about summary refs log tree commit diff
path: root/.venv/lib/python3.12/site-packages/litellm/llms/azure_ai/embed
diff options
context:
space:
mode:
authorS. Solomon Darnell2025-03-28 21:52:21 -0500
committerS. Solomon Darnell2025-03-28 21:52:21 -0500
commit4a52a71956a8d46fcb7294ac71734504bb09bcc2 (patch)
treeee3dc5af3b6313e921cd920906356f5d4febc4ed /.venv/lib/python3.12/site-packages/litellm/llms/azure_ai/embed
parentcc961e04ba734dd72309fb548a2f97d67d578813 (diff)
downloadgn-ai-master.tar.gz
two version of R2R are here HEAD master
Diffstat (limited to '.venv/lib/python3.12/site-packages/litellm/llms/azure_ai/embed')
-rw-r--r--.venv/lib/python3.12/site-packages/litellm/llms/azure_ai/embed/__init__.py1
-rw-r--r--.venv/lib/python3.12/site-packages/litellm/llms/azure_ai/embed/cohere_transformation.py99
-rw-r--r--.venv/lib/python3.12/site-packages/litellm/llms/azure_ai/embed/handler.py292
3 files changed, 392 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/litellm/llms/azure_ai/embed/__init__.py b/.venv/lib/python3.12/site-packages/litellm/llms/azure_ai/embed/__init__.py
new file mode 100644
index 00000000..e0d67acb
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/litellm/llms/azure_ai/embed/__init__.py
@@ -0,0 +1 @@
+from .handler import AzureAIEmbedding
diff --git a/.venv/lib/python3.12/site-packages/litellm/llms/azure_ai/embed/cohere_transformation.py b/.venv/lib/python3.12/site-packages/litellm/llms/azure_ai/embed/cohere_transformation.py
new file mode 100644
index 00000000..38b0dbbe
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/litellm/llms/azure_ai/embed/cohere_transformation.py
@@ -0,0 +1,99 @@
+"""
+Transformation logic from OpenAI /v1/embeddings format to Azure AI Cohere's /v1/embed. 
+
+Why separate file? Make it easy to see how transformation works
+
+Convers
+- Cohere request format
+
+Docs - https://docs.aws.amazon.com/bedrock/latest/userguide/model-parameters-titan-embed-text.html
+"""
+
+from typing import List, Optional, Tuple
+
+from litellm.types.llms.azure_ai import ImageEmbeddingInput, ImageEmbeddingRequest
+from litellm.types.llms.openai import EmbeddingCreateParams
+from litellm.types.utils import EmbeddingResponse, Usage
+from litellm.utils import is_base64_encoded
+
+
+class AzureAICohereConfig:
+    def __init__(self) -> None:
+        pass
+
+    def _map_azure_model_group(self, model: str) -> str:
+
+        if model == "offer-cohere-embed-multili-paygo":
+            return "Cohere-embed-v3-multilingual"
+        elif model == "offer-cohere-embed-english-paygo":
+            return "Cohere-embed-v3-english"
+
+        return model
+
+    def _transform_request_image_embeddings(
+        self, input: List[str], optional_params: dict
+    ) -> ImageEmbeddingRequest:
+        """
+        Assume all str in list is base64 encoded string
+        """
+        image_input: List[ImageEmbeddingInput] = []
+        for i in input:
+            embedding_input = ImageEmbeddingInput(image=i)
+            image_input.append(embedding_input)
+        return ImageEmbeddingRequest(input=image_input, **optional_params)
+
+    def _transform_request(
+        self, input: List[str], optional_params: dict, model: str
+    ) -> Tuple[ImageEmbeddingRequest, EmbeddingCreateParams, List[int]]:
+        """
+        Return the list of input to `/image/embeddings`, `/v1/embeddings`, list of image_embedding_idx for recombination
+        """
+        image_embeddings: List[str] = []
+        image_embedding_idx: List[int] = []
+        for idx, i in enumerate(input):
+            """
+            - is base64 -> route to image embeddings
+            - is ImageEmbeddingInput -> route to image embeddings
+            - else -> route to `/v1/embeddings`
+            """
+            if is_base64_encoded(i):
+                image_embeddings.append(i)
+                image_embedding_idx.append(idx)
+
+        ## REMOVE IMAGE EMBEDDINGS FROM input list
+        filtered_input = [
+            item for idx, item in enumerate(input) if idx not in image_embedding_idx
+        ]
+
+        v1_embeddings_request = EmbeddingCreateParams(
+            input=filtered_input, model=model, **optional_params
+        )
+        image_embeddings_request = self._transform_request_image_embeddings(
+            input=image_embeddings, optional_params=optional_params
+        )
+
+        return image_embeddings_request, v1_embeddings_request, image_embedding_idx
+
+    def _transform_response(self, response: EmbeddingResponse) -> EmbeddingResponse:
+        additional_headers: Optional[dict] = response._hidden_params.get(
+            "additional_headers"
+        )
+        if additional_headers:
+            # CALCULATE USAGE
+            input_tokens: Optional[str] = additional_headers.get(
+                "llm_provider-num_tokens"
