aboutsummaryrefslogtreecommitdiff
path: root/gn3/correlation
diff options
context:
space:
mode:
authorAlexander Kabui2021-03-16 11:38:13 +0300
committerGitHub2021-03-16 11:38:13 +0300
commit56ce88ad31dec3cece63e9370ca4e4c02139753b (patch)
tree766504dfaca75a14cc91fc3d88c41d1e775d415f /gn3/correlation
parent43d1bb7f6cd2b5890d5b3eb7c357caafda25a35c (diff)
downloadgenenetwork3-56ce88ad31dec3cece63e9370ca4e4c02139753b.tar.gz
delete unwanted correlation stuff (#5)
* delete unwanted correlation stuff * Refactor/clean up correlations (#4) * initial commit for Refactor/clean-up-correlation * add python scipy dependency * initial commit for sample correlation * initial commit for sample correlation endpoint * initial commit for integration and unittest * initial commit for registering correlation blueprint * add and modify unittest and integration tests for correlation * Add compute compute_all_sample_corr method for correlation * add scipy to requirement txt file * add tissue correlation for trait list * add unittest for tissue correlation * add lit correlation for trait list * add unittests for lit correlation for trait list * modify lit correlarion for trait list * add unittests for lit correlation for trait list * add correlation metho in dynamic url * add file format for expected structure input while doing sample correlation * modify input data structure -> add trait id * update tests for sample r correlation * add compute all lit correlation method * add endpoint for computing lit_corr * add unit and integration tests for computing lit corr * add /api/correlation/tissue_corr/{corr_method} endpoint for tissue correlation * add unittest and integration tests for tissue correlation Co-authored-by: BonfaceKilz <bonfacemunyoki@gmail.com> * update guix scm file * fix pylint error for correlations api Co-authored-by: BonfaceKilz <bonfacemunyoki@gmail.com>
Diffstat (limited to 'gn3/correlation')
-rw-r--r--gn3/correlation/__init__.py0
-rw-r--r--gn3/correlation/correlation_computations.py32
-rw-r--r--gn3/correlation/correlation_functions.py96
-rw-r--r--gn3/correlation/correlation_utility.py22
-rw-r--r--gn3/correlation/show_corr_results.py735
5 files changed, 0 insertions, 885 deletions
diff --git a/gn3/correlation/__init__.py b/gn3/correlation/__init__.py
deleted file mode 100644
index e69de29..0000000
--- a/gn3/correlation/__init__.py
+++ /dev/null
diff --git a/gn3/correlation/correlation_computations.py b/gn3/correlation/correlation_computations.py
deleted file mode 100644
index 6a3f2bb..0000000
--- a/gn3/correlation/correlation_computations.py
+++ /dev/null
@@ -1,32 +0,0 @@
-"""module contains code for any computation in correlation"""
-
-import json
-from .show_corr_results import CorrelationResults
-
-def compute_correlation(correlation_input_data,
- correlation_results=CorrelationResults):
- """function that does correlation .creates Correlation results instance
-
- correlation_input_data structure is a dict with
-
- {
- "trait_id":"valid trait id",
- "dataset":"",
- "sample_vals":{},
- "primary_samples":"",
- "corr_type":"",
- corr_dataset:"",
- "corr_return_results":"",
-
-
- }
-
- """
-
- corr_object = correlation_results(
- start_vars=correlation_input_data)
-
- corr_results = corr_object.do_correlation(start_vars=correlation_input_data)
- # possibility of file being so large cause of the not sure whether to return a file
-
- return corr_results
diff --git a/gn3/correlation/correlation_functions.py b/gn3/correlation/correlation_functions.py
deleted file mode 100644
index be08c96..0000000
--- a/gn3/correlation/correlation_functions.py
+++ /dev/null
@@ -1,96 +0,0 @@
-
-"""
-# Copyright (C) University of Tennessee Health Science Center, Memphis, TN.
-#
-# This program is free software: you can redistribute it and/or modify it
-# under the terms of the GNU Affero General Public License
-# as published by the Free Software Foundation, either version 3 of the
-# License, or (at your option) any later version.
-#
-# This program is distributed in the hope that it will be useful,
-# but WITHOUT ANY WARRANTY; without even the implied warranty of
-# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
-# See the GNU Affero General Public License for more details.
-#
-# This program is available from Source Forge: at GeneNetwork Project
-# (sourceforge.net/projects/genenetwork/).
