/dataset/v2.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datasets/{name}/versions/{versionId}'} # type: ignore
+
+
+ @distributed_trace
+ def get_dataset_by_id(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ dataset_id, # type: str
+ **kwargs # type: Any
+ ):
+ # type: (...) -> "_models.DatasetV2"
+ """Get a dataset for a given dataset id.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param dataset_id:
+ :type dataset_id: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: DatasetV2, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.DatasetV2
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.DatasetV2"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+
+ request = build_get_dataset_by_id_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ dataset_id=dataset_id,
+ template_url=self.get_dataset_by_id.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('DatasetV2', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ get_dataset_by_id.metadata = {'url': '/dataset/v2.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datasets/{datasetId}'} # type: ignore
+
+
+ @distributed_trace
+ def update_dataset(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ dataset_id, # type: str
+ body=None, # type: Optional["_models.DatasetV2"]
+ **kwargs # type: Any
+ ):
+ # type: (...) -> "_models.DatasetV2"
+ """Update a dataset.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param dataset_id:
+ :type dataset_id: str
+ :param body:
+ :type body: ~azure.mgmt.machinelearningservices.models.DatasetV2
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: DatasetV2, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.DatasetV2
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.DatasetV2"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+ content_type = kwargs.pop('content_type', "application/json") # type: Optional[str]
+
+ if body is not None:
+ _json = self._serialize.body(body, 'DatasetV2')
+ else:
+ _json = None
+
+ request = build_update_dataset_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ dataset_id=dataset_id,
+ content_type=content_type,
+ json=_json,
+ template_url=self.update_dataset.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('DatasetV2', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ update_dataset.metadata = {'url': '/dataset/v2.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datasets/{datasetId}'} # type: ignore
+
+
+ @distributed_trace
+ def get_dataset_by_name(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ dataset_name, # type: str
+ version_id=None, # type: Optional[str]
+ **kwargs # type: Any
+ ):
+ # type: (...) -> "_models.DatasetV2"
+ """Get a dataset for a given dataset name.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param dataset_name:
+ :type dataset_name: str
+ :param version_id:
+ :type version_id: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: DatasetV2, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.DatasetV2
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.DatasetV2"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+
+ request = build_get_dataset_by_name_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ dataset_name=dataset_name,
+ version_id=version_id,
+ template_url=self.get_dataset_by_name.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('DatasetV2', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ get_dataset_by_name.metadata = {'url': '/dataset/v2.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datasets/query/name={datasetName}'} # type: ignore
+
diff --git a/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/operations/_datasets_v1_operations.py b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/operations/_datasets_v1_operations.py
new file mode 100644
index 00000000..df1b1710
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/operations/_datasets_v1_operations.py
@@ -0,0 +1,1300 @@
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) AutoRest Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+import functools
+from typing import TYPE_CHECKING
+import warnings
+
+from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error
+from azure.core.paging import ItemPaged
+from azure.core.pipeline import PipelineResponse
+from azure.core.pipeline.transport import HttpResponse
+from azure.core.rest import HttpRequest
+from azure.core.tracing.decorator import distributed_trace
+from azure.mgmt.core.exceptions import ARMErrorFormat
+from msrest import Serializer
+
+from .. import models as _models
+from .._vendor import _convert_request, _format_url_section
+
+if TYPE_CHECKING:
+ # pylint: disable=unused-import,ungrouped-imports
+ from typing import Any, Callable, Dict, Generic, Iterable, List, Optional, TypeVar
+ T = TypeVar('T')
+ ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]]
+
+_SERIALIZER = Serializer()
+_SERIALIZER.client_side_validation = False
+# fmt: off
+
+def build_get_dataset_definition_request(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ dataset_id, # type: str
+ version, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ accept = "application/json"
+ # Construct URL
+ url = kwargs.pop("template_url", '/dataset/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datasets/{datasetId}/definitions/{version}')
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ "datasetId": _SERIALIZER.url("dataset_id", dataset_id, 'str'),
+ "version": _SERIALIZER.url("version", version, 'str'),
+ }
+
+ url = _format_url_section(url, **path_format_arguments)
+
+ # Construct headers
+ header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="GET",
+ url=url,
+ headers=header_parameters,
+ **kwargs
+ )
+
+
+def build_get_all_dataset_definitions_request(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ dataset_id, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ continuation_token_parameter = kwargs.pop('continuation_token_parameter', None) # type: Optional[str]
+ page_size = kwargs.pop('page_size', None) # type: Optional[int]
+
+ accept = "application/json"
+ # Construct URL
+ url = kwargs.pop("template_url", '/dataset/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datasets/{datasetId}/definitions')
