aboutsummaryrefslogtreecommitdiff
path: root/wqflask/base/data_set.py
diff options
context:
space:
mode:
Diffstat (limited to 'wqflask/base/data_set.py')
-rw-r--r--wqflask/base/data_set.py1301
1 files changed, 0 insertions, 1301 deletions
diff --git a/wqflask/base/data_set.py b/wqflask/base/data_set.py
deleted file mode 100644
index 9685e33e..00000000
--- a/wqflask/base/data_set.py
+++ /dev/null
@@ -1,1301 +0,0 @@
-# Copyright (C) University of Tennessee Health Science Center, Memphis, TN.
-#
-# This program is free software: you can redistribute it and/or modify it
-# under the terms of the GNU Affero General Public License
-# as published by the Free Software Foundation, either version 3 of the
-# License, or (at your option) any later version.
-#
-# This program is distributed in the hope that it will be useful,
-# but WITHOUT ANY WARRANTY; without even the implied warranty of
-# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
-# See the GNU Affero General Public License for more details.
-#
-# This program is available from Source Forge: at GeneNetwork Project
-# (sourceforge.net/projects/genenetwork/).
-#
-# Contact Drs. Robert W. Williams and Xiaodong Zhou (2010)
-# at rwilliams@uthsc.edu and xzhou15@uthsc.edu
-#
-# This module is used by GeneNetwork project (www.genenetwork.org)
-from dataclasses import dataclass
-from dataclasses import field
-from dataclasses import InitVar
-from typing import Optional, Dict, List
-from utility.tools import USE_REDIS, flat_file_exists, GN2_BASE_URL
-from utility.db_tools import escape
-from utility.db_tools import mescape
-from utility.db_tools import create_in_clause
-from maintenance import get_group_samplelists
-from utility.tools import locate, locate_ignore_error, flat_files
-from utility import gen_geno_ob
-from utility import chunks
-from utility import webqtlUtil
-from db import webqtlDatabaseFunction
-from base import species
-from base import webqtlConfig
-from base.webqtlConfig import TMPDIR
-from urllib.parse import urlparse
-from utility.tools import SQL_URI
-from wqflask.database import database_connection
-import os
-import math
-import collections
-import codecs
-
-import json
-import requests
-import pickle as pickle
-import hashlib
-from redis import Redis
-
-
-r = Redis()
-
-# Used by create_database to instantiate objects
-# Each subclass will add to this
-DS_NAME_MAP = {}
-
-
-def create_dataset(dataset_name, dataset_type=None,
- get_samplelist=True, group_name=None):
- if dataset_name == "Temp":
- dataset_type = "Temp"
-
- if not dataset_type:
- dataset_type = Dataset_Getter(dataset_name)
-
- dataset_ob = DS_NAME_MAP[dataset_type]
- dataset_class = globals()[dataset_ob]
- if dataset_type == "Temp":
- return dataset_class(dataset_name, get_samplelist, group_name)
- else:
- return dataset_class(dataset_name, get_samplelist)
-
-
-@dataclass
-class DatasetType:
- """Create a dictionary of samples where the value is set to Geno,
- Publish or ProbeSet. E.g.
-
- {'AD-cases-controls-MyersGeno': 'Geno',
- 'AD-cases-controls-MyersPublish': 'Publish',
- 'AKXDGeno': 'Geno',
- 'AXBXAGeno': 'Geno',
- 'AXBXAPublish': 'Publish',
- 'Aging-Brain-UCIPublish': 'Publish',
- 'All Phenotypes': 'Publish',
- 'B139_K_1206_M': 'ProbeSet',
- 'B139_K_1206_R': 'ProbeSet' ...
- }
- """
- redis_instance: InitVar[Redis]
- datasets: Optional[Dict] = field(init=False, default_factory=dict)
- data: Optional[Dict] = field(init=False)
-
- def __post_init__(self, redis_instance):
- self.redis_instance = redis_instance
- data = redis_instance.get("dataset_structure")
- if data:
- self.datasets = json.loads(data)
- else:
- # ZS: I don't think this should ever run unless Redis is
- # emptied
- try:
- data = json.loads(requests.get(
- GN2_BASE_URL + "/api/v_pre1/gen_dropdown",
- timeout=5).content)
- for _species in data['datasets']:
- for group in data['datasets'][_species]:
- for dataset_type in data['datasets'][_species][group]:
- for dataset in data['datasets'][_species][group][dataset_type]:
- short_dataset_name = dataset[1]
- if dataset_type == "Phenotypes":
- new_type = "Publish"
- elif dataset_type == "Genotypes":
- new_type = "Geno"
- else:
- new_type = "ProbeSet"
- self.datasets[short_dataset_name] = new_type
- except Exception: # Do nothing
- pass
-
- self.redis_instance.set("dataset_structure",
- json.dumps(self.datasets))
- self.data = data
-
- def set_dataset_key(self, t, name):
- """If name is not in the object's dataset dictionary, set it, and
- update dataset_structure in Redis
- args:
- t: Type of dataset structure which can be: 'mrna_expr', 'pheno',
- 'other_pheno', 'geno'
- name: The name of the key to inserted in the datasets dictionary
-
- """
- sql_query_mapping = {
- 'mrna_expr': ("SELECT ProbeSetFreeze.Id FROM "
- "ProbeSetFreeze WHERE "
- "ProbeSetFreeze.Name = %s "),
- 'pheno': ("SELECT InfoFiles.GN_AccesionId "
- "FROM InfoFiles, PublishFreeze, InbredSet "
- "WHERE InbredSet.Name = %s AND "
- "PublishFreeze.InbredSetId = InbredSet.Id AND "
- "InfoFiles.InfoPageName = PublishFreeze.Name"),
