diff options
author | Hao Chen | 2019-05-08 06:01:49 -0500 |
---|---|---|
committer | Hao Chen | 2019-05-08 06:01:49 -0500 |
commit | 30a9a40ae3170f0a13efd394ac12e297d3eda03d (patch) | |
tree | ae07d1b41181c2c1027adf99b1c422e8a55f1362 /gatpub.py | |
parent | efaf3a4abe2f6ae5b67578182085d18d05f25c5f (diff) | |
download | genecup-30a9a40ae3170f0a13efd394ac12e297d3eda03d.tar.gz |
rename to ratspub
Diffstat (limited to 'gatpub.py')
-rwxr-xr-x | gatpub.py | 136 |
1 files changed, 0 insertions, 136 deletions
diff --git a/gatpub.py b/gatpub.py deleted file mode 100755 index c853fd2..0000000 --- a/gatpub.py +++ /dev/null @@ -1,136 +0,0 @@ -#!/bin/env python3 -from nltk.tokenize import sent_tokenize -import os -import re -import codecs -import sys - -#gene=sys.argv[1] - -## turn dictionary (synonyms) to regular expression -def undic(dic): - return "|".join(dic.values()) - -def findWholeWord(w): - return re.compile(r'\b({0})\b'.format(w), flags=re.IGNORECASE).search - -def getSentences(query, gene): - abstracts = os.popen("esearch -db pubmed -query " + query + " | efetch -format uid |fetch-pubmed -path /run/media/hao/PubMed/Archive/ | xtract -pattern PubmedArticle -element MedlineCitation/PMID,ArticleTitle,AbstractText").read() - out=str() - for row in abstracts.split("\n"): - tiab=row.split("\t") - pmid = tiab.pop(0) - tiab= " ".join(tiab) - sentences = sent_tokenize(tiab) - ## keep the sentence only if it contains the gene - for sent in sentences: - if findWholeWord(gene)(sent): - sent=re.sub(r'\b(%s)\b' % gene, r'<b>\1</b>', sent, flags=re.I) - out+=pmid+"\t"+sent+"<br>\n" - return(out) - -def gene_addiction(gene): - # search gene name & drug name in the context of addiction terms (i.e., exclude etoh affects cancer, or methods to extract cocaine) - q="\"(" + addiction.replace("|", " OR ") + ") AND (" + drug.replace("|", " OR ", ) + ") AND " + gene + "\"" - sents=getSentences(q, gene) - out=str() - for sent in sents.split("\n"): - for drug0 in drug_d: - if findWholeWord(drug_d[drug0])(sent) : - sent=re.sub(r'\b(%s)\b' % drug_d[drug0], r'<b>\1</b>', sent, flags=re.I) - out+=gene+"\t"+"drug\t" + drug0+"\t"+sent+"\n" - for add0 in addiction_d: - if findWholeWord(add0)(sent) : - sent=re.sub(r'\b(%s)\b' % add0, r'<b>\1</b>', sent, flags=re.I) - out+=gene+"\t"+"addiction\t"+add0+"\t"+sent+"\n" - return(out) - -def gene_anatomical(gene): - q="\"(" + brain.replace("|", " OR ") + ") AND " + gene + "\"" - sents=getSentences(q,gene) - out=str() - for sent in sents.split("\n"): - for brain0 in brain_d: - if findWholeWord(brain_d[brain0])(sent) : - sent=re.sub(r'\b(%s)\b' % brain_d[brain0], r'<b>\1</b>', sent, flags=re.I) - out+=gene+"\t"+"brain\t"+brain0+"\t"+sent+"\n" - return(out) - -def gene_functional(gene): - q="\"(" + function.replace("|", " OR ") + ") AND " + gene + "\"" - sents=getSentences(q,gene) - out=str() - for sent in sents.split("\n"): - for bio0 in function_d: - if findWholeWord(function_d[bio0])(sent) : - sent=re.sub(r'\b(%s)\b' % function_d[bio0], r'<b>\1</b>', sent, flags=re.I) - out+=gene+"\t"+"function\t"+bio0+"\t"+sent+"\n" - return(out) - -def generate_nodes(nodes_d, nodecolor): - # include all search terms even if there are no edges, just to show negative result - json0 =str() #"{ data: { id: '" + gene + "'} },\n" - for node in nodes_d: - json0 += "{ data: { id: '" + node + "', nodecolor: '" + nodecolor + "' } },\n" - return(json0) - -def generate_edges(data): - json0=str() - edgeCnts={} - for line in data.split("\n"): - if len(line.strip())!=0: - (source, cat, target, pmid, sent) = line.split("\t") - edgeID=source+"|"+target - if edgeID in edgeCnts: - edgeCnts[edgeID]+=1 - else: - edgeCnts[edgeID]=1 - for edgeID in edgeCnts: - (source,target)=edgeID.split("|") - json0+="{ data: { id: \'" + edgeID + "\', source: \'" + source + "\', target: '" + target + "\', sentCnt: '" + str(edgeCnts[edgeID]) + "' } },\n" - return(json0) - - - -addiction_d = {"reward":"reward|reinforcement|conditioned place preference|CPP|self-administration|self-administered", - "aversion":"aversion|aversive|CTA|withdrawal", - "relapse":"relapse|reinstatement|craving|drug seeking", - "sensitization":"sensitization", - "addiction":"addiction|drug abuse", - "intoxication":"intoxication|binge" - } -addiction=undic(addiction_d) - -drug_d = {"alcohol":"alcohol|alcoholism", - "nicotine":"smoking|nicotine|tobacco", - "amphetamine":"methamphetamine|amphetamine|METH", - "cocaine":"cocaine", - "opioid":"opioid|fentanyl|oxycodone|oxycontin|heroin|morphine", - "cannabinoid":"marijuana|cannabinoid|tetrahydrocannabinol|thc|thc-9" - } -drug=undic(drug_d) - -brain_d ={"cortex":"cortex|pfc|vmpfc|il|pl|prelimbic|infralimbic", - "striatum":"striatum|STR", - "accumbens":"shell|core|NAcc|acbs|acbc", - "hippocampus":"hippocampus|hipp|hip|ca1|ca3|dentate|gyrus", - "amygadala":"amygadala|cea|bla|amy", - "vta":"ventral tegmental|vta|pvta" - } -# brain region has too many short acronyms to just use the undic function, so search PubMed using the following -brain="cortex|accumbens|striatum|amygadala|hippocampus|tegmental|mesolimbic|infralimbic|prelimbic" - -function_d={"plasticity":"LTP|LTD|plasticity|synaptic|epsp|epsc", - "neurotransmission": "neurotransmission|glutamate|GABA|cholinergic|serotoninergic", - "signalling":"signalling|phosphorylation|glycosylation", -# "regulation":"increased|decreased|regulated|inhibited|stimulated", - "transcription":"transcription|methylation|histone|ribosome", - } -function=undic(function_d) - -#https://htmlcolorcodes.com/ -n0=generate_nodes(function_d, "#D7BDE2") -n1=generate_nodes(addiction_d,"#A9CCE3") -n2=generate_nodes(drug_d, "#A3E4D7") -n3=generate_nodes(brain_d, "#F9E79F") -default_nodes=n0+n1+n2+n3 |