about summary refs log tree commit diff
path: root/.venv/lib/python3.12/site-packages/litellm/llms/sagemaker/completion
diff options
context:
space:
mode:
authorS. Solomon Darnell2025-03-28 21:52:21 -0500
committerS. Solomon Darnell2025-03-28 21:52:21 -0500
commit4a52a71956a8d46fcb7294ac71734504bb09bcc2 (patch)
treeee3dc5af3b6313e921cd920906356f5d4febc4ed /.venv/lib/python3.12/site-packages/litellm/llms/sagemaker/completion
parentcc961e04ba734dd72309fb548a2f97d67d578813 (diff)
downloadgn-ai-master.tar.gz
two version of R2R are here HEAD master
Diffstat (limited to '.venv/lib/python3.12/site-packages/litellm/llms/sagemaker/completion')
-rw-r--r--.venv/lib/python3.12/site-packages/litellm/llms/sagemaker/completion/handler.py701
-rw-r--r--.venv/lib/python3.12/site-packages/litellm/llms/sagemaker/completion/transformation.py270
2 files changed, 971 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/litellm/llms/sagemaker/completion/handler.py b/.venv/lib/python3.12/site-packages/litellm/llms/sagemaker/completion/handler.py
new file mode 100644
index 00000000..909caf73
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/litellm/llms/sagemaker/completion/handler.py
@@ -0,0 +1,701 @@
+import json
+from copy import deepcopy
+from typing import Any, Callable, List, Optional, Union
+
+import httpx
+
+import litellm
+from litellm._logging import verbose_logger
+from litellm.litellm_core_utils.asyncify import asyncify
+from litellm.llms.bedrock.base_aws_llm import BaseAWSLLM
+from litellm.llms.custom_httpx.http_handler import (
+    _get_httpx_client,
+    get_async_httpx_client,
+)
+from litellm.types.llms.openai import AllMessageValues
+from litellm.utils import (
+    CustomStreamWrapper,
+    EmbeddingResponse,
+    ModelResponse,
+    Usage,
+    get_secret,
+)
+
+from ..common_utils import AWSEventStreamDecoder, SagemakerError
+from .transformation import SagemakerConfig
+
+sagemaker_config = SagemakerConfig()
+
+"""
+SAGEMAKER AUTH Keys/Vars
+os.environ['AWS_ACCESS_KEY_ID'] = ""
+os.environ['AWS_SECRET_ACCESS_KEY'] = ""
+"""
+
+
+# set os.environ['AWS_REGION_NAME'] = <your-region_name>
+class SagemakerLLM(BaseAWSLLM):
+
+    def _load_credentials(
+        self,
+        optional_params: dict,
+    ):
+        try:
+            from botocore.credentials import Credentials
+        except ImportError:
+            raise ImportError("Missing boto3 to call bedrock. Run 'pip install boto3'.")
+        ## CREDENTIALS ##
+        # pop aws_secret_access_key, aws_access_key_id, aws_session_token, aws_region_name from kwargs, since completion calls fail with them
+        aws_secret_access_key = optional_params.pop("aws_secret_access_key", None)
+        aws_access_key_id = optional_params.pop("aws_access_key_id", None)
+        aws_session_token = optional_params.pop("aws_session_token", None)
+        aws_region_name = optional_params.pop("aws_region_name", None)
+        aws_role_name = optional_params.pop("aws_role_name", None)
+        aws_session_name = optional_params.pop("aws_session_name", None)
+        aws_profile_name = optional_params.pop("aws_profile_name", None)
+        optional_params.pop(
+            "aws_bedrock_runtime_endpoint", None
+        )  # https://bedrock-runtime.{region_name}.amazonaws.com
+        aws_web_identity_token = optional_params.pop("aws_web_identity_token", None)
+        aws_sts_endpoint = optional_params.pop("aws_sts_endpoint", None)
+
+        ### SET REGION NAME ###
+        if aws_region_name is None:
+            # check env #
+            litellm_aws_region_name = get_secret("AWS_REGION_NAME", None)
+
+            if litellm_aws_region_name is not None and isinstance(
+                litellm_aws_region_name, str
+            ):
+                aws_region_name = litellm_aws_region_name
+
+            standard_aws_region_name = get_secret("AWS_REGION", None)
+            if standard_aws_region_name is not None and isinstance(
+                standard_aws_region_name, str
+            ):
+                aws_region_name = standard_aws_region_name
+
+            if aws_region_name is None:
+                aws_region_name = "us-west-2"
+
+        credentials: Credentials = self.get_credentials(
+            aws_access_key_id=aws_access_key_id,
+            aws_secret_access_key=aws_secret_access_key,
+            aws_session_token=aws_session_token,
+            aws_region_name=aws_region_name,
+            aws_session_name=aws_session_name,
+            aws_profile_name=aws_profile_name,
+            aws_role_name=aws_role_name,
+            aws_web_identity_token=aws_web_identity_token,
+            aws_sts_endpoint=aws_sts_endpoint,
+        )
