aboutsummaryrefslogtreecommitdiff
path: root/gatpub.py
diff options
context:
space:
mode:
authorHao Chen2019-05-08 06:01:49 -0500
committerHao Chen2019-05-08 06:01:49 -0500
commit30a9a40ae3170f0a13efd394ac12e297d3eda03d (patch)
treeae07d1b41181c2c1027adf99b1c422e8a55f1362 /gatpub.py
parentefaf3a4abe2f6ae5b67578182085d18d05f25c5f (diff)
downloadgenecup-30a9a40ae3170f0a13efd394ac12e297d3eda03d.tar.gz
rename to ratspub
Diffstat (limited to 'gatpub.py')
-rwxr-xr-xgatpub.py136
1 files changed, 0 insertions, 136 deletions
diff --git a/gatpub.py b/gatpub.py
deleted file mode 100755
index c853fd2..0000000
--- a/gatpub.py
+++ /dev/null
@@ -1,136 +0,0 @@
-#!/bin/env python3
-from nltk.tokenize import sent_tokenize
-import os
-import re
-import codecs
-import sys
-
-#gene=sys.argv[1]
-
-## turn dictionary (synonyms) to regular expression
-def undic(dic):
- return "|".join(dic.values())
-
-def findWholeWord(w):
- return re.compile(r'\b({0})\b'.format(w), flags=re.IGNORECASE).search
-
-def getSentences(query, gene):
- abstracts = os.popen("esearch -db pubmed -query " + query + " | efetch -format uid |fetch-pubmed -path /run/media/hao/PubMed/Archive/ | xtract -pattern PubmedArticle -element MedlineCitation/PMID,ArticleTitle,AbstractText").read()
- out=str()
- for row in abstracts.split("\n"):
- tiab=row.split("\t")
- pmid = tiab.pop(0)
- tiab= " ".join(tiab)
- sentences = sent_tokenize(tiab)
- ## keep the sentence only if it contains the gene
- for sent in sentences:
- if findWholeWord(gene)(sent):
- sent=re.sub(r'\b(%s)\b' % gene, r'<b>\1</b>', sent, flags=re.I)
- out+=pmid+"\t"+sent+"<br>\n"
- return(out)
-
-def gene_addiction(gene):
- # search gene name & drug name in the context of addiction terms (i.e., exclude etoh affects cancer, or methods to extract cocaine)
- q="\"(" + addiction.replace("|", " OR ") + ") AND (" + drug.replace("|", " OR ", ) + ") AND " + gene + "\""
- sents=getSentences(q, gene)
- out=str()
- for sent in sents.split("\n"):
- for drug0 in drug_d:
- if findWholeWord(drug_d[drug0])(sent) :
- sent=re.sub(r'\b(%s)\b' % drug_d[drug0], r'<b>\1</b>', sent, flags=re.I)
- out+=gene+"\t"+"drug\t" + drug0+"\t"+sent+"\n"
- for add0 in addiction_d:
- if findWholeWord(add0)(sent) :
- sent=re.sub(r'\b(%s)\b' % add0, r'<b>\1</b>', sent, flags=re.I)
- out+=gene+"\t"+"addiction\t"+add0+"\t"+sent+"\n"
- return(out)
-
-def gene_anatomical(gene):
- q="\"(" + brain.replace("|", " OR ") + ") AND " + gene + "\""
- sents=getSentences(q,gene)
- out=str()
- for sent in sents.split("\n"):
- for brain0 in brain_d:
- if findWholeWord(brain_d[brain0])(sent) :
- sent=re.sub(r'\b(%s)\b' % brain_d[brain0], r'<b>\1</b>', sent, flags=re.I)
- out+=gene+"\t"+"brain\t"+brain0+"\t"+sent+"\n"
- return(out)
-
-def gene_functional(gene):
- q="\"(" + function.replace("|", " OR ") + ") AND " + gene + "\""
- sents=getSentences(q,gene)
- out=str()
- for sent in sents.split("\n"):
- for bio0 in function_d:
- if findWholeWord(function_d[bio0])(sent) :
- sent=re.sub(r'\b(%s)\b' % function_d[bio0], r'<b>\1</b>', sent, flags=re.I)
- out+=gene+"\t"+"function\t"+bio0+"\t"+sent+"\n"
- return(out)
-
-def generate_nodes(nodes_d, nodecolor):
- # include all search terms even if there are no edges, just to show negative result
- json0 =str() #"{ data: { id: '" + gene + "'} },\n"
- for node in nodes_d:
- json0 += "{ data: { id: '" + node + "', nodecolor: '" + nodecolor + "' } },\n"
- return(json0)
-
-def generate_edges(data):
- json0=str()
- edgeCnts={}
- for line in data.split("\n"):
- if len(line.strip())!=0:
- (source, cat, target, pmid, sent) = line.split("\t")
- edgeID=source+"|"+target
- if edgeID in edgeCnts:
- edgeCnts[edgeID]+=1
- else:
- edgeCnts[edgeID]=1
- for edgeID in edgeCnts:
- (source,target)=edgeID.split("|")
- json0+="{ data: { id: \'" + edgeID + "\', source: \'" + source + "\', target: '" + target + "\', sentCnt: '" + str(edgeCnts[edgeID]) + "' } },\n"
- return(json0)
-
-
-
-addiction_d = {"reward":"reward|reinforcement|conditioned place preference|CPP|self-administration|self-administered",
- "aversion":"aversion|aversive|CTA|withdrawal",
- "relapse":"relapse|reinstatement|craving|drug seeking",
- "sensitization":"sensitization",
- "addiction":"addiction|drug abuse",
- "intoxication":"intoxication|binge"
- }
-addiction=undic(addiction_d)
-
-drug_d = {"alcohol":"alcohol|alcoholism",
- "nicotine":"smoking|nicotine|tobacco",
- "amphetamine":"methamphetamine|amphetamine|METH",
- "cocaine":"cocaine",
- "opioid":"opioid|fentanyl|oxycodone|oxycontin|heroin|morphine",
- "cannabinoid":"marijuana|cannabinoid|tetrahydrocannabinol|thc|thc-9"
- }
-drug=undic(drug_d)
-
-brain_d ={"cortex":"cortex|pfc|vmpfc|il|pl|prelimbic|infralimbic",
- "striatum":"striatum|STR",
- "accumbens":"shell|core|NAcc|acbs|acbc",
- "hippocampus":"hippocampus|hipp|hip|ca1|ca3|dentate|gyrus",
- "amygadala":"amygadala|cea|bla|amy",
- "vta":"ventral tegmental|vta|pvta"
- }
-# brain region has too many short acronyms to just use the undic function, so search PubMed using the following
-brain="cortex|accumbens|striatum|amygadala|hippocampus|tegmental|mesolimbic|infralimbic|prelimbic"
-
-function_d={"plasticity":"LTP|LTD|plasticity|synaptic|epsp|epsc",
- "neurotransmission": "neurotransmission|glutamate|GABA|cholinergic|serotoninergic",
- "signalling":"signalling|phosphorylation|glycosylation",
-# "regulation":"increased|decreased|regulated|inhibited|stimulated",
- "transcription":"transcription|methylation|histone|ribosome",
- }
-function=undic(function_d)
-
-#https://htmlcolorcodes.com/
-n0=generate_nodes(function_d, "#D7BDE2")
-n1=generate_nodes(addiction_d,"#A9CCE3")
-n2=generate_nodes(drug_d, "#A3E4D7")
-n3=generate_nodes(brain_d, "#F9E79F")
-default_nodes=n0+n1+n2+n3