-#
-# Contact Drs. Robert W. Williams and Xiaodong Zhou (2010)
-# at rwilliams@uthsc.edu and xzhou15@uthsc.edu
-#
-#
-#
-# This module is used by GeneNetwork project (www.genenetwork.org)
-#
-# Created by GeneNetwork Core Team 2010/08/10
-#
-# Last updated by NL 2011/03/23
-
-
-"""
-
-import rpy2.robjects
-from gn3.base.mrna_assay_tissue_data import MrnaAssayTissueData
-
-
-#####################################################################################
-# Input: primaryValue(list): one list of expression values of one probeSet,
-# targetValue(list): one list of expression values of one probeSet,
-# method(string): indicate correlation method ('pearson' or 'spearman')
-# Output: corr_result(list): first item is Correlation Value, second item is tissue number,
-# third item is PValue
-# Function: get correlation value,Tissue quantity ,p value result by using R;
-# Note : This function is special case since both primaryValue and targetValue are from
-# the same dataset. So the length of these two parameters is the same. They are pairs.
-# Also, in the datatable TissueProbeSetData, all Tissue values are loaded based on
-# the same tissue order
-#####################################################################################
-
-def cal_zero_order_corr_for_tiss(primaryValue=[], targetValue=[], method='pearson'):
- """refer above for info on the function"""
- # pylint: disable = E, W, R, C
-
- #nb disabled pylint until tests are written for this function
-
- R_primary = rpy2.robjects.FloatVector(list(range(len(primaryValue))))
- N = len(primaryValue)
- for i in range(len(primaryValue)):
- R_primary[i] = primaryValue[i]
-
- R_target = rpy2.robjects.FloatVector(list(range(len(targetValue))))
- for i in range(len(targetValue)):
- R_target[i] = targetValue[i]
-
- R_corr_test = rpy2.robjects.r['cor.test']
- if method == 'spearman':
- R_result = R_corr_test(R_primary, R_target, method='spearman')
- else:
- R_result = R_corr_test(R_primary, R_target)
-
- corr_result = []
- corr_result.append(R_result[3][0])
- corr_result.append(N)
- corr_result.append(R_result[2][0])
-
- return corr_result
-
-
-####################################################
-####################################################
-# input: cursor, symbolList (list), dataIdDict(Dict): key is symbol
-# output: SymbolValuePairDict(dictionary):one dictionary of Symbol and Value Pair.
-# key is symbol, value is one list of expression values of one probeSet.
-# function: wrapper function for getSymbolValuePairDict function
-# build gene symbol list if necessary, cut it into small lists if necessary,
-# then call getSymbolValuePairDict function and merge the results.
-###################################################
-#####################################################
-
-def get_trait_symbol_and_tissue_values(symbol_list=None):
- """function to get trait symbol and tissues values refer above"""
- tissue_data = MrnaAssayTissueData(gene_symbols=symbol_list)
-
- if len(tissue_data.gene_symbols) >= 1:
- return tissue_data.get_symbol_values_pairs()
-
- return None
diff --git a/gn3/correlation/correlation_utility.py b/gn3/correlation/correlation_utility.py
deleted file mode 100644
index 7583bd7..0000000
--- a/gn3/correlation/correlation_utility.py
+++ /dev/null
@@ -1,22 +0,0 @@
-"""module contains utility functions for correlation"""
-
-
-class AttributeSetter:
- """class for setting Attributes"""
-
- def __init__(self, trait_obj):
- for key, value in trait_obj.items():
- setattr(self, key, value)
-
- def __str__(self):
- return self.__class__.__name__
-
- def get_dict(self):
- """dummy function to get dict object"""
- return self.__dict__
-
-
-def get_genofile_samplelist(dataset):
- """mock function to get genofile samplelist"""
-
- return ["C57BL/6J"]
diff --git a/gn3/correlation/show_corr_results.py b/gn3/correlation/show_corr_results.py
