aboutsummaryrefslogtreecommitdiff
path: root/.venv/lib/python3.12/site-packages/litellm/integrations/datadog
diff options
context:
space:
mode:
authorS. Solomon Darnell2025-03-28 21:52:21 -0500
committerS. Solomon Darnell2025-03-28 21:52:21 -0500
commit4a52a71956a8d46fcb7294ac71734504bb09bcc2 (patch)
treeee3dc5af3b6313e921cd920906356f5d4febc4ed /.venv/lib/python3.12/site-packages/litellm/integrations/datadog
parentcc961e04ba734dd72309fb548a2f97d67d578813 (diff)
downloadgn-ai-master.tar.gz
two version of R2R are hereHEADmaster
Diffstat (limited to '.venv/lib/python3.12/site-packages/litellm/integrations/datadog')
-rw-r--r--.venv/lib/python3.12/site-packages/litellm/integrations/datadog/datadog.py580
-rw-r--r--.venv/lib/python3.12/site-packages/litellm/integrations/datadog/datadog_llm_obs.py203
2 files changed, 783 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/litellm/integrations/datadog/datadog.py b/.venv/lib/python3.12/site-packages/litellm/integrations/datadog/datadog.py
new file mode 100644
index 00000000..4f4b05c8
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/litellm/integrations/datadog/datadog.py
@@ -0,0 +1,580 @@
+"""
+DataDog Integration - sends logs to /api/v2/log
+
+DD Reference API: https://docs.datadoghq.com/api/latest/logs
+
+`async_log_success_event` - used by litellm proxy to send logs to datadog
+`log_success_event` - sync version of logging to DataDog, only used on litellm Python SDK, if user opts in to using sync functions
+
+async_log_success_event: will store batch of DD_MAX_BATCH_SIZE in memory and flush to Datadog once it reaches DD_MAX_BATCH_SIZE or every 5 seconds
+
+async_service_failure_hook: Logs failures from Redis, Postgres (Adjacent systems), as 'WARNING' on DataDog
+
+For batching specific details see CustomBatchLogger class
+"""
+
+import asyncio
+import datetime
+import json
+import os
+import traceback
+import uuid
+from datetime import datetime as datetimeObj
+from typing import Any, List, Optional, Union
+
+import httpx
+from httpx import Response
+
+import litellm
+from litellm._logging import verbose_logger
+from litellm.integrations.custom_batch_logger import CustomBatchLogger
+from litellm.llms.custom_httpx.http_handler import (
+ _get_httpx_client,
+ get_async_httpx_client,
+ httpxSpecialProvider,
+)
+from litellm.types.integrations.base_health_check import IntegrationHealthCheckStatus
+from litellm.types.integrations.datadog import *
+from litellm.types.services import ServiceLoggerPayload, ServiceTypes
+from litellm.types.utils import StandardLoggingPayload
+
+from ..additional_logging_utils import AdditionalLoggingUtils
+
+# max number of logs DD API can accept
+DD_MAX_BATCH_SIZE = 1000
+
+# specify what ServiceTypes are logged as success events to DD. (We don't want to spam DD traces with large number of service types)
+DD_LOGGED_SUCCESS_SERVICE_TYPES = [
+ ServiceTypes.RESET_BUDGET_JOB,
+]
+
+
+class DataDogLogger(
+ CustomBatchLogger,
+ AdditionalLoggingUtils,
+):
+ # Class variables or attributes
+ def __init__(
+ self,
+ **kwargs,
+ ):
+ """
+ Initializes the datadog logger, checks if the correct env variables are set
+
+ Required environment variables:
+ `DD_API_KEY` - your datadog api key
+ `DD_SITE` - your datadog site, example = `"us5.datadoghq.com"`
+ """
+ try:
+ verbose_logger.debug("Datadog: in init datadog logger")
+ # check if the correct env variables are set
+ if os.getenv("DD_API_KEY", None) is None:
+ raise Exception("DD_API_KEY is not set, set 'DD_API_KEY=<>")