- 'other_pheno': ("SELECT PublishFreeze.Name "
- "FROM PublishFreeze, InbredSet "
- "WHERE InbredSet.Name = %s AND "
- "PublishFreeze.InbredSetId = InbredSet.Id"),
- 'geno': ("SELECT GenoFreeze.Id FROM GenoFreeze WHERE "
- "GenoFreeze.Name = %s ")
- }
-
- dataset_name_mapping = {
- "mrna_expr": "ProbeSet",
- "pheno": "Publish",
- "other_pheno": "Publish",
- "geno": "Geno",
- }
-
- group_name = name
- if t in ['pheno', 'other_pheno']:
- group_name = name.replace("Publish", "")
-
- with database_connection() as conn, conn.cursor() as cursor:
- cursor.execute(sql_query_mapping[t], (group_name,))
- if cursor.fetchone():
- self.datasets[name] = dataset_name_mapping[t]
- self.redis_instance.set(
- "dataset_structure", json.dumps(self.datasets))
- return True
-
-
- def __call__(self, name):
- if name not in self.datasets:
- for t in ["mrna_expr", "pheno", "other_pheno", "geno"]:
- # This has side-effects, with the end result being a
- # truth-y value
- if(self.set_dataset_key(t, name)):
- break
- # Return None if name has not been set
- return self.datasets.get(name, None)
-
-
-# Do the intensive work at startup one time only
-Dataset_Getter = DatasetType(r)
-
-
-def create_datasets_list():
- if USE_REDIS:
- key = "all_datasets"
- result = r.get(key)
-
- if result:
- datasets = pickle.loads(result)
-
- if result is None:
- datasets = list()
- type_dict = {'Publish': 'PublishFreeze',
- 'ProbeSet': 'ProbeSetFreeze',
- 'Geno': 'GenoFreeze'}
-
- for dataset_type in type_dict:
- with database_connection() as conn, conn.cursor() as cursor:
- cursor.execute("SELECT Name FROM %s",
- (type_dict[dataset_type],))
- results = cursor.fetchall(query)
- if results:
- for result in results:
- datasets.append(
- create_dataset(result.Name, dataset_type))
- if USE_REDIS:
- r.set(key, pickle.dumps(datasets, pickle.HIGHEST_PROTOCOL))
- r.expire(key, 60 * 60)
-
- return datasets
-
-
-class Markers:
- """Todo: Build in cacheing so it saves us reading the same file more than once"""
-
- def __init__(self, name):
- json_data_fh = open(locate(name + ".json", 'genotype/json'))
-
- markers = []
- with open("%s/%s_snps.txt" % (flat_files('genotype/bimbam'), name), 'r') as bimbam_fh:
- if len(bimbam_fh.readline().split(", ")) > 2:
- delimiter = ", "
- elif len(bimbam_fh.readline().split(",")) > 2:
- delimiter = ","
- elif len(bimbam_fh.readline().split("\t")) > 2:
- delimiter = "\t"
- else:
- delimiter = " "
- for line in bimbam_fh:
- marker = {}
- marker['name'] = line.split(delimiter)[0].rstrip()
- marker['Mb'] = float(line.split(delimiter)[
- 1].rstrip()) / 1000000
- marker['chr'] = line.split(delimiter)[2].rstrip()
- markers.append(marker)
-
- for marker in markers:
- if (marker['chr'] != "X") and (marker['chr'] != "Y") and (marker['chr'] != "M"):
- marker['chr'] = int(marker['chr'])
- marker['Mb'] = float(marker['Mb'])
-
- self.markers = markers
-
- def add_pvalues(self, p_values):
- if isinstance(p_values, list):
- # THIS IS only needed for the case when we are limiting the number of p-values calculated
- # if len(self.markers) > len(p_values):
- # self.markers = self.markers[:len(p_values)]
-
- for marker, p_value in zip(self.markers, p_values):
- if not p_value:
- continue
- marker['p_value'] = float(p_value)
- if math.isnan(marker['p_value']) or marker['p_value'] <= 0:
- marker['lod_score'] = 0
- marker['lrs_value'] = 0
- else:
- marker['lod_score'] = -math.log10(marker['p_value'])
- # Using -log(p) for the LRS; need to ask Rob how he wants to get LRS from p-values
- marker['lrs_value'] = -math.log10(marker['p_value']) * 4.61
- elif isinstance(p_values, dict):
- filtered_markers = []
- for marker in self.markers:
- if marker['name'] in p_values:
- marker['p_value'] = p_values[marker['name']]
- if math.isnan(marker['p_value']) or (marker['p_value'] <= 0):
- marker['lod_score'] = 0
- marker['lrs_value'] = 0
- else:
- marker['lod_score'] = -math.log10(marker['p_value'])
- # Using -log(p) for the LRS; need to ask Rob how he wants to get LRS from p-values
- marker['lrs_value'] = - \
- math.log10(marker['p_value']) * 4.61
- filtered_markers.append(marker)
- self.markers = filtered_markers
-
-
-class HumanMarkers(Markers):
-
- def __init__(self, name, specified_markers=[]):
- marker_data_fh = open(flat_files('mapping') + '/' + name + '.bim')
- self.markers = []
- for line in marker_data_fh:
- splat = line.strip().split()
- if len(specified_markers) > 0:
- if splat[1] in specified_markers:
- marker = {}
- marker['chr'] = int(splat[0])
- marker['name'] = splat[1]
- marker['Mb'] = float(splat[3]) / 1000000
- else:
- continue
- else:
- marker = {}
- marker['chr'] = int(splat[0])
- marker['name'] = splat[1]
- marker['Mb'] = float(splat[3]) / 1000000
- self.markers.append(marker)
-
- def add_pvalues(self, p_values):
- super(HumanMarkers, self).add_pvalues(p_values)
-
-
-class DatasetGroup:
- """
- Each group has multiple datasets; each species has multiple groups.
-
- For example, Mouse has multiple groups (BXD, BXA, etc), and each group
- has multiple datasets associated with it.