deleted file mode 100644
index 55d8366..0000000
--- a/gn3/correlation/show_corr_results.py
+++ /dev/null
@@ -1,735 +0,0 @@
-"""module contains code for doing correlation"""
-
-import json
-import collections
-import numpy
-import scipy.stats
-import rpy2.robjects as ro
-from flask import g
-from gn3.base.data_set import create_dataset
-from gn3.utility.db_tools import escape
-from gn3.utility.helper_functions import get_species_dataset_trait
-from gn3.utility.corr_result_helpers import normalize_values
-from gn3.base.trait import create_trait
-from gn3.utility import hmac
-from . import correlation_functions
-
-
-class CorrelationResults:
- """class for computing correlation"""
- # pylint: disable=too-many-instance-attributes
- # pylint:disable=attribute-defined-outside-init
-
- def __init__(self, start_vars):
- self.assertion_for_start_vars(start_vars)
-
- @staticmethod
- def assertion_for_start_vars(start_vars):
- # pylint: disable = E, W, R, C
-
- # should better ways to assert the variables
- # example includes sample
- assert("corr_type" in start_vars)
- assert(isinstance(start_vars['corr_type'], str))
- # example includes pearson
- assert('corr_sample_method' in start_vars)
- assert('corr_dataset' in start_vars)
- # means the limit
- assert('corr_return_results' in start_vars)
-
- if "loc_chr" in start_vars:
- assert('min_loc_mb' in start_vars)
- assert('max_loc_mb' in start_vars)
-
- def get_formatted_corr_type(self):
- """method to formatt corr_types"""
- self.formatted_corr_type = ""
- if self.corr_type == "lit":
- self.formatted_corr_type += "Literature Correlation "
- elif self.corr_type == "tissue":
- self.formatted_corr_type += "Tissue Correlation "
- elif self.corr_type == "sample":
- self.formatted_corr_type += "Genetic Correlation "
-
- if self.corr_method == "pearson":
- self.formatted_corr_type += "(Pearson's r)"
- elif self.corr_method == "spearman":
- self.formatted_corr_type += "(Spearman's rho)"
- elif self.corr_method == "bicor":
- self.formatted_corr_type += "(Biweight r)"
-
- def process_samples(self, start_vars, sample_names, excluded_samples=None):
- """method to process samples"""
-
-
- if not excluded_samples:
- excluded_samples = ()
-
- sample_val_dict = json.loads(start_vars["sample_vals"])
- print(sample_val_dict)
- if sample_names is None:
- raise NotImplementedError
-
- for sample in sample_names:
- if sample not in excluded_samples:
- value = sample_val_dict[sample]
-
- if not value.strip().lower() == "x":
- self.sample_data[str(sample)] = float(value)
-
- def do_tissue_correlation_for_trait_list(self, tissue_dataset_id=1):
- """Given a list of correlation results (self.correlation_results),\
- gets the tissue correlation value for each"""
- # pylint: disable = E, W, R, C
-
- # Gets tissue expression values for the primary trait
- primary_trait_tissue_vals_dict = correlation_functions.get_trait_symbol_and_tissue_values(
- symbol_list=[self.this_trait.symbol])
-
- if self.this_trait.symbol.lower() in primary_trait_tissue_vals_dict:
- primary_trait_tissue_values = primary_trait_tissue_vals_dict[self.this_trait.symbol.lower(
- )]
- gene_symbol_list = [
- trait.symbol for trait in self.correlation_results if trait.symbol]
-
- corr_result_tissue_vals_dict = correlation_functions.get_trait_symbol_and_tissue_values(
- symbol_list=gene_symbol_list)
-
- for trait in self.correlation_results:
- if trait.symbol and trait.symbol.lower() in corr_result_tissue_vals_dict:
- this_trait_tissue_values = corr_result_tissue_vals_dict[trait.symbol.lower(
- )]
-
- result = correlation_functions.cal_zero_order_corr_for_tiss(primary_trait_tissue_values,
- this_trait_tissue_values,
- self.corr_method)
-
- trait.tissue_corr = result[0]
- trait.tissue_pvalue = result[2]
-
- def do_lit_correlation_for_trait_list(self):
- # pylint: disable = E, W, R, C
-