+ if os.getenv("DD_SITE", None) is None:
+ raise Exception("DD_SITE is not set in .env, set 'DD_SITE=<>")
+ self.async_client = get_async_httpx_client(
+ llm_provider=httpxSpecialProvider.LoggingCallback
+ )
+ self.DD_API_KEY = os.getenv("DD_API_KEY")
+ self.intake_url = (
+ f"https://http-intake.logs.{os.getenv('DD_SITE')}/api/v2/logs"
+ )
+
+ ###################################
+ # OPTIONAL -only used for testing
+ dd_base_url: Optional[str] = (
+ os.getenv("_DATADOG_BASE_URL")
+ or os.getenv("DATADOG_BASE_URL")
+ or os.getenv("DD_BASE_URL")
+ )
+ if dd_base_url is not None:
+ self.intake_url = f"{dd_base_url}/api/v2/logs"
+ ###################################
+ self.sync_client = _get_httpx_client()
+ asyncio.create_task(self.periodic_flush())
+ self.flush_lock = asyncio.Lock()
+ super().__init__(
+ **kwargs, flush_lock=self.flush_lock, batch_size=DD_MAX_BATCH_SIZE
+ )
+ except Exception as e:
+ verbose_logger.exception(
+ f"Datadog: Got exception on init Datadog client {str(e)}"
+ )
+ raise e
+
+ async def async_log_success_event(self, kwargs, response_obj, start_time, end_time):
+ """
+ Async Log success events to Datadog
+
+ - Creates a Datadog payload
+ - Adds the Payload to the in memory logs queue
+ - Payload is flushed every 10 seconds or when batch size is greater than 100
+
+
+ Raises:
+ Raises a NON Blocking verbose_logger.exception if an error occurs
+ """
+ try:
+ verbose_logger.debug(
+ "Datadog: Logging - Enters logging function for model %s", kwargs
+ )
+ await self._log_async_event(kwargs, response_obj, start_time, end_time)
+
+ except Exception as e:
+ verbose_logger.exception(
+ f"Datadog Layer Error - {str(e)}\n{traceback.format_exc()}"
+ )
+ pass
+
+ async def async_log_failure_event(self, kwargs, response_obj, start_time, end_time):
+ try:
+ verbose_logger.debug(
+ "Datadog: Logging - Enters logging function for model %s", kwargs
+ )
+ await self._log_async_event(kwargs, response_obj, start_time, end_time)
+
+ except Exception as e:
+ verbose_logger.exception(
+ f"Datadog Layer Error - {str(e)}\n{traceback.format_exc()}"
+ )
+ pass
+
+ async def async_send_batch(self):
+ """
+ Sends the in memory logs queue to datadog api
+
+ Logs sent to /api/v2/logs
+
+ DD Ref: https://docs.datadoghq.com/api/latest/logs/
+
+ Raises:
+ Raises a NON Blocking verbose_logger.exception if an error occurs
+ """
+ try:
+ if not self.log_queue:
+ verbose_logger.exception("Datadog: log_queue does not exist")
+ return
+
+ verbose_logger.debug(
+ "Datadog - about to flush %s events on %s",
+ len(self.log_queue),
+ self.intake_url,
+ )
+
+ response = await self.async_send_compressed_data(self.log_queue)
+ if response.status_code == 413:
+ verbose_logger.exception(DD_ERRORS.DATADOG_413_ERROR.value)
+ return
+
+ response.raise_for_status()
+ if response.status_code != 202:
+ raise Exception(
+ f"Response from datadog API status_code: {response.status_code}, text: {response.text}"
+ )
+
+ verbose_logger.debug(
+ "Datadog: Response from datadog API status_code: %s, text: %s",
+ response.status_code,
+ response.text,
+ )
+ except Exception as e:
+ verbose_logger.exception(
+ f"Datadog Error sending batch API - {str(e)}\n{traceback.format_exc()}"
+ )
+
+ def log_success_event(self, kwargs, response_obj, start_time, end_time):
+ """
+ Sync Log success events to Datadog
+
+ - Creates a Datadog payload
+ - instantly logs it on DD API
+ """
+ try:
+ if litellm.datadog_use_v1 is True:
+ dd_payload = self._create_v0_logging_payload(
+ kwargs=kwargs,
+ response_obj=response_obj,
+ start_time=start_time,
+ end_time=end_time,
+ )
+ else:
+ dd_payload = self.create_datadog_logging_payload(
+ kwargs=kwargs,
+ response_obj=response_obj,
+ start_time=start_time,
+ end_time=end_time,
+ )
+
+ response = self.sync_client.post(
+ url=self.intake_url,
+ json=dd_payload, # type: ignore
+ headers={
+ "DD-API-KEY": self.DD_API_KEY,
+ },
+ )
+
+ response.raise_for_status()
+ if response.status_code != 202:
+ raise Exception(
+ f"Response from datadog API status_code: {response.status_code}, text: {response.text}"
+ )
+
+ verbose_logger.debug(
+ "Datadog: Response from datadog API status_code: %s, text: %s",
+ response.status_code,
+ response.text,
+ )
+
+ except Exception as e:
+ verbose_logger.exception(
+ f"Datadog Layer Error - {str(e)}\n{traceback.format_exc()}"
+ )
+ pass
+ pass
+
+ async def _log_async_event(self, kwargs, response_obj, start_time, end_time):
+
+ dd_payload = self.create_datadog_logging_payload(
+ kwargs=kwargs,
+ response_obj=response_obj,
+ start_time=start_time,
+ end_time=end_time,
+ )
+
+ self.log_queue.append(dd_payload)
+ verbose_logger.debug(
+ f"Datadog, event added to queue. Will flush in {self.flush_interval} seconds..."
+ )
+
+ if len(self.log_queue) >= self.batch_size:
+ await self.async_send_batch()
+
+ def _create_datadog_logging_payload_helper(
+ self,
+ standard_logging_object: StandardLoggingPayload,
+ status: DataDogStatus,
+ ) -> DatadogPayload:
+ json_payload = json.dumps(standard_logging_object, default=str)
+ verbose_logger.debug("Datadog: Logger - Logging payload = %s", json_payload)
+ dd_payload = DatadogPayload(
+ ddsource=self._get_datadog_source(),
+ ddtags=self._get_datadog_tags(
+ standard_logging_object=standard_logging_object
+ ),
+ hostname=self._get_datadog_hostname(),
+ message=json_payload,
+ service=self._get_datadog_service(),
+ status=status,
+ )
+ return dd_payload
+
+ def create_datadog_logging_payload(
+ self,
+ kwargs: Union[dict, Any],
+ response_obj: Any,
+ start_time: datetime.datetime,
+ end_time: datetime.datetime,
+ ) -> DatadogPayload:
+ """
+ Helper function to create a datadog payload for logging
+
+ Args:
+ kwargs (Union[dict, Any]): request kwargs
+ response_obj (Any): llm api response
+ start_time (datetime.datetime): start time of request
+ end_time (datetime.datetime): end time of request
+
+ Returns:
+ DatadogPayload: defined in types.py
+ """
+
+ standard_logging_object: Optional[StandardLoggingPayload] = kwargs.get(
+ "standard_logging_object", None
+ )
+ if standard_logging_object is None:
+ raise ValueError("standard_logging_object not found in kwargs")
+
+ status = DataDogStatus.INFO
+ if standard_logging_object.get("status") == "failure":
+ status = DataDogStatus.ERROR
+
+ # Build the initial payload
+ self.truncate_standard_logging_payload_content(standard_logging_object)
+
+ dd_payload = self._create_datadog_logging_payload_helper(
+ standard_logging_object=standard_logging_object,
+ status=status,
+ )
+ return dd_payload
+
+ async def async_send_compressed_data(self, data: List) -> Response:
+ """
+ Async helper to send compressed data to datadog self.intake_url
+
+ Datadog recommends using gzip to compress data
+ https://docs.datadoghq.com/api/latest/logs/
+
+ "Datadog recommends sending your logs compressed. Add the Content-Encoding: gzip header to the request when sending"
+ """
+
+ import gzip
+ import json
+