-
- """
-
- def __init__(self, dataset, name=None):
- """This sets self.group and self.group_id"""
- with database_connection() as conn, conn.cursor() as cursor:
- if not name:
- cursor.execute(dataset.query_for_group,
- (dataset.name,))
- else:
- cursor.execute(
- "SELECT InbredSet.Name, "
- "InbredSet.Id, "
- "InbredSet.GeneticType, "
- "InbredSet.InbredSetCode "
- "FROM InbredSet WHERE Name = %s",
- (dataset.name,))
- results = cursor.fetchone()
- if results:
- (self.name, self.id, self.genetic_type, self.code) = results
- else:
- self.name = name or dataset.name
- if self.name == 'BXD300':
- self.name = "BXD"
-
- self.f1list = None
- self.parlist = None
- self.get_f1_parent_strains()
-
- self.mapping_id, self.mapping_names = self.get_mapping_methods()
-
- self.species = webqtlDatabaseFunction.retrieve_species(self.name)
-
- self.incparentsf1 = False
- self.allsamples = None
- self._datasets = None
- self.genofile = None
-
- def get_mapping_methods(self):
- mapping_id = ()
- with database_connection() as conn, conn.cursor() as cursor:
- cursor.execute(
- "SELECT MappingMethodId FROM "
- "InbredSet WHERE Name= %s",
- (self.name,))
- results = cursor.fetchone()
- if results and results[0]:
- mapping_id = results[0]
- if mapping_id == "1":
- mapping_names = ["GEMMA", "QTLReaper", "R/qtl"]
- elif mapping_id == "2":
- mapping_names = ["GEMMA"]
- elif mapping_id == "3":
- mapping_names = ["R/qtl"]
- elif mapping_id == "4":
- mapping_names = ["GEMMA", "PLINK"]
- else:
- mapping_names = []
-
- return mapping_id, mapping_names
-
- def get_markers(self):
- def check_plink_gemma():
- if flat_file_exists("mapping"):
- MAPPING_PATH = flat_files("mapping") + "/"
- if os.path.isfile(MAPPING_PATH + self.name + ".bed"):
- return True
- return False
-
- if check_plink_gemma():
- marker_class = HumanMarkers
- else:
- marker_class = Markers
-
- if self.genofile:
- self.markers = marker_class(self.genofile[:-5])
- else:
- self.markers = marker_class(self.name)
-
- def get_f1_parent_strains(self):
- try:
- # NL, 07/27/2010. ParInfo has been moved from webqtlForm.py to webqtlUtil.py;
- f1, f12, maternal, paternal = webqtlUtil.ParInfo[self.name]
- except KeyError:
- f1 = f12 = maternal = paternal = None
-
- if f1 and f12:
- self.f1list = [f1, f12]
- if maternal and paternal:
- self.parlist = [maternal, paternal]
-
- def get_study_samplelists(self):
- study_sample_file = locate_ignore_error(
- self.name + ".json", 'study_sample_lists')
- try:
- f = open(study_sample_file)
- except:
- return []
- study_samples = json.load(f)
- return study_samples
-
- def get_genofiles(self):
- jsonfile = "%s/%s.json" % (webqtlConfig.GENODIR, self.name)
- try:
- f = open(jsonfile)
- except:
- return None
- jsondata = json.load(f)
- return jsondata['genofile']
-
- def get_samplelist(self):
- result = None
- key = "samplelist:v3:" + self.name
- if USE_REDIS:
- result = r.get(key)
-
- if result is not None:
- self.samplelist = json.loads(result)
- else:
- genotype_fn = locate_ignore_error(self.name + ".geno", 'genotype')
- if genotype_fn:
- self.samplelist = get_group_samplelists.get_samplelist(
- "geno", genotype_fn)
- else:
- self.samplelist = None
-
- if USE_REDIS:
- r.set(key, json.dumps(self.samplelist))
- r.expire(key, 60 * 5)
-
- def all_samples_ordered(self):
- result = []
- lists = (self.parlist, self.f1list, self.samplelist)
- [result.extend(l) for l in lists if l]
- return result
-
- def read_genotype_file(self, use_reaper=False):
- '''Read genotype from .geno file instead of database'''
- # genotype_1 is Dataset Object without parents and f1
- # genotype_2 is Dataset Object with parents and f1 (not for intercross)
-
- # reaper barfs on unicode filenames, so here we ensure it's a string
- if self.genofile:
- if "RData" in self.genofile: # ZS: This is a temporary fix; I need to change the way the JSON files that point to multiple genotype files are structured to point to other file types like RData
- full_filename = str(
- locate(self.genofile.split(".")[0] + ".geno", 'genotype'))
- else:
- full_filename = str(locate(self.genofile, 'genotype'))
- else:
- full_filename = str(locate(self.name + '.geno', 'genotype'))
- genotype_1 = gen_geno_ob.genotype(full_filename)
-
- if genotype_1.type == "group" and self.parlist:
- genotype_2 = genotype_1.add(
- Mat=self.parlist[0], Pat=self.parlist[1]) # , F1=_f1)
- else:
- genotype_2 = genotype_1
-
- # determine default genotype object
- if self.incparentsf1 and genotype_1.type != "intercross":
- genotype = genotype_2
- else:
- self.incparentsf1 = 0
- genotype = genotype_1
-
- self.samplelist = list(genotype.prgy)
-
- return genotype
-
-
-def datasets(group_name, this_group=None):
- key = "group_dataset_menu:v2:" + group_name
- dataset_menu = []
- with database_connection() as conn, conn.cursor() as cursor:
- cursor.execute('''