- input_trait_mouse_gene_id = self.convert_to_mouse_gene_id(
- self.dataset.group.species.lower(), self.this_trait.geneid)
-
- for trait in self.correlation_results:
-
- if trait.geneid:
- trait.mouse_gene_id = self.convert_to_mouse_gene_id(
- self.dataset.group.species.lower(), trait.geneid)
- else:
- trait.mouse_gene_id = None
-
- if trait.mouse_gene_id and str(trait.mouse_gene_id).find(";") == -1:
- result = g.db.execute(
- """SELECT value
- FROM LCorrRamin3
- WHERE GeneId1='%s' and
- GeneId2='%s'
- """ % (escape(str(trait.mouse_gene_id)), escape(str(input_trait_mouse_gene_id)))
- ).fetchone()
- if not result:
- result = g.db.execute("""SELECT value
- FROM LCorrRamin3
- WHERE GeneId2='%s' and
- GeneId1='%s'
- """ % (escape(str(trait.mouse_gene_id)), escape(str(input_trait_mouse_gene_id)))
- ).fetchone()
-
- if result:
- lit_corr = result.value
- trait.lit_corr = lit_corr
- else:
- trait.lit_corr = 0
- else:
- trait.lit_corr = 0
-
- def do_lit_correlation_for_all_traits(self):
- """method for lit_correlation for all traits"""
- # pylint: disable = E, W, R, C
- input_trait_mouse_gene_id = self.convert_to_mouse_gene_id(
- self.dataset.group.species.lower(), self.this_trait.geneid)
-
- lit_corr_data = {}
- for trait, gene_id in list(self.trait_geneid_dict.items()):
- mouse_gene_id = self.convert_to_mouse_gene_id(
- self.dataset.group.species.lower(), gene_id)
-
- if mouse_gene_id and str(mouse_gene_id).find(";") == -1:
- #print("gene_symbols:", input_trait_mouse_gene_id + " / " + mouse_gene_id)
- result = g.db.execute(
- """SELECT value
- FROM LCorrRamin3
- WHERE GeneId1='%s' and
- GeneId2='%s'
- """ % (escape(mouse_gene_id), escape(input_trait_mouse_gene_id))
- ).fetchone()
- if not result:
- result = g.db.execute("""SELECT value
- FROM LCorrRamin3
- WHERE GeneId2='%s' and
- GeneId1='%s'
- """ % (escape(mouse_gene_id), escape(input_trait_mouse_gene_id))
- ).fetchone()
- if result:
- #print("result:", result)
- lit_corr = result.value
- lit_corr_data[trait] = [gene_id, lit_corr]
- else:
- lit_corr_data[trait] = [gene_id, 0]
- else:
- lit_corr_data[trait] = [gene_id, 0]
-
- lit_corr_data = collections.OrderedDict(sorted(list(lit_corr_data.items()),
- key=lambda t: -abs(t[1][1])))
-
- return lit_corr_data
-
- def do_tissue_correlation_for_all_traits(self, tissue_dataset_id=1):
- # Gets tissue expression values for the primary trait
- # pylint: disable = E, W, R, C
- primary_trait_tissue_vals_dict = correlation_functions.get_trait_symbol_and_tissue_values(
- symbol_list=[self.this_trait.symbol])
-
- if self.this_trait.symbol.lower() in primary_trait_tissue_vals_dict:
- primary_trait_tissue_values = primary_trait_tissue_vals_dict[self.this_trait.symbol.lower(
- )]
-
- #print("trait_gene_symbols: ", pf(trait_gene_symbols.values()))
- corr_result_tissue_vals_dict = correlation_functions.get_trait_symbol_and_tissue_values(
- symbol_list=list(self.trait_symbol_dict.values()))
-
- #print("corr_result_tissue_vals: ", pf(corr_result_tissue_vals_dict))
-
- #print("trait_gene_symbols: ", pf(trait_gene_symbols))
-
- tissue_corr_data = {}
- for trait, symbol in list(self.trait_symbol_dict.items()):
- if symbol and symbol.lower() in corr_result_tissue_vals_dict:
- this_trait_tissue_values = corr_result_tissue_vals_dict[symbol.lower(
- )]
-
- result = correlation_functions.cal_zero_order_corr_for_tiss(primary_trait_tissue_values,
- this_trait_tissue_values,
- self.corr_method)
-
- tissue_corr_data[trait] = [symbol, result[0], result[2]]
-
- tissue_corr_data = collections.OrderedDict(sorted(list(tissue_corr_data.items()),
- key=lambda t: -abs(t[1][1])))
-
- def get_sample_r_and_p_values(self, trait, target_samples):
- """Calculates the sample r (or rho) and p-value
-
- Given a primary trait and a target trait's sample values,
- calculates either the pearson r or spearman rho and the p-value
- using the corresponding scipy functions.