+ compressed_data = gzip.compress(json.dumps(data, default=str).encode("utf-8"))
+ response = await self.async_client.post(
+ url=self.intake_url,
+ data=compressed_data, # type: ignore
+ headers={
+ "DD-API-KEY": self.DD_API_KEY,
+ "Content-Encoding": "gzip",
+ "Content-Type": "application/json",
+ },
+ )
+ return response
+
+ async def async_service_failure_hook(
+ self,
+ payload: ServiceLoggerPayload,
+ error: Optional[str] = "",
+ parent_otel_span: Optional[Any] = None,
+ start_time: Optional[Union[datetimeObj, float]] = None,
+ end_time: Optional[Union[float, datetimeObj]] = None,
+ event_metadata: Optional[dict] = None,
+ ):
+ """
+ Logs failures from Redis, Postgres (Adjacent systems), as 'WARNING' on DataDog
+
+ - example - Redis is failing / erroring, will be logged on DataDog
+ """
+ try:
+ _payload_dict = payload.model_dump()
+ _payload_dict.update(event_metadata or {})
+ _dd_message_str = json.dumps(_payload_dict, default=str)
+ _dd_payload = DatadogPayload(
+ ddsource=self._get_datadog_source(),
+ ddtags=self._get_datadog_tags(),
+ hostname=self._get_datadog_hostname(),
+ message=_dd_message_str,
+ service=self._get_datadog_service(),
+ status=DataDogStatus.WARN,
+ )
+
+ self.log_queue.append(_dd_payload)
+
+ except Exception as e:
+ verbose_logger.exception(
+ f"Datadog: Logger - Exception in async_service_failure_hook: {e}"
+ )
+ pass
+
+ async def async_service_success_hook(
+ self,
+ payload: ServiceLoggerPayload,
+ error: Optional[str] = "",
+ parent_otel_span: Optional[Any] = None,
+ start_time: Optional[Union[datetimeObj, float]] = None,
+ end_time: Optional[Union[float, datetimeObj]] = None,
+ event_metadata: Optional[dict] = None,
+ ):
+ """
+ Logs success from Redis, Postgres (Adjacent systems), as 'INFO' on DataDog
+
+ No user has asked for this so far, this might be spammy on datatdog. If need arises we can implement this
+ """
+ try:
+ # intentionally done. Don't want to log all service types to DD
+ if payload.service not in DD_LOGGED_SUCCESS_SERVICE_TYPES:
+ return
+
+ _payload_dict = payload.model_dump()
+ _payload_dict.update(event_metadata or {})
+
+ _dd_message_str = json.dumps(_payload_dict, default=str)
+ _dd_payload = DatadogPayload(
+ ddsource=self._get_datadog_source(),
+ ddtags=self._get_datadog_tags(),
+ hostname=self._get_datadog_hostname(),
+ message=_dd_message_str,
+ service=self._get_datadog_service(),
+ status=DataDogStatus.INFO,
+ )
+
+ self.log_queue.append(_dd_payload)
+
+ except Exception as e:
+ verbose_logger.exception(
+ f"Datadog: Logger - Exception in async_service_failure_hook: {e}"
+ )
+
+ def _create_v0_logging_payload(
+ self,
+ kwargs: Union[dict, Any],
+ response_obj: Any,
+ start_time: datetime.datetime,
+ end_time: datetime.datetime,
+ ) -> DatadogPayload:
+ """
+ Note: This is our V1 Version of DataDog Logging Payload
+
+
+ (Not Recommended) If you want this to get logged set `litellm.datadog_use_v1 = True`
+ """
+ import json
+
+ litellm_params = kwargs.get("litellm_params", {})
+ metadata = (
+ litellm_params.get("metadata", {}) or {}
+ ) # if litellm_params['metadata'] == None
+ messages = kwargs.get("messages")
+ optional_params = kwargs.get("optional_params", {})
+ call_type = kwargs.get("call_type", "litellm.completion")
+ cache_hit = kwargs.get("cache_hit", False)
+ usage = response_obj["usage"]
+ id = response_obj.get("id", str(uuid.uuid4()))
+ usage = dict(usage)
+ try:
+ response_time = (end_time - start_time).total_seconds() * 1000
+ except Exception:
+ response_time = None
