aboutsummaryrefslogtreecommitdiff
path: root/.venv/lib/python3.12/site-packages/PIL/ImageOps.py
diff options
context:
space:
mode:
Diffstat (limited to '.venv/lib/python3.12/site-packages/PIL/ImageOps.py')
-rw-r--r--.venv/lib/python3.12/site-packages/PIL/ImageOps.py731
1 files changed, 731 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/PIL/ImageOps.py b/.venv/lib/python3.12/site-packages/PIL/ImageOps.py
new file mode 100644
index 00000000..bb29cc0d
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/PIL/ImageOps.py
@@ -0,0 +1,731 @@
+#
+# The Python Imaging Library.
+# $Id$
+#
+# standard image operations
+#
+# History:
+# 2001-10-20 fl Created
+# 2001-10-23 fl Added autocontrast operator
+# 2001-12-18 fl Added Kevin's fit operator
+# 2004-03-14 fl Fixed potential division by zero in equalize
+# 2005-05-05 fl Fixed equalize for low number of values
+#
+# Copyright (c) 2001-2004 by Secret Labs AB
+# Copyright (c) 2001-2004 by Fredrik Lundh
+#
+# See the README file for information on usage and redistribution.
+#
+from __future__ import annotations
+
+import functools
+import operator
+import re
+from collections.abc import Sequence
+from typing import Protocol, cast
+
+from . import ExifTags, Image, ImagePalette
+
+#
+# helpers
+
+
+def _border(border: int | tuple[int, ...]) -> tuple[int, int, int, int]:
+ if isinstance(border, tuple):
+ if len(border) == 2:
+ left, top = right, bottom = border
+ elif len(border) == 4:
+ left, top, right, bottom = border
+ else:
+ left = top = right = bottom = border
+ return left, top, right, bottom
+
+
+def _color(color: str | int | tuple[int, ...], mode: str) -> int | tuple[int, ...]:
+ if isinstance(color, str):
+ from . import ImageColor
+
+ color = ImageColor.getcolor(color, mode)
+ return color
+
+
+def _lut(image: Image.Image, lut: list[int]) -> Image.Image:
+ if image.mode == "P":
+ # FIXME: apply to lookup table, not image data
+ msg = "mode P support coming soon"
+ raise NotImplementedError(msg)
+ elif image.mode in ("L", "RGB"):
+ if image.mode == "RGB" and len(lut) == 256:
+ lut = lut + lut + lut
+ return image.point(lut)
+ else:
+ msg = f"not supported for mode {image.mode}"
+ raise OSError(msg)
+
+
+#
+# actions
+
+
+def autocontrast(
+ image: Image.Image,
+ cutoff: float | tuple[float, float] = 0,
+ ignore: int | Sequence[int] | None = None,
+ mask: Image.Image | None = None,
+ preserve_tone: bool = False,
+) -> Image.Image:
+ """
+ Maximize (normalize) image contrast. This function calculates a
+ histogram of the input image (or mask region), removes ``cutoff`` percent of the
+ lightest and darkest pixels from the histogram, and remaps the image
+ so that the darkest pixel becomes black (0), and the lightest
+ becomes white (255).
+
+ :param image: The image to process.
+ :param cutoff: The percent to cut off from the histogram on the low and
+ high ends. Either a tuple of (low, high), or a single
+ number for both.
+ :param ignore: The background pixel value (use None for no background).
+ :param mask: Histogram used in contrast operation is computed using pixels
+ within the mask. If no mask is given the entire image is used
+ for histogram computation.
+ :param preserve_tone: Preserve image tone in Photoshop-like style autocontrast.
+
+ .. versionadded:: 8.2.0
+
+ :return: An image.