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ "datasetId": _SERIALIZER.url("dataset_id", dataset_id, 'str'),
+ }
+
+ url = _format_url_section(url, **path_format_arguments)
+
+ # Construct parameters
+ query_parameters = kwargs.pop("params", {}) # type: Dict[str, Any]
+ if continuation_token_parameter is not None:
+ query_parameters['continuationToken'] = _SERIALIZER.query("continuation_token_parameter", continuation_token_parameter, 'str')
+ if page_size is not None:
+ query_parameters['pageSize'] = _SERIALIZER.query("page_size", page_size, 'int')
+
+ # Construct headers
+ header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="GET",
+ url=url,
+ params=query_parameters,
+ headers=header_parameters,
+ **kwargs
+ )
+
+
+def build_update_definition_request(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ dataset_id, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ content_type = kwargs.pop('content_type', None) # type: Optional[str]
+ register_as_pending = kwargs.pop('register_as_pending', False) # type: Optional[bool]
+ force_update = kwargs.pop('force_update', False) # type: Optional[bool]
+ dataset_type = kwargs.pop('dataset_type', None) # type: Optional[str]
+ user_version_id = kwargs.pop('user_version_id', None) # type: Optional[str]
+
+ accept = "application/json"
+ # Construct URL
+ url = kwargs.pop("template_url", '/dataset/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datasets/{datasetId}/definitions')
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ "datasetId": _SERIALIZER.url("dataset_id", dataset_id, 'str'),
+ }
+
+ url = _format_url_section(url, **path_format_arguments)
+
+ # Construct parameters
+ query_parameters = kwargs.pop("params", {}) # type: Dict[str, Any]
+ if register_as_pending is not None:
+ query_parameters['registerAsPending'] = _SERIALIZER.query("register_as_pending", register_as_pending, 'bool')
+ if force_update is not None:
+ query_parameters['forceUpdate'] = _SERIALIZER.query("force_update", force_update, 'bool')
+ if dataset_type is not None:
+ query_parameters['datasetType'] = _SERIALIZER.query("dataset_type", dataset_type, 'str')
+ if user_version_id is not None:
+ query_parameters['userVersionId'] = _SERIALIZER.query("user_version_id", user_version_id, 'str')
+
+ # Construct headers
+ header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ if content_type is not None:
+ header_parameters['Content-Type'] = _SERIALIZER.header("content_type", content_type, 'str')
+ header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="POST",
+ url=url,
+ params=query_parameters,
+ headers=header_parameters,
+ **kwargs
+ )
+
+
+def build_get_all_dataset_versions_request(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ dataset_id, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ continuation_token_parameter = kwargs.pop('continuation_token_parameter', None) # type: Optional[str]
+ page_size = kwargs.pop('page_size', None) # type: Optional[int]
+
+ accept = "application/json"
+ # Construct URL
+ url = kwargs.pop("template_url", '/dataset/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datasets/{datasetId}/versions')
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ "datasetId": _SERIALIZER.url("dataset_id", dataset_id, 'str'),
+ }
+
+ url = _format_url_section(url, **path_format_arguments)
+
+ # Construct parameters
+ query_parameters = kwargs.pop("params", {}) # type: Dict[str, Any]
+ if continuation_token_parameter is not None:
+ query_parameters['continuationToken'] = _SERIALIZER.query("continuation_token_parameter", continuation_token_parameter, 'str')
+ if page_size is not None:
+ query_parameters['pageSize'] = _SERIALIZER.query("page_size", page_size, 'int')
+
+ # Construct headers
+ header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="GET",
+ url=url,
+ params=query_parameters,
+ headers=header_parameters,
+ **kwargs
+ )
+
+
+def build_get_dataset_by_name_request(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ dataset_name, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ version_id = kwargs.pop('version_id', None) # type: Optional[str]
+ include_latest_definition = kwargs.pop('include_latest_definition', True) # type: Optional[bool]
+
+ accept = "application/json"
+ # Construct URL
+ url = kwargs.pop("template_url", '/dataset/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datasets/query/name={datasetName}')
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ "datasetName": _SERIALIZER.url("dataset_name", dataset_name, 'str'),
+ }
+
+ url = _format_url_section(url, **path_format_arguments)
+
+ # Construct parameters
+ query_parameters = kwargs.pop("params", {}) # type: Dict[str, Any]
+ if version_id is not None:
+ query_parameters['versionId'] = _SERIALIZER.query("version_id", version_id, 'str')
+ if include_latest_definition is not None:
+ query_parameters['includeLatestDefinition'] = _SERIALIZER.query("include_latest_definition", include_latest_definition, 'bool')
+
+ # Construct headers
+ header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="GET",
+ url=url,
+ params=query_parameters,
+ headers=header_parameters,
+ **kwargs
+ )
+
+
+def build_list_request(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ dataset_names = kwargs.pop('dataset_names', None) # type: Optional[List[str]]
+ search_text = kwargs.pop('search_text', None) # type: Optional[str]
+ include_invisible = kwargs.pop('include_invisible', False) # type: Optional[bool]
+ status = kwargs.pop('status', None) # type: Optional[str]
+ continuation_token_parameter = kwargs.pop('continuation_token_parameter', None) # type: Optional[str]
+ page_size = kwargs.pop('page_size', None) # type: Optional[int]
+ include_latest_definition = kwargs.pop('include_latest_definition', False) # type: Optional[bool]
+ order_by = kwargs.pop('order_by', None) # type: Optional[str]
+ order_by_asc = kwargs.pop('order_by_asc', False) # type: Optional[bool]
+ dataset_types = kwargs.pop('dataset_types', None) # type: Optional[List[str]]
+
+ accept = "application/json"
+ # Construct URL
+ url = kwargs.pop("template_url", '/dataset/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datasets')