-
- """
- # pylint: disable = E, W, R, C
- self.this_trait_vals = []
- target_vals = []
-
- for index, sample in enumerate(self.target_dataset.samplelist):
- if sample in self.sample_data:
- sample_value = self.sample_data[sample]
- target_sample_value = target_samples[index]
- self.this_trait_vals.append(sample_value)
- target_vals.append(target_sample_value)
-
- self.this_trait_vals, target_vals, num_overlap = normalize_values(
- self.this_trait_vals, target_vals)
-
- if num_overlap > 5:
- # ZS: 2015 could add biweight correlation, see http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3465711/
- if self.corr_method == 'bicor':
- sample_r, sample_p = do_bicor(
- self.this_trait_vals, target_vals)
-
- elif self.corr_method == 'pearson':
- sample_r, sample_p = scipy.stats.pearsonr(
- self.this_trait_vals, target_vals)
-
- else:
- sample_r, sample_p = scipy.stats.spearmanr(
- self.this_trait_vals, target_vals)
-
- if numpy.isnan(sample_r):
- pass
-
- else:
-
- self.correlation_data[trait] = [
- sample_r, sample_p, num_overlap]
-
- def convert_to_mouse_gene_id(self, species=None, gene_id=None):
- """If the species is rat or human, translate the gene_id to the mouse geneid
-
- If there is no input gene_id or there's no corresponding mouse gene_id, return None
-
- """
- if not gene_id:
- return None
-
- mouse_gene_id = None
- if "species" == "mouse":
- mouse_gene_id = gene_id
-
- elif species == 'rat':
- query = """SELECT mouse
- FROM GeneIDXRef
- WHERE rat='%s'""" % escape(gene_id)
-
- result = g.db.execute(query).fetchone()
- if result != None:
- mouse_gene_id = result.mouse
-
- elif species == "human":
-
- query = """SELECT mouse
- FROM GeneIDXRef
- WHERE human='%s'""" % escape(gene_id)
-
- result = g.db.execute(query).fetchone()
- if result != None:
- mouse_gene_id = result.mouse
-
- return mouse_gene_id
-
- def do_correlation(self, start_vars, create_dataset=create_dataset,
- create_trait=create_trait,
- get_species_dataset_trait=get_species_dataset_trait):
- # pylint: disable = E, W, R, C
- # probably refactor start_vars being passed twice
- # this method aims to replace the do_correlation but also add dependendency injection
- # to enable testing
-
- # should maybe refactor below code more or less works the same
- if start_vars["dataset"] == "Temp":
- self.dataset = create_dataset(
- dataset_name="Temp", dataset_type="Temp", group_name=start_vars['group'])
-
- self.trait_id = start_vars["trait_id"]
-
- self.this_trait = create_trait(dataset=self.dataset,
- name=self.trait_id,
- cellid=None)
-
- else:
-
- get_species_dataset_trait(self, start_vars)
-
- corr_samples_group = start_vars['corr_samples_group']
- self.sample_data = {}
- self.corr_type = start_vars['corr_type']
- self.corr_method = start_vars['corr_sample_method']
- self.min_expr = float(
- start_vars["min_expr"]) if start_vars["min_expr"] != "" else None
- self.p_range_lower = float(
- start_vars["p_range_lower"]) if start_vars["p_range_lower"] != "" else -1.0
- self.p_range_upper = float(
- start_vars["p_range_upper"]) if start_vars["p_range_upper"] != "" else 1.0
-
- if ("loc_chr" in start_vars and "min_loc_mb" in start_vars and "max_loc_mb" in start_vars):
- self.location_type = str(start_vars['location_type'])
- self.location_chr = str(start_vars['loc_chr'])
-
- try:
-
- # the code is below is basically a temporary fix
- self.min_location_mb = int(start_vars['min_loc_mb'])
- self.max_location_mb = int(start_vars['max_loc_mb'])
- except Exception as e:
- self.min_location_mb = None
- self.max_location_mb = None
-
- else:
- self.location_type = self.location_chr = self.min_location_mb = self.max_location_mb = None
-
- self.get_formatted_corr_type()
-
- self.return_number = int(start_vars['corr_return_results'])
-
- primary_samples = self.dataset.group.samplelist
-
-
- # The two if statements below append samples to the sample list based upon whether the user