+ """
+ if preserve_tone:
+ histogram = image.convert("L").histogram(mask)
+ else:
+ histogram = image.histogram(mask)
+
+ lut = []
+ for layer in range(0, len(histogram), 256):
+ h = histogram[layer : layer + 256]
+ if ignore is not None:
+ # get rid of outliers
+ if isinstance(ignore, int):
+ h[ignore] = 0
+ else:
+ for ix in ignore:
+ h[ix] = 0
+ if cutoff:
+ # cut off pixels from both ends of the histogram
+ if not isinstance(cutoff, tuple):
+ cutoff = (cutoff, cutoff)
+ # get number of pixels
+ n = 0
+ for ix in range(256):
+ n = n + h[ix]
+ # remove cutoff% pixels from the low end
+ cut = int(n * cutoff[0] // 100)
+ for lo in range(256):
+ if cut > h[lo]:
+ cut = cut - h[lo]
+ h[lo] = 0
+ else:
+ h[lo] -= cut
+ cut = 0
+ if cut <= 0:
+ break
+ # remove cutoff% samples from the high end
+ cut = int(n * cutoff[1] // 100)
+ for hi in range(255, -1, -1):
+ if cut > h[hi]:
+ cut = cut - h[hi]
+ h[hi] = 0
+ else:
+ h[hi] -= cut
+ cut = 0
+ if cut <= 0:
+ break
+ # find lowest/highest samples after preprocessing
+ for lo in range(256):
+ if h[lo]:
+ break
+ for hi in range(255, -1, -1):
+ if h[hi]:
+ break
+ if hi <= lo:
+ # don't bother
+ lut.extend(list(range(256)))
+ else:
+ scale = 255.0 / (hi - lo)
+ offset = -lo * scale
+ for ix in range(256):
+ ix = int(ix * scale + offset)
+ if ix < 0:
+ ix = 0
+ elif ix > 255:
+ ix = 255
+ lut.append(ix)
+ return _lut(image, lut)
+
+
+def colorize(
+ image: Image.Image,
+ black: str | tuple[int, ...],
+ white: str | tuple[int, ...],
+ mid: str | int | tuple[int, ...] | None = None,
+ blackpoint: int = 0,
+ whitepoint: int = 255,
+ midpoint: int = 127,
+) -> Image.Image:
+ """
+ Colorize grayscale image.
+ This function calculates a color wedge which maps all black pixels in
+ the source image to the first color and all white pixels to the
+ second color. If ``mid`` is specified, it uses three-color mapping.
+ The ``black`` and ``white`` arguments should be RGB tuples or color names;
+ optionally you can use three-color mapping by also specifying ``mid``.
+ Mapping positions for any of the colors can be specified
+ (e.g. ``blackpoint``), where these parameters are the integer
+ value corresponding to where the corresponding color should be mapped.
+ These parameters must have logical order, such that
+ ``blackpoint <= midpoint <= whitepoint`` (if ``mid`` is specified).
+
+ :param image: The image to colorize.
+ :param black: The color to use for black input pixels.
+ :param white: The color to use for white input pixels.
+ :param mid: The color to use for midtone input pixels.
+ :param blackpoint: an int value [0, 255] for the black mapping.
+ :param whitepoint: an int value [0, 255] for the white mapping.
+ :param midpoint: an int value [0, 255] for the midtone mapping.
+ :return: An image.
+ """
+
+ # Initial asserts
+ assert image.mode == "L"
+ if mid is None:
+ assert 0 <= blackpoint <= whitepoint <= 255
+ else:
+ assert 0 <= blackpoint <= midpoint <= whitepoint <= 255
+
+ # Define colors from arguments
+ rgb_black = cast(Sequence[int], _color(black, "RGB"))
+ rgb_white = cast(Sequence[int], _color(white, "RGB"))
+ rgb_mid = cast(Sequence[int], _color(mid, "RGB")) if mid is not None else None
+
+ # Empty lists for the mapping
+ red = []
+ green = []
+ blue = []
+
+ # Create the low-end values
+ for i in range(0, blackpoint):
+ red.append(rgb_black[0])
+ green.append(rgb_black[1])
+ blue.append(rgb_black[2])
+
+ # Create the mapping (2-color)
+ if rgb_mid is None:
+ range_map = range(0, whitepoint - blackpoint)
+
+ for i in range_map:
+ red.append(
+ rgb_black[0] + i * (rgb_white[0] - rgb_black[0]) // len(range_map)
+ )
+ green.append(
+ rgb_black[1] + i * (rgb_white[1] - rgb_black[1]) // len(range_map)
+ )
+ blue.append(
+ rgb_black[2] + i * (rgb_white[2] - rgb_black[2]) // len(range_map)
+ )
