about summary refs log tree commit diff
path: root/.venv/lib/python3.12/site-packages/litellm/llms/watsonx/completion
diff options
context:
space:
mode:
authorS. Solomon Darnell2025-03-28 21:52:21 -0500
committerS. Solomon Darnell2025-03-28 21:52:21 -0500
commit4a52a71956a8d46fcb7294ac71734504bb09bcc2 (patch)
treeee3dc5af3b6313e921cd920906356f5d4febc4ed /.venv/lib/python3.12/site-packages/litellm/llms/watsonx/completion
parentcc961e04ba734dd72309fb548a2f97d67d578813 (diff)
downloadgn-ai-master.tar.gz
two version of R2R are here HEAD master
Diffstat (limited to '.venv/lib/python3.12/site-packages/litellm/llms/watsonx/completion')
-rw-r--r--.venv/lib/python3.12/site-packages/litellm/llms/watsonx/completion/handler.py3
-rw-r--r--.venv/lib/python3.12/site-packages/litellm/llms/watsonx/completion/transformation.py391
2 files changed, 394 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/litellm/llms/watsonx/completion/handler.py b/.venv/lib/python3.12/site-packages/litellm/llms/watsonx/completion/handler.py
new file mode 100644
index 00000000..2a57ddcf
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/litellm/llms/watsonx/completion/handler.py
@@ -0,0 +1,3 @@
+"""
+Watsonx uses the llm_http_handler.py to handle the requests.
+"""
diff --git a/.venv/lib/python3.12/site-packages/litellm/llms/watsonx/completion/transformation.py b/.venv/lib/python3.12/site-packages/litellm/llms/watsonx/completion/transformation.py
new file mode 100644
index 00000000..f414354e
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/litellm/llms/watsonx/completion/transformation.py
@@ -0,0 +1,391 @@
+import time
+from datetime import datetime
+from typing import (
+    TYPE_CHECKING,
+    Any,
+    AsyncIterator,
+    Dict,
+    Iterator,
+    List,
+    Optional,
+    Union,
+)
+
+import httpx
+
+from litellm.llms.base_llm.base_model_iterator import BaseModelResponseIterator
+from litellm.types.llms.openai import AllMessageValues, ChatCompletionUsageBlock
+from litellm.types.llms.watsonx import WatsonXAIEndpoint
+from litellm.types.utils import GenericStreamingChunk, ModelResponse, Usage
+from litellm.utils import map_finish_reason
+
+from ...base_llm.chat.transformation import BaseConfig
+from ..common_utils import (
+    IBMWatsonXMixin,
+    WatsonXAIError,
+    _get_api_params,
+    convert_watsonx_messages_to_prompt,
+)
+
+if TYPE_CHECKING:
+    from litellm.litellm_core_utils.litellm_logging import Logging as _LiteLLMLoggingObj
+
+    LiteLLMLoggingObj = _LiteLLMLoggingObj
+else:
+    LiteLLMLoggingObj = Any
+
+
+class IBMWatsonXAIConfig(IBMWatsonXMixin, BaseConfig):
+    """
+    Reference: https://cloud.ibm.com/apidocs/watsonx-ai#text-generation
+    (See ibm_watsonx_ai.metanames.GenTextParamsMetaNames for a list of all available params)
+
+    Supported params for all available watsonx.ai foundational models.
+
+    - `decoding_method` (str): One of "greedy" or "sample"
+
+    - `temperature` (float): Sets the model temperature for sampling - not available when decoding_method='greedy'.
+
+    - `max_new_tokens` (integer): Maximum length of the generated tokens.
+
+    - `min_new_tokens` (integer): Maximum length of input tokens. Any more than this will be truncated.
+
+    - `length_penalty` (dict): A dictionary with keys "decay_factor" and "start_index".
+
+    - `stop_sequences` (string[]): list of strings to use as stop sequences.
+
+    - `top_k` (integer): top k for sampling - not available when decoding_method='greedy'.
