aboutsummaryrefslogtreecommitdiff
path: root/.venv/lib/python3.12/site-packages/litellm/llms/azure_ai/embed/cohere_transformation.py
diff options
context:
space:
mode:
Diffstat (limited to '.venv/lib/python3.12/site-packages/litellm/llms/azure_ai/embed/cohere_transformation.py')
-rw-r--r--.venv/lib/python3.12/site-packages/litellm/llms/azure_ai/embed/cohere_transformation.py99
1 files changed, 99 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/litellm/llms/azure_ai/embed/cohere_transformation.py b/.venv/lib/python3.12/site-packages/litellm/llms/azure_ai/embed/cohere_transformation.py
new file mode 100644
index 00000000..38b0dbbe
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/litellm/llms/azure_ai/embed/cohere_transformation.py
@@ -0,0 +1,99 @@
+"""
+Transformation logic from OpenAI /v1/embeddings format to Azure AI Cohere's /v1/embed.
+
+Why separate file? Make it easy to see how transformation works
+
+Convers
+- Cohere request format
+
+Docs - https://docs.aws.amazon.com/bedrock/latest/userguide/model-parameters-titan-embed-text.html
+"""
+
+from typing import List, Optional, Tuple
+
+from litellm.types.llms.azure_ai import ImageEmbeddingInput, ImageEmbeddingRequest
+from litellm.types.llms.openai import EmbeddingCreateParams
+from litellm.types.utils import EmbeddingResponse, Usage
+from litellm.utils import is_base64_encoded
+
+
+class AzureAICohereConfig:
+ def __init__(self) -> None:
+ pass
+
+ def _map_azure_model_group(self, model: str) -> str:
+
+ if model == "offer-cohere-embed-multili-paygo":
+ return "Cohere-embed-v3-multilingual"
+ elif model == "offer-cohere-embed-english-paygo":
+ return "Cohere-embed-v3-english"
+
+ return model
+
+ def _transform_request_image_embeddings(
+ self, input: List[str], optional_params: dict
+ ) -> ImageEmbeddingRequest:
+ """
+ Assume all str in list is base64 encoded string
+ """
+ image_input: List[ImageEmbeddingInput] = []
+ for i in input:
+ embedding_input = ImageEmbeddingInput(image=i)
+ image_input.append(embedding_input)
+ return ImageEmbeddingRequest(input=image_input, **optional_params)
+
+ def _transform_request(
+ self, input: List[str], optional_params: dict, model: str
+ ) -> Tuple[ImageEmbeddingRequest, EmbeddingCreateParams, List[int]]:
+ """
+ Return the list of input to `/image/embeddings`, `/v1/embeddings`, list of image_embedding_idx for recombination
+ """
+ image_embeddings: List[str] = []
+ image_embedding_idx: List[int] = []
+ for idx, i in enumerate(input):
+ """
+ - is base64 -> route to image embeddings
+ - is ImageEmbeddingInput -> route to image embeddings
+ - else -> route to `/v1/embeddings`
+ """
+ if is_base64_encoded(i):
+ image_embeddings.append(i)
+ image_embedding_idx.append(idx)
+
+ ## REMOVE IMAGE EMBEDDINGS FROM input list
+ filtered_input = [
+ item for idx, item in enumerate(input) if idx not in image_embedding_idx
+ ]
+
+ v1_embeddings_request = EmbeddingCreateParams(
+ input=filtered_input, model=model, **optional_params
+ )
+ image_embeddings_request = self._transform_request_image_embeddings(
+ input=image_embeddings, optional_params=optional_params
+ )
+
+ return image_embeddings_request, v1_embeddings_request, image_embedding_idx
+
+ def _transform_response(self, response: EmbeddingResponse) -> EmbeddingResponse:
+ additional_headers: Optional[dict] = response._hidden_params.get(
+ "additional_headers"
+ )
+ if additional_headers:
+ # CALCULATE USAGE
+ input_tokens: Optional[str] = additional_headers.get(
+ "llm_provider-num_tokens"
+ )
+ if input_tokens:
+ if response.usage:
+ response.usage.prompt_tokens = int(input_tokens)
+ else:
+ response.usage = Usage(prompt_tokens=int(input_tokens))
+
+ # SET MODEL
+ base_model: Optional[str] = additional_headers.get(
+ "llm_provider-azureml-model-group"
+ )
+ if base_model:
+ response.model = self._map_azure_model_group(base_model)
+
+ return response