+        return credentials, aws_region_name
+
+    def _prepare_request(
+        self,
+        credentials,
+        model: str,
+        data: dict,
+        messages: List[AllMessageValues],
+        optional_params: dict,
+        aws_region_name: str,
+        extra_headers: Optional[dict] = None,
+    ):
+        try:
+            from botocore.auth import SigV4Auth
+            from botocore.awsrequest import AWSRequest
+        except ImportError:
+            raise ImportError("Missing boto3 to call bedrock. Run 'pip install boto3'.")
+
+        sigv4 = SigV4Auth(credentials, "sagemaker", aws_region_name)
+        if optional_params.get("stream") is True:
+            api_base = f"https://runtime.sagemaker.{aws_region_name}.amazonaws.com/endpoints/{model}/invocations-response-stream"
+        else:
+            api_base = f"https://runtime.sagemaker.{aws_region_name}.amazonaws.com/endpoints/{model}/invocations"
+
+        sagemaker_base_url = optional_params.get("sagemaker_base_url", None)
+        if sagemaker_base_url is not None:
+            api_base = sagemaker_base_url
+
+        encoded_data = json.dumps(data).encode("utf-8")
+        headers = sagemaker_config.validate_environment(
+            headers=extra_headers,
+            model=model,
+            messages=messages,
+            optional_params=optional_params,
+        )
+        request = AWSRequest(
+            method="POST", url=api_base, data=encoded_data, headers=headers
+        )
+        sigv4.add_auth(request)
+        if (
+            extra_headers is not None and "Authorization" in extra_headers
+        ):  # prevent sigv4 from overwriting the auth header
+            request.headers["Authorization"] = extra_headers["Authorization"]
+
+        prepped_request = request.prepare()
+
+        return prepped_request
+
+    def completion(  # noqa: PLR0915
+        self,
+        model: str,
+        messages: list,
+        model_response: ModelResponse,
+        print_verbose: Callable,
+        encoding,
+        logging_obj,
+        optional_params: dict,
+        litellm_params: dict,
+        timeout: Optional[Union[float, httpx.Timeout]] = None,
+        custom_prompt_dict={},
+        hf_model_name=None,
+        logger_fn=None,
+        acompletion: bool = False,
+        headers: dict = {},
+    ):
+
+        # pop streaming if it's in the optional params as 'stream' raises an error with sagemaker
+        credentials, aws_region_name = self._load_credentials(optional_params)
+        inference_params = deepcopy(optional_params)
+        stream = inference_params.pop("stream", None)
+        model_id = optional_params.get("model_id", None)
+
+        ## Load Config
+        config = litellm.SagemakerConfig.get_config()
+        for k, v in config.items():
+            if (
+                k not in inference_params
+            ):  # completion(top_k=3) > sagemaker_config(top_k=3) <- allows for dynamic variables to be passed in
+                inference_params[k] = v
+
+        if stream is True:
+            if acompletion is True:
+                response = self.async_streaming(
+                    messages=messages,
+                    model=model,
+                    custom_prompt_dict=custom_prompt_dict,
+                    hf_model_name=hf_model_name,
+                    optional_params=optional_params,
+                    encoding=encoding,
+                    model_response=model_response,
+                    logging_obj=logging_obj,
+                    model_id=model_id,
+                    aws_region_name=aws_region_name,
+                    credentials=credentials,
+                    headers=headers,
+                    litellm_params=litellm_params,
+                )
+                return response
+            else:
+                data = sagemaker_config.transform_request(
+                    model=model,
+                    messages=messages,
+                    optional_params=optional_params,
+                    litellm_params=litellm_params,
+                    headers=headers,
+                )
+                prepared_request = self._prepare_request(
+                    model=model,
+                    data=data,
+                    messages=messages,
+                    optional_params=optional_params,
+                    credentials=credentials,
+                    aws_region_name=aws_region_name,
+                )
+                if model_id is not None:
+                    # Add model_id as InferenceComponentName header
+                    # boto3 doc: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_runtime_InvokeEndpoint.html