+
+    - `top_p` (integer): top p for sampling - not available when decoding_method='greedy'.
+
+    - `repetition_penalty` (float): token repetition penalty during text generation.
+
+    - `truncate_input_tokens` (integer): Truncate input tokens to this length.
+
+    - `include_stop_sequences` (bool): If True, the stop sequence will be included at the end of the generated text in the case of a match.
+
+    - `return_options` (dict): A dictionary of options to return. Options include "input_text", "generated_tokens", "input_tokens", "token_ranks". Values are boolean.
+
+    - `random_seed` (integer): Random seed for text generation.
+
+    - `moderations` (dict): Dictionary of properties that control the moderations, for usages such as Hate and profanity (HAP) and PII filtering.
+
+    - `stream` (bool): If True, the model will return a stream of responses.
+    """
+
+    decoding_method: Optional[str] = "sample"
+    temperature: Optional[float] = None
+    max_new_tokens: Optional[int] = None  # litellm.max_tokens
+    min_new_tokens: Optional[int] = None
+    length_penalty: Optional[dict] = None  # e.g {"decay_factor": 2.5, "start_index": 5}
+    stop_sequences: Optional[List[str]] = None  # e.g ["}", ")", "."]
+    top_k: Optional[int] = None
+    top_p: Optional[float] = None
+    repetition_penalty: Optional[float] = None
+    truncate_input_tokens: Optional[int] = None
+    include_stop_sequences: Optional[bool] = False
+    return_options: Optional[Dict[str, bool]] = None
+    random_seed: Optional[int] = None  # e.g 42
+    moderations: Optional[dict] = None
+    stream: Optional[bool] = False
+
+    def __init__(
+        self,
+        decoding_method: Optional[str] = None,
+        temperature: Optional[float] = None,
+        max_new_tokens: Optional[int] = None,
+        min_new_tokens: Optional[int] = None,
+        length_penalty: Optional[dict] = None,
+        stop_sequences: Optional[List[str]] = None,
+        top_k: Optional[int] = None,
+        top_p: Optional[float] = None,
+        repetition_penalty: Optional[float] = None,
+        truncate_input_tokens: Optional[int] = None,
+        include_stop_sequences: Optional[bool] = None,
+        return_options: Optional[dict] = None,
+        random_seed: Optional[int] = None,
+        moderations: Optional[dict] = None,
+        stream: Optional[bool] = None,
+        **kwargs,
+    ) -> None:
+        locals_ = locals().copy()
+        for key, value in locals_.items():
+            if key != "self" and value is not None:
+                setattr(self.__class__, key, value)
+
+    @classmethod
+    def get_config(cls):
+        return super().get_config()
+
+    def is_watsonx_text_param(self, param: str) -> bool:
+        """
+        Determine if user passed in a watsonx.ai text generation param
+        """
+        text_generation_params = [
+            "decoding_method",
+            "max_new_tokens",
+            "min_new_tokens",
+            "length_penalty",
+            "stop_sequences",
+            "top_k",
+            "repetition_penalty",
+            "truncate_input_tokens",
+            "include_stop_sequences",
+            "return_options",
+            "random_seed",
+            "moderations",
+            "decoding_method",
+            "min_tokens",
+        ]
+
+        return param in text_generation_params
+
+    def get_supported_openai_params(self, model: str):
+        return [
+            "temperature",  # equivalent to temperature
+            "max_tokens",  # equivalent to max_new_tokens
+            "top_p",  # equivalent to top_p
+            "frequency_penalty",  # equivalent to repetition_penalty
+            "stop",  # equivalent to stop_sequences
+            "seed",  # equivalent to random_seed
+            "stream",  # equivalent to stream
+        ]
+
+    def map_openai_params(
+        self,
+        non_default_params: Dict,
+        optional_params: Dict,
+        model: str,
+        drop_params: bool,
+    ) -> Dict:
+        extra_body = {}
+        for k, v in non_default_params.items():
+            if k == "max_tokens":
+                optional_params["max_new_tokens"] = v
