1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
|
"""module contains code for doing correlation"""
import json
import collections
import numpy
import scipy.stats
import rpy2.robjects as ro
from flask import g
from gn3.base.data_set import create_dataset
from gn3.utility.db_tools import escape
from gn3.utility.helper_functions import get_species_dataset_trait
from gn3.utility.corr_result_helpers import normalize_values
from gn3.base.trait import create_trait
from gn3.utility import hmac
from . import correlation_functions
class CorrelationResults:
"""class for computing correlation"""
# pylint: disable=too-many-instance-attributes
# pylint:disable=attribute-defined-outside-init
def __init__(self, start_vars):
self.assertion_for_start_vars(start_vars)
@staticmethod
def assertion_for_start_vars(start_vars):
# pylint: disable = E, W, R, C
# should better ways to assert the variables
# example includes sample
assert("corr_type" in start_vars)
assert(isinstance(start_vars['corr_type'], str))
# example includes pearson
assert('corr_sample_method' in start_vars)
assert('corr_dataset' in start_vars)
# means the limit
assert('corr_return_results' in start_vars)
if "loc_chr" in start_vars:
assert('min_loc_mb' in start_vars)
assert('max_loc_mb' in start_vars)
def get_formatted_corr_type(self):
"""method to formatt corr_types"""
self.formatted_corr_type = ""
if self.corr_type == "lit":
self.formatted_corr_type += "Literature Correlation "
elif self.corr_type == "tissue":
self.formatted_corr_type += "Tissue Correlation "
elif self.corr_type == "sample":
self.formatted_corr_type += "Genetic Correlation "
if self.corr_method == "pearson":
self.formatted_corr_type += "(Pearson's r)"
elif self.corr_method == "spearman":
self.formatted_corr_type += "(Spearman's rho)"
elif self.corr_method == "bicor":
self.formatted_corr_type += "(Biweight r)"
def process_samples(self, start_vars, sample_names, excluded_samples=None):
"""method to process samples"""
if not excluded_samples:
excluded_samples = ()
sample_val_dict = json.loads(start_vars["sample_vals"])
print(sample_val_dict)
if sample_names is None:
raise NotImplementedError
for sample in sample_names:
if sample not in excluded_samples:
value = sample_val_dict[sample]
if not value.strip().lower() == "x":
self.sample_data[str(sample)] = float(value)
def do_tissue_correlation_for_trait_list(self, tissue_dataset_id=1):
"""Given a list of correlation results (self.correlation_results),\
gets the tissue correlation value for each"""
# pylint: disable = E, W, R, C
# Gets tissue expression values for the primary trait
primary_trait_tissue_vals_dict = correlation_functions.get_trait_symbol_and_tissue_values(
symbol_list=[self.this_trait.symbol])
if self.this_trait.symbol.lower() in primary_trait_tissue_vals_dict:
primary_trait_tissue_values = primary_trait_tissue_vals_dict[self.this_trait.symbol.lower(
)]
gene_symbol_list = [
trait.symbol for trait in self.correlation_results if trait.symbol]
corr_result_tissue_vals_dict = correlation_functions.get_trait_symbol_and_tissue_values(
symbol_list=gene_symbol_list)
for trait in self.correlation_results:
if trait.symbol and trait.symbol.lower() in corr_result_tissue_vals_dict:
this_trait_tissue_values = corr_result_tissue_vals_dict[trait.symbol.lower(
)]
result = correlation_functions.cal_zero_order_corr_for_tiss(primary_trait_tissue_values,
this_trait_tissue_values,
self.corr_method)
trait.tissue_corr = result[0]
trait.tissue_pvalue = result[2]
def do_lit_correlation_for_trait_list(self):
# pylint: disable = E, W, R, C
input_trait_mouse_gene_id = self.convert_to_mouse_gene_id(
