aboutsummaryrefslogtreecommitdiff
path: root/.venv/lib/python3.12/site-packages/litellm/integrations/datadog/datadog_llm_obs.py
diff options
context:
space:
mode:
Diffstat (limited to '.venv/lib/python3.12/site-packages/litellm/integrations/datadog/datadog_llm_obs.py')
-rw-r--r--.venv/lib/python3.12/site-packages/litellm/integrations/datadog/datadog_llm_obs.py203
1 files changed, 203 insertions, 0 deletions
diff --git a/.venv/lib/python3.12/site-packages/litellm/integrations/datadog/datadog_llm_obs.py b/.venv/lib/python3.12/site-packages/litellm/integrations/datadog/datadog_llm_obs.py
new file mode 100644
index 00000000..e4e074ba
--- /dev/null
+++ b/.venv/lib/python3.12/site-packages/litellm/integrations/datadog/datadog_llm_obs.py
@@ -0,0 +1,203 @@
+"""
+Implements logging integration with Datadog's LLM Observability Service
+
+
+API Reference: https://docs.datadoghq.com/llm_observability/setup/api/?tab=example#api-standards
+
+"""
+
+import asyncio
+import json
+import os
+import uuid
+from datetime import datetime
+from typing import Any, Dict, List, Optional, Union
+
+import litellm
+from litellm._logging import verbose_logger
+from litellm.integrations.custom_batch_logger import CustomBatchLogger
+from litellm.integrations.datadog.datadog import DataDogLogger
+from litellm.llms.custom_httpx.http_handler import (
+ get_async_httpx_client,
+ httpxSpecialProvider,
+)
+from litellm.types.integrations.datadog_llm_obs import *
+from litellm.types.utils import StandardLoggingPayload
+
+
+class DataDogLLMObsLogger(DataDogLogger, CustomBatchLogger):
+ def __init__(self, **kwargs):
+ try:
+ verbose_logger.debug("DataDogLLMObs: Initializing logger")
+ if os.getenv("DD_API_KEY", None) is None:
+ raise Exception("DD_API_KEY is not set, set 'DD_API_KEY=<>'")
+ if os.getenv("DD_SITE", None) is None:
+ raise Exception(
+ "DD_SITE is not set, set 'DD_SITE=<>', example sit = `us5.datadoghq.com`"
+ )
+
+ self.async_client = get_async_httpx_client(
+ llm_provider=httpxSpecialProvider.LoggingCallback
+ )
+ self.DD_API_KEY = os.getenv("DD_API_KEY")
+ self.DD_SITE = os.getenv("DD_SITE")
+ self.intake_url = (
+ f"https://api.{self.DD_SITE}/api/intake/llm-obs/v1/trace/spans"
+ )
+
+ # testing base url
+ dd_base_url = os.getenv("DD_BASE_URL")
+ if dd_base_url:
+ self.intake_url = f"{dd_base_url}/api/intake/llm-obs/v1/trace/spans"
+
+ asyncio.create_task(self.periodic_flush())
+ self.flush_lock = asyncio.Lock()
+ self.log_queue: List[LLMObsPayload] = []
+ CustomBatchLogger.__init__(self, **kwargs, flush_lock=self.flush_lock)
+ except Exception as e:
+ verbose_logger.exception(f"DataDogLLMObs: Error initializing - {str(e)}")
+ raise e
+
+ async def async_log_success_event(self, kwargs, response_obj, start_time, end_time):
+ try:
+ verbose_logger.debug(
+ f"DataDogLLMObs: Logging success event for model {kwargs.get('model', 'unknown')}"
+ )
+ payload = self.create_llm_obs_payload(
+ kwargs, response_obj, start_time, end_time
+ )
+ verbose_logger.debug(f"DataDogLLMObs: Payload: {payload}")
+ self.log_queue.append(payload)
+
+ if len(self.log_queue) >= self.batch_size:
+ await self.async_send_batch()
+ except Exception as e:
+ verbose_logger.exception(
+ f"DataDogLLMObs: Error logging success event - {str(e)}"
+ )
+
+ async def async_send_batch(self):
+ try:
+ if not self.log_queue:
+ return
+
+ verbose_logger.debug(
+ f"DataDogLLMObs: Flushing {len(self.log_queue)} events"
+ )
+
+ # Prepare the payload
+ payload = {
+ "data": DDIntakePayload(
+ type="span",
+ attributes=DDSpanAttributes(
