aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorhakangunturkun2020-04-13 15:17:53 -0500
committerhakangunturkun2020-04-13 15:17:53 -0500
commit4d4c37e7c8e9d0e85a937c538fba530879a3f4e9 (patch)
tree4c90bc95f83a43d4b47aeb7bbbd5343b1eb9f8bb
parentade29e7005941eed5a7f549c1c759f6b35365d6a (diff)
downloadgenecup-4d4c37e7c8e9d0e85a937c538fba530879a3f4e9.tar.gz
remove nlp.py
-rw-r--r--nlp.py83
1 files changed, 0 insertions, 83 deletions
diff --git a/nlp.py b/nlp.py
deleted file mode 100644
index 9f36b58..0000000
--- a/nlp.py
+++ /dev/null
@@ -1,83 +0,0 @@
-import string
-import re
-import os
-from os import listdir
-from nltk.corpus import stopwords
-from nltk.stem.porter import PorterStemmer
-from collections import Counter
-import numpy as np
-from numpy import array
-import keras
-from keras.models import Model
-from keras.preprocessing.text import Tokenizer
-from keras.preprocessing.sequence import pad_sequences
-from keras.models import Sequential
-from keras.layers import Dense
-from keras.layers import Flatten
-from keras.layers import Embedding
-from keras.layers.convolutional import Conv1D
-from keras.layers.convolutional import MaxPooling1D
-from keras import metrics
-from keras import optimizers
-import pickle
-
-def clean_doc(doc, vocab):
- doc = doc.lower()
- # split into tokens by white space
- tokens = doc.split()
- # remove punctuation from each word
- re_punc = re.compile('[%s]' % re.escape(string.punctuation))
- tokens = [re_punc.sub('' , w) for w in tokens]
- # filter out short tokens
- tokens = [word for word in tokens if len(word) > 1]
- # filter out stop words
- stop_words = set(stopwords.words('english'))
- tokens = [w for w in tokens if not w in stop_words]
- # stemming of words
- porter = PorterStemmer()
- stemmed = [porter.stem(word) for word in tokens]
- #print(stemmed[:100])
- return tokens
-
-# load tokenizer
-with open('./nlp/tokenizer.pickle', 'rb') as handle:
- tokenizer = pickle.load(handle)
-
-# load vocabulary
-with open('./nlp/vocabulary.txt', 'r') as vocab:
- vocab = vocab.read()
-
-# create the CNN model
-#def create_model(vocab_size, max_length):
-model = Sequential()
-model.add(Embedding(vocab_size, 32, input_length=max_length))
-model.add(Conv1D(filters=16, kernel_size=4, activation='relu'))
-model.add(MaxPooling1D(pool_size=2))
-model.add(Flatten())
-model.add(Dense(10, activation='relu'))
-model.add(Dense(1, activation='sigmoid'))
-opt = keras.optimizers.Adamax(learning_rate=0.002, beta_1=0.9, beta_2=0.999)
-model.compile(loss='binary_crossentropy', optimizer=opt, metrics=[keras.metrics.AUC()])
-model = create_model(23154, 64)
-# load the weights
-## this is done for every prediction??
-checkpoint_path = "./nlp/weights.ckpt"
-model.load_weights(checkpoint_path)
-
-#return model
-
-def predict_sent(sent_for_pred):
- max_length = 64
- tokens = clean_doc(sent_for_pred, vocab)
- tokens = [w for w in tokens if w in vocab]
- # convert to line
- line = ' '.join(tokens)
- line = [line]
- tokenized_sent = tokenizer.texts_to_sequences(line)
- tokenized_sent = pad_sequences(tokenized_sent, maxlen=max_length, padding='post')
- predict_sent = model.predict(tokenized_sent, verbose=0)
- percent_sent = predict_sent[0,0]
- if round(percent_sent) == 0:
- return 'neg'
- else:
- return 'pos'