+
+ try:
+ response_obj = dict(response_obj)
+ except Exception:
+ response_obj = response_obj
+
+ # Clean Metadata before logging - never log raw metadata
+ # the raw metadata can contain circular references which leads to infinite recursion
+ # we clean out all extra litellm metadata params before logging
+ clean_metadata = {}
+ if isinstance(metadata, dict):
+ for key, value in metadata.items():
+ # clean litellm metadata before logging
+ if key in [
+ "endpoint",
+ "caching_groups",
+ "previous_models",
+ ]:
+ continue
+ else:
+ clean_metadata[key] = value
+
+ # Build the initial payload
+ payload = {
+ "id": id,
+ "call_type": call_type,
+ "cache_hit": cache_hit,
+ "start_time": start_time,
+ "end_time": end_time,
+ "response_time": response_time,
+ "model": kwargs.get("model", ""),
+ "user": kwargs.get("user", ""),
+ "model_parameters": optional_params,
+ "spend": kwargs.get("response_cost", 0),
+ "messages": messages,
+ "response": response_obj,
+ "usage": usage,
+ "metadata": clean_metadata,
+ }
+
+ json_payload = json.dumps(payload, default=str)
+
+ verbose_logger.debug("Datadog: Logger - Logging payload = %s", json_payload)
+
+ dd_payload = DatadogPayload(
+ ddsource=self._get_datadog_source(),
+ ddtags=self._get_datadog_tags(),
+ hostname=self._get_datadog_hostname(),
+ message=json_payload,
+ service=self._get_datadog_service(),
+ status=DataDogStatus.INFO,
+ )
+ return dd_payload
+
+ @staticmethod
+ def _get_datadog_tags(
+ standard_logging_object: Optional[StandardLoggingPayload] = None,
+ ) -> str:
+ """
+ Get the datadog tags for the request
+
+ DD tags need to be as follows:
+ - tags: ["user_handle:dog@gmail.com", "app_version:1.0.0"]
+ """
+ base_tags = {
+ "env": os.getenv("DD_ENV", "unknown"),
+ "service": os.getenv("DD_SERVICE", "litellm"),
+ "version": os.getenv("DD_VERSION", "unknown"),
+ "HOSTNAME": DataDogLogger._get_datadog_hostname(),
+ "POD_NAME": os.getenv("POD_NAME", "unknown"),
+ }
+
+ tags = [f"{k}:{v}" for k, v in base_tags.items()]
+
+ if standard_logging_object:
+ _request_tags: List[str] = (
+ standard_logging_object.get("request_tags", []) or []
+ )
+ request_tags = [f"request_tag:{tag}" for tag in _request_tags]
+ tags.extend(request_tags)
+
+ return ",".join(tags)
+
+ @staticmethod
+ def _get_datadog_source():
+ return os.getenv("DD_SOURCE", "litellm")
+
+ @staticmethod
+ def _get_datadog_service():
+ return os.getenv("DD_SERVICE", "litellm-server")
+
+ @staticmethod
+ def _get_datadog_hostname():
+ return os.getenv("HOSTNAME", "")
+
+ @staticmethod
+ def _get_datadog_env():
+ return os.getenv("DD_ENV", "unknown")
+
+ @staticmethod
+ def _get_datadog_pod_name():
+ return os.getenv("POD_NAME", "unknown")
+
+ async def async_health_check(self) -> IntegrationHealthCheckStatus:
+ """
+ Check if the service is healthy
+ """
+ from litellm.litellm_core_utils.litellm_logging import (
+ create_dummy_standard_logging_payload,
+ )
+
+ standard_logging_object = create_dummy_standard_logging_payload()
+ dd_payload = self._create_datadog_logging_payload_helper(
+ standard_logging_object=standard_logging_object,
+ status=DataDogStatus.INFO,
+ )
+ log_queue = [dd_payload]
+ response = await self.async_send_compressed_data(log_queue)
+ try:
+ response.raise_for_status()
+ return IntegrationHealthCheckStatus(
+ status="healthy",
+ error_message=None,
+ )
+ except httpx.HTTPStatusError as e:
+ return IntegrationHealthCheckStatus(
+ status="unhealthy",
+ error_message=e.response.text,