self.dataset.group.species.lower(), self.this_trait.geneid)
for trait in self.correlation_results:
if trait.geneid:
trait.mouse_gene_id = self.convert_to_mouse_gene_id(
self.dataset.group.species.lower(), trait.geneid)
else:
trait.mouse_gene_id = None
if trait.mouse_gene_id and str(trait.mouse_gene_id).find(";") == -1:
result = g.db.execute(
"""SELECT value
FROM LCorrRamin3
WHERE GeneId1='%s' and
GeneId2='%s'
""" % (escape(str(trait.mouse_gene_id)), escape(str(input_trait_mouse_gene_id)))
).fetchone()
if not result:
result = g.db.execute("""SELECT value
FROM LCorrRamin3
WHERE GeneId2='%s' and
GeneId1='%s'
""" % (escape(str(trait.mouse_gene_id)), escape(str(input_trait_mouse_gene_id)))
).fetchone()
if result:
lit_corr = result.value
trait.lit_corr = lit_corr
else:
trait.lit_corr = 0
else:
trait.lit_corr = 0
def do_lit_correlation_for_all_traits(self):
"""method for lit_correlation for all traits"""
# pylint: disable = E, W, R, C
input_trait_mouse_gene_id = self.convert_to_mouse_gene_id(
self.dataset.group.species.lower(), self.this_trait.geneid)
lit_corr_data = {}
for trait, gene_id in list(self.trait_geneid_dict.items()):
mouse_gene_id = self.convert_to_mouse_gene_id(
self.dataset.group.species.lower(), gene_id)
if mouse_gene_id and str(mouse_gene_id).find(";") == -1:
#print("gene_symbols:", input_trait_mouse_gene_id + " / " + mouse_gene_id)
result = g.db.execute(
"""SELECT value
FROM LCorrRamin3
WHERE GeneId1='%s' and
GeneId2='%s'
""" % (escape(mouse_gene_id), escape(input_trait_mouse_gene_id))
).fetchone()
if not result:
result = g.db.execute("""SELECT value
FROM LCorrRamin3
WHERE GeneId2='%s' and
GeneId1='%s'
""" % (escape(mouse_gene_id), escape(input_trait_mouse_gene_id))
).fetchone()
if result:
#print("result:", result)
lit_corr = result.value
lit_corr_data[trait] = [gene_id, lit_corr]
else:
lit_corr_data[trait] = [gene_id, 0]
else:
lit_corr_data[trait] = [gene_id, 0]
lit_corr_data = collections.OrderedDict(sorted(list(lit_corr_data.items()),
key=lambda t: -abs(t[1][1])))
return lit_corr_data
def do_tissue_correlation_for_all_traits(self, tissue_dataset_id=1):
# Gets tissue expression values for the primary trait
# pylint: disable = E, W, R, C
primary_trait_tissue_vals_dict = correlation_functions.get_trait_symbol_and_tissue_values(
symbol_list=[self.this_trait.symbol])
if self.this_trait.symbol.lower() in primary_trait_tissue_vals_dict:
primary_trait_tissue_values = primary_trait_tissue_vals_dict[self.this_trait.symbol.lower(
)]
#print("trait_gene_symbols: ", pf(trait_gene_symbols.values()))
corr_result_tissue_vals_dict = correlation_functions.get_trait_symbol_and_tissue_values(
symbol_list=list(self.trait_symbol_dict.values()))
#print("corr_result_tissue_vals: ", pf(corr_result_tissue_vals_dict))
#print("trait_gene_symbols: ", pf(trait_gene_symbols))
tissue_corr_data = {}
for trait, symbol in list(self.trait_symbol_dict.items()):
if symbol and symbol.lower() in corr_result_tissue_vals_dict:
this_trait_tissue_values = corr_result_tissue_vals_dict[symbol.lower(
)]
result = correlation_functions.cal_zero_order_corr_for_tiss(primary_trait_tissue_values,
this_trait_tissue_values,
self.corr_method)
tissue_corr_data[trait] = [symbol, result[0], result[2]]
tissue_corr_data = collections.OrderedDict(sorted(list(tissue_corr_data.items()),
key=lambda t: -abs(t[1][1])))
def get_sample_r_and_p_values(self, trait, target_samples):
"""Calculates the sample r (or rho) and p-value
Given a primary trait and a target trait's sample values,
calculates either the pearson r or spearman rho and the p-value
using the corresponding scipy functions.
