aboutsummaryrefslogtreecommitdiff
path: root/test/performance/releases.org
blob: b208e54e9556697025506ebf4d23c91c997a939a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
* GEMMA performance stats

** GEMMA 0.98.5-pre1

Measurements taken on a recent AMD Ryzen 7 3700X 8-Core Processor @2.195GHz.

#+begin_src sh
time ./bin/gemma -g ./example/mouse_hs1940.geno.txt.gz -p ./example/mouse_hs1940.pheno.txt -a ./example/mouse_hs1940.anno.txt -gk -no-check
GEMMA 0.98.5-pre1 (2021-08-11) by Xiang Zhou, Pjotr Prins and team (C) 2012-2021
Reading Files ...
## number of total individuals = 1940
## number of analyzed individuals = 1410
## number of covariates = 1
## number of phenotypes = 1
## number of total SNPs/var        =    12226
## number of analyzed SNPs         =    10768
Calculating Relatedness Matrix ...
================================================== 100%

real    0m5.288s
user    0m11.829s
sys     0m1.992s

time ./bin/gemma -g ./example/mouse_hs1940.geno.txt.gz -p ./example/mouse_hs1940.pheno.txt -n 1 -a ./example/mouse_hs1940.anno.txt -k ./output/result.cXX.txt -lmm -no-check
GEMMA 0.98.5-pre1 (2021-08-11) by Xiang Zhou, Pjotr Prins and team (C) 2012-2021
Reading Files ...
## number of total individuals = 1940
## number of analyzed individuals = 1410
## number of covariates = 1
## number of phenotypes = 1
## number of total SNPs/var        =    12226
## number of analyzed SNPs         =    10768
Start Eigen-Decomposition...
pve estimate =0.608801
se(pve) =0.032774
================================================== 100%

real    0m8.383s
user    0m12.863s
sys     0m4.943s

time ./bin/gemma -g ./example/mouse_hs1940.geno.txt.gz -p ./example/mouse_hs1940.pheno.txt -n 1 2 -a ./example/mouse_hs1940.anno.txt -k ./output/result.cXX.txt -lmm -no-check
GEMMA 0.98.5-pre1 (2021-08-11) by Xiang Zhou, Pjotr Prins and team (C) 2012-2021
Reading Files ...
## number of total individuals = 1940
## number of analyzed individuals = 757
## number of covariates = 1
## number of phenotypes = 2
## number of total SNPs/var        =    12226
## number of analyzed SNPs         =    10775

real    0m47.586s
user    0m49.588s
sys     0m3.521s
#+end_src

Built with:

        libopenblas.so.0 => /gnu/store/bs9pl1f805ins80xaf4s3n35a0x2lyq3-openblas-0.3.9/lib/libopenblas.so.0
        libstdc++.so.6 => /gnu/store/01b4w3m6mp55y531kyi1g8shh722kwqm-gcc-7.5.0-lib/lib/libstdc++.so.6 (0x00007f2d61ba9000)
        libm.so.6 => /gnu/store/fa6wj5bxkj5ll1d7292a70knmyl7a0cr-glibc-2.31/lib/libm.so.6 (0x00007f2d61a68000)
        libc.so.6 => /gnu/store/fa6wj5bxkj5ll1d7292a70knmyl7a0cr-glibc-2.31/lib/libc.so.6 (0x00007f2d6186f000)
        libgfortran.so.4 => /gnu/store/741057r2x06zwg6zcmqmdyv51spm6n9i-gfortran-7.5.0-lib/lib/libgfortran.so.4 (0x00007f2d61699000)


** GEMMA 0.98.4

Below measurements are taken on 4x Intel(R) Core(TM) i7-6770HQ CPU @
2.60GHz with hyperthreading and 16 GB RAM with warmed up memory
buffers.

Between 0.96 and 0.97 a speed regression was [[https://github.com/genetics-statistics/GEMMA/issues/136][reported]] which resulted
in tracking of performance. It is interesting because 0.96 is a single
core Eigenlib version and 0.97 went multi-core with
openblas. Unfortunately I linked in lapack and an older BLAS which
slowed things down. In 0.98 openblas is mostly used and is faster.

Note also that the recent static versions are slower than the
dynamically linked ones. Not sure why that is.

The test commands are

#+BEGIN_SRC
# kinship
time ./bin/gemma -g ./example/mouse_hs1940.geno.txt.gz -p ./example/mouse_hs1940.pheno.txt -a ./example/mouse_hs1940.anno.txt -gk -no-check
# univariate LMM
time ./bin/gemma -g ./example/mouse_hs1940.geno.txt.gz -p ./example/mouse_hs1940.pheno.txt -n 1 -a ./example/mouse_hs1940.anno.txt -k ./output/result.cXX.txt -lmm -no-check
# multivariate LMM
time ./bin/gemma -g ./example/mouse_hs1940.geno.txt.gz -p ./example/mouse_hs1940.pheno.txt -n 1 2 -a ./example/mouse_hs1940.anno.txt -k ./output/result.cXX.txt -lmm -no-check
#+END_SRC

Currently on my laptop there is no difference in running these tests
using gcc or clang.

