aboutsummaryrefslogtreecommitdiff
path: root/test/src/unittests-math.cpp
blob: 757c2dc28b4bfc286182b05caf857d325d2e3fdf (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
#include <catch.hpp>
#include <iostream>
#include "gsl/gsl_matrix.h"
#include <cblas.h>

#include <algorithm>
#include <limits>
#include <numeric>

#include "debug.h"
#include "mathfunc.h"
#include "fastblas.h"
#include "fastopenblas.h"

using namespace std;

TEST_CASE( "Math functions", "[math]" ) {
  debug_set_debug_mode(true);
  debug_set_no_check_mode(false);
  debug_set_strict_mode(true);
  double data[] = { 2,-1, 0,
                   -1, 2,-1,
                    0,-1, 2};
  gsl_matrix *m = gsl_matrix_alloc(3,3);
  copy(data, data+9, m->data);
  REQUIRE( isMatrixPositiveDefinite(m) );
  REQUIRE( isMatrixSymmetric(m) );
  // REQUIRE( checkMatrixEigen(m,0.001) );

  double data1[] = {1.0,0,0,
                    0,3.0,0,
                    0,0,2.0};
  copy(data1, data1+9, m->data);
  REQUIRE( isMatrixPositiveDefinite(m) );
  // REQUIRE( checkMatrixEigen(m) );

  double data2[] = {1,1,1,
                    1,1,1,
                    1,1,0.5};
  copy(data2, data2+9, m->data);
  REQUIRE( !isMatrixPositiveDefinite(m));
  // REQUIRE( !checkMatrixEigen(m) );

  double data3[] = {1.0,  0,  0,
                    3.0,3.0,  0,
                      0,  0,2.0};
  copy(data3, data3+9, m->data);
  REQUIRE( !isMatrixPositiveDefinite(m) );
  REQUIRE( !isMatrixSymmetric(m) );
  // REQUIRE( checkMatrixEigen(m) );

  // ---- NaN checks
  vector<double> v = {1.0, 2.0};
  REQUIRE (!std::isnan(std::accumulate(v.begin(), v.end(), 0)));
  vector<double> v2 = {1.0, 2.0, std::numeric_limits<double>::quiet_NaN()};
  REQUIRE (std::isnan(v2[2]));
  REQUIRE(has_nan(v2));
  // test minus nan
  vector<double> v3 = {1.0, 2.0, -std::numeric_limits<double>::quiet_NaN()};
  REQUIRE (std::isnan(v3[2]));
  REQUIRE(has_nan(v3));
}

TEST_CASE("cblas_dgemm", "[math]") {
   double *A, *B, *C;
   int m, n, k, i, j;
   double alpha, beta;

   printf ("\n This example computes real matrix C=alpha*A*B+beta*C using \n"
           " Intel(R) MKL function dgemm, where A, B, and  C are matrices and \n"
           " alpha and beta are double precision scalars\n\n");

   m = 2000, k = 200, n = 1000;
   printf (" Initializing data for matrix multiplication C=A*B for matrix \n"
           " A(%ix%i) and matrix B(%ix%i)\n\n", m, k, k, n);
   alpha = 1.0; beta = 0.0;

   printf (" Allocating memory for matrices aligned on 64-byte boundary for better \n"
           " performance \n\n");
   A = (double *)malloc( m*k*sizeof( double ));
   B = (double *)malloc( k*n*sizeof( double ));
   C = (double *)malloc( m*n*sizeof( double ));

   printf (" Intializing matrix data \n\n");
   for (i = 0; i < (m*k); i++) {
     A[i] = (double)(i+1);
   }

   for (i = 0; i < (k*n); i++) {
     B[i] = (double)(-i-1);
   }

   for (i = 0; i < (m*n); i++) {
     C[i] = 0.0;
   }

   printf (" Computing matrix product using Intel(R) MKL dgemm function via CBLAS interface \n\n");
   assert(m==2000);
   assert(k==200);
   assert(n==1000);
   //cblas_dgemm(CblasRowMajor, CblasNoTrans, CblasNoTrans,
   //            m, n, k, alpha, A, k, B, n, beta, C, n);
   fast_cblas_dgemm(CblasRowMajor, CblasNoTrans, CblasNoTrans,
                    m, n, k, alpha, A, k, B, n, beta, C, n);

   REQUIRE(trunc(C[0]) == -2666620100.0 );
   REQUIRE(trunc(C[1]) == -2666640200.0 );
   REQUIRE(trunc(C[2003]) == -10627000400.0 );

}

TEST_CASE("fast_dgemm", "[math]") {
   double *A, *B, *C;
   int m, n, k, i, j;
   double alpha, beta;

   printf ("\n This example computes real matrix C=alpha*A*B+beta*C using \n"
           " Intel(R) MKL function dgemm, where A, B, and  C are matrices and \n"
           " alpha and beta are double precision scalars\n\n");

   m = 2000, k = 200, n = 1000;
   printf (" Initializing data for matrix multiplication C=A*B for matrix \n"
           " A(%ix%i) and matrix B(%ix%i)\n\n", m, k, k, n);
   alpha = 1.0; beta = 0.0;

   printf (" Allocating memory for matrices aligned on 64-byte boundary for better \n"
           " performance \n\n");
   A = (double *)malloc( m*k*sizeof( double ));
   B = (double *)malloc( k*n*sizeof( double ));
   C = (double *)malloc( m*n*sizeof( double ));

   printf (" Intializing matrix data \n\n");
   for (i = 0; i < (m*k); i++) {
     A[i] = (double)(i+1);
   }

   for (i = 0; i < (k*n); i++) {
     B[i] = (double)(-i-1);
   }

   for (i = 0; i < (m*n); i++) {
     C[i] = 0.0;
   }

   printf (" Computing matrix product using Intel(R) MKL dgemm function via CBLAS interface \n\n");
   // cblas_dgemm(CblasRowMajor, CblasNoTrans, CblasNoTrans,
   //            m, n, k, alpha, A, k, B, n, beta, C, n);
   // eigenlib_dgemm(const char *TransA, const char *TransB, const double alpha,
   //                const gsl_matrix *A, const gsl_matrix *B, const double beta,
   //                gsl_matrix *C) {
   gsl_matrix *AM = gsl_matrix_safe_alloc(m,k); // rows x cols
   gsl_matrix *BM = gsl_matrix_safe_alloc(k,n);
   gsl_matrix *CM = gsl_matrix_calloc(m,n);

   fast_copy(AM,A);
   fast_copy(BM,B);
   fast_copy(CM,C);
   fast_dgemm("N","N",alpha,AM,BM,beta,CM);
   printf ("\n Computations completed.\n\n");
   A = AM->data;
   B = BM->data;
   C = CM->data;

   REQUIRE(trunc(C[0]) == -2666620100.0 );
   REQUIRE(trunc(C[1]) == -2666640200.0 );
   REQUIRE(trunc(C[2003]) == -10627000400.0 );

}