+                    prepared_request.headers.update(
+                        {"X-Amzn-SageMaker-Inference-Component": model_id}
+                    )
+                sync_handler = _get_httpx_client()
+                sync_response = sync_handler.post(
+                    url=prepared_request.url,
+                    headers=prepared_request.headers,  # type: ignore
+                    data=prepared_request.body,
+                    stream=stream,
+                )
+
+                if sync_response.status_code != 200:
+                    raise SagemakerError(
+                        status_code=sync_response.status_code,
+                        message=str(sync_response.read()),
+                    )
+
+                decoder = AWSEventStreamDecoder(model="")
+
+                completion_stream = decoder.iter_bytes(
+                    sync_response.iter_bytes(chunk_size=1024)
+                )
+                streaming_response = CustomStreamWrapper(
+                    completion_stream=completion_stream,
+                    model=model,
+                    custom_llm_provider="sagemaker",
+                    logging_obj=logging_obj,
+                )
+
+            ## LOGGING
+            logging_obj.post_call(
+                input=messages,
+                api_key="",
+                original_response=streaming_response,
+                additional_args={"complete_input_dict": data},
+            )
+            return streaming_response
+
+        # Non-Streaming Requests
+
+        # Async completion
+        if acompletion is True:
+            return self.async_completion(
+                messages=messages,
+                model=model,
+                custom_prompt_dict=custom_prompt_dict,
+                hf_model_name=hf_model_name,
+                model_response=model_response,
+                encoding=encoding,
+                logging_obj=logging_obj,
+                model_id=model_id,
+                optional_params=optional_params,
+                credentials=credentials,
+                aws_region_name=aws_region_name,
+                headers=headers,
+                litellm_params=litellm_params,
+            )
+
+        ## Non-Streaming completion CALL
+        _data = sagemaker_config.transform_request(
+            model=model,
+            messages=messages,
+            optional_params=optional_params,
+            litellm_params=litellm_params,
+            headers=headers,
+        )
+        prepared_request_args = {
+            "model": model,
+            "data": _data,
+            "optional_params": optional_params,
+            "credentials": credentials,
+            "aws_region_name": aws_region_name,
+            "messages": messages,
+        }
+        prepared_request = self._prepare_request(**prepared_request_args)
+        try:
+            if model_id is not None:
+                # Add model_id as InferenceComponentName header
+                # boto3 doc: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_runtime_InvokeEndpoint.html
+                prepared_request.headers.update(
+                    {"X-Amzn-SageMaker-Inference-Component": model_id}
+                )
+
+            ## LOGGING
+            timeout = 300.0
+            sync_handler = _get_httpx_client()
+            ## LOGGING
+            logging_obj.pre_call(
+                input=[],
+                api_key="",
+                additional_args={
+                    "complete_input_dict": _data,
+                    "api_base": prepared_request.url,
+                    "headers": prepared_request.headers,
+                },
+            )
+
+            # make sync httpx post request here
+            try:
+                sync_response = sync_handler.post(
+                    url=prepared_request.url,
+                    headers=prepared_request.headers,  # type: ignore
+                    data=prepared_request.body,
+                    timeout=timeout,
+                )
+
+                if sync_response.status_code != 200:
+                    raise SagemakerError(
+                        status_code=sync_response.status_code,
+                        message=sync_response.text,
+                    )
+            except Exception as e:
+                ## LOGGING
+                logging_obj.post_call(
+                    input=[],
+                    api_key="",
+                    original_response=str(e),
+                    additional_args={"complete_input_dict": _data},
+                )
+                raise e
+        except Exception as e:
+            verbose_logger.error("Sagemaker error %s", str(e))
+            status_code = (