- (SELECT '#PublishFreeze',PublishFreeze.FullName,PublishFreeze.Name
- FROM PublishFreeze,InbredSet
- WHERE PublishFreeze.InbredSetId = InbredSet.Id
- and InbredSet.Name = '%s'
- ORDER BY PublishFreeze.Id ASC)
- UNION
- (SELECT '#GenoFreeze',GenoFreeze.FullName,GenoFreeze.Name
- FROM GenoFreeze, InbredSet
- WHERE GenoFreeze.InbredSetId = InbredSet.Id
- and InbredSet.Name = '%s')
- UNION
- (SELECT Tissue.Name, ProbeSetFreeze.FullName,ProbeSetFreeze.Name
- FROM ProbeSetFreeze, ProbeFreeze, InbredSet, Tissue
- WHERE ProbeSetFreeze.ProbeFreezeId = ProbeFreeze.Id
- and ProbeFreeze.TissueId = Tissue.Id
- and ProbeFreeze.InbredSetId = InbredSet.Id
- and InbredSet.Name like %s
- ORDER BY Tissue.Name, ProbeSetFreeze.OrderList DESC)
- ''' % (group_name,
- group_name,
- "'" + group_name + "'"))
- the_results = cursor.fetchall()
-
- sorted_results = sorted(the_results, key=lambda kv: kv[0])
-
- # ZS: This is kind of awkward, but need to ensure Phenotypes show up before Genotypes in dropdown
- pheno_inserted = False
- geno_inserted = False
- for dataset_item in sorted_results:
- tissue_name = dataset_item[0]
- dataset = dataset_item[1]
- dataset_short = dataset_item[2]
- if tissue_name in ['#PublishFreeze', '#GenoFreeze']:
- if tissue_name == '#PublishFreeze' and (dataset_short == group_name + 'Publish'):
- dataset_menu.insert(
- 0, dict(tissue=None, datasets=[(dataset, dataset_short)]))
- pheno_inserted = True
- elif pheno_inserted and tissue_name == '#GenoFreeze':
- dataset_menu.insert(
- 1, dict(tissue=None, datasets=[(dataset, dataset_short)]))
- geno_inserted = True
- else:
- dataset_menu.append(
- dict(tissue=None, datasets=[(dataset, dataset_short)]))
- else:
- tissue_already_exists = False
- for i, tissue_dict in enumerate(dataset_menu):
- if tissue_dict['tissue'] == tissue_name:
- tissue_already_exists = True
- break
-
- if tissue_already_exists:
- dataset_menu[i]['datasets'].append((dataset, dataset_short))
- else:
- dataset_menu.append(dict(tissue=tissue_name,
- datasets=[(dataset, dataset_short)]))
-
- if USE_REDIS:
- r.set(key, pickle.dumps(dataset_menu, pickle.HIGHEST_PROTOCOL))
- r.expire(key, 60 * 5)
-
- if this_group != None:
- this_group._datasets = dataset_menu
- return this_group._datasets
- else:
- return dataset_menu
-
-
-class DataSet:
- """
- DataSet class defines a dataset in webqtl, can be either Microarray,
- Published phenotype, genotype, or user input dataset(temp)
-
- """
-
- def __init__(self, name, get_samplelist=True, group_name=None):
-
- assert name, "Need a name"
- self.name = name
- self.id = None
- self.shortname = None
- self.fullname = None
- self.type = None
- self.data_scale = None # ZS: For example log2
- self.accession_id = None
-
- self.setup()
-
- if self.type == "Temp": # Need to supply group name as input if temp trait
- # sets self.group and self.group_id and gets genotype
- self.group = DatasetGroup(self, name=group_name)
- else:
- self.check_confidentiality()
- self.retrieve_other_names()
- # sets self.group and self.group_id and gets genotype
- self.group = DatasetGroup(self)
- self.accession_id = self.get_accession_id()
- if get_samplelist == True:
- self.group.get_samplelist()
- self.species = species.TheSpecies(self)
-
- def as_dict(self):
- return {
- 'name': self.name,
- 'shortname': self.shortname,
- 'fullname': self.fullname,
- 'type': self.type,
- 'data_scale': self.data_scale,
- 'group': self.group.name,
- 'accession_id': self.accession_id
- }
-
- def get_accession_id(self):
- results = None
- with database_connection() as conn, conn.cursor() as cursor:
- if self.type == "Publish":
- cursor.execute(
- "SELECT InfoFiles.GN_AccesionId FROM "
- "InfoFiles, PublishFreeze, InbredSet "
- "WHERE InbredSet.Name = %s AND "
- "PublishFreeze.InbredSetId = InbredSet.Id "
- "AND InfoFiles.InfoPageName = PublishFreeze.Name "
- "AND PublishFreeze.public > 0 AND "
- "PublishFreeze.confidentiality < 1 "
- "ORDER BY PublishFreeze.CreateTime DESC",
- (self.group.name,)
- )
- results = cursor.fetchone()
- elif self.type == "Geno":
- cursor.execute(
- "SELECT InfoFiles.GN_AccesionId FROM "
- "InfoFiles, GenoFreeze, InbredSet "
- "WHERE InbredSet.Name = %s AND "
- "GenoFreeze.InbredSetId = InbredSet.Id "
- "AND InfoFiles.InfoPageName = GenoFreeze.ShortName "
- "AND GenoFreeze.public > 0 AND "
- "GenoFreeze.confidentiality < 1 "
- "ORDER BY GenoFreeze.CreateTime DESC",
- (self.group.name,)
- )
- results = cursor.fetchone()
-
- if results:
- return str(results[0])
- return "None"
-
- def retrieve_other_names(self):
- """This method fetches the the dataset names in search_result.
-
- If the data set name parameter is not found in the 'Name' field of
- the data set table, check if it is actually the FullName or
- ShortName instead.
-
- This is not meant to retrieve the data set info if no name at
- all is passed.
