diff options
author | S. Solomon Darnell | 2025-03-28 21:52:21 -0500 |
---|---|---|
committer | S. Solomon Darnell | 2025-03-28 21:52:21 -0500 |
commit | 4a52a71956a8d46fcb7294ac71734504bb09bcc2 (patch) | |
tree | ee3dc5af3b6313e921cd920906356f5d4febc4ed /.venv/lib/python3.12/site-packages/PIL/ImageOps.py | |
parent | cc961e04ba734dd72309fb548a2f97d67d578813 (diff) | |
download | gn-ai-master.tar.gz |
Diffstat (limited to '.venv/lib/python3.12/site-packages/PIL/ImageOps.py')
-rw-r--r-- | .venv/lib/python3.12/site-packages/PIL/ImageOps.py | 731 |
1 files changed, 731 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/PIL/ImageOps.py b/.venv/lib/python3.12/site-packages/PIL/ImageOps.py new file mode 100644 index 00000000..bb29cc0d --- /dev/null +++ b/.venv/lib/python3.12/site-packages/PIL/ImageOps.py @@ -0,0 +1,731 @@ +# +# The Python Imaging Library. +# $Id$ +# +# standard image operations +# +# History: +# 2001-10-20 fl Created +# 2001-10-23 fl Added autocontrast operator +# 2001-12-18 fl Added Kevin's fit operator +# 2004-03-14 fl Fixed potential division by zero in equalize +# 2005-05-05 fl Fixed equalize for low number of values +# +# Copyright (c) 2001-2004 by Secret Labs AB +# Copyright (c) 2001-2004 by Fredrik Lundh +# +# See the README file for information on usage and redistribution. +# +from __future__ import annotations + +import functools +import operator +import re +from collections.abc import Sequence +from typing import Protocol, cast + +from . import ExifTags, Image, ImagePalette + +# +# helpers + + +def _border(border: int | tuple[int, ...]) -> tuple[int, int, int, int]: + if isinstance(border, tuple): + if len(border) == 2: + left, top = right, bottom = border + elif len(border) == 4: + left, top, right, bottom = border + else: + left = top = right = bottom = border + return left, top, right, bottom + + +def _color(color: str | int | tuple[int, ...], mode: str) -> int | tuple[int, ...]: + if isinstance(color, str): + from . import ImageColor + + color = ImageColor.getcolor(color, mode) + return color + + +def _lut(image: Image.Image, lut: list[int]) -> Image.Image: + if image.mode == "P": + # FIXME: apply to lookup table, not image data + msg = "mode P support coming soon" + raise NotImplementedError(msg) + elif image.mode in ("L", "RGB"): + if image.mode == "RGB" and len(lut) == 256: + lut = lut + lut + lut + return image.point(lut) + else: + msg = f"not supported for mode {image.mode}" + raise OSError(msg) + + +# +# actions + + +def autocontrast( + image: Image.Image, + cutoff: float | tuple[float, float] = 0, + ignore: int | Sequence[int] | None = None, + mask: Image.Image | None = None, + preserve_tone: bool = False, +) -> Image.Image: + """ + Maximize (normalize) image contrast. This function calculates a + histogram of the input image (or mask region), removes ``cutoff`` percent of the + lightest and darkest pixels from the histogram, and remaps the image + so that the darkest pixel becomes black (0), and the lightest + becomes white (255). + + :param image: The image to process. + :param cutoff: The percent to cut off from the histogram on the low and + high ends. Either a tuple of (low, high), or a single + number for both. + :param ignore: The background pixel value (use None for no background). + :param mask: Histogram used in contrast operation is computed using pixels + within the mask. If no mask is given the entire image is used + for histogram computation. + :param preserve_tone: Preserve image tone in Photoshop-like style autocontrast. + + .. versionadded:: 8.2.0 + + :return: An image. + """ + if preserve_tone: + histogram = image.convert("L").histogram(mask) + else: + histogram = image.histogram(mask) + + lut = [] + for layer in range(0, len(histogram), 