+                getattr(e, "response", {})
+                .get("ResponseMetadata", {})
+                .get("HTTPStatusCode", 500)
+            )
+            error_message = (
+                getattr(e, "response", {}).get("Error", {}).get("Message", str(e))
+            )
+            if "Inference Component Name header is required" in error_message:
+                error_message += "\n pass in via `litellm.completion(..., model_id={InferenceComponentName})`"
+            raise SagemakerError(status_code=status_code, message=error_message)
+
+        return sagemaker_config.transform_response(
+            model=model,
+            raw_response=sync_response,
+            model_response=model_response,
+            logging_obj=logging_obj,
+            request_data=_data,
+            messages=messages,
+            optional_params=optional_params,
+            encoding=encoding,
+            litellm_params=litellm_params,
+        )
+
+    async def make_async_call(
+        self,
+        api_base: str,
+        headers: dict,
+        data: str,
+        logging_obj,
+        client=None,
+    ):
+        try:
+            if client is None:
+                client = get_async_httpx_client(
+                    llm_provider=litellm.LlmProviders.SAGEMAKER
+                )  # Create a new client if none provided
+            response = await client.post(
+                api_base,
+                headers=headers,
+                data=data,
+                stream=True,
+            )
+
+            if response.status_code != 200:
+                raise SagemakerError(
+                    status_code=response.status_code, message=response.text
+                )
+
+            decoder = AWSEventStreamDecoder(model="")
+            completion_stream = decoder.aiter_bytes(
+                response.aiter_bytes(chunk_size=1024)
+            )
+
+            return completion_stream
+
+            # LOGGING
+            logging_obj.post_call(
+                input=[],
+                api_key="",
+                original_response="first stream response received",
+                additional_args={"complete_input_dict": data},
+            )
+
+        except httpx.HTTPStatusError as err:
+            error_code = err.response.status_code
+            raise SagemakerError(status_code=error_code, message=err.response.text)
+        except httpx.TimeoutException:
+            raise SagemakerError(status_code=408, message="Timeout error occurred.")
+        except Exception as e:
+            raise SagemakerError(status_code=500, message=str(e))
+
+    async def async_streaming(
+        self,
+        messages: List[AllMessageValues],
+        model: str,
+        custom_prompt_dict: dict,
+        hf_model_name: Optional[str],
+        credentials,
+        aws_region_name: str,
+        optional_params,
+        encoding,
+        model_response: ModelResponse,
+        model_id: Optional[str],
+        logging_obj: Any,
+        litellm_params: dict,
+        headers: dict,
+    ):
+        data = await sagemaker_config.async_transform_request(
+            model=model,
+            messages=messages,
+            optional_params={**optional_params, "stream": True},
+            litellm_params=litellm_params,
+            headers=headers,
+        )
+        asyncified_prepare_request = asyncify(self._prepare_request)
+        prepared_request_args = {
+            "model": model,
+            "data": data,
+            "optional_params": optional_params,
+            "credentials": credentials,
+            "aws_region_name": aws_region_name,
+            "messages": messages,
+        }
+        prepared_request = await asyncified_prepare_request(**prepared_request_args)
+        if model_id is not None:  # Fixes https://github.com/BerriAI/litellm/issues/8889
+            prepared_request.headers.update(
+                {"X-Amzn-SageMaker-Inference-Component": model_id}
+            )
+        completion_stream = await self.make_async_call(
+            api_base=prepared_request.url,
+            headers=prepared_request.headers,  # type: ignore
+            data=prepared_request.body,
+            logging_obj=logging_obj,
+        )
+        streaming_response = CustomStreamWrapper(
+            completion_stream=completion_stream,
+            model=model,
+            custom_llm_provider="sagemaker",
+            logging_obj=logging_obj,
+        )
+
+        # LOGGING
+        logging_obj.post_call(
+            input=[],
+            api_key="",
+            original_response="first stream response received",
+            additional_args={"complete_input_dict": data},