-
- """
- with database_connection() as conn, conn.cursor() as cursor:
- try:
- if self.type == "ProbeSet":
- cursor.execute(
- "SELECT ProbeSetFreeze.Id, ProbeSetFreeze.Name, "
- "ProbeSetFreeze.FullName, ProbeSetFreeze.ShortName, "
- "ProbeSetFreeze.DataScale, Tissue.Name "
- "FROM ProbeSetFreeze, ProbeFreeze, Tissue "
- "WHERE ProbeSetFreeze.ProbeFreezeId = ProbeFreeze.Id "
- "AND ProbeFreeze.TissueId = Tissue.Id "
- "AND (ProbeSetFreeze.Name = %s OR "
- "ProbeSetFreeze.FullName = %s "
- "OR ProbeSetFreeze.ShortName = %s)",
- (self.name,)*3)
- (self.id, self.name, self.fullname, self.shortname,
- self.data_scale, self.tissue) = cursor.fetchone()
- else:
- self.tissue = "N/A"
- cursor.execute(
- "SELECT Id, Name, FullName, ShortName "
- f"FROM {self.type}Freeze "
- "WHERE (Name = %s OR FullName = "
- "%s OR ShortName = %s)",
- (self.name,)*3)
- (self.id, self.name, self.fullname,
- self.shortname) = cursor.fetchone()
- except TypeError:
- pass
-
- def chunk_dataset(self, dataset, n):
-
- results = {}
- traits_name_dict = ()
- with database_connection() as conn, conn.cursor() as cursor:
- cursor.execute(
- "SELECT ProbeSetXRef.DataId,ProbeSet.Name "
- "FROM ProbeSet, ProbeSetXRef, ProbeSetFreeze "
- "WHERE ProbeSetFreeze.Name = %s AND "
- "ProbeSetXRef.ProbeSetFreezeId = ProbeSetFreeze.Id "
- "AND ProbeSetXRef.ProbeSetId = ProbeSet.Id",
- (self.name,))
- # should cache this
- traits_name_dict = dict(cursor.fetchall())
-
- for i in range(0, len(dataset), n):
- matrix = list(dataset[i:i + n])
- trait_name = traits_name_dict[matrix[0][0]]
-
- my_values = [value for (trait_name, strain, value) in matrix]
- results[trait_name] = my_values
- return results
-
- def get_probeset_data(self, sample_list=None, trait_ids=None):
-
- # improvement of get trait data--->>>
- if sample_list:
- self.samplelist = sample_list
-
- else:
- self.samplelist = self.group.samplelist
-
- if self.group.parlist != None and self.group.f1list != None:
- if (self.group.parlist + self.group.f1list) in self.samplelist:
- self.samplelist += self.group.parlist + self.group.f1list
- with database_connection() as conn, conn.cursor() as cursor:
- cursor.execute(
- "SELECT Strain.Name, Strain.Id FROM "
- "Strain, Species WHERE Strain.Name IN "
- f"{create_in_clause(self.samplelist)} "
- "AND Strain.SpeciesId=Species.Id AND "
- "Species.name = %s", (self.group.species,)
- )
- results = dict(cursor.fetchall())
- sample_ids = [results[item] for item in self.samplelist]
-
- sorted_samplelist = [strain_name for strain_name, strain_id in sorted(
- results.items(), key=lambda item: item[1])]
-
- cursor.execute(
- "SELECT * from ProbeSetData WHERE StrainID IN "
- f"{create_in_clause(sample_ids)} AND id IN "
- "(SELECT ProbeSetXRef.DataId FROM "
- "(ProbeSet, ProbeSetXRef, ProbeSetFreeze) "
- "WHERE ProbeSetXRef.ProbeSetFreezeId = ProbeSetFreeze.Id "
- "AND ProbeSetFreeze.Name = %s AND "
- "ProbeSet.Id = ProbeSetXRef.ProbeSetId)",
- (self.name,)
- )
-
- query_results = list(cursor.fetchall())
- data_results = self.chunk_dataset(query_results, len(sample_ids))
- self.samplelist = sorted_samplelist
- self.trait_data = data_results
-
- def get_trait_data(self, sample_list=None):
- if sample_list:
- self.samplelist = sample_list
- else:
- self.samplelist = self.group.samplelist
-
- if self.group.parlist != None and self.group.f1list != None:
- if (self.group.parlist + self.group.f1list) in self.samplelist:
- self.samplelist += self.group.parlist + self.group.f1list
-
- with database_connection() as conn, conn.cursor() as cursor:
- cursor.execute(
- "SELECT Strain.Name, Strain.Id FROM Strain, Species "
- f"WHERE Strain.Name IN {create_in_clause(self.samplelist)} "
- "AND Strain.SpeciesId=Species.Id "
- "AND Species.name = %s",
- (self.group.species,)
- )
- results = dict(cursor.fetchall())
- sample_ids = [
- sample_id for sample_id in
- (results.get(item) for item in self.samplelist
- if item is not None)
- if sample_id is not None
- ]
-
- # MySQL limits the number of tables that can be used in a join to 61,
- # so we break the sample ids into smaller chunks
- # Postgres doesn't have that limit, so we can get rid of this after we transition
- chunk_size = 50
- number_chunks = int(math.ceil(len(sample_ids) / chunk_size))
-
- cached_results = fetch_cached_results(self.name, self.type, self.samplelist)
-
- if cached_results is None:
- trait_sample_data = []
- for sample_ids_step in chunks.divide_into_chunks(sample_ids, number_chunks):
- if self.type == "Publish":
- dataset_type = "Phenotype"
- else:
- dataset_type = self.type
- temp = ['T%s.value' % item for item in sample_ids_step]
- if self.type == "Publish":
- query = "SELECT {}XRef.Id".format(escape(self.type))
- else:
- query = "SELECT {}.Name".format(escape(dataset_type))