256): + h = histogram[layer : layer + 256] + if ignore is not None: + # get rid of outliers + if isinstance(ignore, int): + h[ignore] = 0 + else: + for ix in ignore: + h[ix] = 0 + if cutoff: + # cut off pixels from both ends of the histogram + if not isinstance(cutoff, tuple): + cutoff = (cutoff, cutoff) + # get number of pixels + n = 0 + for ix in range(256): + n = n + h[ix] + # remove cutoff% pixels from the low end + cut = int(n * cutoff[0] // 100) + for lo in range(256): + if cut > h[lo]: + cut = cut - h[lo] + h[lo] = 0 + else: + h[lo] -= cut + cut = 0 + if cut <= 0: + break + # remove cutoff% samples from the high end + cut = int(n * cutoff[1] // 100) + for hi in range(255, -1, -1): + if cut > h[hi]: + cut = cut - h[hi] + h[hi] = 0 + else: + h[hi] -= cut + cut = 0 + if cut <= 0: + break + # find lowest/highest samples after preprocessing + for lo in range(256): + if h[lo]: + break + for hi in range(255, -1, -1): + if h[hi]: + break + if hi <= lo: + # don't bother + lut.extend(list(range(256))) + else: + scale = 255.0 / (hi - lo) + offset = -lo * scale + for ix in range(256): + ix = int(ix * scale + offset) + if ix < 0: + ix = 0 + elif ix > 255: + ix = 255 + lut.append(ix) + return _lut(image, lut) + + +def colorize( + image: Image.Image, + black: str | tuple[int, ...], + white: str | tuple[int, ...], + mid: str | int | tuple[int, ...] | None = None, + blackpoint: int = 0, + whitepoint: int = 255, + midpoint: int = 127, +) -> Image.Image: + """ + Colorize grayscale image. + This function calculates a color wedge which maps all black pixels in + the source image to the first color and all white pixels to the + second color. If ``mid`` is specified, it uses three-color mapping. + The ``black`` and ``white`` arguments should be RGB tuples or color names; + optionally you can use three-color mapping by also specifying ``mid``. + Mapping positions for any of the colors can be specified + (e.g. ``blackpoint``), where these parameters are the integer + value corresponding to where the corresponding color should be mapped. + These parameters must have logical order, such that + ``blackpoint <= midpoint <= whitepoint`` (if ``mid`` is specified). + + :param image: The image to colorize. + :param black: The color to use for black input pixels. + :param white: The color to use for white input pixels. + :param mid: The color to use for midtone input pixels. + :param blackpoint: an int value [0, 255] for the black mapping. + :param whitepoint: an int value [0, 255] for the white mapping. + :param midpoint: an int value [0, 255] for the midtone mapping. + :return: An image. + """ + + # Initial asserts + assert image.mode == "L" + if mid is None: + assert 0 <= blackpoint <= whitepoint <= 255 + else: + assert 0 <= blackpoint <= midpoint <= whitepoint <= 255 + + # Define colors from arguments + rgb_black = cast(Sequence[int], _color(black, "RGB")) + rgb_white = cast(Sequence[int], _color(white, "RGB")) + rgb_mid = cast(Sequence[int], _color(mid, "RGB")) if mid is not None else None + + # Empty lists for the mapping + red = [] + green = [] + blue = [] + + # Create the low-end values + for i in range(0, blackpoint): + red.append(rgb_black[0]) + green.append(rgb_black[1]) + blue.append(rgb_black[2]) + + # Create the mapping (2-color) + if rgb_mid is None: + range_map = range(0, whitepoint - blackpoint) + + for i in range_map: + red.append( + rgb_black[0] + i * (rgb_white[0] - rgb_black[0]) // len(range_map) + ) + green.append( + rgb_black[1] + i * (rgb_white[1] - rgb_black[1]) // len(range_map) + ) + blue.append( + rgb_black[2] + i * (rgb_white[2] - rgb_black[2]) // len(range_map) + ) + + # Create the mapping (3-color) + else: + range_map1 = range(0, midpoint - blackpoint) + range_map2 = range(0, whitepoint - midpoint) + + for i in range_map1: + red.append( + rgb_black[0] + i * (rgb_mid[0] - rgb_black[0]) // len(range_map1) + ) + green.append( + rgb_black[1] + i * (rgb_mid[1] - rgb_black[1]) // len(range_map1) + ) + blue.append( + rgb_black[2] + i * (rgb_mid[2] - rgb_black[2]) // len(range_map1) + ) + for i in range_map2: + red.append(rgb_mid[0] + i * (rgb_white[0] - rgb_mid[0]) // len(range_map2)) + green.append( + rgb_mid[1] + i * (rgb_white[1] - rgb_mid[1]) // len(range_map2) + ) + blue.append(rgb_mid[2] + i * (rgb_white[2] - rgb_mid[2]) // len(range_map2)) + + # Create the high-end values + for i in range(0, 256 - whitepoint): + red.append(rgb_white[0]) + green.append(rgb_white[1]) + blue.append(rgb_white[2]) + + # Return converted image + image = image.convert("RGB") + return _lut(image, red + green + blue) + + +def contain( + image: Image.Image, size: tuple[int, int], method: int = Image.Resampling.BICUBIC +) -> Image.Image: + """ + Returns a resized version of the image, set to the maximum width and height + within the requested size, while maintaining the original aspect ratio. + + :param image: The image to resize. + :param size: The requested output size in pixels, given as a + (width, height) tuple. + :param method: Resampling method to use. Default is + :py:attr:`~PIL.Image.Resampling.BICUBIC`. + See :ref:`concept-filters`. + :return: An image. + """ + + im_ratio = image.width / image.height + dest_ratio = size[0] / size[1] + + if im_ratio != dest_ratio: + if im_ratio > dest_ratio: + new_height = round(image.height / image.width * size[0]) + if new_height != size[1]: + size = (size[0], new_height) + else: + new_width = round(image.width / image.height * size[1]) + if new_width != size[0]: + size = (new_width, size[1]) + return image.resize(size, resample=method) + + +def cover( + image: Image.Image, size: tuple[int, int], method: int = Image.Resampling.BICUBIC +) -> Image.Image: + """ + Returns a resized version of the image, so that the requested size is + covered, while maintaining the original aspect ratio. + + :param image: The image to resize. + :param size: The requested output size in pixels, given as a + (width, height) tuple. + :param method: Resampling method to use. Default is + :py:attr:`~PIL.Image.Resampling.BICUBIC`. + See :ref:`concept-filters`. + :return: An image. + """ + + im_ratio = image.width / image.height + dest_ratio = size[0] / size[1] + + if im_ratio != dest_ratio: + if im_ratio < dest_ratio: + new_height = round(image.height / image.width * size[0]) + if new_height != size[1]: + size = (size[0], new_height) + else: + new_width = round(image.width / image.height * size[1]) + if new_width != size[0]: + size = (new_width, size[1]) + return image.resize(size, resample=method) + + +def pad( + image: Image.Image, + size: tuple[int, int], + method: int = Image.Resampling.BICUBIC, + color: str | int | tuple[int, ...] | None = None, + centering: tuple[float, float] = (0.5, 0.5), +) -> Image.Image: + """ + Returns a resized and padded version of the image, expanded to fill the + requested aspect ratio and size. + + :param image: The image to resize and crop. + :param size: The requested output size in pixels, given as a + (width, height) tuple. + :param method: Resampling method to use. Default is + :py:attr:`~PIL.Image.Resampling.BICUBIC`. + See :ref:`concept-filters`. + :param color: The background color of the padded image. + :param centering: Control the position of the original image within the + padded version. + + (0.5, 0.5) will keep the image centered + (0, 0) will keep the image aligned to the top left + (1, 1) will keep the image aligned to the bottom + right + :return: An image. + """ + + resized = contain(image, size, method) + if