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ }
+
+ url = _format_url_section(url, **path_format_arguments)
+
+ # Construct parameters
+ query_parameters = kwargs.pop("params", {}) # type: Dict[str, Any]
+ if dataset_names is not None:
+ query_parameters['datasetNames'] = _SERIALIZER.query("dataset_names", dataset_names, '[str]')
+ if search_text is not None:
+ query_parameters['searchText'] = _SERIALIZER.query("search_text", search_text, 'str')
+ if include_invisible is not None:
+ query_parameters['includeInvisible'] = _SERIALIZER.query("include_invisible", include_invisible, 'bool')
+ if status is not None:
+ query_parameters['status'] = _SERIALIZER.query("status", status, 'str')
+ if continuation_token_parameter is not None:
+ query_parameters['continuationToken'] = _SERIALIZER.query("continuation_token_parameter", continuation_token_parameter, 'str')
+ if page_size is not None:
+ query_parameters['pageSize'] = _SERIALIZER.query("page_size", page_size, 'int')
+ if include_latest_definition is not None:
+ query_parameters['includeLatestDefinition'] = _SERIALIZER.query("include_latest_definition", include_latest_definition, 'bool')
+ if order_by is not None:
+ query_parameters['orderBy'] = _SERIALIZER.query("order_by", order_by, 'str')
+ if order_by_asc is not None:
+ query_parameters['orderByAsc'] = _SERIALIZER.query("order_by_asc", order_by_asc, 'bool')
+ if dataset_types is not None:
+ query_parameters['datasetTypes'] = _SERIALIZER.query("dataset_types", dataset_types, '[str]')
+
+ # Construct headers
+ header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="GET",
+ url=url,
+ params=query_parameters,
+ headers=header_parameters,
+ **kwargs
+ )
+
+
+def build_register_request(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ content_type = kwargs.pop('content_type', None) # type: Optional[str]
+ register_as_pending = kwargs.pop('register_as_pending', False) # type: Optional[bool]
+ if_exists_ok = kwargs.pop('if_exists_ok', True) # type: Optional[bool]
+ update_definition_if_exists = kwargs.pop('update_definition_if_exists', False) # type: Optional[bool]
+ with_data_hash = kwargs.pop('with_data_hash', False) # type: Optional[bool]
+ user_version_id = kwargs.pop('user_version_id', None) # type: Optional[str]
+
+ accept = "application/json"
+ # Construct URL
+ url = kwargs.pop("template_url", '/dataset/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datasets')
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ }
+
+ url = _format_url_section(url, **path_format_arguments)
+
+ # Construct parameters
+ query_parameters = kwargs.pop("params", {}) # type: Dict[str, Any]
+ if register_as_pending is not None:
+ query_parameters['registerAsPending'] = _SERIALIZER.query("register_as_pending", register_as_pending, 'bool')
+ if if_exists_ok is not None:
+ query_parameters['ifExistsOk'] = _SERIALIZER.query("if_exists_ok", if_exists_ok, 'bool')
+ if update_definition_if_exists is not None:
+ query_parameters['updateDefinitionIfExists'] = _SERIALIZER.query("update_definition_if_exists", update_definition_if_exists, 'bool')
+ if with_data_hash is not None:
+ query_parameters['withDataHash'] = _SERIALIZER.query("with_data_hash", with_data_hash, 'bool')
+ if user_version_id is not None:
+ query_parameters['userVersionId'] = _SERIALIZER.query("user_version_id", user_version_id, 'str')
+
+ # Construct headers
+ header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ if content_type is not None:
+ header_parameters['Content-Type'] = _SERIALIZER.header("content_type", content_type, 'str')
+ header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="POST",
+ url=url,
+ params=query_parameters,
+ headers=header_parameters,
+ **kwargs
+ )
+
+
+def build_delete_all_datasets_request(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ accept = "application/json"
+ # Construct URL
+ url = kwargs.pop("template_url", '/dataset/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datasets')
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ }
+
+ url = _format_url_section(url, **path_format_arguments)
+
+ # Construct headers
+ header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="DELETE",
+ url=url,
+ headers=header_parameters,
+ **kwargs
+ )
+
+
+def build_update_dataset_request(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ dataset_id, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ content_type = kwargs.pop('content_type', None) # type: Optional[str]
+ force_update = kwargs.pop('force_update', False) # type: Optional[bool]
+
+ accept = "application/json"
+ # Construct URL
+ url = kwargs.pop("template_url", '/dataset/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datasets/{datasetId}')
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ "datasetId": _SERIALIZER.url("dataset_id", dataset_id, 'str'),
+ }
+
+ url = _format_url_section(url, **path_format_arguments)
+
+ # Construct parameters
+ query_parameters = kwargs.pop("params", {}) # type: Dict[str, Any]
+ if force_update is not None:
+ query_parameters['forceUpdate'] = _SERIALIZER.query("force_update", force_update, 'bool')
+
+ # Construct headers
+ header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ if content_type is not None:
+ header_parameters['Content-Type'] = _SERIALIZER.header("content_type", content_type, 'str')
+ header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="PUT",
+ url=url,
+ params=query_parameters,
+ headers=header_parameters,
+ **kwargs
+ )
+
+
+def build_unregister_dataset_request(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ name, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ accept = "application/json"
+ # Construct URL
+ url = kwargs.pop("template_url", '/dataset/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datasets/{name}')
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ "name": _SERIALIZER.url("name", name, 'str'),
+ }
+
+ url = _format_url_section(url, **path_format_arguments)
+
+ # Construct headers
+ header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="DELETE",
+ url=url,
+ headers=header_parameters,
+ **kwargs
+ )
+
+# fmt: on
+class DatasetsV1Operations(object):
+ """DatasetsV1Operations operations.