+        )
+
+        return streaming_response
+
+    async def async_completion(
+        self,
+        messages: List[AllMessageValues],
+        model: str,
+        custom_prompt_dict: dict,
+        hf_model_name: Optional[str],
+        credentials,
+        aws_region_name: str,
+        encoding,
+        model_response: ModelResponse,
+        optional_params: dict,
+        logging_obj: Any,
+        model_id: Optional[str],
+        headers: dict,
+        litellm_params: dict,
+    ):
+        timeout = 300.0
+        async_handler = get_async_httpx_client(
+            llm_provider=litellm.LlmProviders.SAGEMAKER
+        )
+
+        data = await sagemaker_config.async_transform_request(
+            model=model,
+            messages=messages,
+            optional_params=optional_params,
+            litellm_params=litellm_params,
+            headers=headers,
+        )
+
+        asyncified_prepare_request = asyncify(self._prepare_request)
+        prepared_request_args = {
+            "model": model,
+            "data": data,
+            "optional_params": optional_params,
+            "credentials": credentials,
+            "aws_region_name": aws_region_name,
+            "messages": messages,
+        }
+
+        prepared_request = await asyncified_prepare_request(**prepared_request_args)
+        ## LOGGING
+        logging_obj.pre_call(
+            input=[],
+            api_key="",
+            additional_args={
+                "complete_input_dict": data,
+                "api_base": prepared_request.url,
+                "headers": prepared_request.headers,
+            },
+        )
+        try:
+            if model_id is not None:
+                # Add model_id as InferenceComponentName header
+                # boto3 doc: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_runtime_InvokeEndpoint.html
+                prepared_request.headers.update(
+                    {"X-Amzn-SageMaker-Inference-Component": model_id}
+                )
+            # make async httpx post request here
+            try:
+                response = await async_handler.post(
+                    url=prepared_request.url,
+                    headers=prepared_request.headers,  # type: ignore
+                    data=prepared_request.body,
+                    timeout=timeout,
+                )
+
+                if response.status_code != 200:
+                    raise SagemakerError(
+                        status_code=response.status_code, message=response.text
+                    )
+            except Exception as e:
+                ## LOGGING
+                logging_obj.post_call(
+                    input=data["inputs"],
+                    api_key="",
+                    original_response=str(e),
+                    additional_args={"complete_input_dict": data},
+                )
+                raise e
+        except Exception as e:
+            error_message = f"{str(e)}"
+            if "Inference Component Name header is required" in error_message:
+                error_message += "\n pass in via `litellm.completion(..., model_id={InferenceComponentName})`"
+            raise SagemakerError(status_code=500, message=error_message)
+        return sagemaker_config.transform_response(
+            model=model,
+            raw_response=response,
+            model_response=model_response,
+            logging_obj=logging_obj,
+            request_data=data,
+            messages=messages,
+            optional_params=optional_params,
+            encoding=encoding,
+            litellm_params=litellm_params,
+        )
+
+    def embedding(
+        self,
+        model: str,
+        input: list,
+        model_response: EmbeddingResponse,
+        print_verbose: Callable,
+        encoding,
+        logging_obj,
+        optional_params: dict,
+        custom_prompt_dict={},
+        litellm_params=None,
+        logger_fn=None,
+    ):
+        """
+        Supports Huggingface Jumpstart embeddings like GPT-6B
+        """
+        ### BOTO3 INIT
+        import boto3
+
+        # pop aws_secret_access_key, aws_access_key_id, aws_region_name from kwargs, since completion calls fail with them
+        aws_secret_access_key = optional_params.pop("aws_secret_access_key", None)
+        aws_access_key_id = optional_params.pop("aws_access_key_id", None)
+        aws_region_name = optional_params.pop("aws_region_name", None)
+
+        if aws_access_key_id is not None:
+            # uses auth params passed to completion
+            # aws_access_key_id is not None, assume user is trying to auth using litellm.completion
+            client = boto3.client(
