aboutsummaryrefslogtreecommitdiff
path: root/.venv/lib/python3.12/site-packages/litellm/llms/sagemaker/completion/handler.py
diff options
context:
space:
mode:
Diffstat (limited to '.venv/lib/python3.12/site-packages/litellm/llms/sagemaker/completion/handler.py')
-rw-r--r--.venv/lib/python3.12/site-packages/litellm/llms/sagemaker/completion/handler.py701
1 files changed, 701 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/litellm/llms/sagemaker/completion/handler.py b/.venv/lib/python3.12/site-packages/litellm/llms/sagemaker/completion/handler.py
new file mode 100644
index 00000000..909caf73
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/litellm/llms/sagemaker/completion/handler.py
@@ -0,0 +1,701 @@
+import json
+from copy import deepcopy
+from typing import Any, Callable, List, Optional, Union
+
+import httpx
+
+import litellm
+from litellm._logging import verbose_logger
+from litellm.litellm_core_utils.asyncify import asyncify
+from litellm.llms.bedrock.base_aws_llm import BaseAWSLLM
+from litellm.llms.custom_httpx.http_handler import (
+ _get_httpx_client,
+ get_async_httpx_client,
+)
+from litellm.types.llms.openai import AllMessageValues
+from litellm.utils import (
+ CustomStreamWrapper,
+ EmbeddingResponse,
+ ModelResponse,
+ Usage,
+ get_secret,
+)
+
+from ..common_utils import AWSEventStreamDecoder, SagemakerError
+from .transformation import SagemakerConfig
+
+sagemaker_config = SagemakerConfig()
+
+"""
+SAGEMAKER AUTH Keys/Vars
+os.environ['AWS_ACCESS_KEY_ID'] = ""
+os.environ['AWS_SECRET_ACCESS_KEY'] = ""
+"""
+
+
+# set os.environ['AWS_REGION_NAME'] = <your-region_name>
+class SagemakerLLM(BaseAWSLLM):
+
+ def _load_credentials(
+ self,
+ optional_params: dict,
+ ):
+ try:
+ from botocore.credentials import Credentials
+ except ImportError:
+ raise ImportError("Missing boto3 to call bedrock. Run 'pip install boto3'.")
+ ## CREDENTIALS ##
+ # pop aws_secret_access_key, aws_access_key_id, aws_session_token, aws_region_name from kwargs, since completion calls fail with them
+ aws_secret_access_key = optional_params.pop("aws_secret_access_key", None)
+ aws_access_key_id = optional_params.pop("aws_access_key_id", None)
+ aws_session_token = optional_params.pop("aws_session_token", None)
+ aws_region_name = optional_params.pop("aws_region_name", None)
+ aws_role_name = optional_params.pop("aws_role_name", None)
+ aws_session_name = optional_params.pop("aws_session_name", None)
+ aws_profile_name = optional_params.pop("aws_profile_name", None)
+ optional_params.pop(
+ "aws_bedrock_runtime_endpoint", None
+ ) # https://bedrock-runtime.{region_name}.amazonaws.com
+ aws_web_identity_token = optional_params.pop("aws_web_identity_token", None)
+ aws_sts_endpoint = optional_params.pop("aws_sts_endpoint", None)
+
+ ### SET REGION NAME ###
+ if aws_region_name is None:
+ # check env #
+ litellm_aws_region_name = get_secret("AWS_REGION_NAME", None)
+
+ if litellm_aws_region_name is not None and isinstance(
+ litellm_aws_region_name, str
+ ):
+ aws_region_name = litellm_aws_region_name
+
+ standard_aws_region_name = get_secret("AWS_REGION", None)
+ if standard_aws_region_name is not None and isinstance(
+ standard_aws_region_name, str
+ ):
+ aws_region_name = standard_aws_region_name
+
+ if aws_region_name is None:
+ aws_region_name = "us-west-2"
+
+ credentials: Credentials = self.get_credentials(
+ aws_access_key_id=aws_access_key_id,
+ aws_secret_access_key=aws_secret_access_key,
+ aws_session_token=aws_session_token,
+ aws_region_name=aws_region_name,
+ aws_session_name=aws_session_name,
+ aws_profile_name=aws_profile_name,
+ aws_role_name=aws_role_name,
+ aws_web_identity_token=aws_web_identity_token,
+ aws_sts_endpoint=aws_sts_endpoint,
+ )
+ return credentials, aws_region_name
+
+ def _prepare_request(
+ self,
+ credentials,
+ model: str,
+ data: dict,
+ messages: List[AllMessageValues],
+ optional_params: dict,
+ aws_region_name: str,
+ extra_headers: Optional[dict] = None,
+ ):
+ try:
+ from botocore.auth import SigV4Auth
+ from botocore.awsrequest import AWSRequest
+ except ImportError:
+ raise ImportError("Missing boto3 to call bedrock. Run 'pip install boto3'.")