"""
# pylint: disable = E, W, R, C
self.this_trait_vals = []
target_vals = []
for index, sample in enumerate(self.target_dataset.samplelist):
if sample in self.sample_data:
sample_value = self.sample_data[sample]
target_sample_value = target_samples[index]
self.this_trait_vals.append(sample_value)
target_vals.append(target_sample_value)
self.this_trait_vals, target_vals, num_overlap = normalize_values(
self.this_trait_vals, target_vals)
if num_overlap > 5:
# ZS: 2015 could add biweight correlation, see http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3465711/
if self.corr_method == 'bicor':
sample_r, sample_p = do_bicor(
self.this_trait_vals, target_vals)
elif self.corr_method == 'pearson':
sample_r, sample_p = scipy.stats.pearsonr(
self.this_trait_vals, target_vals)
else:
sample_r, sample_p = scipy.stats.spearmanr(
self.this_trait_vals, target_vals)
if numpy.isnan(sample_r):
pass
else:
self.correlation_data[trait] = [
sample_r, sample_p, num_overlap]
def convert_to_mouse_gene_id(self, species=None, gene_id=None):
"""If the species is rat or human, translate the gene_id to the mouse geneid
If there is no input gene_id or there's no corresponding mouse gene_id, return None
"""
if not gene_id:
return None
mouse_gene_id = None
if "species" == "mouse":
mouse_gene_id = gene_id
elif species == 'rat':
query = """SELECT mouse
FROM GeneIDXRef
WHERE rat='%s'""" % escape(gene_id)
result = g.db.execute(query).fetchone()
if result != None:
mouse_gene_id = result.mouse
elif species == "human":
query = """SELECT mouse
FROM GeneIDXRef
WHERE human='%s'""" % escape(gene_id)
result = g.db.execute(query).fetchone()
if result != None:
mouse_gene_id = result.mouse
return mouse_gene_id
def do_correlation(self, start_vars, create_dataset=create_dataset,
create_trait=create_trait,
get_species_dataset_trait=get_species_dataset_trait):
# pylint: disable = E, W, R, C
# probably refactor start_vars being passed twice
# this method aims to replace the do_correlation but also add dependendency injection
# to enable testing
# should maybe refactor below code more or less works the same
if start_vars["dataset"] == "Temp":
self.dataset = create_dataset(
dataset_name="Temp", dataset_type="Temp", group_name=start_vars['group'])
self.trait_id = start_vars["trait_id"]
self.this_trait = create_trait(dataset=self.dataset,
name=self.trait_id,
cellid=None)
else:
get_species_dataset_trait(self, start_vars)
corr_samples_group = start_vars['corr_samples_group']
self.sample_data = {}
self.corr_type = start_vars['corr_type']
self.corr_method = start_vars['corr_sample_method']
self.min_expr = float(
start_vars["min_expr"]) if start_vars["min_expr"] != "" else None
self.p_range_lower = float(
start_vars["p_range_lower"]) if start_vars["p_range_lower"] != "" else -1.0
self.p_range_upper = float(
start_vars["p_range_upper"]) if start_vars["p_range_upper"] != "" else 1.0
if ("loc_chr" in start_vars and "min_loc_mb" in start_vars and "max_loc_mb" in start_vars):
self.location_type = str(start_vars['location_type'])
self.location_chr = str(start_vars['loc_chr'])
try:
# the code is below is basically a temporary fix
self.min_location_mb = int(start_vars['min_loc_mb'])
self.max_location_mb = int(start_vars['max_loc_mb'])
except Exception as e:
self.min_location_mb = None
self.max_location_mb = None
else:
self.location_type = self.location_chr = self.min_location_mb = self.max_location_mb = None
self.get_formatted_corr_type()
self.return_number = int(start_vars['corr_return_results'])
primary_samples = self.dataset.group.samplelist