- # rselected Primary Samples Only, Other Samples Only, or All Samples
-
- if self.dataset.group.parlist != None:
- primary_samples += self.dataset.group.parlist
-
- if self.dataset.group.f1list != None:
-
- primary_samples += self.dataset.group.f1list
-
- # If either BXD/whatever Only or All Samples, append all of that group's samplelist
-
- if corr_samples_group != 'samples_other':
-
- # print("primary samples are *****",primary_samples)
-
- self.process_samples(start_vars, primary_samples)
-
- if corr_samples_group != 'samples_primary':
- if corr_samples_group == 'samples_other':
- primary_samples = [x for x in primary_samples if x not in (
- self.dataset.group.parlist + self.dataset.group.f1list)]
-
- self.process_samples(start_vars, list(self.this_trait.data.keys()), primary_samples)
-
- self.target_dataset = create_dataset(start_vars['corr_dataset'])
- # when you add code to retrieve the trait_data for target dataset got gets very slow
- import time
-
- init_time = time.time()
- self.target_dataset.get_trait_data(list(self.sample_data.keys()))
-
- aft_time = time.time() - init_time
-
- self.header_fields = get_header_fields(
- self.target_dataset.type, self.corr_method)
-
- if self.target_dataset.type == "ProbeSet":
- self.filter_cols = [7, 6]
-
- elif self.target_dataset.type == "Publish":
- self.filter_cols = [6, 0]
-
- else:
- self.filter_cols = [4, 0]
-
- self.correlation_results = []
-
- self.correlation_data = {}
-
- if self.corr_type == "tissue":
- self.trait_symbol_dict = self.dataset.retrieve_genes("Symbol")
-
- tissue_corr_data = self.do_tissue_correlation_for_all_traits()
- if tissue_corr_data != None:
- for trait in list(tissue_corr_data.keys())[:self.return_number]:
- self.get_sample_r_and_p_values(
- trait, self.target_dataset.trait_data[trait])
- else:
- for trait, values in list(self.target_dataset.trait_data.items()):
- self.get_sample_r_and_p_values(trait, values)
-
- elif self.corr_type == "lit":
- self.trait_geneid_dict = self.dataset.retrieve_genes("GeneId")
- lit_corr_data = self.do_lit_correlation_for_all_traits()
-
- for trait in list(lit_corr_data.keys())[:self.return_number]:
- self.get_sample_r_and_p_values(
- trait, self.target_dataset.trait_data[trait])
-
- elif self.corr_type == "sample":
- for trait, values in list(self.target_dataset.trait_data.items()):
- self.get_sample_r_and_p_values(trait, values)
-
- self.correlation_data = collections.OrderedDict(sorted(list(self.correlation_data.items()),
- key=lambda t: -abs(t[1][0])))
-
- # ZS: Convert min/max chromosome to an int for the location range option
-
- """
- took 20.79 seconds took compute all the above majority of time taken on retrieving target dataset trait
- info
- """
-
- initial_time_chr = time.time()
-
- range_chr_as_int = None
- for order_id, chr_info in list(self.dataset.species.chromosomes.chromosomes.items()):
- if 'loc_chr' in start_vars:
- if chr_info.name == self.location_chr:
- range_chr_as_int = order_id
-
- for _trait_counter, trait in enumerate(list(self.correlation_data.keys())[:self.return_number]):
- trait_object = create_trait(
- dataset=self.target_dataset, name=trait, get_qtl_info=True, get_sample_info=False)
- if not trait_object:
- continue
-
- chr_as_int = 0
- for order_id, chr_info in list(self.dataset.species.chromosomes.chromosomes.items()):
- if self.location_type == "highest_lod":
- if chr_info.name == trait_object.locus_chr:
- chr_as_int = order_id
- else:
- if chr_info.name == trait_object.chr:
- chr_as_int = order_id
-
- if (float(self.correlation_data[trait][0]) >= self.p_range_lower and
- float(self.correlation_data[trait][0]) <= self.p_range_upper):
-
- if (self.target_dataset.type == "ProbeSet" or self.target_dataset.type == "Publish") and bool(trait_object.mean):
- if (self.min_expr != None) and (float(trait_object.mean) < self.min_expr):
- continue
-
