diff options
Diffstat (limited to '.venv/lib/python3.12/site-packages/litellm/llms/watsonx/completion/transformation.py')
-rw-r--r-- | .venv/lib/python3.12/site-packages/litellm/llms/watsonx/completion/transformation.py | 391 |
1 files changed, 391 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/litellm/llms/watsonx/completion/transformation.py b/.venv/lib/python3.12/site-packages/litellm/llms/watsonx/completion/transformation.py new file mode 100644 index 00000000..f414354e --- /dev/null +++ b/.venv/lib/python3.12/site-packages/litellm/llms/watsonx/completion/transformation.py @@ -0,0 +1,391 @@ +import time +from datetime import datetime +from typing import ( + TYPE_CHECKING, + Any, + AsyncIterator, + Dict, + Iterator, + List, + Optional, + Union, +) + +import httpx + +from litellm.llms.base_llm.base_model_iterator import BaseModelResponseIterator +from litellm.types.llms.openai import AllMessageValues, ChatCompletionUsageBlock +from litellm.types.llms.watsonx import WatsonXAIEndpoint +from litellm.types.utils import GenericStreamingChunk, ModelResponse, Usage +from litellm.utils import map_finish_reason + +from ...base_llm.chat.transformation import BaseConfig +from ..common_utils import ( + IBMWatsonXMixin, + WatsonXAIError, + _get_api_params, + convert_watsonx_messages_to_prompt, +) + +if TYPE_CHECKING: + from litellm.litellm_core_utils.litellm_logging import Logging as _LiteLLMLoggingObj + + LiteLLMLoggingObj = _LiteLLMLoggingObj +else: + LiteLLMLoggingObj = Any + + +class IBMWatsonXAIConfig(IBMWatsonXMixin, BaseConfig): + """ + Reference: https://cloud.ibm.com/apidocs/watsonx-ai#text-generation + (See ibm_watsonx_ai.metanames.GenTextParamsMetaNames for a list of all available params) + + Supported params for all available watsonx.ai foundational models. + + - `decoding_method` (str): One of "greedy" or "sample" + + - `temperature` (float): Sets the model temperature for sampling - not available when decoding_method='greedy'. + + - `max_new_tokens` (integer): Maximum length of the generated tokens. + + - `min_new_tokens` (integer): Maximum length of input tokens. Any more than this will be truncated. + + - `length_penalty` (dict): A dictionary with keys "decay_factor" and "start_index". + + - `stop_sequences` (string[]): list of strings to use as stop sequences. + + - `top_k` (integer): top k for sampling - not available when decoding_method='greedy'. + + - `top_p` (integer): top p for sampling - not available when decoding_method='greedy'. + + - `repetition_penalty` (float): token repetition penalty during text generation. + + - `truncate_input_tokens` (integer): Truncate input tokens to this length. + + - `include_stop_sequences` (bool): If True, the stop sequence will be included at the end of the generated text in the case of a match. + + - `return_options` (dict): A dictionary of options to return. Options include "input_text", "generated_tokens", "input_tokens", "token_ranks". Values are boolean. + + - `random_seed` (integer): Random seed for text generation. + + - `moderations` (dict): Dictionary of properties that control the moderations, for usages such as Hate and profanity (HAP) and PII filtering. + + - `stream` (bool): If True, the model will return a stream of responses. + """ + + decoding_method: Optional[str] = "sample" + temperature: Optional[float] = None + max_new_tokens: Optional[int] = None # litellm.max_tokens + min_new_tokens: Optional[int] = None + length_penalty: Optional[dict] = None # e.g {"decay_factor": 2.5, "start_index": 5} + stop_sequences: Optional[List[str]] = None # e.g ["}", ")", "."] + top_k: Optional[int] = None + top_p: Optional[float] = None + repetition_penalty: Optional[float] = None + truncate_input_tokens: Optional[int] = None + include_stop_sequences: Optional[bool] = False + return_options: Optional[Dict[str, bool]] = None + random_seed: Optional[int] = None # e.g 42 + moderations: Optional[dict] = None + stream: Optional[bool] = False + + def __init__( + self, + decoding_method: Optional[str] = None, + temperature: Optional[float] = None, + max_new_tokens: