aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--.gitignore1
-rwxr-xr-xgatpub.py133
-rw-r--r--get_addiction_sentences.py83
-rw-r--r--server.py32
4 files changed, 166 insertions, 83 deletions
diff --git a/.gitignore b/.gitignore
new file mode 100644
index 0000000..355a0c3
--- /dev/null
+++ b/.gitignore
@@ -0,0 +1 @@
+.key
diff --git a/gatpub.py b/gatpub.py
new file mode 100755
index 0000000..6647e32
--- /dev/null
+++ b/gatpub.py
@@ -0,0 +1,133 @@
+#!/bin/env python3
+from nltk.tokenize import sent_tokenize
+import os
+import re
+import codecs
+import sys
+
+#gene=sys.argv[1]
+
+## turn dictionary (synonyms) to regular expression
+def undic(dic):
+ return "|".join(dic.values())
+
+def findWholeWord(w):
+ return re.compile(r'\b({0})\b'.format(w), flags=re.IGNORECASE).search
+
+def getSentences(query, gene):
+ abstracts = os.popen("esearch -db pubmed -query " + query + " | efetch -format uid |fetch-pubmed -path /run/media/hao/PubMed/Archive/ | xtract -pattern PubmedArticle -element MedlineCitation/PMID,ArticleTitle,AbstractText").read()
+ out=str()
+ for row in abstracts.split("\n"):
+ tiab=row.split("\t")
+ pmid = tiab.pop(0)
+ tiab= " ".join(tiab)
+ sentences = sent_tokenize(tiab)
+ ## keep the sentence only if it contains the gene
+ for sent in sentences:
+ if findWholeWord(gene)(sent):
+ sent=re.sub(r'\b(%s)\b' % gene, r'<b>\1</b>', sent, flags=re.I)
+ out+=pmid+"\t"+sent+"<br>\n"
+ return(out)
+
+def gene_addiction(gene):
+ # search gene name & drug name in the context of addiction terms (i.e., exclude etoh affects cancer, or methods to extract cocaine)
+ q="\"(" + addiction.replace("|", " OR ") + ") AND (" + drug.replace("|", " OR ", ) + ") AND " + gene + "\""
+ sents=getSentences(q, gene)
+ out=str()
+ for sent in sents.split("\n"):
+ for drug0 in drug_d:
+ if findWholeWord(drug_d[drug0])(sent) :
+ sent=re.sub(r'\b(%s)\b' % drug_d[drug0], r'<b>\1</b>', sent, flags=re.I)
+ out+=gene+"\t"+"drug\t" + drug0+"\t"+sent+"\n"
+ for add0 in addiction.split("|"):
+ if findWholeWord(add0)(sent) :
+ sent=re.sub(r'\b(%s)\b' % add0, r'<b>\1</b>', sent, flags=re.I)
+ out+=gene+"\t"+"addiction\t"+add0+"\t"+sent+"\n"
+ return(out)
+
+def gene_anatomical(gene):
+ q="\"(" + brain.replace("|", " OR ") + ") AND " + gene + "\""
+ sents=getSentences(q,gene)
+ out=str()
+ for sent in sents.split("\n"):
+ for brain0 in brain_d:
+ if findWholeWord(brain_d[brain0])(sent) :
+ sent=re.sub(r'\b(%s)\b' % brain_d[brain0], r'<b>\1</b>', sent, flags=re.I)
+ out+=gene+"\t"+"brain\t"+brain0+"\t"+sent+"\n"
+ return(out)
+
+def gene_functional(gene):
+ q="\"(" + function.replace("|", " OR ") + ") AND " + gene + "\""
+ sents=getSentences(q,gene)
+ out=str()
+ for sent in sents.split("\n"):
+ for bio0 in function_d:
+ if findWholeWord(function_d[bio0])(sent) :
+ sent=re.sub(r'\b(%s)\b' % function_d[bio0], r'<b>\1</b>', sent, flags=re.I)
+ out+=gene+"\t"+"function\t"+bio0+"\t"+sent+"\n"
+ return(out)
+
+def generate_nodes(nodes_d):
+ # include all search terms even if there are no edges, just to show negative result
+ json0 =str() #"{ data: { id: '" + gene + "'} },\n"
+ for node in nodes_d:
+ json0 += "{ data: { id: '" + node + "'} },\n"
+ return(json0)
+
+def generate_edges(data):