# The two if statements below append samples to the sample list based upon whether the user
# rselected Primary Samples Only, Other Samples Only, or All Samples
if self.dataset.group.parlist != None:
primary_samples += self.dataset.group.parlist
if self.dataset.group.f1list != None:
primary_samples += self.dataset.group.f1list
# If either BXD/whatever Only or All Samples, append all of that group's samplelist
if corr_samples_group != 'samples_other':
# print("primary samples are *****",primary_samples)
self.process_samples(start_vars, primary_samples)
if corr_samples_group != 'samples_primary':
if corr_samples_group == 'samples_other':
primary_samples = [x for x in primary_samples if x not in (
self.dataset.group.parlist + self.dataset.group.f1list)]
self.process_samples(start_vars, list(self.this_trait.data.keys()), primary_samples)
self.target_dataset = create_dataset(start_vars['corr_dataset'])
# when you add code to retrieve the trait_data for target dataset got gets very slow
import time
init_time = time.time()
self.target_dataset.get_trait_data(list(self.sample_data.keys()))
aft_time = time.time() - init_time
self.header_fields = get_header_fields(
self.target_dataset.type, self.corr_method)
if self.target_dataset.type == "ProbeSet":
self.filter_cols = [7, 6]
elif self.target_dataset.type == "Publish":
self.filter_cols = [6, 0]
else:
self.filter_cols = [4, 0]
self.correlation_results = []
self.correlation_data = {}
if self.corr_type == "tissue":
self.trait_symbol_dict = self.dataset.retrieve_genes("Symbol")
tissue_corr_data = self.do_tissue_correlation_for_all_traits()
if tissue_corr_data != None:
for trait in list(tissue_corr_data.keys())[:self.return_number]:
self.get_sample_r_and_p_values(
trait, self.target_dataset.trait_data[trait])
else:
for trait, values in list(self.target_dataset.trait_data.items()):
self.get_sample_r_and_p_values(trait, values)
elif self.corr_type == "lit":
self.trait_geneid_dict = self.dataset.retrieve_genes("GeneId")
lit_corr_data = self.do_lit_correlation_for_all_traits()
for trait in list(lit_corr_data.keys())[:self.return_number]:
self.get_sample_r_and_p_values(
trait, self.target_dataset.trait_data[trait])
elif self.corr_type == "sample":
for trait, values in list(self.target_dataset.trait_data.items()):
self.get_sample_r_and_p_values(trait, values)
self.correlation_data = collections.OrderedDict(sorted(list(self.correlation_data.items()),
key=lambda t: -abs(t[1][0])))
# ZS: Convert min/max chromosome to an int for the location range option
"""
took 20.79 seconds took compute all the above majority of time taken on retrieving target dataset trait
info
"""
initial_time_chr = time.time()
range_chr_as_int = None
for order_id, chr_info in list(self.dataset.species.chromosomes.chromosomes.items()):
if 'loc_chr' in start_vars:
if chr_info.name == self.location_chr:
range_chr_as_int = order_id
for _trait_counter, trait in enumerate(list(self.correlation_data.keys())[:self.return_number]):
trait_object = create_trait(
dataset=self.target_dataset, name=trait, get_qtl_info=True, get_sample_info=False)
if not trait_object:
continue
chr_as_int = 0
for order_id, chr_info in list(self.dataset.species.chromosomes.chromosomes.items()):
if self.location_type == "highest_lod":
if chr_info.name == trait_object.locus_chr:
chr_as_int = order_id
else:
if chr_info.name == trait_object.chr:
chr_as_int = order_id
if (float(self.correlation_data[trait][0]) >= self.p_range_lower and
float(self.correlation_data[trait][0]) <= self.p_range_upper):
if (self.target_dataset.type == "ProbeSet" or self.target_dataset.type == "Publish") and bool(trait_object.mean):
if (self.min_expr != None) and (float(trait_object.mean) < self.min_expr):
