1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
|
#!/bin/env python3
from nltk.tokenize import sent_tokenize
import os
import re
global function_d, brain_d, drug_d, addiction_d, brain_query_term
## turn dictionary (synonyms) to regular expression
def undic(dic):
return "|".join(dic.values())
def findWholeWord(w):
return re.compile(r'\b({0})\b'.format(w), flags=re.IGNORECASE).search
def getSentences(query, gene):
abstracts = os.popen("esearch -db pubmed -query " + query + " | efetch -format uid |fetch-pubmed -path /run/media/hao/PubMed/Archive/ | xtract -pattern PubmedArticle -element MedlineCitation/PMID,ArticleTitle,AbstractText|sed \"s/-/ /g\"").read()
out=str()
for row in abstracts.split("\n"):
tiab=row.split("\t")
pmid = tiab.pop(0)
tiab= " ".join(tiab)
sentences = sent_tokenize(tiab)
## keep the sentence only if it contains the gene
for sent in sentences:
if findWholeWord(gene)(sent):
sent=re.sub(r'\b(%s)\b' % gene, r'<strong>\1</strong>', sent, flags=re.I)
out+=pmid+"\t"+sent+"\n"
return(out)
def gene_category(gene, cat_d, query, cat):
#e.g. BDNF, addiction_d, undic(addiction_d) "addiction"
q="\"(" + query.replace("|", " OR ") + ") AND " + gene + "\""
sents=getSentences(q, gene)
out=str()
for sent in sents.split("\n"):
for key in cat_d:
if findWholeWord(cat_d[key])(sent) :
sent=sent.replace("<b>","").replace("</b>","") # remove other highlights
sent=re.sub(r'\b(%s)\b' % cat_d[key], r'<b>\1</b>', sent, flags=re.I) # highlight keyword
out+=gene+"\t"+ cat + "\t"+key+"\t"+sent+"\n"
return(out)
def generate_nodes(nodes_d, nodetype):
# include all search terms even if there are no edges, just to show negative result
json0 =str()
for node in nodes_d:
json0 += "{ data: { id: '" + node + "', nodecolor: '" + nodecolor[nodetype] + "', nodetype: '"+nodetype + "', url:'/shownode?nodetype=" + nodetype + "&node="+node+"' } },\n"
return(json0)
def generate_edges(data, filename):
json0=str()
edgeCnts={}
for line in data.split("\n"):
if len(line.strip())!=0:
(source, cat, target, pmid, sent) = line.split("\t")
edgeID=filename+"|"+source+"|"+target
if edgeID in edgeCnts:
edgeCnts[edgeID]+=1
else:
edgeCnts[edgeID]=1
for edgeID in edgeCnts:
(filename, source,target)=edgeID.split("|")
json0+="{ data: { id: '" + edgeID + "', source: '" + source + "', target: '" + target + "', sentCnt: " + str(edgeCnts[edgeID]) + ", url:'/sentences?edgeID=" + edgeID + "' } },\n"
return(json0)
nodecolor={'function':"#A9CCE3", 'addiction': "#D7BDE2", 'drug': "#F9E79F", 'brain':"#A3E4D7"}
addiction_d = {"reward":"reward|hedonic|incentive|intracranial self stimulation|ICSS|reinforcement|reinforcing|conditioned place preference|CPP|self administration|self administered|drug reinforced|operant|instrumental response",
"aversion":"aversion|aversive|CTA|conditioned taste aversion",
"withdrawal":"withdrawal",
"relapse":"relapse|reinstatement|craving|drug seeking|seeking",
"sensitization":"sensitization",
"addiction":"addiction|addictive|drug abuse|punishment|compulsive|escalation",
"dependence":"dependence",
"intoxication":"intoxication|binge"
}
addiction=undic(addiction_d)
drug_d = {"alcohol":"alcohol|alcoholism|alcoholic|alcoholics",
"nicotine":"smoking|nicotine|tobacco|smoker|smokers",
"cocaine":"cocaine",
"opioid":"opioid|opioids|fentanyl|oxycodone|oxycontin|heroin|morphine|methadone|buprenorphine|vicodin|hydrocodone|hycodan|kadian|percoset|hydromorphone|naloxone|codeine|suboxone|tramadol|kratom|ultram",
"amphetamine":"methamphetamine|amphetamine|METH|AMPH",
"cannabinoid":"endocannabinoid|cannabinoids|cannabis|endocannabinoids|marijuana|cannabidiol|cannabinoid|tetrahydrocannabinol|thc|thc 9|Oleoylethanolamide|palmitoylethanolamide|acylethanolamides"
}
drug=undic(drug_d)
brain_d ={"cortex":"cortex|prefrontal|pfc|mPFC|vmpfc|corticostriatal|cortico limbic|corticolimbic|prl|prelimbic|infralimbic|orbitofrontal|cingulate|cerebral|insular|insula",
"striatum":"striatum|STR|striatal|caudate|putamen|basal ganglia|globus pallidus|GPI",
"accumbens":"accumbens|accumbal|shell|core|Nacc|NacSh|acbs|acbc",
"hippocampus":"hippocampus|hippocampal|hipp|hip|ca1|ca3|dentate gyrus|subiculum|vhipp|dhpc|vhpc",
"amygdala":"amygdala|cea|bla|amy|cna",
"VTA":"ventral tegmental|vta|pvta|mesolimbic|limbic|midbrain|mesoaccumbens|mesoaccumbal",
"habenula":"habenula|lhb|mhb",
"hypothalamus":"hypothalamus|hypothalamic|PVN|paraventricular nucleus"
}
# brain region has too many short acronyms to just use the undic function, so search PubMed using the following
brain_query_term="cortex|accumbens|striatum|amygadala|hippocampus|tegmental|mesolimbic|infralimbic|prelimbic|habenula"
function_d={"signalling":"signalling|signaling|phosphorylation|glycosylation",
"transcription":"transcription|methylation|hypomethylation|hypermethylation|histone|ribosome",
"neuroplasticity":"neuroplasticity|plasticity|long term potentiation|LTP|long term depression|LTD|synaptic|epsp|epsc|neurite|neurogenesis|boutons|mIPSC|IPSC|IPSP",
"neurotransmission": "neurotransmission|neuropeptides|neuropeptide|glutamate|glutamatergic|GABA|GABAergic|dopamine|dopaminergic|DAergic|cholinergic|nicotinic|muscarinic|serotonergic|serotonin|5 ht|acetylcholine",
# "regulation":"increased|decreased|regulated|inhibited|stimulated",
}
function=undic(function_d)
#https://htmlcolorcodes.com/
n0=generate_nodes(function_d, 'function')
n1=generate_nodes(addiction_d, 'addiction')
n2=generate_nodes(drug_d, 'drug')
n3=generate_nodes(brain_d, 'brain')
default_nodes=n0+n1+n2+n3
|