aboutsummaryrefslogtreecommitdiff
path: root/.venv/lib/python3.12/site-packages/litellm/llms/cohere/chat/transformation.py
diff options
context:
space:
mode:
authorS. Solomon Darnell2025-03-28 21:52:21 -0500
committerS. Solomon Darnell2025-03-28 21:52:21 -0500
commit4a52a71956a8d46fcb7294ac71734504bb09bcc2 (patch)
treeee3dc5af3b6313e921cd920906356f5d4febc4ed /.venv/lib/python3.12/site-packages/litellm/llms/cohere/chat/transformation.py
parentcc961e04ba734dd72309fb548a2f97d67d578813 (diff)
downloadgn-ai-master.tar.gz
two version of R2R are hereHEADmaster
Diffstat (limited to '.venv/lib/python3.12/site-packages/litellm/llms/cohere/chat/transformation.py')
-rw-r--r--.venv/lib/python3.12/site-packages/litellm/llms/cohere/chat/transformation.py368
1 files changed, 368 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/litellm/llms/cohere/chat/transformation.py b/.venv/lib/python3.12/site-packages/litellm/llms/cohere/chat/transformation.py
new file mode 100644
index 00000000..3ceec2db
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/litellm/llms/cohere/chat/transformation.py
@@ -0,0 +1,368 @@
+import json
+import time
+from typing import TYPE_CHECKING, Any, AsyncIterator, Iterator, List, Optional, Union
+
+import httpx
+
+import litellm
+from litellm.litellm_core_utils.prompt_templates.factory import cohere_messages_pt_v2
+from litellm.llms.base_llm.chat.transformation import BaseConfig, BaseLLMException
+from litellm.types.llms.openai import AllMessageValues
+from litellm.types.utils import ModelResponse, Usage
+
+from ..common_utils import ModelResponseIterator as CohereModelResponseIterator
+from ..common_utils import validate_environment as cohere_validate_environment
+
+if TYPE_CHECKING:
+ from litellm.litellm_core_utils.litellm_logging import Logging as _LiteLLMLoggingObj
+
+ LiteLLMLoggingObj = _LiteLLMLoggingObj
+else:
+ LiteLLMLoggingObj = Any
+
+
+class CohereError(BaseLLMException):
+ def __init__(
+ self,
+ status_code: int,
+ message: str,
+ headers: Optional[httpx.Headers] = None,
+ ):
+ self.status_code = status_code
+ self.message = message
+ self.request = httpx.Request(method="POST", url="https://api.cohere.ai/v1/chat")
+ self.response = httpx.Response(status_code=status_code, request=self.request)
+ super().__init__(
+ status_code=status_code,
+ message=message,
+ headers=headers,
+ )
+
+
+class CohereChatConfig(BaseConfig):
+ """
+ Configuration class for Cohere's API interface.
+
+ Args:
+ preamble (str, optional): When specified, the default Cohere preamble will be replaced with the provided one.
+ chat_history (List[Dict[str, str]], optional): A list of previous messages between the user and the model.
+ generation_id (str, optional): Unique identifier for the generated reply.
+ response_id (str, optional): Unique identifier for the response.
+ conversation_id (str, optional): An alternative to chat_history, creates or resumes a persisted conversation.
+ prompt_truncation (str, optional): Dictates how the prompt will be constructed. Options: 'AUTO', 'AUTO_PRESERVE_ORDER', 'OFF'.
+ connectors (List[Dict[str, str]], optional): List of connectors (e.g., web-search) to enrich the model's reply.
+ search_queries_only (bool, optional): When true, the response will only contain a list of generated search queries.
+ documents (List[Dict[str, str]], optional): A list of relevant documents that the model can cite.
+ temperature (float, optional): A non-negative float that tunes the degree of randomness in generation.
+ max_tokens (int, optional): The maximum number of tokens the model will generate as part of the response.
+ k (int, optional): Ensures only the top k most likely tokens are considered for generation at each step.
+ p (float, optional): Ensures that only the most likely tokens, with total probability mass of p, are considered for generation.
+ frequency_penalty (float, optional): Used to reduce repetitiveness of generated tokens.
+ presence_penalty (float, optional): Used to reduce repetitiveness of generated tokens.
+ tools (List[Dict[str, str]], optional): A list of available tools (functions) that the model may suggest invoking.
+ tool_results (List[Dict[str, Any]], optional): A list of results from invoking tools.
+ seed (int, optional): A seed to assist reproducibility of the model's response.