+            elif k == "stream":
+                optional_params["stream"] = v
+            elif k == "temperature":
+                optional_params["temperature"] = v
+            elif k == "top_p":
+                optional_params["top_p"] = v
+            elif k == "frequency_penalty":
+                optional_params["repetition_penalty"] = v
+            elif k == "seed":
+                optional_params["random_seed"] = v
+            elif k == "stop":
+                optional_params["stop_sequences"] = v
+            elif k == "decoding_method":
+                extra_body["decoding_method"] = v
+            elif k == "min_tokens":
+                extra_body["min_new_tokens"] = v
+            elif k == "top_k":
+                extra_body["top_k"] = v
+            elif k == "truncate_input_tokens":
+                extra_body["truncate_input_tokens"] = v
+            elif k == "length_penalty":
+                extra_body["length_penalty"] = v
+            elif k == "time_limit":
+                extra_body["time_limit"] = v
+            elif k == "return_options":
+                extra_body["return_options"] = v
+
+        if extra_body:
+            optional_params["extra_body"] = extra_body
+        return optional_params
+
+    def get_mapped_special_auth_params(self) -> dict:
+        """
+        Common auth params across bedrock/vertex_ai/azure/watsonx
+        """
+        return {
+            "project": "watsonx_project",
+            "region_name": "watsonx_region_name",
+            "token": "watsonx_token",
+        }
+
+    def map_special_auth_params(self, non_default_params: dict, optional_params: dict):
+        mapped_params = self.get_mapped_special_auth_params()
+
+        for param, value in non_default_params.items():
+            if param in mapped_params:
+                optional_params[mapped_params[param]] = value
+        return optional_params
+
+    def get_eu_regions(self) -> List[str]:
+        """
+        Source: https://www.ibm.com/docs/en/watsonx/saas?topic=integrations-regional-availability
+        """
+        return [
+            "eu-de",
+            "eu-gb",
+        ]
+
+    def get_us_regions(self) -> List[str]:
+        """
+        Source: https://www.ibm.com/docs/en/watsonx/saas?topic=integrations-regional-availability
+        """
+        return [
+            "us-south",
+        ]
+
+    def transform_request(
+        self,
+        model: str,
+        messages: List[AllMessageValues],
+        optional_params: Dict,
+        litellm_params: Dict,
+        headers: Dict,
+    ) -> Dict:
+        provider = model.split("/")[0]
+        prompt = convert_watsonx_messages_to_prompt(
+            model=model,
+            messages=messages,
+            provider=provider,
+            custom_prompt_dict={},
+        )
+        extra_body_params = optional_params.pop("extra_body", {})
+        optional_params.update(extra_body_params)
+        watsonx_api_params = _get_api_params(params=optional_params)
+
+        watsonx_auth_payload = self._prepare_payload(
+            model=model,
+            api_params=watsonx_api_params,
+        )
+
+        # init the payload to the text generation call
+        payload = {
+            "input": prompt,
+            "moderations": optional_params.pop("moderations", {}),
+            "parameters": optional_params,
+            **watsonx_auth_payload,
+        }
+
+        return payload
+
+    def transform_response(
+        self,
+        model: str,
+        raw_response: httpx.Response,
+        model_response: ModelResponse,
+        logging_obj: LiteLLMLoggingObj,
+        request_data: Dict,
+        messages: List[AllMessageValues],
+        optional_params: Dict,
+        litellm_params: Dict,
+        encoding: str,
+        api_key: Optional[str] = None,
+        json_mode: Optional[bool] = None,
+    ) -> ModelResponse:
+        ## LOGGING
+        logging_obj.post_call(
+            input=messages,
+            api_key="",
+            original_response=raw_response.text,
+        )
+
+        json_resp = raw_response.json()
+
+        if "results" not in json_resp:
+            raise WatsonXAIError(