+
+ You should not instantiate this class directly. Instead, you should create a Client instance that
+ instantiates it for you and attaches it as an attribute.
+
+ :ivar models: Alias to model classes used in this operation group.
+ :type models: ~azure.mgmt.machinelearningservices.models
+ :param client: Client for service requests.
+ :param config: Configuration of service client.
+ :param serializer: An object model serializer.
+ :param deserializer: An object model deserializer.
+ """
+
+ models = _models
+
+ def __init__(self, client, config, serializer, deserializer):
+ self._client = client
+ self._serialize = serializer
+ self._deserialize = deserializer
+ self._config = config
+
+ @distributed_trace
+ def get_dataset_definition(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ dataset_id, # type: str
+ version, # type: str
+ **kwargs # type: Any
+ ):
+ # type: (...) -> "_models.DatasetDefinition"
+ """Get a specific dataset definition.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param dataset_id:
+ :type dataset_id: str
+ :param version:
+ :type version: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: DatasetDefinition, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.DatasetDefinition
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.DatasetDefinition"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+
+ request = build_get_dataset_definition_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ dataset_id=dataset_id,
+ version=version,
+ template_url=self.get_dataset_definition.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('DatasetDefinition', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ get_dataset_definition.metadata = {'url': '/dataset/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datasets/{datasetId}/definitions/{version}'} # type: ignore
+
+
+ @distributed_trace
+ def get_all_dataset_definitions(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ dataset_id, # type: str
+ continuation_token_parameter=None, # type: Optional[str]
+ page_size=None, # type: Optional[int]
+ **kwargs # type: Any
+ ):
+ # type: (...) -> Iterable["_models.PaginatedDatasetDefinitionList"]
+ """Get all dataset definitions for a given dataset.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param dataset_id:
+ :type dataset_id: str
+ :param continuation_token_parameter:
+ :type continuation_token_parameter: str
+ :param page_size:
+ :type page_size: int
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: An iterator like instance of either PaginatedDatasetDefinitionList or the result of
+ cls(response)
+ :rtype:
+ ~azure.core.paging.ItemPaged[~azure.mgmt.machinelearningservices.models.PaginatedDatasetDefinitionList]
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.PaginatedDatasetDefinitionList"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+ def prepare_request(next_link=None):
+ if not next_link:
+
+ request = build_get_all_dataset_definitions_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ dataset_id=dataset_id,
+ continuation_token_parameter=continuation_token_parameter,
+ page_size=page_size,
+ template_url=self.get_all_dataset_definitions.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ else:
+
+ request = build_get_all_dataset_definitions_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ dataset_id=dataset_id,
+ continuation_token_parameter=continuation_token_parameter,
+ page_size=page_size,
+ template_url=next_link,
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+ request.method = "GET"
+ return request
+
+ def extract_data(pipeline_response):
+ deserialized = self._deserialize("PaginatedDatasetDefinitionList", pipeline_response)
+ list_of_elem = deserialized.value
+ if cls:
+ list_of_elem = cls(list_of_elem)
+ return deserialized.next_link or None, iter(list_of_elem)
+
+ def get_next(next_link=None):
+ request = prepare_request(next_link)
+
+ pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ return pipeline_response
+
+
+ return ItemPaged(
+ get_next, extract_data
+ )
+ get_all_dataset_definitions.metadata = {'url': '/dataset/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datasets/{datasetId}/definitions'} # type: ignore
+
+ @distributed_trace
+ def update_definition(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ dataset_id, # type: str
+ register_as_pending=False, # type: Optional[bool]
+ force_update=False, # type: Optional[bool]
+ dataset_type=None, # type: Optional[str]
+ user_version_id=None, # type: Optional[str]
+ body=None, # type: Optional["_models.DatasetDefinition"]
+ **kwargs # type: Any
+ ):
+ # type: (...) -> "_models.Dataset"
+ """Update a dataset definition.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param dataset_id:
+ :type dataset_id: str
+ :param register_as_pending:
+ :type register_as_pending: bool
+ :param force_update:
+ :type force_update: bool
+ :param dataset_type:
+ :type dataset_type: str
+ :param user_version_id:
+ :type user_version_id: str
+ :param body:
+ :type body: ~azure.mgmt.machinelearningservices.models.DatasetDefinition
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: Dataset, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.Dataset
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.Dataset"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+ content_type = kwargs.pop('content_type', "application/json") # type: Optional[str]
+
+ if body is not None:
+ _json = self._serialize.body(body, 'DatasetDefinition')
+ else:
+ _json = None
+
+ request = build_update_definition_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ dataset_id=dataset_id,
+ content_type=content_type,
+ json=_json,
+ register_as_pending=register_as_pending,
+ force_update=force_update,
+ dataset_type=dataset_type,
+ user_version_id=user_version_id,
+ template_url=self.update_definition.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('Dataset', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ update_definition.metadata = {'url': '/dataset/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datasets/{datasetId}/definitions'} # type: ignore
+
+
+ @distributed_trace
+ def get_all_dataset_versions(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ dataset_id, # type: str
+ continuation_token_parameter=None, # type: Optional[str]
+ page_size=None, # type: Optional[int]
+ **kwargs # type: Any
+ ):
+ # type: (...) -> Iterable["_models.PaginatedStringList"]
+ """Get all dataset versions for a given dataset.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param dataset_id:
+ :type dataset_id: str
+ :param continuation_token_parameter:
+ :type continuation_token_parameter: str
+ :param page_size:
+ :type page_size: int