- data_start_pos = 1
- if len(temp) > 0:
- query = query + ", " + ', '.join(temp)
- query += ' FROM ({}, {}XRef, {}Freeze) '.format(*mescape(dataset_type,
- self.type,
- self.type))
-
- for item in sample_ids_step:
- query += """
- left join {}Data as T{} on T{}.Id = {}XRef.DataId
- and T{}.StrainId={}\n
- """.format(*mescape(self.type, item, item, self.type, item, item))
-
- if self.type == "Publish":
- query += """
- WHERE {}XRef.InbredSetId = {}Freeze.InbredSetId
- and {}Freeze.Name = '{}'
- and {}.Id = {}XRef.{}Id
- order by {}.Id
- """.format(*mescape(self.type, self.type, self.type, self.name,
- dataset_type, self.type, dataset_type, dataset_type))
- else:
- query += """
- WHERE {}XRef.{}FreezeId = {}Freeze.Id
- and {}Freeze.Name = '{}'
- and {}.Id = {}XRef.{}Id
- order by {}.Id
- """.format(*mescape(self.type, self.type, self.type, self.type,
- self.name, dataset_type, self.type, self.type, dataset_type))
- cursor.execute(query)
- results = cursor.fetchall()
- trait_sample_data.append([list(result) for result in results])
-
- trait_count = len(trait_sample_data[0])
- self.trait_data = collections.defaultdict(list)
-
- data_start_pos = 1
- for trait_counter in range(trait_count):
- trait_name = trait_sample_data[0][trait_counter][0]
- for chunk_counter in range(int(number_chunks)):
- self.trait_data[trait_name] += (
- trait_sample_data[chunk_counter][trait_counter][data_start_pos:])
-
- cache_dataset_results(
- self.name, self.type, self.samplelist, self.trait_data)
- else:
- self.trait_data = cached_results
-
-
-class PhenotypeDataSet(DataSet):
- DS_NAME_MAP['Publish'] = 'PhenotypeDataSet'
-
- def setup(self):
- # Fields in the database table
- self.search_fields = ['Phenotype.Post_publication_description',
- 'Phenotype.Pre_publication_description',
- 'Phenotype.Pre_publication_abbreviation',
- 'Phenotype.Post_publication_abbreviation',
- 'PublishXRef.mean',
- 'Phenotype.Lab_code',
- 'Publication.PubMed_ID',
- 'Publication.Abstract',
- 'Publication.Title',
- 'Publication.Authors',
- 'PublishXRef.Id']
-
- # Figure out what display_fields is
- self.display_fields = ['name', 'group_code',
- 'pubmed_id',
- 'pre_publication_description',
- 'post_publication_description',
- 'original_description',
- 'pre_publication_abbreviation',
- 'post_publication_abbreviation',
- 'mean',
- 'lab_code',
- 'submitter', 'owner',
- 'authorized_users',
- 'authors', 'title',
- 'abstract', 'journal',
- 'volume', 'pages',
- 'month', 'year',
- 'sequence', 'units', 'comments']
-
- # Fields displayed in the search results table header
- self.header_fields = ['Index',
- 'Record',
- 'Description',
- 'Authors',
- 'Year',
- 'Max LRS',
- 'Max LRS Location',
- 'Additive Effect']
-
- self.type = 'Publish'
- self.query_for_group = """
-SELECT InbredSet.Name, InbredSet.Id, InbredSet.GeneticType, InbredSet.InbredSetCode FROM InbredSet, PublishFreeze WHERE PublishFreeze.InbredSetId = InbredSet.Id AND PublishFreeze.Name = %s"""
-
- def check_confidentiality(self):
- # (Urgently?) Need to write this
- pass
-
- def get_trait_info(self, trait_list, species=''):
- for this_trait in trait_list:
-
- if not this_trait.haveinfo:
- this_trait.retrieve_info(get_qtl_info=True)
-
- description = this_trait.post_publication_description
-
- # If the dataset is confidential and the user has access to confidential
- # phenotype traits, then display the pre-publication description instead
- # of the post-publication description
- if this_trait.confidential:
- this_trait.description_display = ""
- continue # for now, because no authorization features
-
- if not webqtlUtil.hasAccessToConfidentialPhenotypeTrait(
- privilege=self.privilege,
- userName=self.userName,
- authorized_users=this_trait.authorized_users):
-
- description = this_trait.pre_publication_description
-
- if len(description) > 0:
- this_trait.description_display = description.strip()
- else:
- this_trait.description_display = ""
-
- if not this_trait.year.isdigit():
- this_trait.pubmed_text = "N/A"
- else:
- this_trait.pubmed_text = this_trait.year
-
- if this_trait.pubmed_id:
- this_trait.pubmed_link = webqtlConfig.PUBMEDLINK_URL % this_trait.pubmed_id
-
- # LRS and its location
- this_trait.LRS_score_repr = "N/A"
- this_trait.LRS_location_repr = "N/A"
-
- if this_trait.lrs:
- with database_connection() as conn, conn.cursor() as cursor:
- cursor.execute(
- "SELECT Geno.Chr, Geno.Mb FROM "
- "Geno, Species WHERE "
- "Species.Name = %s AND "
- "Geno.Name = %s AND "
- "Geno.SpeciesId = Species.Id",
- (species, this_trait.locus,)
- )
- if result := cursor.fetchone():
- if result[0] and result[1]:
- LRS_Chr, LRS_Mb = result[0], result[1]
- this_trait.LRS_score_repr = LRS_score_repr = '%3.1f' % this_trait.lrs
- this_trait.LRS_location_repr = LRS_location_repr = 'Chr%s: %.6f' % (