+
+ sigv4 = SigV4Auth(credentials, "sagemaker", aws_region_name)
+ if optional_params.get("stream") is True:
+ api_base = f"https://runtime.sagemaker.{aws_region_name}.amazonaws.com/endpoints/{model}/invocations-response-stream"
+ else:
+ api_base = f"https://runtime.sagemaker.{aws_region_name}.amazonaws.com/endpoints/{model}/invocations"
+
+ sagemaker_base_url = optional_params.get("sagemaker_base_url", None)
+ if sagemaker_base_url is not None:
+ api_base = sagemaker_base_url
+
+ encoded_data = json.dumps(data).encode("utf-8")
+ headers = sagemaker_config.validate_environment(
+ headers=extra_headers,
+ model=model,
+ messages=messages,
+ optional_params=optional_params,
+ )
+ request = AWSRequest(
+ method="POST", url=api_base, data=encoded_data, headers=headers
+ )
+ sigv4.add_auth(request)
+ if (
+ extra_headers is not None and "Authorization" in extra_headers
+ ): # prevent sigv4 from overwriting the auth header
+ request.headers["Authorization"] = extra_headers["Authorization"]
+
+ prepped_request = request.prepare()
+
+ return prepped_request
+
+ def completion( # noqa: PLR0915
+ self,
+ model: str,
+ messages: list,
+ model_response: ModelResponse,
+ print_verbose: Callable,
+ encoding,
+ logging_obj,
+ optional_params: dict,
+ litellm_params: dict,
+ timeout: Optional[Union[float, httpx.Timeout]] = None,
+ custom_prompt_dict={},
+ hf_model_name=None,
+ logger_fn=None,
+ acompletion: bool = False,
+ headers: dict = {},
+ ):
+
+ # pop streaming if it's in the optional params as 'stream' raises an error with sagemaker
+ credentials, aws_region_name = self._load_credentials(optional_params)
+ inference_params = deepcopy(optional_params)
+ stream = inference_params.pop("stream", None)
+ model_id = optional_params.get("model_id", None)
+
+ ## Load Config
+ config = litellm.SagemakerConfig.get_config()
+ for k, v in config.items():
+ if (
+ k not in inference_params
+ ): # completion(top_k=3) > sagemaker_config(top_k=3) <- allows for dynamic variables to be passed in
+ inference_params[k] = v
+
+ if stream is True:
+ if acompletion is True:
+ response = self.async_streaming(
+ messages=messages,
+ model=model,
+ custom_prompt_dict=custom_prompt_dict,
+ hf_model_name=hf_model_name,
+ optional_params=optional_params,
+ encoding=encoding,
+ model_response=model_response,
+ logging_obj=logging_obj,
+ model_id=model_id,
+ aws_region_name=aws_region_name,
+ credentials=credentials,
+ headers=headers,
+ litellm_params=litellm_params,
+ )
+ return response
+ else:
+ data = sagemaker_config.transform_request(
+ model=model,
+ messages=messages,
+ optional_params=optional_params,
+ litellm_params=litellm_params,
+ headers=headers,
+ )
+ prepared_request = self._prepare_request(
+ model=model,
+ data=data,
+ messages=messages,
+ optional_params=optional_params,
+ credentials=credentials,
+ aws_region_name=aws_region_name,
+ )
+ if model_id is not None:
+ # Add model_id as InferenceComponentName header
+ # boto3 doc: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_runtime_InvokeEndpoint.html
+ prepared_request.headers.update(
+ {"X-Amzn-SageMaker-Inference-Component": model_id}
+ )
+ sync_handler = _get_httpx_client()
+ sync_response = sync_handler.post(
+ url=prepared_request.url,