- if range_chr_as_int != None and (chr_as_int != range_chr_as_int):
- continue
- if self.location_type == "highest_lod":
- if (self.min_location_mb != None) and (float(trait_object.locus_mb) < float(self.min_location_mb)):
- continue
- if (self.max_location_mb != None) and (float(trait_object.locus_mb) > float(self.max_location_mb)):
- continue
- else:
- if (self.min_location_mb != None) and (float(trait_object.mb) < float(self.min_location_mb)):
- continue
- if (self.max_location_mb != None) and (float(trait_object.mb) > float(self.max_location_mb)):
- continue
-
- (trait_object.sample_r,
- trait_object.sample_p,
- trait_object.num_overlap) = self.correlation_data[trait]
-
- # Set some sane defaults
- trait_object.tissue_corr = 0
- trait_object.tissue_pvalue = 0
- trait_object.lit_corr = 0
- if self.corr_type == "tissue" and tissue_corr_data != None:
- trait_object.tissue_corr = tissue_corr_data[trait][1]
- trait_object.tissue_pvalue = tissue_corr_data[trait][2]
- elif self.corr_type == "lit":
- trait_object.lit_corr = lit_corr_data[trait][1]
-
- self.correlation_results.append(trait_object)
-
- """
- above takes time with respect to size of traits i.e n=100,500,.....t_size
- """
-
- if self.corr_type != "lit" and self.dataset.type == "ProbeSet" and self.target_dataset.type == "ProbeSet":
- # self.do_lit_correlation_for_trait_list()
- self.do_lit_correlation_for_trait_list()
-
- if self.corr_type != "tissue" and self.dataset.type == "ProbeSet" and self.target_dataset.type == "ProbeSet":
- self.do_tissue_correlation_for_trait_list()
- # self.do_lit_correlation_for_trait_list()
-
- self.json_results = generate_corr_json(
- self.correlation_results, self.this_trait, self.dataset, self.target_dataset)
-
- # org mode by bons
-
- # DVORAKS
- # klavaro for touch typing
- # archwiki for documentation
- # exwm for window manager ->13
-
- # will fit perfectly with genenetwork 2 with change of anything if return self
-
- # alternative for this
- return self.json_results
- # return {
- # # "Results": "succeess",
- # # "return_number": self.return_number,
- # # "primary_samples": primary_samples,
- # # "time_taken": 12,
- # # "correlation_data": self.correlation_data,
- # "correlation_json": self.json_results
- # }
-
-
-def do_bicor(this_trait_vals, target_trait_vals):
- # pylint: disable = E, W, R, C
- r_library = ro.r["library"] # Map the library function
- r_options = ro.r["options"] # Map the options function
-
- r_library("WGCNA")
- r_bicor = ro.r["bicorAndPvalue"] # Map the bicorAndPvalue function
-
- r_options(stringsAsFactors=False)
-
- this_vals = ro.Vector(this_trait_vals)
- target_vals = ro.Vector(target_trait_vals)
-
- the_r, the_p, _fisher_transform, _the_t, _n_obs = [
- numpy.asarray(x) for x in r_bicor(x=this_vals, y=target_vals)]
-
- return the_r, the_p
-
-
-def get_header_fields(data_type, corr_method):
- """function to get header fields when doing correlation"""
- if data_type == "ProbeSet":
- if corr_method == "spearman":
-
- header_fields = ['Index',
- 'Record',
- 'Symbol',
- 'Description',
- 'Location',
- 'Mean',
- 'Sample rho',
- 'N',
- 'Sample p(rho)',
- 'Lit rho',
- 'Tissue rho',
- 'Tissue p(rho)',
- 'Max LRS',
- 'Max LRS Location',
- 'Additive Effect']
-
- else:
- header_fields = ['Index',
- 'Record',
- 'Abbreviation',
- 'Description',
- 'Mean',
- 'Authors',
- 'Year',
- 'Sample r',
- 'N',
- 'Sample p(r)',
- 'Max LRS',
- 'Max LRS Location',
- 'Additive Effect']
-
- elif data_type == "Publish":
- if corr_method == "spearman":
-
- header_fields = ['Index',
- 'Record',
- 'Abbreviation',
- 'Description',
- 'Mean',
- 'Authors',
- 'Year',
- 'Sample rho',
- 'N',
- 'Sample p(rho)',
- 'Max LRS',
- 'Max LRS Location',
- 'Additive Effect']
-
- else:
- header_fields = ['Index',
- 'Record',
- 'Abbreviation',
- 'Description',
- 'Mean',
- 'Authors',
- 'Year',
- 'Sample r',
- 'N',
- 'Sample p(r)',
- 'Max LRS',