continue
if range_chr_as_int != None and (chr_as_int != range_chr_as_int):
continue
if self.location_type == "highest_lod":
if (self.min_location_mb != None) and (float(trait_object.locus_mb) < float(self.min_location_mb)):
continue
if (self.max_location_mb != None) and (float(trait_object.locus_mb) > float(self.max_location_mb)):
continue
else:
if (self.min_location_mb != None) and (float(trait_object.mb) < float(self.min_location_mb)):
continue
if (self.max_location_mb != None) and (float(trait_object.mb) > float(self.max_location_mb)):
continue
(trait_object.sample_r,
trait_object.sample_p,
trait_object.num_overlap) = self.correlation_data[trait]
# Set some sane defaults
trait_object.tissue_corr = 0
trait_object.tissue_pvalue = 0
trait_object.lit_corr = 0
if self.corr_type == "tissue" and tissue_corr_data != None:
trait_object.tissue_corr = tissue_corr_data[trait][1]
trait_object.tissue_pvalue = tissue_corr_data[trait][2]
elif self.corr_type == "lit":
trait_object.lit_corr = lit_corr_data[trait][1]
self.correlation_results.append(trait_object)
"""
above takes time with respect to size of traits i.e n=100,500,.....t_size
"""
if self.corr_type != "lit" and self.dataset.type == "ProbeSet" and self.target_dataset.type == "ProbeSet":
# self.do_lit_correlation_for_trait_list()
self.do_lit_correlation_for_trait_list()
if self.corr_type != "tissue" and self.dataset.type == "ProbeSet" and self.target_dataset.type == "ProbeSet":
self.do_tissue_correlation_for_trait_list()
# self.do_lit_correlation_for_trait_list()
self.json_results = generate_corr_json(
self.correlation_results, self.this_trait, self.dataset, self.target_dataset)
# org mode by bons
# DVORAKS
# klavaro for touch typing
# archwiki for documentation
# exwm for window manager ->13
# will fit perfectly with genenetwork 2 with change of anything if return self
# alternative for this
return self.json_results
# return {
# # "Results": "succeess",
# # "return_number": self.return_number,
# # "primary_samples": primary_samples,
# # "time_taken": 12,
# # "correlation_data": self.correlation_data,
# "correlation_json": self.json_results
# }
def do_bicor(this_trait_vals, target_trait_vals):
# pylint: disable = E, W, R, C
r_library = ro.r["library"] # Map the library function
r_options = ro.r["options"] # Map the options function
r_library("WGCNA")
r_bicor = ro.r["bicorAndPvalue"] # Map the bicorAndPvalue function
r_options(stringsAsFactors=False)
this_vals = ro.Vector(this_trait_vals)
target_vals = ro.Vector(target_trait_vals)
the_r, the_p, _fisher_transform, _the_t, _n_obs = [
numpy.asarray(x) for x in r_bicor(x=this_vals, y=target_vals)]
return the_r, the_p
def get_header_fields(data_type, corr_method):
"""function to get header fields when doing correlation"""
if data_type == "ProbeSet":
if corr_method == "spearman":
header_fields = ['Index',
'Record',
'Symbol',
'Description',
'Location',
'Mean',
'Sample rho',
'N',
'Sample p(rho)',
'Lit rho',
'Tissue rho',
'Tissue p(rho)',
'Max LRS',
'Max LRS Location',
'Additive Effect']
else:
header_fields = ['Index',
'Record',
'Abbreviation',
'Description',
'Mean',
'Authors',
'Year',
'Sample r',
'N',
'Sample p(r)',
'Max LRS',
'Max LRS Location',
'Additive Effect']
elif data_type == "Publish":
if corr_method == "spearman":
header_fields = ['Index',
'Record',
'Abbreviation',
'Description',
'Mean',
'Authors',
'Year',
'Sample rho',
'N',
'Sample p(rho)',
'Max LRS',
'Max LRS Location',
'Additive Effect']
else:
header_fields = ['Index',
'Record',
'Abbreviation',
'Description',
'Mean',
'Authors',
'Year',
'Sample r',
'N',
'Sample p(r)',
'Max LRS',
'Max LRS Location',