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: An iterator like instance of either PaginatedStringList or the result of cls(response)
+ :rtype:
+ ~azure.core.paging.ItemPaged[~azure.mgmt.machinelearningservices.models.PaginatedStringList]
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.PaginatedStringList"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+ def prepare_request(next_link=None):
+ if not next_link:
+
+ request = build_get_all_dataset_versions_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ dataset_id=dataset_id,
+ continuation_token_parameter=continuation_token_parameter,
+ page_size=page_size,
+ template_url=self.get_all_dataset_versions.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ else:
+
+ request = build_get_all_dataset_versions_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ dataset_id=dataset_id,
+ continuation_token_parameter=continuation_token_parameter,
+ page_size=page_size,
+ template_url=next_link,
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+ request.method = "GET"
+ return request
+
+ def extract_data(pipeline_response):
+ deserialized = self._deserialize("PaginatedStringList", pipeline_response)
+ list_of_elem = deserialized.value
+ if cls:
+ list_of_elem = cls(list_of_elem)
+ return deserialized.next_link or None, iter(list_of_elem)
+
+ def get_next(next_link=None):
+ request = prepare_request(next_link)
+
+ pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ return pipeline_response
+
+
+ return ItemPaged(
+ get_next, extract_data
+ )
+ get_all_dataset_versions.metadata = {'url': '/dataset/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datasets/{datasetId}/versions'} # type: ignore
+
+ @distributed_trace
+ def get_dataset_by_name(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ dataset_name, # type: str
+ version_id=None, # type: Optional[str]
+ include_latest_definition=True, # type: Optional[bool]
+ **kwargs # type: Any
+ ):
+ # type: (...) -> "_models.Dataset"
+ """Get a dataset for a given dataset name.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param dataset_name:
+ :type dataset_name: str
+ :param version_id:
+ :type version_id: str
+ :param include_latest_definition:
+ :type include_latest_definition: bool
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: Dataset, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.Dataset
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.Dataset"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+
+ request = build_get_dataset_by_name_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ dataset_name=dataset_name,
+ version_id=version_id,
+ include_latest_definition=include_latest_definition,
+ template_url=self.get_dataset_by_name.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('Dataset', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ get_dataset_by_name.metadata = {'url': '/dataset/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datasets/query/name={datasetName}'} # type: ignore
+
+
+ @distributed_trace
+ def list(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ dataset_names=None, # type: Optional[List[str]]
+ search_text=None, # type: Optional[str]
+ include_invisible=False, # type: Optional[bool]
+ status=None, # type: Optional[str]
+ continuation_token_parameter=None, # type: Optional[str]
+ page_size=None, # type: Optional[int]
+ include_latest_definition=False, # type: Optional[bool]
+ order_by=None, # type: Optional[str]
+ order_by_asc=False, # type: Optional[bool]
+ dataset_types=None, # type: Optional[List[str]]
+ **kwargs # type: Any
+ ):
+ # type: (...) -> Iterable["_models.PaginatedDatasetList"]
+ """Get a list of datasets.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param dataset_names:
+ :type dataset_names: list[str]
+ :param search_text:
+ :type search_text: str
+ :param include_invisible:
+ :type include_invisible: bool
+ :param status:
+ :type status: str
+ :param continuation_token_parameter:
+ :type continuation_token_parameter: str
+ :param page_size:
+ :type page_size: int
+ :param include_latest_definition:
+ :type include_latest_definition: bool
+ :param order_by:
+ :type order_by: str
+ :param order_by_asc:
+ :type order_by_asc: bool
+ :param dataset_types:
+ :type dataset_types: list[str]
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: An iterator like instance of either PaginatedDatasetList or the result of
+ cls(response)
+ :rtype:
+ ~azure.core.paging.ItemPaged[~azure.mgmt.machinelearningservices.models.PaginatedDatasetList]
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.PaginatedDatasetList"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+ def prepare_request(next_link=None):
+ if not next_link:
+
+ request = build_list_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ dataset_names=dataset_names,
+ search_text=search_text,
+ include_invisible=include_invisible,
+ status=status,
+ continuation_token_parameter=continuation_token_parameter,
+ page_size=page_size,
+ include_latest_definition=include_latest_definition,
+ order_by=order_by,
+ order_by_asc=order_by_asc,
+ dataset_types=dataset_types,
+ template_url=self.list.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ else:
+
+ request = build_list_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ dataset_names=dataset_names,
+ search_text=search_text,
+ include_invisible=include_invisible,
+ status=status,
+ continuation_token_parameter=continuation_token_parameter,
+ page_size=page_size,
+ include_latest_definition=include_latest_definition,
+ order_by=order_by,
+ order_by_asc=order_by_asc,
+ dataset_types=dataset_types,
+ template_url=next_link,
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+ request.method = "GET"
+ return request
+
+ def extract_data(pipeline_response):
+ deserialized = self._deserialize("PaginatedDatasetList", pipeline_response)
+ list_of_elem = deserialized.value
+ if cls:
+ list_of_elem = cls(list_of_elem)
+ return deserialized.next_link or None, iter(list_of_elem)
+
+ def get_next(next_link=None):
+ request = prepare_request(next_link)
+
+ pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ return pipeline_response
+
+
+ return ItemPaged(
+ get_next, extract_data
+ )
+ list.metadata = {'url': '/dataset/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datasets'} # type: ignore
+
+ @distributed_trace
+ def register(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ register_as_pending=False, # type: Optional[bool]
+ if_exists_ok=True, # type: Optional[bool]
+ update_definition_if_exists=False, # type: Optional[bool]
+ with_data_hash=False, # type: Optional[bool]
+ user_version_id=None, # type: Optional[str]
+ body=None, # type: Optional["_models.Dataset"]
+ **kwargs # type: Any
+ ):