+ headers=prepared_request.headers, # type: ignore
+ data=prepared_request.body,
+ stream=stream,
+ )
+
+ if sync_response.status_code != 200:
+ raise SagemakerError(
+ status_code=sync_response.status_code,
+ message=str(sync_response.read()),
+ )
+
+ decoder = AWSEventStreamDecoder(model="")
+
+ completion_stream = decoder.iter_bytes(
+ sync_response.iter_bytes(chunk_size=1024)
+ )
+ streaming_response = CustomStreamWrapper(
+ completion_stream=completion_stream,
+ model=model,
+ custom_llm_provider="sagemaker",
+ logging_obj=logging_obj,
+ )
+
+ ## LOGGING
+ logging_obj.post_call(
+ input=messages,
+ api_key="",
+ original_response=streaming_response,
+ additional_args={"complete_input_dict": data},
+ )
+ return streaming_response
+
+ # Non-Streaming Requests
+
+ # Async completion
+ if acompletion is True:
+ return self.async_completion(
+ messages=messages,
+ model=model,
+ custom_prompt_dict=custom_prompt_dict,
+ hf_model_name=hf_model_name,
+ model_response=model_response,
+ encoding=encoding,
+ logging_obj=logging_obj,
+ model_id=model_id,
+ optional_params=optional_params,
+ credentials=credentials,
+ aws_region_name=aws_region_name,
+ headers=headers,
+ litellm_params=litellm_params,
+ )
+
+ ## Non-Streaming completion CALL
+ _data = sagemaker_config.transform_request(
+ model=model,
+ messages=messages,
+ optional_params=optional_params,
+ litellm_params=litellm_params,
+ headers=headers,
+ )
+ prepared_request_args = {
+ "model": model,
+ "data": _data,
+ "optional_params": optional_params,
+ "credentials": credentials,
+ "aws_region_name": aws_region_name,
+ "messages": messages,
+ }
+ prepared_request = self._prepare_request(**prepared_request_args)
+ try:
+ if model_id is not None:
+ # Add model_id as InferenceComponentName header
+ # boto3 doc: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_runtime_InvokeEndpoint.html
+ prepared_request.headers.update(
+ {"X-Amzn-SageMaker-Inference-Component": model_id}
+ )
+
+ ## LOGGING
+ timeout = 300.0
+ sync_handler = _get_httpx_client()
+ ## LOGGING
+ logging_obj.pre_call(
+ input=[],
+ api_key="",
+ additional_args={
+ "complete_input_dict": _data,
+ "api_base": prepared_request.url,
+ "headers": prepared_request.headers,
+ },
+ )
+
+ # make sync httpx post request here
+ try:
+ sync_response = sync_handler.post(
+ url=prepared_request.url,
+ headers=prepared_request.headers, # type: ignore
+ data=prepared_request.body,
+ timeout=timeout,
+ )
+
+ if sync_response.status_code != 200:
+ raise SagemakerError(
+ status_code=sync_response.status_code,
+ message=sync_response.text,
+ )
+ except Exception as e:
+ ## LOGGING
+ logging_obj.post_call(
+ input=[],
+ api_key="",
+ original_response=str(e),
+ additional_args={"complete_input_dict": _data},
+ )
+ raise e
+ except Exception as e:
+ verbose_logger.error("Sagemaker error %s", str(e))
+ status_code = (
+ getattr(e, "response", {})
+ .get("ResponseMetadata", {})
+ .get("HTTPStatusCode", 500)
+ )
+ error_message = (
+ getattr(e, "response", {}).get("Error", {}).get("Message", str(e))
+ )
+ if "Inference Component Name header is required" in error_message:
+ error_message += "\n pass in via `litellm.completion(..., model_id={InferenceComponentName})`"