+ )
+ except Exception as e:
+ return IntegrationHealthCheckStatus(
+ status="unhealthy",
+ error_message=str(e),
+ )
+
+ async def get_request_response_payload(
+ self,
+ request_id: str,
+ start_time_utc: Optional[datetimeObj],
+ end_time_utc: Optional[datetimeObj],
+ ) -> Optional[dict]:
+ pass
diff --git a/.venv/lib/python3.12/site-packages/litellm/integrations/datadog/datadog_llm_obs.py b/.venv/lib/python3.12/site-packages/litellm/integrations/datadog/datadog_llm_obs.py
new file mode 100644
index 00000000..e4e074ba
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/litellm/integrations/datadog/datadog_llm_obs.py
@@ -0,0 +1,203 @@
+"""
+Implements logging integration with Datadog's LLM Observability Service
+
+
+API Reference: https://docs.datadoghq.com/llm_observability/setup/api/?tab=example#api-standards
+
+"""
+
+import asyncio
+import json
+import os
+import uuid
+from datetime import datetime
+from typing import Any, Dict, List, Optional, Union
+
+import litellm
+from litellm._logging import verbose_logger
+from litellm.integrations.custom_batch_logger import CustomBatchLogger
+from litellm.integrations.datadog.datadog import DataDogLogger
+from litellm.llms.custom_httpx.http_handler import (
+ get_async_httpx_client,
+ httpxSpecialProvider,
+)
+from litellm.types.integrations.datadog_llm_obs import *
+from litellm.types.utils import StandardLoggingPayload
+
+
+class DataDogLLMObsLogger(DataDogLogger, CustomBatchLogger):
+ def __init__(self, **kwargs):
+ try:
+ verbose_logger.debug("DataDogLLMObs: Initializing logger")
+ if os.getenv("DD_API_KEY", None) is None:
+ raise Exception("DD_API_KEY is not set, set 'DD_API_KEY=<>'")
+ if os.getenv("DD_SITE", None) is None:
+ raise Exception(
+ "DD_SITE is not set, set 'DD_SITE=<>', example sit = `us5.datadoghq.com`"
+ )
+
+ self.async_client = get_async_httpx_client(
+ llm_provider=httpxSpecialProvider.LoggingCallback
+ )
+ self.DD_API_KEY = os.getenv("DD_API_KEY")
+ self.DD_SITE = os.getenv("DD_SITE")
+ self.intake_url = (
+ f"https://api.{self.DD_SITE}/api/intake/llm-obs/v1/trace/spans"
+ )
+
+ # testing base url
+ dd_base_url = os.getenv("DD_BASE_URL")
+ if dd_base_url:
+ self.intake_url = f"{dd_base_url}/api/intake/llm-obs/v1/trace/spans"
+
+ asyncio.create_task(self.periodic_flush())
+ self.flush_lock = asyncio.Lock()
+ self.log_queue: List[LLMObsPayload] = []
+ CustomBatchLogger.__init__(self, **kwargs, flush_lock=self.flush_lock)
+ except Exception as e:
+ verbose_logger.exception(f"DataDogLLMObs: Error initializing - {str(e)}")
+ raise e
+
+ async def async_log_success_event(self, kwargs, response_obj, start_time, end_time):
+ try:
+ verbose_logger.debug(
+ f"DataDogLLMObs: Logging success event for model {kwargs.get('model', 'unknown')}"
+ )
+ payload = self.create_llm_obs_payload(
+ kwargs, response_obj, start_time, end_time
+ )
+ verbose_logger.debug(f"DataDogLLMObs: Payload: {payload}")
+ self.log_queue.append(payload)
+
+ if len(self.log_queue) >= self.batch_size:
+ await self.async_send_batch()
+ except Exception as e:
+ verbose_logger.exception(
+ f"DataDogLLMObs: Error logging success event - {str(e)}"
+ )
+
+ async def async_send_batch(self):
+ try:
+ if not self.log_queue:
+ return
+
+ verbose_logger.debug(
+ f"DataDogLLMObs: Flushing {len(self.log_queue)} events"
+ )
+
+ # Prepare the payload
+ payload = {
+ "data": DDIntakePayload(
+ type="span",
+ attributes=DDSpanAttributes(
+ ml_app=self._get_datadog_service(),
+ tags=[self._get_datadog_tags()],