+                service_name="sagemaker-runtime",
+                aws_access_key_id=aws_access_key_id,
+                aws_secret_access_key=aws_secret_access_key,
+                region_name=aws_region_name,
+            )
+        else:
+            # aws_access_key_id is None, assume user is trying to auth using env variables
+            # boto3 automaticaly reads env variables
+
+            # we need to read region name from env
+            # I assume majority of users use .env for auth
+            region_name = (
+                get_secret("AWS_REGION_NAME")
+                or aws_region_name  # get region from config file if specified
+                or "us-west-2"  # default to us-west-2 if region not specified
+            )
+            client = boto3.client(
+                service_name="sagemaker-runtime",
+                region_name=region_name,
+            )
+
+        # pop streaming if it's in the optional params as 'stream' raises an error with sagemaker
+        inference_params = deepcopy(optional_params)
+        inference_params.pop("stream", None)
+
+        ## Load Config
+        config = litellm.SagemakerConfig.get_config()
+        for k, v in config.items():
+            if (
+                k not in inference_params
+            ):  # completion(top_k=3) > sagemaker_config(top_k=3) <- allows for dynamic variables to be passed in
+                inference_params[k] = v
+
+        #### HF EMBEDDING LOGIC
+        data = json.dumps({"text_inputs": input}).encode("utf-8")
+
+        ## LOGGING
+        request_str = f"""
+        response = client.invoke_endpoint(
+            EndpointName={model},
+            ContentType="application/json",
+            Body={data}, # type: ignore
+            CustomAttributes="accept_eula=true",
+        )"""  # type: ignore
+        logging_obj.pre_call(
+            input=input,
+            api_key="",
+            additional_args={"complete_input_dict": data, "request_str": request_str},
+        )
+        ## EMBEDDING CALL
+        try:
+            response = client.invoke_endpoint(
+                EndpointName=model,
+                ContentType="application/json",
+                Body=data,
+                CustomAttributes="accept_eula=true",
+            )
+        except Exception as e:
+            status_code = (
+                getattr(e, "response", {})
+                .get("ResponseMetadata", {})
+                .get("HTTPStatusCode", 500)
+            )
+            error_message = (
+                getattr(e, "response", {}).get("Error", {}).get("Message", str(e))
+            )
+            raise SagemakerError(status_code=status_code, message=error_message)
+
+        response = json.loads(response["Body"].read().decode("utf8"))
+        ## LOGGING
+        logging_obj.post_call(
+            input=input,
+            api_key="",
+            original_response=response,
+            additional_args={"complete_input_dict": data},
+        )
+
+        print_verbose(f"raw model_response: {response}")
+        if "embedding" not in response:
+            raise SagemakerError(
+                status_code=500, message="embedding not found in response"
+            )
+        embeddings = response["embedding"]
+
+        if not isinstance(embeddings, list):
+            raise SagemakerError(
+                status_code=422,
+                message=f"Response not in expected format - {embeddings}",
+            )
+
+        output_data = []
+        for idx, embedding in enumerate(embeddings):
+            output_data.append(
+                {"object": "embedding", "index": idx, "embedding": embedding}
+            )
+
+        model_response.object = "list"
+        model_response.data = output_data
+        model_response.model = model
+
+        input_tokens = 0
+        for text in input:
+            input_tokens += len(encoding.encode(text))
+
+        setattr(
+            model_response,
+            "usage",
+            Usage(
+                prompt_tokens=input_tokens,
+                completion_tokens=0,
+                total_tokens=input_tokens,
+            ),
+        )
+
+        return model_response
diff --git a/.venv/lib/python3.12/site-packages/litellm/llms/sagemaker/completion/transformation.py b/.venv/lib/python3.12/site-packages/litellm/llms/sagemaker/completion/transformation.py
new file mode 100644
index 00000000..d0ab5d06
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/litellm/llms/sagemaker/completion/transformation.py
@@ -0,0 +1,270 @@
+"""
+Translate from OpenAI's `/v1/chat/completions` to Sagemaker's `/invoke`
+
+In the Huggingface TGI format. 