'Additive Effect']
else:
if corr_method == "spearman":
header_fields = ['Index',
'ID',
'Location',
'Sample rho',
'N',
'Sample p(rho)']
else:
header_fields = ['Index',
'ID',
'Location',
'Sample r',
'N',
'Sample p(r)']
return header_fields
def generate_corr_json(corr_results, this_trait, dataset, target_dataset, for_api=False):
"""function to generate corr json data"""
#todo refactor this function
results_list = []
for i, trait in enumerate(corr_results):
if trait.view == False:
continue
results_dict = {}
results_dict['index'] = i + 1
results_dict['trait_id'] = trait.name
results_dict['dataset'] = trait.dataset.name
results_dict['hmac'] = hmac.data_hmac(
'{}:{}'.format(trait.name, trait.dataset.name))
if target_dataset.type == "ProbeSet":
results_dict['symbol'] = trait.symbol
results_dict['description'] = "N/A"
results_dict['location'] = trait.location_repr
results_dict['mean'] = "N/A"
results_dict['additive'] = "N/A"
if bool(trait.description_display):
results_dict['description'] = trait.description_display
if bool(trait.mean):
results_dict['mean'] = f"{float(trait.mean):.3f}"
try:
results_dict['lod_score'] = f"{float(trait.LRS_score_repr) / 4.61:.1f}"
except:
results_dict['lod_score'] = "N/A"
results_dict['lrs_location'] = trait.LRS_location_repr
if bool(trait.additive):
results_dict['additive'] = f"{float(trait.additive):.3f}"
results_dict['sample_r'] = f"{float(trait.sample_r):.3f}"
results_dict['num_overlap'] = trait.num_overlap
results_dict['sample_p'] = f"{float(trait.sample_p):.3e}"
results_dict['lit_corr'] = "--"
results_dict['tissue_corr'] = "--"
results_dict['tissue_pvalue'] = "--"
if bool(trait.lit_corr):
results_dict['lit_corr'] = f"{float(trait.lit_corr):.3f}"
if bool(trait.tissue_corr):
results_dict['tissue_corr'] = f"{float(trait.tissue_corr):.3f}"
results_dict['tissue_pvalue'] = f"{float(trait.tissue_pvalue):.3e}"
elif target_dataset.type == "Publish":
results_dict['abbreviation_display'] = "N/A"
results_dict['description'] = "N/A"
results_dict['mean'] = "N/A"
results_dict['authors_display'] = "N/A"
results_dict['additive'] = "N/A"
if for_api:
results_dict['pubmed_id'] = "N/A"
results_dict['year'] = "N/A"
else:
results_dict['pubmed_link'] = "N/A"
results_dict['pubmed_text'] = "N/A"
if bool(trait.abbreviation):
results_dict['abbreviation_display'] = trait.abbreviation
if bool(trait.description_display):
results_dict['description'] = trait.description_display
if bool(trait.mean):
results_dict['mean'] = f"{float(trait.mean):.3f}"
if bool(trait.authors):
authors_list = trait.authors.split(',')
if len(authors_list) > 6:
results_dict['authors_display'] = ", ".join(
authors_list[:6]) + ", et al."
else:
results_dict['authors_display'] = trait.authors
if bool(trait.pubmed_id):
if for_api:
results_dict['pubmed_id'] = trait.pubmed_id
results_dict['year'] = trait.pubmed_text
else:
results_dict['pubmed_link'] = trait.pubmed_link
results_dict['pubmed_text'] = trait.pubmed_text
try:
results_dict['lod_score'] = f"{float(trait.LRS_score_repr) / 4.61:.1f}"
except:
results_dict['lod_score'] = "N/A"
results_dict['lrs_location'] = trait.LRS_location_repr
if bool(trait.additive):
results_dict['additive'] = f"{float(trait.additive):.3f}"
results_dict['sample_r'] = f"{float(trait.sample_r):.3f}"
results_dict['num_overlap'] = trait.num_overlap
results_dict['sample_p'] = f"{float(trait.sample_p):.3e}"
else:
results_dict['location'] = trait.location_repr
results_dict['sample_r'] = f"{float(trait.sample_r):.3f}"
results_dict['num_overlap'] = trait.num_overlap
results_dict['sample_p'] = f"{float(trait.sample_p):.3e}"
results_list.append(results_dict)
return json.dumps(results_list)
|