- 'Max LRS Location',
- 'Additive Effect']
-
- else:
- if corr_method == "spearman":
- header_fields = ['Index',
- 'ID',
- 'Location',
- 'Sample rho',
- 'N',
- 'Sample p(rho)']
-
- else:
- header_fields = ['Index',
- 'ID',
- 'Location',
- 'Sample r',
- 'N',
- 'Sample p(r)']
-
- return header_fields
-
-
-def generate_corr_json(corr_results, this_trait, dataset, target_dataset, for_api=False):
- """function to generate corr json data"""
- #todo refactor this function
- results_list = []
- for i, trait in enumerate(corr_results):
- if trait.view == False:
- continue
- results_dict = {}
- results_dict['index'] = i + 1
- results_dict['trait_id'] = trait.name
- results_dict['dataset'] = trait.dataset.name
- results_dict['hmac'] = hmac.data_hmac(
- '{}:{}'.format(trait.name, trait.dataset.name))
- if target_dataset.type == "ProbeSet":
- results_dict['symbol'] = trait.symbol
- results_dict['description'] = "N/A"
- results_dict['location'] = trait.location_repr
- results_dict['mean'] = "N/A"
- results_dict['additive'] = "N/A"
- if bool(trait.description_display):
- results_dict['description'] = trait.description_display
- if bool(trait.mean):
- results_dict['mean'] = f"{float(trait.mean):.3f}"
- try:
- results_dict['lod_score'] = f"{float(trait.LRS_score_repr) / 4.61:.1f}"
- except:
- results_dict['lod_score'] = "N/A"
- results_dict['lrs_location'] = trait.LRS_location_repr
- if bool(trait.additive):
- results_dict['additive'] = f"{float(trait.additive):.3f}"
- results_dict['sample_r'] = f"{float(trait.sample_r):.3f}"
- results_dict['num_overlap'] = trait.num_overlap
- results_dict['sample_p'] = f"{float(trait.sample_p):.3e}"
- results_dict['lit_corr'] = "--"
- results_dict['tissue_corr'] = "--"
- results_dict['tissue_pvalue'] = "--"
- if bool(trait.lit_corr):
- results_dict['lit_corr'] = f"{float(trait.lit_corr):.3f}"
- if bool(trait.tissue_corr):
- results_dict['tissue_corr'] = f"{float(trait.tissue_corr):.3f}"
- results_dict['tissue_pvalue'] = f"{float(trait.tissue_pvalue):.3e}"
- elif target_dataset.type == "Publish":
- results_dict['abbreviation_display'] = "N/A"
- results_dict['description'] = "N/A"
- results_dict['mean'] = "N/A"
- results_dict['authors_display'] = "N/A"
- results_dict['additive'] = "N/A"
- if for_api:
- results_dict['pubmed_id'] = "N/A"
- results_dict['year'] = "N/A"
- else:
- results_dict['pubmed_link'] = "N/A"
- results_dict['pubmed_text'] = "N/A"
-
- if bool(trait.abbreviation):
- results_dict['abbreviation_display'] = trait.abbreviation
- if bool(trait.description_display):
- results_dict['description'] = trait.description_display
- if bool(trait.mean):
- results_dict['mean'] = f"{float(trait.mean):.3f}"
- if bool(trait.authors):
- authors_list = trait.authors.split(',')
- if len(authors_list) > 6:
- results_dict['authors_display'] = ", ".join(
- authors_list[:6]) + ", et al."
- else:
- results_dict['authors_display'] = trait.authors
- if bool(trait.pubmed_id):
- if for_api:
- results_dict['pubmed_id'] = trait.pubmed_id
- results_dict['year'] = trait.pubmed_text
- else:
- results_dict['pubmed_link'] = trait.pubmed_link
- results_dict['pubmed_text'] = trait.pubmed_text
- try:
- results_dict['lod_score'] = f"{float(trait.LRS_score_repr) / 4.61:.1f}"
- except:
- results_dict['lod_score'] = "N/A"
- results_dict['lrs_location'] = trait.LRS_location_repr
- if bool(trait.additive):
- results_dict['additive'] = f"{float(trait.additive):.3f}"
- results_dict['sample_r'] = f"{float(trait.sample_r):.3f}"
- results_dict['num_overlap'] = trait.num_overlap
- results_dict['sample_p'] = f"{float(trait.sample_p):.3e}"
- else:
- results_dict['location'] = trait.location_repr
- results_dict['sample_r'] = f"{float(trait.sample_r):.3f}"
- results_dict['num_overlap'] = trait.num_overlap
- results_dict['sample_p'] = f"{float(trait.sample_p):.3e}"
-
- results_list.append(results_dict)
-
- return json.dumps(results_list)