+ # type: (...) -> "_models.Dataset"
+ """Register new dataset.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param register_as_pending:
+ :type register_as_pending: bool
+ :param if_exists_ok:
+ :type if_exists_ok: bool
+ :param update_definition_if_exists:
+ :type update_definition_if_exists: bool
+ :param with_data_hash:
+ :type with_data_hash: bool
+ :param user_version_id:
+ :type user_version_id: str
+ :param body:
+ :type body: ~azure.mgmt.machinelearningservices.models.Dataset
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: Dataset, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.Dataset
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.Dataset"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+ content_type = kwargs.pop('content_type', "application/json") # type: Optional[str]
+
+ if body is not None:
+ _json = self._serialize.body(body, 'Dataset')
+ else:
+ _json = None
+
+ request = build_register_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ content_type=content_type,
+ json=_json,
+ register_as_pending=register_as_pending,
+ if_exists_ok=if_exists_ok,
+ update_definition_if_exists=update_definition_if_exists,
+ with_data_hash=with_data_hash,
+ user_version_id=user_version_id,
+ template_url=self.register.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('Dataset', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ register.metadata = {'url': '/dataset/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datasets'} # type: ignore
+
+
+ @distributed_trace
+ def delete_all_datasets(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ **kwargs # type: Any
+ ):
+ # type: (...) -> None
+ """Unregister all datasets in the workspace.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: None, or the result of cls(response)
+ :rtype: None
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType[None]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+
+ request = build_delete_all_datasets_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ template_url=self.delete_all_datasets.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in []:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ if cls:
+ return cls(pipeline_response, None, {})
+
+ delete_all_datasets.metadata = {'url': '/dataset/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datasets'} # type: ignore
+
+
+ @distributed_trace
+ def update_dataset(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ dataset_id, # type: str
+ force_update=False, # type: Optional[bool]
+ body=None, # type: Optional["_models.Dataset"]
+ **kwargs # type: Any
+ ):
+ # type: (...) -> "_models.Dataset"
+ """Update a dataset.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param dataset_id:
+ :type dataset_id: str
+ :param force_update:
+ :type force_update: bool
+ :param body:
+ :type body: ~azure.mgmt.machinelearningservices.models.Dataset
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: Dataset, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.Dataset
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.Dataset"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+ content_type = kwargs.pop('content_type', "application/json") # type: Optional[str]
+
+ if body is not None:
+ _json = self._serialize.body(body, 'Dataset')
+ else:
+ _json = None
+
+ request = build_update_dataset_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ dataset_id=dataset_id,
+ content_type=content_type,
+ json=_json,
+ force_update=force_update,
+ template_url=self.update_dataset.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('Dataset', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ update_dataset.metadata = {'url': '/dataset/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datasets/{datasetId}'} # type: ignore
+
+
+ @distributed_trace
+ def unregister_dataset(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ name, # type: str
+ **kwargs # type: Any
+ ):
+ # type: (...) -> None
+ """Unregister a dataset.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param name:
+ :type name: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: None, or the result of cls(response)
+ :rtype: None
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType[None]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+
+ request = build_unregister_dataset_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ name=name,
+ template_url=self.unregister_dataset.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in []:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ if cls:
+ return cls(pipeline_response, None, {})
+
+ unregister_dataset.metadata = {'url': '/dataset/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datasets/{name}'} # type: ignore
+
diff --git a/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/operations/_delete_operations.py b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/operations/_delete_operations.py
new file mode 100644
index 00000000..e1cd955c
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/operations/_delete_operations.py
@@ -0,0 +1,145 @@
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) AutoRest Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+import functools
+from typing import TYPE_CHECKING
+import warnings
+
+from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error
+from azure.core.pipeline import PipelineResponse
+from azure.core.pipeline.transport import HttpResponse
+from azure.core.rest import HttpRequest
+from azure.core.tracing.decorator import distributed_trace
+from azure.mgmt.core.exceptions import ARMErrorFormat
+from msrest import Serializer
+
+from .. import models as _models
+from .._vendor import _convert_request, _format_url_section
+
+if TYPE_CHECKING:
+ # pylint: disable=unused-import,ungrouped-imports
+ from typing import Any, Callable, Dict, Generic, Optional, TypeVar
+ T = TypeVar('T')
+ ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]]
+
+_SERIALIZER = Serializer()
+_SERIALIZER.client_side_validation = False
+# fmt: off
+
+def build_data_container_request(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ name, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ accept = "application/json"
+ # Construct URL
+ url = kwargs.pop("template_url", '/data/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datacontainer/{name}')
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ "name": _SERIALIZER.url("name", name, 'str'),
+ }
+
+ url = _format_url_section(url, **path_format_arguments)
+
+ # Construct headers
+ header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="DELETE",
+ url=url,
+ headers=header_parameters,
+ **kwargs
+ )
+
+# fmt: on
+class DeleteOperations(object):
+ """DeleteOperations operations.