+ json0=str()
+ for line in data.split("\n"):
+ if len(line.strip())!=0:
+ (source, cat, target, pmid, sent) = line.split("\t")
+ edgeID=source+"_"+target
+ json0+="{ data: { id: \'" + edgeID + "\', source: \'" + source + "\', target: '" + target + "\' } },\n"
+ return(json0)
+
+addiction_d = {"reward":"reward|reinforcement|conditioned place preference|CPP|self-administration|self-administered",
+ "aversion":"aversion|aversive|conditioned taste aversion|CTA|withdrawal",
+ "relapse":"relapse|reinstatement|craving|drug seeking",
+ "sensitization":"sensitization",
+ "addiction":"addiction|drug abuse",
+ "intoxication":"intoxication|binge",
+ }
+addiction=undic(addiction_d)
+
+drug_d = {"alcohol":"alcohol|alcoholism",
+ "nicotine":"smoking|nicotine|tobacco",
+ "amphetamine":"methamphetamine|amphetamine|METH",
+ "cocaine":"cocaine",
+ "opioid":"opioid|fentanyl|oxycodone|oxycontin|heroin|morphine",
+ "cannabinoid":"marijuana|cannabinoid|tetrahydrocannabinol|thc|thc-9"
+ }
+drug=undic(drug_d)
+
+brain_d ={"cortex":"cortex|pfc|vmpfc|il|pl|prelimbic|infralimbic",
+ "striatum":"striatum|STR",
+ "accumbens":"shell|core|NAcc|acbs|acbc",
+ "hippocampus":"hippocampus|hipp|hip|ca1|ca3|dentate|gyrus",
+ "amygadala":"amygadala|cea|bla|amy",
+ "vta":"ventral tegmental|vta|pvta"
+ }
+# brain region has too many short acronyms to just use the undic function, so search PubMed using the following
+brain="cortex|accumbens|striatum|amygadala|hippocampus|tegmental|mesolimbic|infralimbic|prelimbic"
+
+function_d={"plasticity":"LTP|LTD|plasticity|synaptic|epsp|epsc",
+ "neurotransmission": "neurotransmission|glutamate|GABA|cholinergic|serotoninergic",
+ "signalling":"signalling|phosphorylation|glycosylation",
+# "regulation":"increased|decreased|regulated|inhibited|stimulated",
+ "transcription":"transcription|methylation|histone|ribosome",
+ }
+function=undic(function_d)
+
+#out1=gene_anatomical(gene)
+#out2=gene_functional(gene)
+#report=out0+out1+out2
+#with codecs.open(gene+"_addiction_sentences.tab", "w", encoding='utf8') as writer:
+# writer.write(report)
+# writer.close()
+
+n0=generate_nodes(function_d)
+n1=generate_nodes(addiction_d)
+n2=generate_nodes(drug_d)
+n3=generate_nodes(brain_d)
+default_nodes=n0+n1+n2+n3
diff --git a/get_addiction_sentences.py b/get_addiction_sentences.py
deleted file mode 100644
index 30a8e50..0000000
--- a/get_addiction_sentences.py
+++ /dev/null
@@ -1,83 +0,0 @@
-#!/bin/env python3
-from nltk.tokenize import sent_tokenize
-import os
-import re
-import codecs
-import sys
-
-gene=sys.argv[1]
-
-addiction_terms="sensitization|intake|addiction|drug abuse|relapse|self-administered|self-administration|voluntary|reinstatement|binge|intoxication|withdrawal|chronic"
-
-drugs="alcohol|alcoholism|smoking|nicotine|tobacco|methamphetamine|amphetamine|cocaine|opioid|fentanyl|oxycodone|oxycontin|heroin|morphine|marijuana|cannabinoid|tetrahydrocannabinol|thc"
-
-brain_regions="cortex|accumbens|striatum|amygadala|hippocampus|tegmental|mesolimbic|infralimbic|prelimbic"
-
-brain_d ={"cortex":"cortex|pfc|vmpfc|il|pl|prelimbic|infralimbic",
- "striatum":"striatum|STR",
- "accumbens":"shell|core|NAcc|acbs|acbc",
