1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
|
#!/bin/env python3
from nltk.tokenize import sent_tokenize
import os
import re
import codecs
import sys
gene=sys.argv[1]
addiction_terms="sensitization|intake|addiction|drug abuse|relapse|self-administered|self-administration|voluntary|reinstatement|binge|intoxication|withdrawal|chronic"
drugs="alcohol|alcoholism|smoking|nicotine|tobacco|methamphetamine|amphetamine|cocaine|opioid|fentanyl|oxycodone|oxycontin|heroin|morphine|marijuana|cannabinoid|tetrahydrocannabinol|thc"
brain_regions="cortex|accumbens|striatum|amygadala|hippocampus|tegmental|mesolimbic|infralimbic|prelimbic"
brain_d ={"cortex":"cortex|pfc|vmpfc|il|pl|prelimbic|infralimbic",
"striatum":"striatum|STR",
"accumbens":"shell|core|NAcc|acbs|acbc",
"hippocampus":"hippocampus|hipp|hip|ca1|ca3|dentate|gyrus",
"amygadala":"amygadala|cea|bla|amy",
"ventral tegmental":"ventral tegmental|vta"
}
function="LTP|LTD|plasticity|regulate|glutamate|GABA|cholinergic|serotoninergic|synaptic|methylation|transcription|phosphorylation"
drugs_d = {"alcohol":"alcohol|alcoholism",
"nicotine":"smoking|nicotine|tobacco",
"amphetamine":"methamphetamine|amphetamine",
"cocaine":"cocaine",
"opioid":"opioid|fentanyl|oxycodone|oxycontin|heroin|morphine",
"cannabinoid":"marijuana|cannabinoid|Tetrahydrocannabinol|thc"
}
def findWholeWord(w):
return re.compile(r'\b({0})\b'.format(w), flags=re.IGNORECASE).search
def getSentences(query):
abstracts = os.popen("esearch -db pubmed -query " + query + " | efetch -format uid |fetch-pubmed -path /run/media/hao/PubMed/Archive/ | xtract -pattern PubmedArticle -element MedlineCitation/PMID,ArticleTitle,AbstractText").read()
out=str()
for row in abstracts.split("\n"):
tiab=row.split("\t")
pmid = tiab.pop(0)
tiab= " ".join(tiab)
sentences = sent_tokenize(tiab)
for sent in sentences:
if findWholeWord(gene)(sent):
sent=re.sub(r'\b(%s)\b' % gene, r'<b>\1</b>', sent, flags=re.I)
out+=pmid+"\t"+sent+"\n"
return(out)
def gene_addiction(gene):
q="\"(" + addiction_terms.replace("|", " OR ") + ") AND (" + drugs.replace("|", " OR ", ) + ") AND " + gene + "\""
sents=getSentences(q)
out=str()
for sent in sents.split("\n"):
for drug0 in drugs_d:
if findWholeWord(drugs_d[drug0])(sent) :
sent=re.sub(r'\b(%s)\b' % drugs_d[drug0], r'<b>\1</b>', sent, flags=re.I)
out+=gene+"\t"+drug0+"\t"+sent+"\n"
return(out)
def gene_brainRegion(gene):
q="\"(" + brain_regions.replace("|", " OR ") + ") AND " + gene + "\""
sents=getSentences(q)
out=str()
for sent in sents.split("\n"):
for brain0 in brain_d:
if findWholeWord(brain_d[brain0])(sent) :
sent=re.sub(r'\b(%s)\b' % brain_d[brain0], r'<b>\1</b>', sent, flags=re.I)
out+=gene+"\t"+brain0+"\t"+sent+"\n"
return(out)
report=str()
out=gene_addiction(gene)
report+=out
out=gene_brainRegion(gene)
report+=out
with codecs.open(gene+"_addiction_sentences.tab", "w", encoding='utf8') as writer:
writer.write(report)
writer.close()
|