+                status_code=500,
+                message=f"Error: Invalid response from Watsonx.ai API: {json_resp}",
+            )
+        if model_response is None:
+            model_response = ModelResponse(model=json_resp.get("model_id", None))
+        generated_text = json_resp["results"][0]["generated_text"]
+        prompt_tokens = json_resp["results"][0]["input_token_count"]
+        completion_tokens = json_resp["results"][0]["generated_token_count"]
+        model_response.choices[0].message.content = generated_text  # type: ignore
+        model_response.choices[0].finish_reason = map_finish_reason(
+            json_resp["results"][0]["stop_reason"]
+        )
+        if json_resp.get("created_at"):
+            model_response.created = int(
+                datetime.fromisoformat(json_resp["created_at"]).timestamp()
+            )
+        else:
+            model_response.created = int(time.time())
+        usage = Usage(
+            prompt_tokens=prompt_tokens,
+            completion_tokens=completion_tokens,
+            total_tokens=prompt_tokens + completion_tokens,
+        )
+        setattr(model_response, "usage", usage)
+        return model_response
+
+    def get_complete_url(
+        self,
+        api_base: Optional[str],
+        model: str,
+        optional_params: dict,
+        litellm_params: dict,
+        stream: Optional[bool] = None,
+    ) -> str:
+        url = self._get_base_url(api_base=api_base)
+        if model.startswith("deployment/"):
+            # deployment models are passed in as 'deployment/<deployment_id>'
+            deployment_id = "/".join(model.split("/")[1:])
+            endpoint = (
+                WatsonXAIEndpoint.DEPLOYMENT_TEXT_GENERATION_STREAM.value
+                if stream
+                else WatsonXAIEndpoint.DEPLOYMENT_TEXT_GENERATION.value
+            )
+            endpoint = endpoint.format(deployment_id=deployment_id)
+        else:
+            endpoint = (
+                WatsonXAIEndpoint.TEXT_GENERATION_STREAM
+                if stream
+                else WatsonXAIEndpoint.TEXT_GENERATION
+            )
+        url = url.rstrip("/") + endpoint
+
+        ## add api version
+        url = self._add_api_version_to_url(
+            url=url, api_version=optional_params.pop("api_version", None)
+        )
+        return url
+
+    def get_model_response_iterator(
+        self,
+        streaming_response: Union[Iterator[str], AsyncIterator[str], ModelResponse],
+        sync_stream: bool,
+        json_mode: Optional[bool] = False,
+    ):
+        return WatsonxTextCompletionResponseIterator(
+            streaming_response=streaming_response,
+            sync_stream=sync_stream,
+            json_mode=json_mode,
+        )
+
+
+class WatsonxTextCompletionResponseIterator(BaseModelResponseIterator):
+    # def _handle_string_chunk(self, str_line: str) -> GenericStreamingChunk:
+    #     return self.chunk_parser(json.loads(str_line))
+
+    def chunk_parser(self, chunk: dict) -> GenericStreamingChunk:
+        try:
+            results = chunk.get("results", [])
+            if len(results) > 0:
+                text = results[0].get("generated_text", "")
+                finish_reason = results[0].get("stop_reason")
+                is_finished = finish_reason != "not_finished"
+
+                return GenericStreamingChunk(
+                    text=text,
+                    is_finished=is_finished,
+                    finish_reason=finish_reason,
+                    usage=ChatCompletionUsageBlock(
+                        prompt_tokens=results[0].get("input_token_count", 0),
+                        completion_tokens=results[0].get("generated_token_count", 0),
+                        total_tokens=results[0].get("input_token_count", 0)
+                        + results[0].get("generated_token_count", 0),
+                    ),
+                )
+            return GenericStreamingChunk(
+                text="",
+                is_finished=False,
+                finish_reason="stop",
+                usage=None,
+            )
+        except Exception as e:
+            raise e