+"""
+
+import json
+import time
+from typing import TYPE_CHECKING, Any, Dict, List, Optional, Union
+
+from httpx._models import Headers, Response
+
+import litellm
+from litellm.litellm_core_utils.asyncify import asyncify
+from litellm.litellm_core_utils.prompt_templates.factory import (
+    custom_prompt,
+    prompt_factory,
+)
+from litellm.llms.base_llm.chat.transformation import BaseConfig, BaseLLMException
+from litellm.types.llms.openai import AllMessageValues
+from litellm.types.utils import ModelResponse, Usage
+
+from ..common_utils import SagemakerError
+
+if TYPE_CHECKING:
+    from litellm.litellm_core_utils.litellm_logging import Logging as _LiteLLMLoggingObj
+
+    LiteLLMLoggingObj = _LiteLLMLoggingObj
+else:
+    LiteLLMLoggingObj = Any
+
+
+class SagemakerConfig(BaseConfig):
+    """
+    Reference: https://d-uuwbxj1u4cnu.studio.us-west-2.sagemaker.aws/jupyter/default/lab/workspaces/auto-q/tree/DemoNotebooks/meta-textgeneration-llama-2-7b-SDK_1.ipynb
+    """
+
+    max_new_tokens: Optional[int] = None
+    top_p: Optional[float] = None
+    temperature: Optional[float] = None
+    return_full_text: Optional[bool] = None
+
+    def __init__(
+        self,
+        max_new_tokens: Optional[int] = None,
+        top_p: Optional[float] = None,
+        temperature: Optional[float] = None,
+        return_full_text: Optional[bool] = None,
+    ) -> None:
+        locals_ = locals().copy()
+        for key, value in locals_.items():
+            if key != "self" and value is not None:
+                setattr(self.__class__, key, value)
+
+    @classmethod
+    def get_config(cls):
+        return super().get_config()
+
+    def get_error_class(
+        self, error_message: str, status_code: int, headers: Union[dict, Headers]
+    ) -> BaseLLMException:
+        return SagemakerError(
+            message=error_message, status_code=status_code, headers=headers
+        )
+
+    def get_supported_openai_params(self, model: str) -> List:
+        return ["stream", "temperature", "max_tokens", "top_p", "stop", "n"]
+
+    def map_openai_params(
+        self,
+        non_default_params: dict,
+        optional_params: dict,
+        model: str,
+        drop_params: bool,
+    ) -> dict:
+        for param, value in non_default_params.items():
+            if param == "temperature":
+                if value == 0.0 or value == 0:
+                    # hugging face exception raised when temp==0
+                    # Failed: Error occurred: HuggingfaceException - Input validation error: `temperature` must be strictly positive
+                    if not non_default_params.get(
+                        "aws_sagemaker_allow_zero_temp", False
+                    ):
+                        value = 0.01
+
+                optional_params["temperature"] = value
+            if param == "top_p":
+                optional_params["top_p"] = value
+            if param == "n":
+                optional_params["best_of"] = value
+                optional_params["do_sample"] = (
+                    True  # Need to sample if you want best of for hf inference endpoints
+                )
+            if param == "stream":
+                optional_params["stream"] = value
+            if param == "stop":
+                optional_params["stop"] = value
+            if param == "max_tokens":
+                # HF TGI raises the following exception when max_new_tokens==0
+                # Failed: Error occurred: HuggingfaceException - Input validation error: `max_new_tokens` must be strictly positive
+                if value == 0:
+                    value = 1
+                optional_params["max_new_tokens"] = value
+        non_default_params.pop("aws_sagemaker_allow_zero_temp", None)
+        return optional_params
+
+    def _transform_prompt(
+        self,
+        model: str,
+        messages: List,
+        custom_prompt_dict: dict,
+        hf_model_name: Optional[str],
+    ) -> str:
+        if model in custom_prompt_dict:
+            # check if the model has a registered custom prompt
+            model_prompt_details = custom_prompt_dict[model]
+            prompt = custom_prompt(
+                role_dict=model_prompt_details.get("roles", None),
+                initial_prompt_value=model_prompt_details.get(
+                    "initial_prompt_value", ""
+                ),
+                final_prompt_value=model_prompt_details.get("final_prompt_value", ""),
+                messages=messages,
+            )
+        elif hf_model_name in custom_prompt_dict:
+            # check if the base huggingface model has a registered custom prompt
+            model_prompt_details = custom_prompt_dict[hf_model_name]
+            prompt = custom_prompt(
+                role_dict=model_prompt_details.get("roles", None),
+                initial_prompt_value=model_prompt_details.get(
+                    "initial_prompt_value", ""
+                ),
+                final_prompt_value=model_prompt_details.get("final_prompt_value", ""),
+                messages=messages,