+
+ # Create the mapping (3-color)
+ else:
+ range_map1 = range(0, midpoint - blackpoint)
+ range_map2 = range(0, whitepoint - midpoint)
+
+ for i in range_map1:
+ red.append(
+ rgb_black[0] + i * (rgb_mid[0] - rgb_black[0]) // len(range_map1)
+ )
+ green.append(
+ rgb_black[1] + i * (rgb_mid[1] - rgb_black[1]) // len(range_map1)
+ )
+ blue.append(
+ rgb_black[2] + i * (rgb_mid[2] - rgb_black[2]) // len(range_map1)
+ )
+ for i in range_map2:
+ red.append(rgb_mid[0] + i * (rgb_white[0] - rgb_mid[0]) // len(range_map2))
+ green.append(
+ rgb_mid[1] + i * (rgb_white[1] - rgb_mid[1]) // len(range_map2)
+ )
+ blue.append(rgb_mid[2] + i * (rgb_white[2] - rgb_mid[2]) // len(range_map2))
+
+ # Create the high-end values
+ for i in range(0, 256 - whitepoint):
+ red.append(rgb_white[0])
+ green.append(rgb_white[1])
+ blue.append(rgb_white[2])
+
+ # Return converted image
+ image = image.convert("RGB")
+ return _lut(image, red + green + blue)
+
+
+def contain(
+ image: Image.Image, size: tuple[int, int], method: int = Image.Resampling.BICUBIC
+) -> Image.Image:
+ """
+ Returns a resized version of the image, set to the maximum width and height
+ within the requested size, while maintaining the original aspect ratio.
+
+ :param image: The image to resize.
+ :param size: The requested output size in pixels, given as a
+ (width, height) tuple.
+ :param method: Resampling method to use. Default is
+ :py:attr:`~PIL.Image.Resampling.BICUBIC`.
+ See :ref:`concept-filters`.
+ :return: An image.
+ """
+
+ im_ratio = image.width / image.height
+ dest_ratio = size[0] / size[1]
+
+ if im_ratio != dest_ratio:
+ if im_ratio > dest_ratio:
+ new_height = round(image.height / image.width * size[0])
+ if new_height != size[1]:
+ size = (size[0], new_height)
+ else:
+ new_width = round(image.width / image.height * size[1])
+ if new_width != size[0]:
+ size = (new_width, size[1])
+ return image.resize(size, resample=method)
+
+
+def cover(
+ image: Image.Image, size: tuple[int, int], method: int = Image.Resampling.BICUBIC
+) -> Image.Image:
+ """
+ Returns a resized version of the image, so that the requested size is
+ covered, while maintaining the original aspect ratio.
+
+ :param image: The image to resize.
+ :param size: The requested output size in pixels, given as a
+ (width, height) tuple.
+ :param method: Resampling method to use. Default is
+ :py:attr:`~PIL.Image.Resampling.BICUBIC`.
+ See :ref:`concept-filters`.
+ :return: An image.
+ """
+
+ im_ratio = image.width / image.height
+ dest_ratio = size[0] / size[1]
+
+ if im_ratio != dest_ratio:
+ if im_ratio < dest_ratio:
+ new_height = round(image.height / image.width * size[0])
+ if new_height != size[1]:
+ size = (size[0], new_height)
+ else:
+ new_width = round(image.width / image.height * size[1])
+ if new_width != size[0]:
+ size = (new_width, size[1])
+ return image.resize(size, resample=method)
+
+
+def pad(
+ image: Image.Image,
+ size: tuple[int, int],
+ method: int = Image.Resampling.BICUBIC,
+ color: str | int | tuple[int, ...] | None = None,
+ centering: tuple[float, float] = (0.5, 0.5),
+) -> Image.Image:
+ """
+ Returns a resized and padded version of the image, expanded to fill the
+ requested aspect ratio and size.
+
+ :param image: The image to resize and crop.
+ :param size: The requested output size in pixels, given as a
+ (width, height) tuple.
+ :param method: Resampling method to use. Default is
+ :py:attr:`~PIL.Image.Resampling.BICUBIC`.
+ See :ref:`concept-filters`.
+ :param color: The background color of the padded image.
+ :param centering: Control the position of the original image within the
+ padded version.
+
+ (0.5, 0.5) will keep the image centered
+ (0, 0) will keep the image aligned to the top left
+ (1, 1) will keep the image aligned to the bottom
+ right
+ :return: An image.
