diff options
Diffstat (limited to 'ratspub.py')
-rwxr-xr-x | ratspub.py | 88 |
1 files changed, 0 insertions, 88 deletions
diff --git a/ratspub.py b/ratspub.py deleted file mode 100755 index 0cc5d8a..0000000 --- a/ratspub.py +++ /dev/null @@ -1,88 +0,0 @@ -#!/bin/env python3 -from nltk.tokenize import sent_tokenize -import os -import re -from ratspub_keywords import * - -global function_d, brain_d, drug_d, addiction_d, brain_query_term, pubmed_path - - -## turn dictionary (synonyms) to regular expression -def undic(dic): - return "|".join(dic.values()) - -def findWholeWord(w): - return re.compile(r'\b({0})\b'.format(w), flags=re.IGNORECASE).search - -def getSentences(query, gene): - abstracts = os.popen("esearch -db pubmed -query " + query + " | efetch -format uid |fetch-pubmed -path "+ pubmed_path + " | xtract -pattern PubmedArticle -element MedlineCitation/PMID,ArticleTitle,AbstractText|sed \"s/-/ /g\"").read() - out=str() - for row in abstracts.split("\n"): - tiab=row.split("\t") - pmid = tiab.pop(0) - tiab= " ".join(tiab) - sentences = sent_tokenize(tiab) - ## keep the sentence only if it contains the gene - for sent in sentences: - if findWholeWord(gene)(sent): - sent=re.sub(r'\b(%s)\b' % gene, r'<strong>\1</strong>', sent, flags=re.I) - out+=pmid+"\t"+sent+"\n" - return(out) - -def gene_category(gene, cat_d, query, cat): - #e.g. BDNF, addiction_d, undic(addiction_d) "addiction" - q="\"(" + query.replace("|", " OR ") + ") AND " + gene + "\"" - sents=getSentences(q, gene) - out=str() - for sent in sents.split("\n"): - for key in cat_d: - if findWholeWord(cat_d[key])(sent) : - sent=sent.replace("<b>","").replace("</b>","") # remove other highlights - sent=re.sub(r'\b(%s)\b' % cat_d[key], r'<b>\1</b>', sent, flags=re.I) # highlight keyword - out+=gene+"\t"+ cat + "\t"+key+"\t"+sent+"\n" - return(out) - -def generate_nodes(nodes_d, nodetype): - # include all search terms even if there are no edges, just to show negative result - json0 =str() - for node in nodes_d: - json0 += "{ data: { id: '" + node + "', nodecolor: '" + nodecolor[nodetype] + "', nodetype: '"+nodetype + "', url:'/shownode?nodetype=" + nodetype + "&node="+node+"' } },\n" - return(json0) - -def generate_edges(data, filename): - json0=str() - edgeCnts={} - for line in data.split("\n"): - if len(line.strip())!=0: - (source, cat, target, pmid, sent) = line.split("\t") - edgeID=filename+"|"+source+"|"+target - if edgeID in edgeCnts: - edgeCnts[edgeID]+=1 - else: - edgeCnts[edgeID]=1 - for edgeID in edgeCnts: - (filename, source,target)=edgeID.split("|") - json0+="{ data: { id: '" + edgeID + "', source: '" + source + "', target: '" + target + "', sentCnt: " + str(edgeCnts[edgeID]) + ", url:'/sentences?edgeID=" + edgeID + "' } },\n" - return(json0) - -# brain region has too many short acronyms to just use the undic function, so search PubMed using the following -brain_query_term="cortex|accumbens|striatum|amygadala|hippocampus|tegmental|mesolimbic|infralimbic|prelimbic|habenula" -function=undic(function_d) -addiction=undic(addiction_d) -drug=undic(drug_d) - -nodecolor={'function':"#A9CCE3", 'addiction': "#D7BDE2", 'drug': "#F9E79F", 'brain':"#A3E4D7"} -#https://htmlcolorcodes.com/ -n0=generate_nodes(function_d, 'function') -n1=generate_nodes(addiction_d, 'addiction') -n2=generate_nodes(drug_d, 'drug') -n3=generate_nodes(brain_d, 'brain') -default_nodes=n0+n1+n2+n3 - - -host= os.popen('hostname').read().strip() -if host=="x1": - pubmed_path="/run/media/hao/PubMed/Archive/" -elif host=="hchen3": - pubmed_path="/media/hao/2d554499-6c5b-462d-85f3-5c49b25f4ac8/PubMed/Archive" - |