+ spans=self.log_queue,
+ ),
+ ),
+ }
+ verbose_logger.debug("payload %s", json.dumps(payload, indent=4))
+ response = await self.async_client.post(
+ url=self.intake_url,
+ json=payload,
+ headers={
+ "DD-API-KEY": self.DD_API_KEY,
+ "Content-Type": "application/json",
+ },
+ )
+
+ response.raise_for_status()
+ if response.status_code != 202:
+ raise Exception(
+ f"DataDogLLMObs: Unexpected response - status_code: {response.status_code}, text: {response.text}"
+ )
+
+ verbose_logger.debug(
+ f"DataDogLLMObs: Successfully sent batch - status_code: {response.status_code}"
+ )
+ self.log_queue.clear()
+ except Exception as e:
+ verbose_logger.exception(f"DataDogLLMObs: Error sending batch - {str(e)}")
+
+ def create_llm_obs_payload(
+ self, kwargs: Dict, response_obj: Any, start_time: datetime, end_time: datetime
+ ) -> LLMObsPayload:
+ standard_logging_payload: Optional[StandardLoggingPayload] = kwargs.get(
+ "standard_logging_object"
+ )
+ if standard_logging_payload is None:
+ raise Exception("DataDogLLMObs: standard_logging_object is not set")
+
+ messages = standard_logging_payload["messages"]
+ messages = self._ensure_string_content(messages=messages)
+
+ metadata = kwargs.get("litellm_params", {}).get("metadata", {})
+
+ input_meta = InputMeta(messages=messages) # type: ignore
+ output_meta = OutputMeta(messages=self._get_response_messages(response_obj))
+
+ meta = Meta(
+ kind="llm",
+ input=input_meta,
+ output=output_meta,
+ metadata=self._get_dd_llm_obs_payload_metadata(standard_logging_payload),
+ )
+
+ # Calculate metrics (you may need to adjust these based on available data)
+ metrics = LLMMetrics(
+ input_tokens=float(standard_logging_payload.get("prompt_tokens", 0)),
+ output_tokens=float(standard_logging_payload.get("completion_tokens", 0)),
+ total_tokens=float(standard_logging_payload.get("total_tokens", 0)),
+ )
+
+ return LLMObsPayload(
+ parent_id=metadata.get("parent_id", "undefined"),
+ trace_id=metadata.get("trace_id", str(uuid.uuid4())),
+ span_id=metadata.get("span_id", str(uuid.uuid4())),
+ name=metadata.get("name", "litellm_llm_call"),
+ meta=meta,
+ start_ns=int(start_time.timestamp() * 1e9),
+ duration=int((end_time - start_time).total_seconds() * 1e9),
+ metrics=metrics,
+ tags=[
+ self._get_datadog_tags(standard_logging_object=standard_logging_payload)
+ ],
+ )
+
+ def _get_response_messages(self, response_obj: Any) -> List[Any]:
+ """
+ Get the messages from the response object
+
+ for now this handles logging /chat/completions responses
+ """
+ if isinstance(response_obj, litellm.ModelResponse):
+ return [response_obj["choices"][0]["message"].json()]
+ return []
+
+ def _ensure_string_content(
+ self, messages: Optional[Union[str, List[Any], Dict[Any, Any]]]
+ ) -> List[Any]:
+ if messages is None:
+ return []
+ if isinstance(messages, str):
+ return [messages]
+ elif isinstance(messages, list):
+ return [message for message in messages]
+ elif isinstance(messages, dict):
+ return [str(messages.get("content", ""))]
+ return []
+
+ def _get_dd_llm_obs_payload_metadata(
+ self, standard_logging_payload: StandardLoggingPayload
+ ) -> Dict:
+ _metadata = {
+ "model_name": standard_logging_payload.get("model", "unknown"),
+ "model_provider": standard_logging_payload.get(
+ "custom_llm_provider", "unknown"
+ ),
+ }
+ _standard_logging_metadata: dict = (
+ dict(standard_logging_payload.get("metadata", {})) or {}
+ )
+ _metadata.update(_standard_logging_metadata)
+ return _metadata