Optional[int] = None, + min_new_tokens: Optional[int] = None, + length_penalty: Optional[dict] = None, + stop_sequences: Optional[List[str]] = None, + top_k: Optional[int] = None, + top_p: Optional[float] = None, + repetition_penalty: Optional[float] = None, + truncate_input_tokens: Optional[int] = None, + include_stop_sequences: Optional[bool] = None, + return_options: Optional[dict] = None, + random_seed: Optional[int] = None, + moderations: Optional[dict] = None, + stream: Optional[bool] = None, + **kwargs, + ) -> None: + locals_ = locals().copy() + for key, value in locals_.items(): + if key != "self" and value is not None: + setattr(self.__class__, key, value) + + @classmethod + def get_config(cls): + return super().get_config() + + def is_watsonx_text_param(self, param: str) -> bool: + """ + Determine if user passed in a watsonx.ai text generation param + """ + text_generation_params = [ + "decoding_method", + "max_new_tokens", + "min_new_tokens", + "length_penalty", + "stop_sequences", + "top_k", + "repetition_penalty", + "truncate_input_tokens", + "include_stop_sequences", + "return_options", + "random_seed", + "moderations", + "decoding_method", + "min_tokens", + ] + + return param in text_generation_params + + def get_supported_openai_params(self, model: str): + return [ + "temperature", # equivalent to temperature + "max_tokens", # equivalent to max_new_tokens + "top_p", # equivalent to top_p + "frequency_penalty", # equivalent to repetition_penalty + "stop", # equivalent to stop_sequences + "seed", # equivalent to random_seed + "stream", # equivalent to stream + ] + + def map_openai_params( + self, + non_default_params: Dict, + optional_params: Dict, + model: str, + drop_params: bool, + ) -> Dict: + extra_body = {} + for k, v in non_default_params.items(): + if k == "max_tokens": + optional_params["max_new_tokens"] = v + elif k == "stream": + optional_params["stream"] = v + elif k == "temperature": + optional_params["temperature"] = v + elif k == "top_p": + optional_params["top_p"] = v + elif k == "frequency_penalty": + optional_params["repetition_penalty"] = v + elif k == "seed": + optional_params["random_seed"] = v + elif k == "stop": + optional_params["stop_sequences"] = v + elif k == "decoding_method": + extra_body["decoding_method"] = v + elif k == "min_tokens": + extra_body["min_new_tokens"] = v + elif k == "top_k": + extra_body["top_k"] = v + elif k == "truncate_input_tokens": + extra_body["truncate_input_tokens"] = v + elif k == "length_penalty": + extra_body["length_penalty"] = v + elif k == "time_limit": + extra_body["time_limit"] = v + elif k == "return_options": + extra_body["return_options"] = v + + if extra_body: + optional_params["extra_body"] = extra_body + return optional_params + + def get_mapped_special_auth_params(self) -> dict: + """ + Common auth params across bedrock/vertex_ai/azure/watsonx + """ + return { + "project": "watsonx_project", + "region_name": "watsonx_region_name", + "token": "watsonx_token", + } + + def map_special_auth_params(self, non_default_params: dict, optional_params: dict): + mapped_params = self.get_mapped_special_auth_params() + + for param, value in non_default_params.items(): + if param in mapped_params: + optional_params[mapped_params[param]] = value + return optional_params + + def get_eu_regions(self) -> List[str]: + """ + Source: https://www.ibm.com/docs/en/watsonx/saas?topic=integrations-regional-availability + """ + return [ + "eu-de", + "eu-gb", + ] + + def get_us_regions(self) -> List[str]: + """ + Source: https://www.ibm.com/docs/en/watsonx/saas?topic=integrations-regional-availability + """ + return [ + "us-south", + ] + + def transform_request( + self, + model: str, + messages: List[AllMessageValues], + optional_params: Dict, + litellm_params: Dict, + headers: Dict, + ) -> Dict: + provider = model.split("/")[0] + prompt = convert_watsonx_messages_to_prompt( + model=model, + messages=messages, + provider=provider, + custom_prompt_dict={}, + ) + extra_body_params = optional_params.pop("extra_body", {}) + optional_params.update(extra_body_params) + watsonx_api_params = _get_api_params(params=optional_params) + + watsonx_auth_payload = self._prepare_payload( + model=model, + api_params=watsonx_api_params, + ) + + # init the payload to the text generation call + payload = { + "input": prompt, + "moderations": optional_params.pop("moderations", {}), + "parameters": optional_params, + **watsonx_auth_payload, + } + + return payload + + def transform_response( + self, + model: str, + raw_response: httpx.Response, + model_response: ModelResponse, + logging_obj: LiteLLMLoggingObj, + request_data: Dict, + messages: List[AllMessageValues], + optional_params: Dict, + litellm_params: Dict, + encoding: str, + api_key: Optional[str] = None, + json_mode: Optional[bool] = None, + ) -> ModelResponse: + ## LOGGING + logging_obj.post_call( + input=messages, + api_key="", + original_response=raw_response.text, + ) + + json_resp = raw_response.json() + + if "results" not in json_resp: + raise WatsonXAIError( + status_code=500, + message=f"Error: Invalid response from Watsonx.ai API: {json_resp}", + ) + if model_response is None: + model_response = ModelResponse(model=json_resp.get("model_id", None)) + generated_text = json_resp["results"][0]["generated_text"] + prompt_tokens = json_resp["results"][0]["input_token_count"] + completion_tokens = json_resp["results"][0]["generated_token_count"] + model_response.choices[0].message.content = generated_text # type: ignore + model_response.choices[0].finish_reason = map_finish_reason( + json_resp["results"][0]["stop_reason"] + ) + if json_resp.get("created_at"): + model_response.created = int( + datetime.fromisoformat(json_resp["created_at"]).timestamp() + ) + else: + model_response.created = int(time.time()) + usage = Usage( + prompt_tokens=prompt_tokens, + completion_tokens=completion_tokens, + total_tokens=prompt_tokens + completion_tokens, + ) + setattr(model_response, "usage", usage) + return model_response + + def get_complete_url( + self, + api_base: Optional[str], + model: str, + optional_params: dict, + litellm_params: dict, + stream: Optional[bool] = None, + ) -> str: + url = self._get_base_url(api_base=api_base) + if model.startswith("deployment/"): + # deployment models are passed in as 'deployment/<deployment_id>' + deployment_id = "/".join(model.split("/")[1:]) + endpoint = ( + WatsonXAIEndpoint.DEPLOYMENT_TEXT_GENERATION_STREAM.value + if stream + else WatsonXAIEndpoint.DEPLOYMENT_TEXT_GENERATION.value + ) + endpoint = endpoint.format(deployment_id=deployment_id) + else: + endpoint = ( + WatsonXAIEndpoint.TEXT_GENERATION_STREAM + if stream + else WatsonXAIEndpoint.TEXT_GENERATION + ) + url = url.rstrip("/") + endpoint + + ## add api version + url = self._add_api_version_to_url( + url=url, api_version=optional_params.pop("api_version", None) + ) + return url + + def get_model_response_iterator( + self, + streaming_response: Union[Iterator[str], AsyncIterator[str], ModelResponse], + sync_stream: bool, + json_mode: Optional[bool] = False, + ): + return WatsonxTextCompletionResponseIterator( + streaming_response=streaming_response, + sync_stream=sync_stream, + json_mode=json_mode, + ) + + +class WatsonxTextCompletionResponseIterator(BaseModelResponseIterator): + # def _handle_string_chunk(self, str_line: str) -> GenericStreamingChunk: + # return self.chunk_parser(json.loads(str_line)) + + def chunk_parser(self, chunk: dict) -> GenericStreamingChunk: + try: + results = chunk.get("results", []) + if len(results) > 0: + text = results[0].get("generated_text", "") + finish_reason = results[0].get("stop_reason") + is_finished = finish_reason != "not_finished" + + return GenericStreamingChunk( + text=text, + is_finished=is_finished, + finish_reason=finish_reason, + usage=ChatCompletionUsageBlock( + prompt_tokens=results[0].get("input_token_count", 0), + completion_tokens=results[0].get("generated_token_count", 0), + total_tokens=results[0].get("input_token_count", 0) + + results[0].get("generated_token_count", 0), + ), + ) + return GenericStreamingChunk( + text="", + is_finished=False, + finish_reason="stop", + usage=None, + ) + except Exception as e: + raise e |