+ """
+
+ resized = contain(image, size, method)
+ if resized.size == size:
+ out = resized
+ else:
+ out = Image.new(image.mode, size, color)
+ if resized.palette:
+ palette = resized.getpalette()
+ if palette is not None:
+ out.putpalette(palette)
+ if resized.width != size[0]:
+ x = round((size[0] - resized.width) * max(0, min(centering[0], 1)))
+ out.paste(resized, (x, 0))
+ else:
+ y = round((size[1] - resized.height) * max(0, min(centering[1], 1)))
+ out.paste(resized, (0, y))
+ return out
+
+
+def crop(image: Image.Image, border: int = 0) -> Image.Image:
+ """
+ Remove border from image. The same amount of pixels are removed
+ from all four sides. This function works on all image modes.
+
+ .. seealso:: :py:meth:`~PIL.Image.Image.crop`
+
+ :param image: The image to crop.
+ :param border: The number of pixels to remove.
+ :return: An image.
+ """
+ left, top, right, bottom = _border(border)
+ return image.crop((left, top, image.size[0] - right, image.size[1] - bottom))
+
+
+def scale(
+ image: Image.Image, factor: float, resample: int = Image.Resampling.BICUBIC
+) -> Image.Image:
+ """
+ Returns a rescaled image by a specific factor given in parameter.
+ A factor greater than 1 expands the image, between 0 and 1 contracts the
+ image.
+
+ :param image: The image to rescale.
+ :param factor: The expansion factor, as a float.
+ :param resample: Resampling method to use. Default is
+ :py:attr:`~PIL.Image.Resampling.BICUBIC`.
+ See :ref:`concept-filters`.
+ :returns: An :py:class:`~PIL.Image.Image` object.
+ """
+ if factor == 1:
+ return image.copy()
+ elif factor <= 0:
+ msg = "the factor must be greater than 0"
+ raise ValueError(msg)
+ else:
+ size = (round(factor * image.width), round(factor * image.height))
+ return image.resize(size, resample)
+
+
+class SupportsGetMesh(Protocol):
+ """
+ An object that supports the ``getmesh`` method, taking an image as an
+ argument, and returning a list of tuples. Each tuple contains two tuples,
+ the source box as a tuple of 4 integers, and a tuple of 8 integers for the
+ final quadrilateral, in order of top left, bottom left, bottom right, top
+ right.
+ """
+
+ def getmesh(
+ self, image: Image.Image
+ ) -> list[
+ tuple[tuple[int, int, int, int], tuple[int, int, int, int, int, int, int, int]]
+ ]: ...
+
+
+def deform(
+ image: Image.Image,
+ deformer: SupportsGetMesh,
+ resample: int = Image.Resampling.BILINEAR,
+) -> Image.Image:
+ """
+ Deform the image.
+
+ :param image: The image to deform.
+ :param deformer: A deformer object. Any object that implements a
+ ``getmesh`` method can be used.
+ :param resample: An optional resampling filter. Same values possible as
+ in the PIL.Image.transform function.
+ :return: An image.
+ """
+ return image.transform(
+ image.size, Image.Transform.MESH, deformer.getmesh(image), resample
+ )
+
+
+def equalize(image: Image.Image, mask: Image.Image | None = None) -> Image.Image:
+ """
+ Equalize the image histogram. This function applies a non-linear
+ mapping to the input image, in order to create a uniform
+ distribution of grayscale values in the output image.
+
+ :param image: The image to equalize.
+ :param mask: An optional mask. If given, only the pixels selected by
+ the mask are included in the analysis.
+ :return: An image.
+ """
+ if image.mode == "P":
+ image = image.convert("RGB")
+ h = image.histogram(mask)
+ lut = []
+ for b in range(0, len(h), 256):
+ histo = [_f for _f in h[b : b + 256] if _f]
+ if len(histo) <= 1:
+ lut.extend(list(range(256)))
+ else:
+ step = (functools.reduce(operator.add, histo) - histo[-1]) // 255
+ if not step:
+ lut.extend(list(range(256)))
+ else:
+ n = step // 2
+ for i in range(256):
+ lut.append(n // step)
+ n = n + h[i + b]
+ return _lut(image, lut)
+
+
+def expand(
+ image: Image.Image,
+ border: int | tuple[int, ...] = 0,
+ fill: str | int | tuple[int, ...] = 0,
+) -> Image.Image:
+ """
+ Add border to the image
+
+ :param image: The image to expand.