+ raise SagemakerError(status_code=status_code, message=error_message)
+
+ return sagemaker_config.transform_response(
+ model=model,
+ raw_response=sync_response,
+ model_response=model_response,
+ logging_obj=logging_obj,
+ request_data=_data,
+ messages=messages,
+ optional_params=optional_params,
+ encoding=encoding,
+ litellm_params=litellm_params,
+ )
+
+ async def make_async_call(
+ self,
+ api_base: str,
+ headers: dict,
+ data: str,
+ logging_obj,
+ client=None,
+ ):
+ try:
+ if client is None:
+ client = get_async_httpx_client(
+ llm_provider=litellm.LlmProviders.SAGEMAKER
+ ) # Create a new client if none provided
+ response = await client.post(
+ api_base,
+ headers=headers,
+ data=data,
+ stream=True,
+ )
+
+ if response.status_code != 200:
+ raise SagemakerError(
+ status_code=response.status_code, message=response.text
+ )
+
+ decoder = AWSEventStreamDecoder(model="")
+ completion_stream = decoder.aiter_bytes(
+ response.aiter_bytes(chunk_size=1024)
+ )
+
+ return completion_stream
+
+ # LOGGING
+ logging_obj.post_call(
+ input=[],
+ api_key="",
+ original_response="first stream response received",
+ additional_args={"complete_input_dict": data},
+ )
+
+ except httpx.HTTPStatusError as err:
+ error_code = err.response.status_code
+ raise SagemakerError(status_code=error_code, message=err.response.text)
+ except httpx.TimeoutException:
+ raise SagemakerError(status_code=408, message="Timeout error occurred.")
+ except Exception as e:
+ raise SagemakerError(status_code=500, message=str(e))
+
+ async def async_streaming(
+ self,
+ messages: List[AllMessageValues],
+ model: str,
+ custom_prompt_dict: dict,
+ hf_model_name: Optional[str],
+ credentials,
+ aws_region_name: str,
+ optional_params,
+ encoding,
+ model_response: ModelResponse,
+ model_id: Optional[str],
+ logging_obj: Any,
+ litellm_params: dict,
+ headers: dict,
+ ):
+ data = await sagemaker_config.async_transform_request(
+ model=model,
+ messages=messages,
+ optional_params={**optional_params, "stream": True},
+ litellm_params=litellm_params,
+ headers=headers,
+ )
+ asyncified_prepare_request = asyncify(self._prepare_request)
+ prepared_request_args = {
+ "model": model,
+ "data": data,
+ "optional_params": optional_params,
+ "credentials": credentials,
+ "aws_region_name": aws_region_name,
+ "messages": messages,
+ }
+ prepared_request = await asyncified_prepare_request(**prepared_request_args)
+ if model_id is not None: # Fixes https://github.com/BerriAI/litellm/issues/8889
+ prepared_request.headers.update(
+ {"X-Amzn-SageMaker-Inference-Component": model_id}
+ )
+ completion_stream = await self.make_async_call(
+ api_base=prepared_request.url,
+ headers=prepared_request.headers, # type: ignore
+ data=prepared_request.body,
+ logging_obj=logging_obj,
+ )
+ streaming_response = CustomStreamWrapper(
+ completion_stream=completion_stream,
+ model=model,
+ custom_llm_provider="sagemaker",
+ logging_obj=logging_obj,
+ )
+
+ # LOGGING
+ logging_obj.post_call(
+ input=[],
+ api_key="",
+ original_response="first stream response received",
+ additional_args={"complete_input_dict": data},
+ )
+
+ return streaming_response
+
+ async def async_completion(
+ self,
+ messages: List[AllMessageValues],