resized.size == size: + out = resized + else: + out = Image.new(image.mode, size, color) + if resized.palette: + palette = resized.getpalette() + if palette is not None: + out.putpalette(palette) + if resized.width != size[0]: + x = round((size[0] - resized.width) * max(0, min(centering[0], 1))) + out.paste(resized, (x, 0)) + else: + y = round((size[1] - resized.height) * max(0, min(centering[1], 1))) + out.paste(resized, (0, y)) + return out + + +def crop(image: Image.Image, border: int = 0) -> Image.Image: + """ + Remove border from image. The same amount of pixels are removed + from all four sides. This function works on all image modes. + + .. seealso:: :py:meth:`~PIL.Image.Image.crop` + + :param image: The image to crop. + :param border: The number of pixels to remove. + :return: An image. + """ + left, top, right, bottom = _border(border) + return image.crop((left, top, image.size[0] - right, image.size[1] - bottom)) + + +def scale( + image: Image.Image, factor: float, resample: int = Image.Resampling.BICUBIC +) -> Image.Image: + """ + Returns a rescaled image by a specific factor given in parameter. + A factor greater than 1 expands the image, between 0 and 1 contracts the + image. + + :param image: The image to rescale. + :param factor: The expansion factor, as a float. + :param resample: Resampling method to use. Default is + :py:attr:`~PIL.Image.Resampling.BICUBIC`. + See :ref:`concept-filters`. + :returns: An :py:class:`~PIL.Image.Image` object. + """ + if factor == 1: + return image.copy() + elif factor <= 0: + msg = "the factor must be greater than 0" + raise ValueError(msg) + else: + size = (round(factor * image.width), round(factor * image.height)) + return image.resize(size, resample) + + +class SupportsGetMesh(Protocol): + """ + An object that supports the ``getmesh`` method, taking an image as an + argument, and returning a list of tuples. Each tuple contains two tuples, + the source box as a tuple of 4 integers, and a tuple of 8 integers for the + final quadrilateral, in order of top left, bottom left, bottom right, top + right. + """ + + def getmesh( + self, image: Image.Image + ) -> list[ + tuple[tuple[int, int, int, int], tuple[int, int, int, int, int, int, int, int]] + ]: ... + + +def deform( + image: Image.Image, + deformer: SupportsGetMesh, + resample: int = Image.Resampling.BILINEAR, +) -> Image.Image: + """ + Deform the image. + + :param image: The image to deform. + :param deformer: A deformer object. Any object that implements a + ``getmesh`` method can be used. + :param resample: An optional resampling filter. Same values possible as + in the PIL.Image.transform function. + :return: An image. + """ + return image.transform( + image.size, Image.Transform.MESH, deformer.getmesh(image), resample + ) + + +def equalize(image: Image.Image, mask: Image.Image | None = None) -> Image.Image: + """ + Equalize the image histogram. This function applies a non-linear + mapping to the input image, in order to create a uniform + distribution of grayscale values in the output image. + + :param image: The image to equalize. + :param mask: An optional mask. If given, only the pixels selected by + the mask are included in the analysis. + :return: An image. + """ + if image.mode == "P": + image = image.convert("RGB") + h = image.histogram(mask) + lut = [] + for b in range(0, len(h), 256): + histo = [_f for _f in h[b : b + 256] if _f] + if len(histo) <= 1: + lut.extend(list(range(256))) + else: + step = (functools.reduce(operator.add, histo) - histo[-1]) // 255 + if not step: + lut.extend(list(range(256))) + else: + n = step // 2 + for i in range(256): + lut.append(n // step) + n = n + h[i + b] + return _lut(image, lut) + + +def expand( + image: Image.Image, + border: int | tuple[int, ...] = 