+ :param border: Border width, in pixels.
+ :param fill: Pixel fill value (a color value). Default is 0 (black).
+ :return: An image.
+ """
+ left, top, right, bottom = _border(border)
+ width = left + image.size[0] + right
+ height = top + image.size[1] + bottom
+ color = _color(fill, image.mode)
+ if image.palette:
+ palette = ImagePalette.ImagePalette(palette=image.getpalette())
+ if isinstance(color, tuple) and (len(color) == 3 or len(color) == 4):
+ color = palette.getcolor(color)
+ else:
+ palette = None
+ out = Image.new(image.mode, (width, height), color)
+ if palette:
+ out.putpalette(palette.palette)
+ out.paste(image, (left, top))
+ return out
+
+
+def fit(
+ image: Image.Image,
+ size: tuple[int, int],
+ method: int = Image.Resampling.BICUBIC,
+ bleed: float = 0.0,
+ centering: tuple[float, float] = (0.5, 0.5),
+) -> Image.Image:
+ """
+ Returns a resized and cropped version of the image, cropped to the
+ requested aspect ratio and size.
+
+ This function was contributed by Kevin Cazabon.
+
+ :param image: The image to resize and crop.
+ :param size: The requested output size in pixels, given as a
+ (width, height) tuple.
+ :param method: Resampling method to use. Default is
+ :py:attr:`~PIL.Image.Resampling.BICUBIC`.
+ See :ref:`concept-filters`.
+ :param bleed: Remove a border around the outside of the image from all
+ four edges. The value is a decimal percentage (use 0.01 for
+ one percent). The default value is 0 (no border).
+ Cannot be greater than or equal to 0.5.
+ :param centering: Control the cropping position. Use (0.5, 0.5) for
+ center cropping (e.g. if cropping the width, take 50% off
+ of the left side, and therefore 50% off the right side).
+ (0.0, 0.0) will crop from the top left corner (i.e. if
+ cropping the width, take all of the crop off of the right
+ side, and if cropping the height, take all of it off the
+ bottom). (1.0, 0.0) will crop from the bottom left
+ corner, etc. (i.e. if cropping the width, take all of the
+ crop off the left side, and if cropping the height take
+ none from the top, and therefore all off the bottom).
+ :return: An image.
+ """
+
+ # by Kevin Cazabon, Feb 17/2000
+ # kevin@cazabon.com
+ # https://www.cazabon.com
+
+ centering_x, centering_y = centering
+
+ if not 0.0 <= centering_x <= 1.0:
+ centering_x = 0.5
+ if not 0.0 <= centering_y <= 1.0:
+ centering_y = 0.5
+
+ if not 0.0 <= bleed < 0.5:
+ bleed = 0.0
+
+ # calculate the area to use for resizing and cropping, subtracting
+ # the 'bleed' around the edges
+
+ # number of pixels to trim off on Top and Bottom, Left and Right
+ bleed_pixels = (bleed * image.size[0], bleed * image.size[1])
+
+ live_size = (
+ image.size[0] - bleed_pixels[0] * 2,
+ image.size[1] - bleed_pixels[1] * 2,
+ )
+
+ # calculate the aspect ratio of the live_size
+ live_size_ratio = live_size[0] / live_size[1]
+
+ # calculate the aspect ratio of the output image
+ output_ratio = size[0] / size[1]
+
+ # figure out if the sides or top/bottom will be cropped off
+ if live_size_ratio == output_ratio:
+ # live_size is already the needed ratio
+ crop_width = live_size[0]
+ crop_height = live_size[1]
+ elif live_size_ratio >= output_ratio:
+ # live_size is wider than what's needed, crop the sides
+ crop_width = output_ratio * live_size[1]
+ crop_height = live_size[1]
+ else:
+ # live_size is taller than what's needed, crop the top and bottom
+ crop_width = live_size[0]
+ crop_height = live_size[0] / output_ratio
+
+ # make the crop
+ crop_left = bleed_pixels[0] + (live_size[0] - crop_width) * centering_x
+ crop_top = bleed_pixels[1] + (live_size[1] - crop_height) * centering_y
+
+ crop = (crop_left, crop_top, crop_left + crop_width, crop_top + crop_height)
+
+ # resize the image and return it
+ return image.resize(size, method, box=crop)
+
+
+def flip(image: Image.Image) -> Image.Image:
+ """
+ Flip the image vertically (top to bottom).