+ model: str,
+ custom_prompt_dict: dict,
+ hf_model_name: Optional[str],
+ credentials,
+ aws_region_name: str,
+ encoding,
+ model_response: ModelResponse,
+ optional_params: dict,
+ logging_obj: Any,
+ model_id: Optional[str],
+ headers: dict,
+ litellm_params: dict,
+ ):
+ timeout = 300.0
+ async_handler = get_async_httpx_client(
+ llm_provider=litellm.LlmProviders.SAGEMAKER
+ )
+
+ data = await sagemaker_config.async_transform_request(
+ model=model,
+ messages=messages,
+ optional_params=optional_params,
+ litellm_params=litellm_params,
+ headers=headers,
+ )
+
+ asyncified_prepare_request = asyncify(self._prepare_request)
+ prepared_request_args = {
+ "model": model,
+ "data": data,
+ "optional_params": optional_params,
+ "credentials": credentials,
+ "aws_region_name": aws_region_name,
+ "messages": messages,
+ }
+
+ prepared_request = await asyncified_prepare_request(**prepared_request_args)
+ ## LOGGING
+ logging_obj.pre_call(
+ input=[],
+ api_key="",
+ additional_args={
+ "complete_input_dict": data,
+ "api_base": prepared_request.url,
+ "headers": prepared_request.headers,
+ },
+ )
+ try:
+ if model_id is not None:
+ # Add model_id as InferenceComponentName header
+ # boto3 doc: https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_runtime_InvokeEndpoint.html
+ prepared_request.headers.update(
+ {"X-Amzn-SageMaker-Inference-Component": model_id}
+ )
+ # make async httpx post request here
+ try:
+ response = await async_handler.post(
+ url=prepared_request.url,
+ headers=prepared_request.headers, # type: ignore
+ data=prepared_request.body,
+ timeout=timeout,
+ )
+
+ if response.status_code != 200:
+ raise SagemakerError(
+ status_code=response.status_code, message=response.text
+ )
+ except Exception as e:
+ ## LOGGING
+ logging_obj.post_call(
+ input=data["inputs"],
+ api_key="",
+ original_response=str(e),
+ additional_args={"complete_input_dict": data},
+ )
+ raise e
+ except Exception as e:
+ error_message = f"{str(e)}"
+ if "Inference Component Name header is required" in error_message:
+ error_message += "\n pass in via `litellm.completion(..., model_id={InferenceComponentName})`"
+ raise SagemakerError(status_code=500, message=error_message)
+ return sagemaker_config.transform_response(
+ model=model,
+ raw_response=response,
+ model_response=model_response,
+ logging_obj=logging_obj,
+ request_data=data,
+ messages=messages,
+ optional_params=optional_params,
+ encoding=encoding,
+ litellm_params=litellm_params,
+ )
+
+ def embedding(
+ self,
+ model: str,
+ input: list,
+ model_response: EmbeddingResponse,
+ print_verbose: Callable,
+ encoding,
+ logging_obj,
+ optional_params: dict,
+ custom_prompt_dict={},
+ litellm_params=None,
+ logger_fn=None,
+ ):
+ """
+ Supports Huggingface Jumpstart embeddings like GPT-6B
+ """
+ ### BOTO3 INIT
+ import boto3
+
+ # pop aws_secret_access_key, aws_access_key_id, aws_region_name from kwargs, since completion calls fail with them
+ aws_secret_access_key = optional_params.pop("aws_secret_access_key", None)
+ aws_access_key_id = optional_params.pop("aws_access_key_id", None)
+ aws_region_name = optional_params.pop("aws_region_name", None)
+
+ if aws_access_key_id is not None:
+ # uses auth params passed to completion