+            )
+            if input_tokens:
+                if response.usage:
+                    response.usage.prompt_tokens = int(input_tokens)
+                else:
+                    response.usage = Usage(prompt_tokens=int(input_tokens))
+
+            # SET MODEL
+            base_model: Optional[str] = additional_headers.get(
+                "llm_provider-azureml-model-group"
+            )
+            if base_model:
+                response.model = self._map_azure_model_group(base_model)
+
+        return response
diff --git a/.venv/lib/python3.12/site-packages/litellm/llms/azure_ai/embed/handler.py b/.venv/lib/python3.12/site-packages/litellm/llms/azure_ai/embed/handler.py
new file mode 100644
index 00000000..f33c979c
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/litellm/llms/azure_ai/embed/handler.py
@@ -0,0 +1,292 @@
+from typing import List, Optional, Union
+
+from openai import OpenAI
+
+import litellm
+from litellm.llms.custom_httpx.http_handler import (
+    AsyncHTTPHandler,
+    HTTPHandler,
+    get_async_httpx_client,
+)
+from litellm.llms.openai.openai import OpenAIChatCompletion
+from litellm.types.llms.azure_ai import ImageEmbeddingRequest
+from litellm.types.utils import EmbeddingResponse
+from litellm.utils import convert_to_model_response_object
+
+from .cohere_transformation import AzureAICohereConfig
+
+
+class AzureAIEmbedding(OpenAIChatCompletion):
+
+    def _process_response(
+        self,
+        image_embedding_responses: Optional[List],
+        text_embedding_responses: Optional[List],
+        image_embeddings_idx: List[int],
+        model_response: EmbeddingResponse,
+        input: List,
+    ):
+        combined_responses = []
+        if (
+            image_embedding_responses is not None
+            and text_embedding_responses is not None
+        ):
+            # Combine and order the results
+            text_idx = 0
+            image_idx = 0
+
+            for idx in range(len(input)):
+                if idx in image_embeddings_idx:
+                    combined_responses.append(image_embedding_responses[image_idx])
+                    image_idx += 1
+                else:
+                    combined_responses.append(text_embedding_responses[text_idx])
+                    text_idx += 1
+
+            model_response.data = combined_responses
+        elif image_embedding_responses is not None:
+            model_response.data = image_embedding_responses
+        elif text_embedding_responses is not None:
+            model_response.data = text_embedding_responses
+
+        response = AzureAICohereConfig()._transform_response(response=model_response)  # type: ignore
+
+        return response
+
+    async def async_image_embedding(
+        self,
+        model: str,
+        data: ImageEmbeddingRequest,
+        timeout: float,
+        logging_obj,
+        model_response: litellm.EmbeddingResponse,
+        optional_params: dict,
+        api_key: Optional[str],
+        api_base: Optional[str],
+        client: Optional[Union[HTTPHandler, AsyncHTTPHandler]] = None,
+    ) -> EmbeddingResponse:
+        if client is None or not isinstance(client, AsyncHTTPHandler):
+            client = get_async_httpx_client(
+                llm_provider=litellm.LlmProviders.AZURE_AI,
+                params={"timeout": timeout},
+            )
+
+        url = "{}/images/embeddings".format(api_base)
+
+        response = await client.post(
+            url=url,
+            json=data,  # type: ignore
+            headers={"Authorization": "Bearer {}".format(api_key)},
+        )
+
+        embedding_response = response.json()
+        embedding_headers = dict(response.headers)
+        returned_response: EmbeddingResponse = convert_to_model_response_object(  # type: ignore
+            response_object=embedding_response,
+            model_response_object=model_response,
+            response_type="embedding",
+            stream=False,
+            _response_headers=embedding_headers,
+        )
+        return returned_response
+
+    def image_embedding(
+        self,
+        model: str,
+        data: ImageEmbeddingRequest,
+        timeout: float,
+        logging_obj,
+        model_response: EmbeddingResponse,
+        optional_params: dict,
+        api_key: Optional[str],
+        api_base: Optional[str],
+        client: Optional[Union[HTTPHandler, AsyncHTTPHandler]] = None,
+    ):
+        if api_base is None:
+            raise ValueError(
+                "api_base is None. Please set AZURE_AI_API_BASE or dynamically via `api_base` param, to make the request."
+            )
+        if api_key is None:
+            raise ValueError(
+                "api_key is None. Please set AZURE_AI_API_KEY or dynamically via `api_key` param, to make the request."