- "hippocampus":"hippocampus|hipp|hip|ca1|ca3|dentate|gyrus",
- "amygadala":"amygadala|cea|bla|amy",
- "ventral tegmental":"ventral tegmental|vta"
- }
-
-function="LTP|LTD|plasticity|regulate|glutamate|GABA|cholinergic|serotoninergic|synaptic|methylation|transcription|phosphorylation"
-
-drugs_d = {"alcohol":"alcohol|alcoholism",
- "nicotine":"smoking|nicotine|tobacco",
- "amphetamine":"methamphetamine|amphetamine",
- "cocaine":"cocaine",
- "opioid":"opioid|fentanyl|oxycodone|oxycontin|heroin|morphine",
- "cannabinoid":"marijuana|cannabinoid|Tetrahydrocannabinol|thc"
- }
-
-def findWholeWord(w):
- return re.compile(r'\b({0})\b'.format(w), flags=re.IGNORECASE).search
-
-def getSentences(query):
- abstracts = os.popen("esearch -db pubmed -query " + query + " | efetch -format uid |fetch-pubmed -path /run/media/hao/PubMed/Archive/ | xtract -pattern PubmedArticle -element MedlineCitation/PMID,ArticleTitle,AbstractText").read()
- out=str()
- for row in abstracts.split("\n"):
- tiab=row.split("\t")
- pmid = tiab.pop(0)
- tiab= " ".join(tiab)
- sentences = sent_tokenize(tiab)
- for sent in sentences:
- if findWholeWord(gene)(sent):
- sent=re.sub(r'\b(%s)\b' % gene, r'<b>\1</b>', sent, flags=re.I)
- out+=pmid+"\t"+sent+"\n"
- return(out)
-
-def gene_addiction(gene):
- q="\"(" + addiction_terms.replace("|", " OR ") + ") AND (" + drugs.replace("|", " OR ", ) + ") AND " + gene + "\""
- sents=getSentences(q)
- out=str()
- for sent in sents.split("\n"):
- for drug0 in drugs_d:
- if findWholeWord(drugs_d[drug0])(sent) :
- sent=re.sub(r'\b(%s)\b' % drugs_d[drug0], r'<b>\1</b>', sent, flags=re.I)
- out+=gene+"\t"+drug0+"\t"+sent+"\n"
- return(out)
-
-def gene_brainRegion(gene):
- q="\"(" + brain_regions.replace("|", " OR ") + ") AND " + gene + "\""
- sents=getSentences(q)
- out=str()
- for sent in sents.split("\n"):
- for brain0 in brain_d:
- if findWholeWord(brain_d[brain0])(sent) :
- sent=re.sub(r'\b(%s)\b' % brain_d[brain0], r'<b>\1</b>', sent, flags=re.I)
- out+=gene+"\t"+brain0+"\t"+sent+"\n"
- return(out)
-
-report=str()
-out=gene_addiction(gene)
-report+=out
-out=gene_brainRegion(gene)
-report+=out
-with codecs.open(gene+"_addiction_sentences.tab", "w", encoding='utf8') as writer:
- writer.write(report)
- writer.close()
-
-
-
diff --git a/server.py b/server.py
new file mode 100644
index 0000000..907877a
--- /dev/null
+++ b/server.py
@@ -0,0 +1,32 @@
+from flask import Flask, render_template, request, redirect
+import simplejson as json
+from gatpub import *
+
+app=Flask(__name__)
+app.config['SECRET_KEY'] = '#DtfrL98G5t1dC*4'
+
+@app.route("/")
+def root():
+ return render_template('index.html')
+
+@app.route("/home")
+def home():
+ return render_template('index.html')
+
+@app.route("/network", methods=['GET', 'POST'])
+def network():
+ edges_list=[]
+ nodes_list=[]
+ if request.method == 'POST':
+ term = request.form
+ gene=term['query']
+ nodes="{ data: { id: '" + gene + "'} },\n" + default_nodes
+ tmp0=gene_addiction(gene)
+ e0=generate_edges(tmp0)
+ tmp1=gene_functional(gene)
+ e1=generate_edges(tmp1)
+ tmp2=gene_anatomical(gene)
+ e2=generate_edges(tmp2)
+ return render_template('network.html', elements=nodes+e0+e1+e2)
+if __name__ == '__main__':
+ app.run(debug=True)