+ ml_app=self._get_datadog_service(),
+ tags=[self._get_datadog_tags()],
+ spans=self.log_queue,
+ ),
+ ),
+ }
+ verbose_logger.debug("payload %s", json.dumps(payload, indent=4))
+ response = await self.async_client.post(
+ url=self.intake_url,
+ json=payload,
+ headers={
+ "DD-API-KEY": self.DD_API_KEY,
+ "Content-Type": "application/json",
+ },
+ )
+
+ response.raise_for_status()
+ if response.status_code != 202:
+ raise Exception(
+ f"DataDogLLMObs: Unexpected response - status_code: {response.status_code}, text: {response.text}"
+ )
+
+ verbose_logger.debug(
+ f"DataDogLLMObs: Successfully sent batch - status_code: {response.status_code}"
+ )
+ self.log_queue.clear()
+ except Exception as e:
+ verbose_logger.exception(f"DataDogLLMObs: Error sending batch - {str(e)}")
+
+ def create_llm_obs_payload(
+ self, kwargs: Dict, response_obj: Any, start_time: datetime, end_time: datetime
+ ) -> LLMObsPayload:
+ standard_logging_payload: Optional[StandardLoggingPayload] = kwargs.get(
+ "standard_logging_object"
+ )
+ if standard_logging_payload is None:
+ raise Exception("DataDogLLMObs: standard_logging_object is not set")
+
+ messages = standard_logging_payload["messages"]
+ messages = self._ensure_string_content(messages=messages)
+
+ metadata = kwargs.get("litellm_params", {}).get("metadata", {})
+
+ input_meta = InputMeta(messages=messages) # type: ignore
+ output_meta = OutputMeta(messages=self._get_response_messages(response_obj))
+
+ meta = Meta(
+ kind="llm",
+ input=input_meta,
+ output=output_meta,
+ metadata=self._get_dd_llm_obs_payload_metadata(standard_logging_payload),
+ )
+
+ # Calculate metrics (you may need to adjust these based on available data)
+ metrics = LLMMetrics(
+ input_tokens=float(standard_logging_payload.get("prompt_tokens", 0)),
+ output_tokens=float(standard_logging_payload.get("completion_tokens", 0)),
+ total_tokens=float(standard_logging_payload.get("total_tokens", 0)),
+ )
+
+ return LLMObsPayload(
+ parent_id=metadata.get("parent_id", "undefined"),
+ trace_id=metadata.get("trace_id", str(uuid.uuid4())),
+ span_id=metadata.get("span_id", str(uuid.uuid4())),
+ name=metadata.get("name", "litellm_llm_call"),
+ meta=meta,
+ start_ns=int(start_time.timestamp() * 1e9),
+ duration=int((end_time - start_time).total_seconds() * 1e9),
+ metrics=metrics,
+ tags=[
+ self._get_datadog_tags(standard_logging_object=standard_logging_payload)
+ ],
+ )
+
+ def _get_response_messages(self, response_obj: Any) -> List[Any]:
+ """
+ Get the messages from the response object
+
+ for now this handles logging /chat/completions responses
+ """
+ if isinstance(response_obj, litellm.ModelResponse):
+ return [response_obj["choices"][0]["message"].json()]
+ return []
+
+ def _ensure_string_content(
+ self, messages: Optional[Union[str, List[Any], Dict[Any, Any]]]
+ ) -> List[Any]:
+ if messages is None:
+ return []
+ if isinstance(messages, str):
+ return [messages]
+ elif isinstance(messages, list):
+ return [message for message in messages]
+ elif isinstance(messages, dict):
+ return [str(messages.get("content", ""))]
+ return []
+
+ def _get_dd_llm_obs_payload_metadata(
+ self, standard_logging_payload: StandardLoggingPayload
+ ) -> Dict:
+ _metadata = {
+ "model_name": standard_logging_payload.get("model", "unknown"),
+ "model_provider": standard_logging_payload.get(
+ "custom_llm_provider", "unknown"
+ ),
+ }
+ _standard_logging_metadata: dict = (
+ dict(standard_logging_payload.get("metadata", {})) or {}
+ )
+ _metadata.update(_standard_logging_metadata)
+ return _metadata