aboutsummaryrefslogtreecommitdiff
path: root/ratspub.py
diff options
context:
space:
mode:
Diffstat (limited to 'ratspub.py')
-rwxr-xr-xratspub.py88
1 files changed, 0 insertions, 88 deletions
diff --git a/ratspub.py b/ratspub.py
deleted file mode 100755
index 0cc5d8a..0000000
--- a/ratspub.py
+++ /dev/null
@@ -1,88 +0,0 @@
-#!/bin/env python3
-from nltk.tokenize import sent_tokenize
-import os
-import re
-from ratspub_keywords import *
-
-global function_d, brain_d, drug_d, addiction_d, brain_query_term, pubmed_path
-
-
-## turn dictionary (synonyms) to regular expression
-def undic(dic):
- return "|".join(dic.values())
-
-def findWholeWord(w):
- return re.compile(r'\b({0})\b'.format(w), flags=re.IGNORECASE).search
-
-def getSentences(query, gene):
- abstracts = os.popen("esearch -db pubmed -query " + query + " | efetch -format uid |fetch-pubmed -path "+ pubmed_path + " | xtract -pattern PubmedArticle -element MedlineCitation/PMID,ArticleTitle,AbstractText|sed \"s/-/ /g\"").read()
- out=str()
- for row in abstracts.split("\n"):
- tiab=row.split("\t")
- pmid = tiab.pop(0)
- tiab= " ".join(tiab)
- sentences = sent_tokenize(tiab)
- ## keep the sentence only if it contains the gene
- for sent in sentences:
- if findWholeWord(gene)(sent):
- sent=re.sub(r'\b(%s)\b' % gene, r'<strong>\1</strong>', sent, flags=re.I)
- out+=pmid+"\t"+sent+"\n"
- return(out)
-
-def gene_category(gene, cat_d, query, cat):
- #e.g. BDNF, addiction_d, undic(addiction_d) "addiction"
- q="\"(" + query.replace("|", " OR ") + ") AND " + gene + "\""
- sents=getSentences(q, gene)
- out=str()
- for sent in sents.split("\n"):
- for key in cat_d:
- if findWholeWord(cat_d[key])(sent) :
- sent=sent.replace("<b>","").replace("</b>","") # remove other highlights
- sent=re.sub(r'\b(%s)\b' % cat_d[key], r'<b>\1</b>', sent, flags=re.I) # highlight keyword
- out+=gene+"\t"+ cat + "\t"+key+"\t"+sent+"\n"
- return(out)
-
-def generate_nodes(nodes_d, nodetype):
- # include all search terms even if there are no edges, just to show negative result
- json0 =str()
- for node in nodes_d:
- json0 += "{ data: { id: '" + node + "', nodecolor: '" + nodecolor[nodetype] + "', nodetype: '"+nodetype + "', url:'/shownode?nodetype=" + nodetype + "&node="+node+"' } },\n"
- return(json0)
-
-def generate_edges(data, filename):
- json0=str()
- edgeCnts={}
- for line in data.split("\n"):
- if len(line.strip())!=0:
- (source, cat, target, pmid, sent) = line.split("\t")
- edgeID=filename+"|"+source+"|"+target
- if edgeID in edgeCnts:
- edgeCnts[edgeID]+=1
- else:
- edgeCnts[edgeID]=1
- for edgeID in edgeCnts:
- (filename, source,target)=edgeID.split("|")
- json0+="{ data: { id: '" + edgeID + "', source: '" + source + "', target: '" + target + "', sentCnt: " + str(edgeCnts[edgeID]) + ", url:'/sentences?edgeID=" + edgeID + "' } },\n"
- return(json0)
-
-# brain region has too many short acronyms to just use the undic function, so search PubMed using the following
-brain_query_term="cortex|accumbens|striatum|amygadala|hippocampus|tegmental|mesolimbic|infralimbic|prelimbic|habenula"
-function=undic(function_d)
-addiction=undic(addiction_d)
-drug=undic(drug_d)
-
-nodecolor={'function':"#A9CCE3", 'addiction': "#D7BDE2", 'drug': "#F9E79F", 'brain':"#A3E4D7"}
-#https://htmlcolorcodes.com/
-n0=generate_nodes(function_d, 'function')
-n1=generate_nodes(addiction_d, 'addiction')
-n2=generate_nodes(drug_d, 'drug')
-n3=generate_nodes(brain_d, 'brain')
-default_nodes=n0+n1+n2+n3
-
-
-host= os.popen('hostname').read().strip()
-if host=="x1":
- pubmed_path="/run/media/hao/PubMed/Archive/"
-elif host=="hchen3":
- pubmed_path="/media/hao/2d554499-6c5b-462d-85f3-5c49b25f4ac8/PubMed/Archive"
-