+
+ You should not instantiate this class directly. Instead, you should create a Client instance that
+ instantiates it for you and attaches it as an attribute.
+
+ :ivar models: Alias to model classes used in this operation group.
+ :type models: ~azure.mgmt.machinelearningservices.models
+ :param client: Client for service requests.
+ :param config: Configuration of service client.
+ :param serializer: An object model serializer.
+ :param deserializer: An object model deserializer.
+ """
+
+ models = _models
+
+ def __init__(self, client, config, serializer, deserializer):
+ self._client = client
+ self._serialize = serializer
+ self._deserialize = deserializer
+ self._config = config
+
+ @distributed_trace
+ def data_container(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ name, # type: str
+ **kwargs # type: Any
+ ):
+ # type: (...) -> "_models.HttpResponseMessage"
+ """data_container.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param name:
+ :type name: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :return: HttpResponseMessage, or the result of cls(response)
+ :rtype: ~azure.mgmt.machinelearningservices.models.HttpResponseMessage
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.HttpResponseMessage"]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+
+ request = build_data_container_request(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ name=name,
+ template_url=self.data_container.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response)
+ raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat)
+
+ deserialized = self._deserialize('HttpResponseMessage', pipeline_response)
+
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+
+ return deserialized
+
+ data_container.metadata = {'url': '/data/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/datacontainer/{name}'} # type: ignore
+
diff --git a/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/operations/_get_operation_status_operations.py b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/operations/_get_operation_status_operations.py
new file mode 100644
index 00000000..085f9749
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/operations/_get_operation_status_operations.py
@@ -0,0 +1,212 @@
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) AutoRest Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+import functools
+from typing import TYPE_CHECKING
+import warnings
+
+from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error
+from azure.core.pipeline import PipelineResponse
+from azure.core.pipeline.transport import HttpResponse
+from azure.core.polling import LROPoller, NoPolling, PollingMethod
+from azure.core.rest import HttpRequest
+from azure.core.tracing.decorator import distributed_trace
+from azure.mgmt.core.exceptions import ARMErrorFormat
+from azure.mgmt.core.polling.arm_polling import ARMPolling
+from msrest import Serializer
+
+from .. import models as _models
+from .._vendor import _convert_request, _format_url_section
+
+if TYPE_CHECKING:
+ # pylint: disable=unused-import,ungrouped-imports
+ from typing import Any, Callable, Dict, Generic, Optional, TypeVar, Union
+ T = TypeVar('T')
+ ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]]
+
+_SERIALIZER = Serializer()
+_SERIALIZER.client_side_validation = False
+# fmt: off
+
+def build_get_dataset_operation_status_request_initial(
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ operation_id, # type: str
+ **kwargs # type: Any
+):
+ # type: (...) -> HttpRequest
+ accept = "application/json"
+ # Construct URL
+ url = kwargs.pop("template_url", '/dataset/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/operations/{operationId}')
+ path_format_arguments = {
+ "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'),
+ "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'),
+ "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'),
+ "operationId": _SERIALIZER.url("operation_id", operation_id, 'str'),
+ }
+
+ url = _format_url_section(url, **path_format_arguments)
+
+ # Construct headers
+ header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any]
+ header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str')
+
+ return HttpRequest(
+ method="GET",
+ url=url,
+ headers=header_parameters,
+ **kwargs
+ )
+
+# fmt: on
+class GetOperationStatusOperations(object):
+ """GetOperationStatusOperations operations.
+
+ You should not instantiate this class directly. Instead, you should create a Client instance that
+ instantiates it for you and attaches it as an attribute.
+
+ :ivar models: Alias to model classes used in this operation group.
+ :type models: ~azure.mgmt.machinelearningservices.models
+ :param client: Client for service requests.
+ :param config: Configuration of service client.
+ :param serializer: An object model serializer.
+ :param deserializer: An object model deserializer.