+ """
+
+ preamble: Optional[str] = None
+ chat_history: Optional[list] = None
+ generation_id: Optional[str] = None
+ response_id: Optional[str] = None
+ conversation_id: Optional[str] = None
+ prompt_truncation: Optional[str] = None
+ connectors: Optional[list] = None
+ search_queries_only: Optional[bool] = None
+ documents: Optional[list] = None
+ temperature: Optional[int] = None
+ max_tokens: Optional[int] = None
+ k: Optional[int] = None
+ p: Optional[int] = None
+ frequency_penalty: Optional[int] = None
+ presence_penalty: Optional[int] = None
+ tools: Optional[list] = None
+ tool_results: Optional[list] = None
+ seed: Optional[int] = None
+
+ def __init__(
+ self,
+ preamble: Optional[str] = None,
+ chat_history: Optional[list] = None,
+ generation_id: Optional[str] = None,
+ response_id: Optional[str] = None,
+ conversation_id: Optional[str] = None,
+ prompt_truncation: Optional[str] = None,
+ connectors: Optional[list] = None,
+ search_queries_only: Optional[bool] = None,
+ documents: Optional[list] = None,
+ temperature: Optional[int] = None,
+ max_tokens: Optional[int] = None,
+ k: Optional[int] = None,
+ p: Optional[int] = None,
+ frequency_penalty: Optional[int] = None,
+ presence_penalty: Optional[int] = None,
+ tools: Optional[list] = None,
+ tool_results: Optional[list] = None,
+ seed: Optional[int] = None,
+ ) -> None:
+ locals_ = locals().copy()
+ for key, value in locals_.items():
+ if key != "self" and value is not None:
+ setattr(self.__class__, key, value)
+
+ def validate_environment(
+ self,
+ headers: dict,
+ model: str,
+ messages: List[AllMessageValues],
+ optional_params: dict,
+ api_key: Optional[str] = None,
+ api_base: Optional[str] = None,
+ ) -> dict:
+ return cohere_validate_environment(
+ headers=headers,
+ model=model,
+ messages=messages,
+ optional_params=optional_params,
+ api_key=api_key,
+ )
+
+ def get_supported_openai_params(self, model: str) -> List[str]:
+ return [
+ "stream",
+ "temperature",
+ "max_tokens",
+ "top_p",
+ "frequency_penalty",
+ "presence_penalty",
+ "stop",
+ "n",
+ "tools",
+ "tool_choice",
+ "seed",
+ "extra_headers",
+ ]
+
+ def map_openai_params(
+ self,
+ non_default_params: dict,
+ optional_params: dict,
+ model: str,
+ drop_params: bool,
+ ) -> dict:
+ for param, value in non_default_params.items():
+ if param == "stream":
+ optional_params["stream"] = value
+ if param == "temperature":
+ optional_params["temperature"] = value
+ if param == "max_tokens":
+ optional_params["max_tokens"] = value
+ if param == "n":
+ optional_params["num_generations"] = value
+ if param == "top_p":
+ optional_params["p"] = value
+ if param == "frequency_penalty":
+ optional_params["frequency_penalty"] = value
+ if param == "presence_penalty":
+ optional_params["presence_penalty"] = value
+ if param == "stop":
+ optional_params["stop_sequences"] = value
+ if param == "tools":
+ optional_params["tools"] = value
+ if param == "seed":
+ optional_params["seed"] = value
+ return optional_params
+
+ def transform_request(
+ self,
+ model: str,
+ messages: List[AllMessageValues],
+ optional_params: dict,
+ litellm_params: dict,
+ headers: dict,
+ ) -> dict:
+
+ ## Load Config
+ for k, v in litellm.CohereChatConfig.get_config().items():
+ if (
+ k not in optional_params
+ ): # completion(top_k=3) > cohere_config(top_k=3) <- allows for dynamic variables to be passed in
+ optional_params[k] = v
+
+ most_recent_message, chat_history = cohere_messages_pt_v2(
+ messages=messages, model=model, llm_provider="cohere_chat"
+ )
+
+ ## Handle Tool Calling
+ if "tools" in optional_params:
+ _is_function_call = True
+ cohere_tools = self._construct_cohere_tool(tools=optional_params["tools"])
+ optional_params["tools"] = cohere_tools
+ if isinstance(most_recent_message, dict):
+ optional_params["tool_results"] = [most_recent_message]
+ elif isinstance(most_recent_message, str):
+ optional_params["message"] = most_recent_message
+
+ ## check if chat history message is 'user' and 'tool_results' is given -> force_single_step=True, else cohere api fails
+ if len(chat_history) > 0 and chat_history[-1]["role"] == "USER":
+ optional_params["force_single_step"] = True
+
+ return optional_params
+
+ def transform_response(
+ self,
+ model: str,
+ raw_response: httpx.Response,