+
+ :param image: The image to flip.
+ :return: An image.
+ """
+ return image.transpose(Image.Transpose.FLIP_TOP_BOTTOM)
+
+
+def grayscale(image: Image.Image) -> Image.Image:
+ """
+ Convert the image to grayscale.
+
+ :param image: The image to convert.
+ :return: An image.
+ """
+ return image.convert("L")
+
+
+def invert(image: Image.Image) -> Image.Image:
+ """
+ Invert (negate) the image.
+
+ :param image: The image to invert.
+ :return: An image.
+ """
+ lut = list(range(255, -1, -1))
+ return image.point(lut) if image.mode == "1" else _lut(image, lut)
+
+
+def mirror(image: Image.Image) -> Image.Image:
+ """
+ Flip image horizontally (left to right).
+
+ :param image: The image to mirror.
+ :return: An image.
+ """
+ return image.transpose(Image.Transpose.FLIP_LEFT_RIGHT)
+
+
+def posterize(image: Image.Image, bits: int) -> Image.Image:
+ """
+ Reduce the number of bits for each color channel.
+
+ :param image: The image to posterize.
+ :param bits: The number of bits to keep for each channel (1-8).
+ :return: An image.
+ """
+ mask = ~(2 ** (8 - bits) - 1)
+ lut = [i & mask for i in range(256)]
+ return _lut(image, lut)
+
+
+def solarize(image: Image.Image, threshold: int = 128) -> Image.Image:
+ """
+ Invert all pixel values above a threshold.
+
+ :param image: The image to solarize.
+ :param threshold: All pixels above this grayscale level are inverted.
+ :return: An image.
+ """
+ lut = []
+ for i in range(256):
+ if i < threshold:
+ lut.append(i)
+ else:
+ lut.append(255 - i)
+ return _lut(image, lut)
+
+
+def exif_transpose(image: Image.Image, *, in_place: bool = False) -> Image.Image | None:
+ """
+ If an image has an EXIF Orientation tag, other than 1, transpose the image
+ accordingly, and remove the orientation data.
+
+ :param image: The image to transpose.
+ :param in_place: Boolean. Keyword-only argument.
+ If ``True``, the original image is modified in-place, and ``None`` is returned.
+ If ``False`` (default), a new :py:class:`~PIL.Image.Image` object is returned
+ with the transposition applied. If there is no transposition, a copy of the
+ image will be returned.
+ """
+ image.load()
+ image_exif = image.getexif()
+ orientation = image_exif.get(ExifTags.Base.Orientation, 1)
+ method = {
+ 2: Image.Transpose.FLIP_LEFT_RIGHT,
+ 3: Image.Transpose.ROTATE_180,
+ 4: Image.Transpose.FLIP_TOP_BOTTOM,
+ 5: Image.Transpose.TRANSPOSE,
+ 6: Image.Transpose.ROTATE_270,
+ 7: Image.Transpose.TRANSVERSE,
+ 8: Image.Transpose.ROTATE_90,
+ }.get(orientation)
+ if method is not None:
+ if in_place:
+ image.im = image.im.transpose(method)
+ image._size = image.im.size
+ else:
+ transposed_image = image.transpose(method)
+ exif_image = image if in_place else transposed_image
+
+ exif = exif_image.getexif()
+ if ExifTags.Base.Orientation in exif:
+ del exif[ExifTags.Base.Orientation]
+ if "exif" in exif_image.info:
+ exif_image.info["exif"] = exif.tobytes()
+ elif "Raw profile type exif" in exif_image.info:
+ exif_image.info["Raw profile type exif"] = exif.tobytes().hex()
+ for key in ("XML:com.adobe.xmp", "xmp"):
+ if key in exif_image.info:
+ for pattern in (
+ r'tiff:Orientation="([0-9])"',
+ r"<tiff:Orientation>([0-9])</tiff:Orientation>",
+ ):
+ value = exif_image.info[key]
+ exif_image.info[key] = (
+ re.sub(pattern, "", value)
+ if isinstance(value, str)
+ else re.sub(pattern.encode(), b"", value)
+ )
+ if not in_place:
+ return transposed_image
+ elif not in_place:
+ return image.copy()
+ return None