+ """
+
+ models = _models
+
+ def __init__(self, client, config, serializer, deserializer):
+ self._client = client
+ self._serialize = serializer
+ self._deserialize = deserializer
+ self._config = config
+
+ def _get_dataset_operation_status_initial(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ operation_id, # type: str
+ **kwargs # type: Any
+ ):
+ # type: (...) -> Optional["_models.LongRunningOperationResponse1LongRunningOperationResponseObject"]
+ cls = kwargs.pop('cls', None) # type: ClsType[Optional["_models.LongRunningOperationResponse1LongRunningOperationResponseObject"]]
+ error_map = {
+ 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError
+ }
+ error_map.update(kwargs.pop('error_map', {}))
+
+
+ request = build_get_dataset_operation_status_request_initial(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ operation_id=operation_id,
+ template_url=self._get_dataset_operation_status_initial.metadata['url'],
+ )
+ request = _convert_request(request)
+ request.url = self._client.format_url(request.url)
+
+ pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs)
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200, 202]:
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ raise HttpResponseError(response=response, error_format=ARMErrorFormat)
+
+ deserialized = None
+ response_headers = {}
+ if response.status_code == 200:
+ deserialized = self._deserialize('LongRunningOperationResponse1LongRunningOperationResponseObject', pipeline_response)
+
+ if response.status_code == 202:
+ response_headers['Location']=self._deserialize('str', response.headers.get('Location'))
+
+
+ if cls:
+ return cls(pipeline_response, deserialized, response_headers)
+
+ return deserialized
+
+ _get_dataset_operation_status_initial.metadata = {'url': '/dataset/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/operations/{operationId}'} # type: ignore
+
+
+ @distributed_trace
+ def begin_get_dataset_operation_status(
+ self,
+ subscription_id, # type: str
+ resource_group_name, # type: str
+ workspace_name, # type: str
+ operation_id, # type: str
+ **kwargs # type: Any
+ ):
+ # type: (...) -> LROPoller["_models.LongRunningOperationResponse1LongRunningOperationResponseObject"]
+ """get_dataset_operation_status.
+
+ :param subscription_id: The Azure Subscription ID.
+ :type subscription_id: str
+ :param resource_group_name: The Name of the resource group in which the workspace is located.
+ :type resource_group_name: str
+ :param workspace_name: The name of the workspace.
+ :type workspace_name: str
+ :param operation_id:
+ :type operation_id: str
+ :keyword callable cls: A custom type or function that will be passed the direct response
+ :keyword str continuation_token: A continuation token to restart a poller from a saved state.
+ :keyword polling: By default, your polling method will be ARMPolling. Pass in False for this
+ operation to not poll, or pass in your own initialized polling object for a personal polling
+ strategy.
+ :paramtype polling: bool or ~azure.core.polling.PollingMethod
+ :keyword int polling_interval: Default waiting time between two polls for LRO operations if no
+ Retry-After header is present.
+ :return: An instance of LROPoller that returns either
+ LongRunningOperationResponse1LongRunningOperationResponseObject or the result of cls(response)
+ :rtype:
+ ~azure.core.polling.LROPoller[~azure.mgmt.machinelearningservices.models.LongRunningOperationResponse1LongRunningOperationResponseObject]
+ :raises: ~azure.core.exceptions.HttpResponseError
+ """
+ polling = kwargs.pop('polling', True) # type: Union[bool, azure.core.polling.PollingMethod]
+ cls = kwargs.pop('cls', None) # type: ClsType["_models.LongRunningOperationResponse1LongRunningOperationResponseObject"]
+ lro_delay = kwargs.pop(
+ 'polling_interval',
+ self._config.polling_interval
+ )
+ cont_token = kwargs.pop('continuation_token', None) # type: Optional[str]
+ if cont_token is None:
+ raw_result = self._get_dataset_operation_status_initial(
+ subscription_id=subscription_id,
+ resource_group_name=resource_group_name,
+ workspace_name=workspace_name,
+ operation_id=operation_id,
+ cls=lambda x,y,z: x,
+ **kwargs
+ )
+ kwargs.pop('error_map', None)
+
+ def get_long_running_output(pipeline_response):
+ response = pipeline_response.http_response
+ deserialized = self._deserialize('LongRunningOperationResponse1LongRunningOperationResponseObject', pipeline_response)
+ if cls:
+ return cls(pipeline_response, deserialized, {})
+ return deserialized
+
+
+ if polling is True: polling_method = ARMPolling(lro_delay, lro_options={'final-state-via': 'location'}, **kwargs)
+ elif polling is False: polling_method = NoPolling()
+ else: polling_method = polling
+ if cont_token:
+ return LROPoller.from_continuation_token(
+ polling_method=polling_method,
+ continuation_token=cont_token,
+ client=self._client,
+ deserialization_callback=get_long_running_output
+ )
+ else:
+ return LROPoller(self._client, raw_result, get_long_running_output, polling_method)
+
+ begin_get_dataset_operation_status.metadata = {'url': '/dataset/v1.0/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/operations/{operationId}'} # type: ignore
diff --git a/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/py.typed b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/py.typed
new file mode 100644
index 00000000..e5aff4f8
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/azure/ai/ml/_restclient/dataset_dataplane/py.typed
@@ -0,0 +1 @@
+# Marker file for PEP 561. \ No newline at end of file