+ model_response: ModelResponse,
+ logging_obj: LiteLLMLoggingObj,
+ request_data: dict,
+ messages: List[AllMessageValues],
+ optional_params: dict,
+ litellm_params: dict,
+ encoding: Any,
+ api_key: Optional[str] = None,
+ json_mode: Optional[bool] = None,
+ ) -> ModelResponse:
+
+ try:
+ raw_response_json = raw_response.json()
+ model_response.choices[0].message.content = raw_response_json["text"] # type: ignore
+ except Exception:
+ raise CohereError(
+ message=raw_response.text, status_code=raw_response.status_code
+ )
+
+ ## ADD CITATIONS
+ if "citations" in raw_response_json:
+ setattr(model_response, "citations", raw_response_json["citations"])
+
+ ## Tool calling response
+ cohere_tools_response = raw_response_json.get("tool_calls", None)
+ if cohere_tools_response is not None and cohere_tools_response != []:
+ # convert cohere_tools_response to OpenAI response format
+ tool_calls = []
+ for tool in cohere_tools_response:
+ function_name = tool.get("name", "")
+ generation_id = tool.get("generation_id", "")
+ parameters = tool.get("parameters", {})
+ tool_call = {
+ "id": f"call_{generation_id}",
+ "type": "function",
+ "function": {
+ "name": function_name,
+ "arguments": json.dumps(parameters),
+ },
+ }
+ tool_calls.append(tool_call)
+ _message = litellm.Message(
+ tool_calls=tool_calls,
+ content=None,
+ )
+ model_response.choices[0].message = _message # type: ignore
+
+ ## CALCULATING USAGE - use cohere `billed_units` for returning usage
+ billed_units = raw_response_json.get("meta", {}).get("billed_units", {})
+
+ prompt_tokens = billed_units.get("input_tokens", 0)
+ completion_tokens = billed_units.get("output_tokens", 0)
+
+ model_response.created = int(time.time())
+ model_response.model = model
+ usage = Usage(
+ prompt_tokens=prompt_tokens,
+ completion_tokens=completion_tokens,
+ total_tokens=prompt_tokens + completion_tokens,
+ )
+ setattr(model_response, "usage", usage)
+ return model_response
+
+ def _construct_cohere_tool(
+ self,
+ tools: Optional[list] = None,
+ ):
+ if tools is None:
+ tools = []
+ cohere_tools = []
+ for tool in tools:
+ cohere_tool = self._translate_openai_tool_to_cohere(tool)
+ cohere_tools.append(cohere_tool)
+ return cohere_tools
+
+ def _translate_openai_tool_to_cohere(
+ self,
+ openai_tool: dict,
+ ):
+ # cohere tools look like this
+ """
+ {
+ "name": "query_daily_sales_report",
+ "description": "Connects to a database to retrieve overall sales volumes and sales information for a given day.",
+ "parameter_definitions": {
+ "day": {
+ "description": "Retrieves sales data for this day, formatted as YYYY-MM-DD.",
+ "type": "str",
+ "required": True
+ }
+ }
+ }
+ """
+
+ # OpenAI tools look like this
+ """
+ {
+ "type": "function",
+ "function": {
+ "name": "get_current_weather",
+ "description": "Get the current weather in a given location",
+ "parameters": {
+ "type": "object",
+ "properties": {
+ "location": {
+ "type": "string",
+ "description": "The city and state, e.g. San Francisco, CA",
+ },
+ "unit": {"type": "string", "enum": ["celsius", "fahrenheit"]},
+ },
+ "required": ["location"],
+ },
+ },
+ }
+ """
+ cohere_tool = {
+ "name": openai_tool["function"]["name"],
+ "description": openai_tool["function"]["description"],
+ "parameter_definitions": {},
+ }
+
+ for param_name, param_def in openai_tool["function"]["parameters"][
+ "properties"
+ ].items():
+ required_params = (
+ openai_tool.get("function", {})
+ .get("parameters", {})
+ .get("required", [])
+ )
+ cohere_param_def = {
+ "description": param_def.get("description", ""),
+ "type": param_def.get("type", ""),
+ "required": param_name in required_params,
+ }
+ cohere_tool["parameter_definitions"][param_name] = cohere_param_def
+
+ return cohere_tool
+
+ def get_model_response_iterator(
+ self,
+ streaming_response: Union[Iterator[str], AsyncIterator[str], ModelResponse],
+ sync_stream: bool,
+ json_mode: Optional[bool] = False,
+ ):
+ return CohereModelResponseIterator(
+ streaming_response=streaming_response,
+ sync_stream=sync_stream,
+ json_mode=json_mode,
+ )
+
+ def get_error_class(
+ self, error_message: str, status_code: int, headers: Union[dict, httpx.Headers]
+ ) -> BaseLLMException:
+ return CohereError(status_code=status_code, message=error_message)