+ # aws_access_key_id is not None, assume user is trying to auth using litellm.completion
+ client = boto3.client(
+ service_name="sagemaker-runtime",
+ aws_access_key_id=aws_access_key_id,
+ aws_secret_access_key=aws_secret_access_key,
+ region_name=aws_region_name,
+ )
+ else:
+ # aws_access_key_id is None, assume user is trying to auth using env variables
+ # boto3 automaticaly reads env variables
+
+ # we need to read region name from env
+ # I assume majority of users use .env for auth
+ region_name = (
+ get_secret("AWS_REGION_NAME")
+ or aws_region_name # get region from config file if specified
+ or "us-west-2" # default to us-west-2 if region not specified
+ )
+ client = boto3.client(
+ service_name="sagemaker-runtime",
+ region_name=region_name,
+ )
+
+ # pop streaming if it's in the optional params as 'stream' raises an error with sagemaker
+ inference_params = deepcopy(optional_params)
+ inference_params.pop("stream", None)
+
+ ## Load Config
+ config = litellm.SagemakerConfig.get_config()
+ for k, v in config.items():
+ if (
+ k not in inference_params
+ ): # completion(top_k=3) > sagemaker_config(top_k=3) <- allows for dynamic variables to be passed in
+ inference_params[k] = v
+
+ #### HF EMBEDDING LOGIC
+ data = json.dumps({"text_inputs": input}).encode("utf-8")
+
+ ## LOGGING
+ request_str = f"""
+ response = client.invoke_endpoint(
+ EndpointName={model},
+ ContentType="application/json",
+ Body={data}, # type: ignore
+ CustomAttributes="accept_eula=true",
+ )""" # type: ignore
+ logging_obj.pre_call(
+ input=input,
+ api_key="",
+ additional_args={"complete_input_dict": data, "request_str": request_str},
+ )
+ ## EMBEDDING CALL
+ try:
+ response = client.invoke_endpoint(
+ EndpointName=model,
+ ContentType="application/json",
+ Body=data,
+ CustomAttributes="accept_eula=true",
+ )
+ except Exception as e:
+ status_code = (
+ getattr(e, "response", {})
+ .get("ResponseMetadata", {})
+ .get("HTTPStatusCode", 500)
+ )
+ error_message = (
+ getattr(e, "response", {}).get("Error", {}).get("Message", str(e))
+ )
+ raise SagemakerError(status_code=status_code, message=error_message)
+
+ response = json.loads(response["Body"].read().decode("utf8"))
+ ## LOGGING
+ logging_obj.post_call(
+ input=input,
+ api_key="",
+ original_response=response,
+ additional_args={"complete_input_dict": data},
+ )
+
+ print_verbose(f"raw model_response: {response}")
+ if "embedding" not in response:
+ raise SagemakerError(
+ status_code=500, message="embedding not found in response"
+ )
+ embeddings = response["embedding"]
+
+ if not isinstance(embeddings, list):
+ raise SagemakerError(
+ status_code=422,
+ message=f"Response not in expected format - {embeddings}",
+ )
+
+ output_data = []
+ for idx, embedding in enumerate(embeddings):
+ output_data.append(
+ {"object": "embedding", "index": idx, "embedding": embedding}
+ )
+
+ model_response.object = "list"
+ model_response.data = output_data
+ model_response.model = model
+
+ input_tokens = 0
+ for text in input:
+ input_tokens += len(encoding.encode(text))
+
+ setattr(
+ model_response,
+ "usage",
+ Usage(
+ prompt_tokens=input_tokens,
+ completion_tokens=0,
+ total_tokens=input_tokens,
+ ),
+ )
+
+ return model_response