aboutsummaryrefslogtreecommitdiff
path: root/server.py
diff options
context:
space:
mode:
authorHao Chen2019-05-12 06:51:20 -0500
committerHao Chen2019-05-12 06:51:20 -0500
commit5abc13ae06b2ce7e53480340a1b9292701dc4ab5 (patch)
tree63e4737852d5acccb49f8dd2a7633cb4dbb48b39 /server.py
parentbc6a6e1d5974cb1c9f8a181728d93dafc531da01 (diff)
downloadgenecup-5abc13ae06b2ce7e53480340a1b9292701dc4ab5.tar.gz
progress working
Diffstat (limited to 'server.py')
-rwxr-xr-xserver.py81
1 files changed, 57 insertions, 24 deletions
diff --git a/server.py b/server.py
index 457a8cd..b171c1e 100755
--- a/server.py
+++ b/server.py
@@ -1,9 +1,10 @@
#!/bin/env python3
-from flask import Flask, render_template, request, redirect
+from flask import Flask, render_template, request, session, Response
import tempfile
import random
import string
from ratspub import *
+import time
app=Flask(__name__)
app.config['SECRET_KEY'] = '#DtfrL98G5t1dC*4'
@@ -12,11 +13,9 @@ app.config['SECRET_KEY'] = '#DtfrL98G5t1dC*4'
def root():
return render_template('index.html')
-@app.route("/search")
-def search():
- tf_path=tempfile.gettempdir()
- tf_name=tf_path+"/tmp"+''.join(random.choice(string.ascii_letters) for x in range(6))
- all_sentences=str()
+@app.route('/progress')
+def progress():
+ # only 1-6 terms are allowed
genes=request.args.get('query')
genes=genes.replace(",", " ")
genes=genes.replace(";", " ")
@@ -24,30 +23,64 @@ def search():
if len(genes)>=6:
message="<span class='text-danger'>Up to five terms can be searched at a time</span>"
return render_template('index.html', message=message)
- nodes=default_nodes
- edges=str()
- for gene in genes:
- nodes+="{ data: { id: '" + gene + "', nodecolor:'#FADBD8', fontweight:700, url:'https://www.ncbi.nlm.nih.gov/gene/?term="+gene+"'} },\n"
- sent0=gene_addiction(gene)
- e0=generate_edges(sent0, tf_name)
- sent1=gene_functional(gene)
- e1=generate_edges(sent1, tf_name)
- sent2=gene_anatomical(gene)
- e2=generate_edges(sent2, tf_name)
- edges+=e0+e1+e2
- all_sentences+=sent0+sent1+sent2
- #session['tmpfile']={'filename':tf_name}
- with open(tf_name,"w") as f:
- f.write(all_sentences)
- f.close()
- return render_template('cytoscape.html', elements=nodes+edges)
+ elif len(genes)==0:
+ message="<span class='text-danger'>Please enter a search term </span>"
+ return render_template('index.html', message=message)
+ # put the query in session cookie
+ session['query']=genes
+ # generate a unique session ID to track the results
+ tf_path=tempfile.gettempdir()
+ session['path']=tf_path+"/tmp" + ''.join(random.choice(string.ascii_letters) for x in range(6))
+ return render_template('progress.html')
+
+@app.route("/search")
+def search():
+ genes=session['query']
+ percent=round(100/(len(genes)*3),1)
+ snt_file=session['path']+"_snt"
+ cysdata=open(session['path']+"_cy","w+")
+ sntdata=open(snt_file,"w+")
+ def generate(genes, tf_name):
+ sentences=str()
+ edges=str()
+ nodes=default_nodes
+ progress=0
+ for gene in genes:
+ nodes+="{ data: { id: '" + gene + "', nodecolor:'#FADBD8', fontweight:700, url:'https://www.ncbi.nlm.nih.gov/gene/?term="+gene+"'} },\n"
+ sent0=gene_addiction(gene)
+ progress+=percent
+ yield "data:"+str(progress)+"\n\n"
+ e0=generate_edges(sent0, tf_name)
+ sent1=gene_functional(gene)
+ progress+=percent
+ yield "data:"+str(progress)+"\n\n"
+ e1=generate_edges(sent1, tf_name)
+ sent2=gene_anatomical(gene)
+ progress+=percent
+ e2=generate_edges(sent2, tf_name)
+ edges+=e0+e1+e2
+ sentences+=sent0+sent1+sent2
+ #save data before the last yield
+ if (progress>99):
+ progress=100
+ sntdata.write(sentences)
+ sntdata.close()
+ cysdata.write(nodes+edges)
+ cysdata.close()
+ yield "data:"+str(progress)+"\n\n"
+ return Response(generate(genes, snt_file), mimetype='text/event-stream')
+
+@app.route('/cytoscape')
+def cytoscape():
+ with open(session['path']+"_cy","r") as f:
+ elements=f.read()
+ return render_template('cytoscape.html', elements=elements)
@app.route("/sentences")
def sentences():
edge=request.args.get('edgeID')
(tf_name, gene0, cat0)=edge.split("|")
out="<h3>"+gene0 + " and " + cat0 + "</h3><hr>\n"
- print(tf_name)
with open(tf_name, "r") as df:
all_sents=df.read()
for sent in all_sents.split("\n"):