0, + fill: str | int | tuple[int, ...] = 0, +) -> Image.Image: + """ + Add border to the image + + :param image: The image to expand. + :param border: Border width, in pixels. + :param fill: Pixel fill value (a color value). Default is 0 (black). + :return: An image. + """ + left, top, right, bottom = _border(border) + width = left + image.size[0] + right + height = top + image.size[1] + bottom + color = _color(fill, image.mode) + if image.palette: + palette = ImagePalette.ImagePalette(palette=image.getpalette()) + if isinstance(color, tuple) and (len(color) == 3 or len(color) == 4): + color = palette.getcolor(color) + else: + palette = None + out = Image.new(image.mode, (width, height), color) + if palette: + out.putpalette(palette.palette) + out.paste(image, (left, top)) + return out + + +def fit( + image: Image.Image, + size: tuple[int, int], + method: int = Image.Resampling.BICUBIC, + bleed: float = 0.0, + centering: tuple[float, float] = (0.5, 0.5), +) -> Image.Image: + """ + Returns a resized and cropped version of the image, cropped to the + requested aspect ratio and size. + + This function was contributed by Kevin Cazabon. + + :param image: The image to resize and crop. + :param size: The requested output size in pixels, given as a + (width, height) tuple. + :param method: Resampling method to use. Default is + :py:attr:`~PIL.Image.Resampling.BICUBIC`. + See :ref:`concept-filters`. + :param bleed: Remove a border around the outside of the image from all + four edges. The value is a decimal percentage (use 0.01 for + one percent). The default value is 0 (no border). + Cannot be greater than or equal to 0.5. + :param centering: Control the cropping position. Use (0.5, 0.5) for + center cropping (e.g. if cropping the width, take 50% off + of the left side, and therefore 50% off the right side). + (0.0, 0.0) will crop from the top left corner (i.e. if + cropping the width, take all of the crop off of the right + side, and if cropping the height, take all of it off the + bottom). (1.0, 0.0) will crop from the bottom left + corner, etc. (i.e. if cropping the width, take all of the + crop off the left side, and if cropping the height take + none from the top, and therefore all off the bottom). + :return: An image. + """ + + # by Kevin Cazabon, Feb 17/2000 + # kevin@cazabon.com + # https://www.cazabon.com + + centering_x, centering_y = centering + + if not 0.0 <= centering_x <= 1.0: + centering_x = 0.5 + if not 0.0 <= centering_y <= 1.0: + centering_y = 0.5 + + if not 0.0 <= bleed < 0.5: + bleed = 0.0 + + # calculate the area to use for resizing and cropping, subtracting + # the 'bleed' around the edges + + # number of pixels to trim off on Top and Bottom, Left and Right + bleed_pixels = (bleed * image.size[0], bleed * image.size[1]) + + live_size = ( + image.size[0] - bleed_pixels[0] * 2, + image.size[1] - bleed_pixels[1] * 2, + ) + + # calculate the aspect ratio of the live_size + live_size_ratio = live_size[0] / live_size[1] + + # calculate the aspect ratio of the output image + output_ratio = size[0] / size[1] + + # figure out if the sides or top/bottom will be cropped off + if live_size_ratio == output_ratio: + # live_size is already the needed ratio + crop_width = live_size[0] + crop_height = live_size[1] + elif live_size_ratio >= output_ratio: + # live_size is wider than what's needed, crop the sides + crop_width = output_ratio * live_size[1] + crop_height = live_size[1] + else: + # live_size is taller than what's needed, crop the top and bottom + crop_width = live_size[0] + crop_height = live_size[0] / output_ratio + + # make the crop + crop_left = bleed_pixels[0] + (live_size[0] - crop_width) * centering_x + crop_top = bleed_pixels[1] + (live_size[1] - crop_height) * centering_y + + crop = (crop_left, crop_top, crop_left + crop_width, crop_top + crop_height) + + # resize the image and return it + return image.resize(size, method, box=crop) + + +def flip(image: Image.Image) -> Image.Image: + """ + Flip the image vertically (top to bottom). + + :param image: The image to flip. + :return: An image. + """ + return image.transpose(Image.Transpose.FLIP_TOP_BOTTOM) + + +def grayscale(image: Image.Image) -> Image.Image: + """ + Convert the image to grayscale. + + :param image: The image to convert. + :return: An image. + """ + return image.convert("L") + + +def invert(image: Image.Image) -> Image.Image: + """ + Invert (negate) the image. + + :param image: The image to invert. + :return: An image. + """ + lut = list(range(255, -1, -1)) + return image.point(lut) if image.mode == "1" else _lut(image, lut) + + +def mirror(image: Image.Image) -> Image.Image: + """ + Flip image horizontally (left to right). + + :param image: The image to mirror. + :return: An image. + """ + return image.transpose(Image.Transpose.FLIP_LEFT_RIGHT) + + +def posterize(image: Image.Image, bits: int) -> Image.Image: + """ + Reduce the number of bits for each color channel. + + :param image: The image to posterize. + :param bits: The number of bits to keep for each channel (1-8). + :return: An image. + """ + mask = ~(2 ** (8 - bits) - 1) + lut = [i & mask for i in range(256)] + return _lut(image, lut) + + +def solarize(image: Image.Image, threshold: int = 128) -> Image.Image: + """ + Invert all pixel values above a threshold. + + :param image: The image to solarize. + :param threshold: All pixels above this grayscale level are inverted. + :return: An image. + """ + lut = [] + for i in range(256): + if i < threshold: + lut.append(i) + else: + lut.append(255 - i) + return _lut(image, lut) + + +def exif_transpose(image: Image.Image, *, in_place: bool = False) -> Image.Image | None: + """ + If an image has an EXIF Orientation tag, other than 1, transpose the image + accordingly, and remove the orientation data. + + :param image: The image to transpose. + :param in_place: Boolean. Keyword-only argument. + If ``True``, the original image is modified in-place, and ``None`` is returned. + If ``False`` (default), a new :py:class:`~PIL.Image.Image` object is returned + with the transposition applied. If there is no transposition, a copy of the + image will be returned. + """ + image.load() + image_exif = image.getexif() + orientation = image_exif.get(ExifTags.Base.Orientation, 1) + method = { + 2: Image.Transpose.FLIP_LEFT_RIGHT, + 3: Image.Transpose.ROTATE_180, + 4: Image.Transpose.FLIP_TOP_BOTTOM, + 5: Image.Transpose.TRANSPOSE, + 6: Image.Transpose.ROTATE_270, + 7: Image.Transpose.TRANSVERSE, + 8: Image.Transpose.ROTATE_90, + }.get(orientation) + if method is not None: + if in_place: + image.im = image.im.transpose(method) + image._size = image.im.size + else: + transposed_image = image.transpose(method) + exif_image = image if in_place else transposed_image + + exif = exif_image.getexif() + if ExifTags.Base.Orientation in exif: + del exif[ExifTags.Base.Orientation] + if "exif" in exif_image.info: + exif_image.info["exif"] = exif.tobytes() + elif "Raw profile type exif" in exif_image.info: + exif_image.info["Raw profile type exif"] = exif.tobytes().hex() + for key in ("XML:com.adobe.xmp", "xmp"): + if key in exif_image.info: + for pattern in ( + r'tiff:Orientation="([0-9])"', + r"<tiff:Orientation>([0-9])</tiff:Orientation>", + ): + value = exif_image.info[key] + exif_image.info[key] = ( + re.sub(pattern, "", value) + if isinstance(value, str) + else re.sub(pattern.encode(), b"", value) + ) + if not in_place: + return transposed_image + elif not in_place: + return image.copy() + return None |