- LRS_Chr, float(LRS_Mb))
-
- def retrieve_sample_data(self, trait):
- with database_connection() as conn, conn.cursor() as cursor:
- cursor.execute(
- "SELECT Strain.Name, PublishData.value, "
- "PublishSE.error, NStrain.count, "
- "Strain.Name2 FROM (PublishData, Strain, "
- "PublishXRef, PublishFreeze) LEFT JOIN "
- "PublishSE ON "
- "(PublishSE.DataId = PublishData.Id "
- "AND PublishSE.StrainId = PublishData.StrainId) "
- "LEFT JOIN NStrain ON "
- "(NStrain.DataId = PublishData.Id AND "
- "NStrain.StrainId = PublishData.StrainId) "
- "WHERE PublishXRef.InbredSetId = PublishFreeze.InbredSetId "
- "AND PublishData.Id = PublishXRef.DataId AND "
- "PublishXRef.Id = %s AND PublishFreeze.Id = %s "
- "AND PublishData.StrainId = Strain.Id "
- "ORDER BY Strain.Name", (trait, self.id))
- return cursor.fetchall()
-
-
-class GenotypeDataSet(DataSet):
- DS_NAME_MAP['Geno'] = 'GenotypeDataSet'
-
- def setup(self):
- # Fields in the database table
- self.search_fields = ['Name',
- 'Chr']
-
- # Find out what display_fields is
- self.display_fields = ['name',
- 'chr',
- 'mb',
- 'source2',
- 'sequence']
-
- # Fields displayed in the search results table header
- self.header_fields = ['Index',
- 'ID',
- 'Location']
-
- # Todo: Obsolete or rename this field
- self.type = 'Geno'
- self.query_for_group = """
-SELECT InbredSet.Name, InbredSet.Id, InbredSet.GeneticType, InbredSet.InbredSetCode
-FROM InbredSet, GenoFreeze WHERE GenoFreeze.InbredSetId = InbredSet.Id AND
-GenoFreeze.Name = %s"""
-
- def check_confidentiality(self):
- return geno_mrna_confidentiality(self)
-
- def get_trait_info(self, trait_list, species=None):
- for this_trait in trait_list:
- if not this_trait.haveinfo:
- this_trait.retrieveInfo()
-
- if this_trait.chr and this_trait.mb:
- this_trait.location_repr = 'Chr%s: %.6f' % (
- this_trait.chr, float(this_trait.mb))
-
- def retrieve_sample_data(self, trait):
- results = []
- with database_connection() as conn, conn.cursor() as cursor:
- cursor.execute(
- "SELECT Strain.Name, GenoData.value, "
- "GenoSE.error, 'N/A', Strain.Name2 "
- "FROM (GenoData, GenoFreeze, Strain, Geno, "
- "GenoXRef) LEFT JOIN GenoSE ON "
- "(GenoSE.DataId = GenoData.Id AND "
- "GenoSE.StrainId = GenoData.StrainId) "
- "WHERE Geno.SpeciesId = %s AND "
- "Geno.Name = %s AND GenoXRef.GenoId = Geno.Id "
- "AND GenoXRef.GenoFreezeId = GenoFreeze.Id "
- "AND GenoFreeze.Name = %s AND "
- "GenoXRef.DataId = GenoData.Id "
- "AND GenoData.StrainId = Strain.Id "
- "ORDER BY Strain.Name",
- (webqtlDatabaseFunction.retrieve_species_id(self.group.name),
- trait, self.name,))
- results = list(cursor.fetchall())
-
- if self.group.name in webqtlUtil.ParInfo:
- f1_1, f1_2, ref, nonref = webqtlUtil.ParInfo[self.group.name]
- results.append([f1_1, 0, None, "N/A", f1_1])
- results.append([f1_2, 0, None, "N/A", f1_2])
- results.append([ref, -1, None, "N/A", ref])
- results.append([nonref, 1, None, "N/A", nonref])
-
- return results
-
-
-class MrnaAssayDataSet(DataSet):
- '''
- An mRNA Assay is a quantitative assessment (assay) associated with an mRNA trait
-
- This used to be called ProbeSet, but that term only refers specifically to the Affymetrix
- platform and is far too specific.
-
- '''
- DS_NAME_MAP['ProbeSet'] = 'MrnaAssayDataSet'
-
- def setup(self):
- # Fields in the database table
- self.search_fields = ['Name',
- 'Description',
- 'Probe_Target_Description',
- 'Symbol',
- 'Alias',
- 'GenbankId',
- 'UniGeneId',
- 'RefSeq_TranscriptId']
-
- # Find out what display_fields is
- self.display_fields = ['name', 'symbol',
- 'description', 'probe_target_description',
- 'chr', 'mb',
- 'alias', 'geneid',
- 'genbankid', 'unigeneid',
- 'omim', 'refseq_transcriptid',
- 'blatseq', 'targetseq',
- 'chipid', 'comments',
- 'strand_probe', 'strand_gene',
- 'proteinid', 'uniprotid',
- 'probe_set_target_region',
- 'probe_set_specificity',
- 'probe_set_blat_score',
- 'probe_set_blat_mb_start',
- 'probe_set_blat_mb_end',
- 'probe_set_strand',
- 'probe_set_note_by_rw',
- 'flag']
-
- # Fields displayed in the search results table header
- self.header_fields = ['Index',
- 'Record',
- 'Symbol',
- 'Description',
- 'Location',
- 'Mean',
- 'Max LRS',
- 'Max LRS Location',
- 'Additive Effect']
-
- # Todo: Obsolete or rename this field
- self.type = 'ProbeSet'
- self.query_for_group = """
-SELECT InbredSet.Name, InbredSet.Id, InbredSet.GeneticType, InbredSet.InbredSetCode
-FROM InbredSet, ProbeSetFreeze, ProbeFreeze WHERE ProbeFreeze.InbredSetId = InbredSet.Id AND
-ProbeFreeze.Id = ProbeSetFreeze.ProbeFreezeId AND ProbeSetFreeze.Name = %s"""
-
- def check_confidentiality(self):
- return geno_mrna_confidentiality(self)
-
- def get_trait_info(self, trait_list=None, species=''):
-
- # Note: setting trait_list to [] is probably not a great idea.