+            )
+
+        if client is None or not isinstance(client, HTTPHandler):
+            client = HTTPHandler(timeout=timeout, concurrent_limit=1)
+
+        url = "{}/images/embeddings".format(api_base)
+
+        response = client.post(
+            url=url,
+            json=data,  # type: ignore
+            headers={"Authorization": "Bearer {}".format(api_key)},
+        )
+
+        embedding_response = response.json()
+        embedding_headers = dict(response.headers)
+        returned_response: EmbeddingResponse = convert_to_model_response_object(  # type: ignore
+            response_object=embedding_response,
+            model_response_object=model_response,
+            response_type="embedding",
+            stream=False,
+            _response_headers=embedding_headers,
+        )
+        return returned_response
+
+    async def async_embedding(
+        self,
+        model: str,
+        input: List,
+        timeout: float,
+        logging_obj,
+        model_response: litellm.EmbeddingResponse,
+        optional_params: dict,
+        api_key: Optional[str] = None,
+        api_base: Optional[str] = None,
+        client=None,
+    ) -> EmbeddingResponse:
+
+        (
+            image_embeddings_request,
+            v1_embeddings_request,
+            image_embeddings_idx,
+        ) = AzureAICohereConfig()._transform_request(
+            input=input, optional_params=optional_params, model=model
+        )
+
+        image_embedding_responses: Optional[List] = None
+        text_embedding_responses: Optional[List] = None
+
+        if image_embeddings_request["input"]:
+            image_response = await self.async_image_embedding(
+                model=model,
+                data=image_embeddings_request,
+                timeout=timeout,
+                logging_obj=logging_obj,
+                model_response=model_response,
+                optional_params=optional_params,
+                api_key=api_key,
+                api_base=api_base,
+                client=client,
+            )
+
+            image_embedding_responses = image_response.data
+            if image_embedding_responses is None:
+                raise Exception("/image/embeddings route returned None Embeddings.")
+
+        if v1_embeddings_request["input"]:
+            response: EmbeddingResponse = await super().embedding(  # type: ignore
+                model=model,
+                input=input,
+                timeout=timeout,
+                logging_obj=logging_obj,
+                model_response=model_response,
+                optional_params=optional_params,
+                api_key=api_key,
+                api_base=api_base,
+                client=client,
+                aembedding=True,
+            )
+            text_embedding_responses = response.data
+            if text_embedding_responses is None:
+                raise Exception("/v1/embeddings route returned None Embeddings.")
+
+        return self._process_response(
+            image_embedding_responses=image_embedding_responses,
+            text_embedding_responses=text_embedding_responses,
+            image_embeddings_idx=image_embeddings_idx,
+            model_response=model_response,
+            input=input,
+        )
+
+    def embedding(
+        self,
+        model: str,
+        input: List,
+        timeout: float,
+        logging_obj,
+        model_response: EmbeddingResponse,
+        optional_params: dict,
+        api_key: Optional[str] = None,
+        api_base: Optional[str] = None,
+        client=None,
+        aembedding=None,
+        max_retries: Optional[int] = None,
+    ) -> EmbeddingResponse:
+        """
+        - Separate image url from text
+        -> route image url call to `/image/embeddings`
+        -> route text call to `/v1/embeddings` (OpenAI route)
+
+        assemble result in-order, and return
+        """
+        if aembedding is True:
+            return self.async_embedding(  # type: ignore
+                model,
+                input,
+                timeout,
+                logging_obj,
+                model_response,
+                optional_params,
+                api_key,
+                api_base,
+                client,
+            )
+
+        (
+            image_embeddings_request,
+            v1_embeddings_request,
+            image_embeddings_idx,
+        ) = AzureAICohereConfig()._transform_request(
+            input=input, optional_params=optional_params, model=model
+        )
+
+        image_embedding_responses: Optional[List] = None
+        text_embedding_responses: Optional[List] = None
+
+        if image_embeddings_request["input"]:
+            image_response = self.image_embedding(
+                model=model,
+                data=image_embeddings_request,
+                timeout=timeout,
+                logging_obj=logging_obj,
+                model_response=model_response,
+                optional_params=optional_params,
+                api_key=api_key,
+                api_base=api_base,
+                client=client,
+            )
+
+            image_embedding_responses = image_response.data
+            if image_embedding_responses is None:
+                raise Exception("/image/embeddings route returned None Embeddings.")
+
+        if v1_embeddings_request["input"]:
+            response: EmbeddingResponse = super().embedding(  # type: ignore
+                model,
+                input,
+                timeout,
+                logging_obj,
+                model_response,
+                optional_params,
+                api_key,
+                api_base,
+                client=(
+                    client
+                    if client is not None and isinstance(client, OpenAI)
+                    else None
+                ),
+                aembedding=aembedding,
+            )
+
+            text_embedding_responses = response.data
+            if text_embedding_responses is None:
+                raise Exception("/v1/embeddings route returned None Embeddings.")
+
+        return self._process_response(
+            image_embedding_responses=image_embedding_responses,
+            text_embedding_responses=text_embedding_responses,
+            image_embeddings_idx=image_embeddings_idx,
+            model_response=model_response,
+            input=input,
+        )