+            )
+        else:
+            if hf_model_name is None:
+                if "llama-2" in model.lower():  # llama-2 model
+                    if "chat" in model.lower():  # apply llama2 chat template
+                        hf_model_name = "meta-llama/Llama-2-7b-chat-hf"
+                    else:  # apply regular llama2 template
+                        hf_model_name = "meta-llama/Llama-2-7b"
+            hf_model_name = (
+                hf_model_name or model
+            )  # pass in hf model name for pulling it's prompt template - (e.g. `hf_model_name="meta-llama/Llama-2-7b-chat-hf` applies the llama2 chat template to the prompt)
+            prompt: str = prompt_factory(model=hf_model_name, messages=messages)  # type: ignore
+
+        return prompt
+
+    def transform_request(
+        self,
+        model: str,
+        messages: List[AllMessageValues],
+        optional_params: dict,
+        litellm_params: dict,
+        headers: dict,
+    ) -> dict:
+        inference_params = optional_params.copy()
+        stream = inference_params.pop("stream", False)
+        data: Dict = {"parameters": inference_params}
+        if stream is True:
+            data["stream"] = True
+
+        custom_prompt_dict = (
+            litellm_params.get("custom_prompt_dict", None) or litellm.custom_prompt_dict
+        )
+
+        hf_model_name = litellm_params.get("hf_model_name", None)
+
+        prompt = self._transform_prompt(
+            model=model,
+            messages=messages,
+            custom_prompt_dict=custom_prompt_dict,
+            hf_model_name=hf_model_name,
+        )
+        data["inputs"] = prompt
+
+        return data
+
+    async def async_transform_request(
+        self,
+        model: str,
+        messages: List[AllMessageValues],
+        optional_params: dict,
+        litellm_params: dict,
+        headers: dict,
+    ) -> dict:
+        return await asyncify(self.transform_request)(
+            model, messages, optional_params, litellm_params, headers
+        )
+
+    def transform_response(
+        self,
+        model: str,
+        raw_response: Response,
+        model_response: ModelResponse,
+        logging_obj: LiteLLMLoggingObj,
+        request_data: dict,
+        messages: List[AllMessageValues],
+        optional_params: dict,
+        litellm_params: dict,
+        encoding: str,
+        api_key: Optional[str] = None,
+        json_mode: Optional[bool] = None,
+    ) -> ModelResponse:
+        completion_response = raw_response.json()
+        ## LOGGING
+        logging_obj.post_call(
+            input=messages,
+            api_key="",
+            original_response=completion_response,
+            additional_args={"complete_input_dict": request_data},
+        )
+
+        prompt = request_data["inputs"]
+
+        ## RESPONSE OBJECT
+        try:
+            if isinstance(completion_response, list):
+                completion_response_choices = completion_response[0]
+            else:
+                completion_response_choices = completion_response
+            completion_output = ""
+            if "generation" in completion_response_choices:
+                completion_output += completion_response_choices["generation"]
+            elif "generated_text" in completion_response_choices:
+                completion_output += completion_response_choices["generated_text"]
+
+            # check if the prompt template is part of output, if so - filter it out
+            if completion_output.startswith(prompt) and "<s>" in prompt:
+                completion_output = completion_output.replace(prompt, "", 1)
+
+            model_response.choices[0].message.content = completion_output  # type: ignore
+        except Exception:
+            raise SagemakerError(
+                message=f"LiteLLM Error: Unable to parse sagemaker RAW RESPONSE {json.dumps(completion_response)}",
+                status_code=500,
+            )
+
+        ## CALCULATING USAGE - baseten charges on time, not tokens - have some mapping of cost here.
+        prompt_tokens = len(encoding.encode(prompt))
+        completion_tokens = len(
+            encoding.encode(model_response["choices"][0]["message"].get("content", ""))
+        )
+
+        model_response.created = int(time.time())
+        model_response.model = model
+        usage = Usage(
+            prompt_tokens=prompt_tokens,
+            completion_tokens=completion_tokens,
+            total_tokens=prompt_tokens + completion_tokens,
+        )
+        setattr(model_response, "usage", usage)
+        return model_response
+
+    def validate_environment(
+        self,
+        headers: Optional[dict],
+        model: str,
+        messages: List[AllMessageValues],
+        optional_params: dict,
+        api_key: Optional[str] = None,
+        api_base: Optional[str] = None,
+    ) -> dict:
+        headers = {"Content-Type": "application/json"}
+
+        if headers is not None:
+            headers = {"Content-Type": "application/json", **headers}
+
+        return headers