- if not trait_list:
- trait_list = []
- with database_connection() as conn, conn.cursor() as cursor:
- for this_trait in trait_list:
-
- if not this_trait.haveinfo:
- this_trait.retrieveInfo(QTL=1)
-
- if not this_trait.symbol:
- this_trait.symbol = "N/A"
-
- # XZ, 12/08/2008: description
- # XZ, 06/05/2009: Rob asked to add probe target description
- description_string = str(
- str(this_trait.description).strip(codecs.BOM_UTF8), 'utf-8')
- target_string = str(
- str(this_trait.probe_target_description).strip(codecs.BOM_UTF8), 'utf-8')
-
- if len(description_string) > 1 and description_string != 'None':
- description_display = description_string
- else:
- description_display = this_trait.symbol
-
- if (len(description_display) > 1 and description_display != 'N/A'
- and len(target_string) > 1 and target_string != 'None'):
- description_display = description_display + '; ' + target_string.strip()
-
- # Save it for the jinja2 template
- this_trait.description_display = description_display
-
- if this_trait.chr and this_trait.mb:
- this_trait.location_repr = 'Chr%s: %.6f' % (
- this_trait.chr, float(this_trait.mb))
-
- # Get mean expression value
- cursor.execute(
- "SELECT ProbeSetXRef.mean FROM "
- "ProbeSetXRef, ProbeSet WHERE "
- "ProbeSetXRef.ProbeSetFreezeId = %s "
- "AND ProbeSet.Id = ProbeSetXRef.ProbeSetId "
- "AND ProbeSet.Name = %s",
- (str(this_trait.dataset.id), this_trait.name,)
- )
- result = cursor.fetchone()
-
- mean = result[0] if result else 0
-
- if mean:
- this_trait.mean = "%2.3f" % mean
-
- # LRS and its location
- this_trait.LRS_score_repr = 'N/A'
- this_trait.LRS_location_repr = 'N/A'
-
- # Max LRS and its Locus location
- if this_trait.lrs and this_trait.locus:
- cursor.execute(
- "SELECT Geno.Chr, Geno.Mb FROM "
- "Geno, Species WHERE "
- "Species.Name = %s AND "
- "Geno.Name = %s AND "
- "Geno.SpeciesId = Species.Id",
- (species, this_trait.locus,)
- )
- if result := cursor.fetchone():
- lrs_chr, lrs_mb = result
- this_trait.LRS_score_repr = '%3.1f' % this_trait.lrs
- this_trait.LRS_location_repr = 'Chr%s: %.6f' % (
- lrs_chr, float(lrs_mb))
-
- return trait_list
-
- def retrieve_sample_data(self, trait):
- with database_connection() as conn, conn.cursor() as cursor:
- cursor.execute(
- "SELECT Strain.Name, ProbeSetData.value, "
- "ProbeSetSE.error, NStrain.count, "
- "Strain.Name2 FROM (ProbeSetData, "
- "ProbeSetFreeze, Strain, ProbeSet, "
- "ProbeSetXRef) LEFT JOIN ProbeSetSE ON "
- "(ProbeSetSE.DataId = ProbeSetData.Id AND "
- "ProbeSetSE.StrainId = ProbeSetData.StrainId) "
- "LEFT JOIN NStrain ON "
- "(NStrain.DataId = ProbeSetData.Id AND "
- "NStrain.StrainId = ProbeSetData.StrainId) "
- "WHERE ProbeSet.Name = %s AND "
- "ProbeSetXRef.ProbeSetId = ProbeSet.Id "
- "AND ProbeSetXRef.ProbeSetFreezeId = ProbeSetFreeze.Id "
- "AND ProbeSetFreeze.Name = %s AND "
- "ProbeSetXRef.DataId = ProbeSetData.Id "
- "AND ProbeSetData.StrainId = Strain.Id "
- "ORDER BY Strain.Name",
- (trait, self.name,)
- )
- return cursor.fetchall()
-
- def retrieve_genes(self, column_name):
- with database_connection() as conn, conn.cursor() as cursor:
- cursor.execute(
- f"SELECT ProbeSet.Name, ProbeSet.{column_name} "
- "FROM ProbeSet,ProbeSetXRef WHERE "
- "ProbeSetXRef.ProbeSetFreezeId = %s "
- "AND ProbeSetXRef.ProbeSetId=ProbeSet.Id",
- (str(self.id),))
- return dict(cursor.fetchall())
-
-
-class TempDataSet(DataSet):
- """Temporary user-generated data set"""
- DS_NAME_MAP['Temp'] = 'TempDataSet'
-
- def setup(self):
- self.search_fields = ['name',
- 'description']
-
- self.display_fields = ['name',
- 'description']
-
- self.header_fields = ['Name',
- 'Description']
-
- self.type = 'Temp'
-
- # Need to double check later how these are used
- self.id = 1
- self.fullname = 'Temporary Storage'
- self.shortname = 'Temp'
-
-
-def geno_mrna_confidentiality(ob):
- with database_connection() as conn, conn.cursor() as cursor:
- cursor.execute(
- "SELECT confidentiality, "
- f"AuthorisedUsers FROM {ob.type}Freeze WHERE Name = %s",
- (ob.name,)
- )
- result = cursor.fetchall()
- if len(result) > 0 and result[0]:
- return True
-
-
-def parse_db_url():
- parsed_db = urlparse(SQL_URI)
-
- return (parsed_db.hostname, parsed_db.username,
- parsed_db.password, parsed_db.path[1:])
-
-
-def query_table_timestamp(dataset_type: str):
- """function to query the update timestamp of a given dataset_type"""
-
- # computation data and actions
- with database_connection() as conn, conn.cursor() as cursor:
- fetch_db_name = parse_db_url()
- cursor.execute(
- "SELECT UPDATE_TIME FROM "
- "information_schema.tables "
- f"WHERE TABLE_SCHEMA = '{fetch_db_name[-1]}' "
- f"AND TABLE_NAME = '{dataset_type}Data'")
- date_time_obj = cursor.fetchone()[0]
- return date_time_obj.strftime("%Y-%m-%d %H:%M:%S")
-
-
-def generate_hash_file(dataset_name: str, dataset_type: str, dataset_timestamp: str, samplelist: str):
- """given the trait_name generate a unique name for this"""
- string_unicode = f"{dataset_name}{dataset_timestamp}{samplelist}".encode()
- md5hash = hashlib.md5(string_unicode)
- return md5hash.hexdigest()
-
-
-def cache_dataset_results(dataset_name: str, dataset_type: str, samplelist: List, query_results: List):
- """function to cache dataset query results to file
- input dataset_name and type query_results(already processed in default dict format)
- """
- # data computations actions
- # store the file path on redis
-
- table_timestamp = query_table_timestamp(dataset_type)
- samplelist_as_str = ",".join(samplelist)
-
- file_name = generate_hash_file(dataset_name, dataset_type, table_timestamp, samplelist_as_str)
- file_path = os.path.join(TMPDIR, f"{file_name}.json")
-
- with open(file_path, "w") as file_handler:
- json.dump(query_results, file_handler)
-
-
-def fetch_cached_results(dataset_name: str, dataset_type: str, samplelist: List):
- """function to fetch the cached results"""
-
- table_timestamp = query_table_timestamp(dataset_type)
- samplelist_as_str = ",".join(samplelist)
-
- file_name = generate_hash_file(dataset_name, dataset_type, table_timestamp, samplelist_as_str)
- file_path = os.path.join(TMPDIR, f"{file_name}.json")
- try:
- with open(file_path, "r") as file_handler:
-
- return json.load(file_handler)
-
- except Exception:
- pass