#+BEGIN_SRC
Clang:

real    0m25.758s
user    0m46.380s
sys     0m0.852s

real    0m22.173s
user    0m29.420s
sys     0m1.540s

GNU C

real    0m24.540s
user    0m43.948s
sys     0m1.276s

real    0m22.504s
user    0m29.768s
sys     0m1.544s
#+END_SRC

Running the GNU profiler I got K to be faster by removing the regexs

#+BEGIN_SRC
real    0m16.811s
user    0m37.788s
sys     0m2.168s
#+END_SRC

Replacing safeGetLine also made some difference

#+BEGIN_SRC
real    0m15.659s
user    0m34.896s
sys     0m1.500s
#+END_SRC

there is still some scope for improvement by changing do_strtok_safe
methods as well as less string copying during tokenization. I may get
to that at some point.

Running the GNU profiler on the MVLMM one rendered

#+BEGIN_SRC
  %   cumulative   self              self     total
 time   seconds   seconds    calls   s/call   s/call  name
 22.73      0.90     0.90    41121     0.00     0.00  CalcQi(gsl_vector const*, gsl_vector const*, gsl_matrix const*, gsl_matrix*)
 13.64      1.44     0.54    30313     0.00     0.00  CalcXHiY(gsl_vector const*, gsl_vector const*, gsl_matrix const*, gsl_matrix const*, gsl_v
ector*)
 11.87      1.91     0.47    19536     0.00     0.00  CalcSigma(char, gsl_vector const*, gsl_vector const*, gsl_matrix const*, gsl_matrix const*
, gsl_matrix const*, gsl_matrix const*, gsl_matrix const*, gsl_matrix*, gsl_matrix*)
 10.86      2.34     0.43    38621     0.00     0.00  safeGetline(std::istream&, std::__cxx11::basic_string<char, std::char_traits<char>, std::a
llocator<char> >&)
  8.33      2.67     0.33    10805     0.00     0.00  MphCalcP(gsl_vector const*, gsl_vector const*, gsl_matrix const*, gsl_matrix const*, gsl_m
atrix const*, gsl_matrix const*, gsl_matrix*, gsl_vector*, gsl_matrix*)
  6.06      2.91     0.24        1     0.24     0.43  ReadFile_geno
  5.30      3.12     0.21    19536     0.00     0.00  UpdateV(gsl_vector const*, gsl_matrix const*, gsl_matrix const*, gsl_matrix const*, gsl_ma
trix const*, gsl_matrix*, gsl_matrix*)
  5.30      3.33     0.21        1     0.21     3.27  MVLMM::AnalyzeBimbam(gsl_matrix const*, gsl_vector const*, gsl_matrix const*, gsl_matrix c
onst*)
#+END_SRC

* GEMMA 0.98.3 (release)

#+begin_src sh
time ./bin/gemma -g ./example/mouse_hs1940.geno.txt.gz -p ./example/mouse_hs1940.pheno.txt -a ./example/mouse_hs1940.anno.txt -gk -no-check

GEMMA 0.98.3 (2020-11-28) by Xiang Zhou and team (C) 2012-2020
Reading Files ...
## number of total individuals = 1940
## number of analyzed individuals = 1410
## number of covariates = 1
## number of phenotypes = 1
## number of total SNPs/var        =    12226
## number of analyzed SNPs         =    10768
Calculating Relatedness Matrix ...
================================================== 100%

real    0m7.068s
user    0m14.904s
sys     0m1.454s

time ./bin/gemma -g ./example/mouse_hs1940.geno.txt.gz -p ./example/mouse_hs1940.pheno.txt -n 1 -a ./example/mouse_hs1940.anno.txt -k ./output/result.cXX.txt -lmm -no-check

GEMMA 0.98.3 (2020-11-28) by Xiang Zhou and team (C) 2012-2020
Reading Files ...
## number of total individuals = 1940
## number of analyzed individuals = 1410
## number of covariates = 1
## number of phenotypes = 1
## number of total SNPs/var        =    12226
## number of analyzed SNPs         =    10768
Start Eigen-Decomposition...
pve estimate =0.608801
se(pve) =0.032774
================================================== 100%

real    0m12.581s
user    0m17.318s
sys     0m2.079s
#+end_src



* GEMMA 0.98.2 (release)

Looks like openblas is getting faster. Two metrics on the same machine:

#+BEGIN_SRC sh
lario:~/iwrk/opensource/code/genetics/gemma$ time ~/opt/gemma-gn2/bin/gemma -g ./example/mouse_hs1940.geno.txt.gz -p ./example/mouse_hs1940.pheno.txt -a ./example/mouse_hs1940.anno.txt -gk -no-check
GEMMA 0.98.2 (2020-05-28) by Xiang Zhou and team (C) 2012-2020
Reading Files ...
## number of total individuals = 1940
## number of analyzed individuals = 1410
## number of covariates = 1
## number of phenotypes = 1
## number of total SNPs/var        =    12226
## number of analyzed SNPs         =    10768
Calculating Relatedness Matrix ...
================================================== 100%

real    0m7.635s
user    0m14.821s
sys     0m1.077s
#+END_SRC

The static version

#+BEGIN_SRC sh
lario:~/iwrk/opensource/code/genetics/gemma$ time ./bin/gemma-0.98-linux-static -g ./example/mouse_hs1940.geno.txt.gz -p ./example/mouse_hs1940.pheno.txt -a ./example/mouse_hs1940.anno.txt -gk -no-check
GEMMA 0.98 (2018-09-28) by Xiang Zhou and team (C) 2012-2018
Reading Files ...
## number of total individuals = 1940
## number of analyzed individuals = 1410
## number of covariates = 1
## number of phenotypes = 1
## number of total SNPs/var        =    12226
## number of analyzed SNPs         =    10768
Calculating Relatedness Matrix ...
================================================== 100%

real    0m10.663s
user    0m20.994s
sys     0m4.268s
#+END_SRC


On a 26 core Intel(R) Xeon(R) CPU E5-2683 v3 @ 2.00GHz

The newer OpenBLAS is a tad faster on multi-core at the expense of
user land.

#+begin_src sh
time ./bin/gemma -g ./example/mouse_hs1940.geno.txt.gz -p ./example/mouse_hs1940.pheno.txt -a ./example/mouse_hs1940.anno.txt -gk -no-check
GEMMA 0.98.2 (2020-05-28) by Xiang Zhou and team (C) 2012-2020
Reading Files ...
## number of total individuals = 1940
## number of analyzed individuals = 1410
## number of covariates = 1
## number of phenotypes = 1
## number of total SNPs/var        =    12226
## number of analyzed SNPs         =    10768
Calculating Relatedness Matrix ...
================================================== 100%

real    0m7.590s
user    0m30.392s
sys     0m12.072s

while

time ./gemma-0.98.1-linux-static -g ./example/mouse_hs1940.geno.txt.gz -p ./example/mouse_hs1940.pheno.txt -a ./example/mouse_hs1940.anno.txt -gk -no-check
GEMMA 0.98.1 (2018-12-10) by Xiang Zhou and team (C) 2012-2018
real    0m9.272s
user    0m13.904s
sys     0m1.636s
#+end_src

#+begin_src sh
penguin2:~/iwrk/opensource/code/genetics/gemma$ time ./bin/gemma -g ./example/mouse_hs1940.geno.txt.gz -p ./example/mouse_hs1940.pheno.txt -n 1 -a ./example/mouse_hs1940.anno.txt -k ./output/result.cXX.txt -lmm -no-check
GEMMA 0.98.2 (2020-05-28) by Xiang Zhou and team (C) 2012-2020
Reading Files ...
## number of total individuals = 1940
## number of analyzed individuals = 1410
## number of covariates = 1
## number of phenotypes = 1
## number of total SNPs/var        =    12226
## number of analyzed SNPs         =    10768
Start Eigen-Decomposition...
pve estimate =0.608801
se(pve) =0.032774
================================================== 100%

real    0m17.813s
user    0m43.460s
sys     0m36.208s

penguin2:~/iwrk/opensource/code/genetics/gemma$ time ./gemma-0.98.1-linux-static -g ./example/mouse_hs1940.geno.txt.gz -p ./example/mouse_hs1940.pheno.txt -n 1 -a ./example/mouse_hs1940.anno.txt -k ./output/result.cXX.txt -lmm -no-check
GEMMA 0.98.1 (2018-12-10) by Xiang Zhou and team (C) 2012-2018
Reading Files ...

real    0m19.481s
user    0m23.072s
sys     0m2.684s

#+end_src

* GEMMA 0.98 (release)


#+BEGIN_SRC bash
        libgsl.so.23 => /gnu/store/79fw0qqlgpk7n8vll6lnlc4ahahn4gbw-profile/lib/libgsl.so.23 (0x00007fcb53b1f000)
        libz.so.1 => /gnu/store/79fw0qqlgpk7n8vll6lnlc4ahahn4gbw-profile/lib/libz.so.1 (0x00007fcb53903000)
        libopenblas.so.0 => /gnu/store/79fw0qqlgpk7n8vll6lnlc4ahahn4gbw-profile/lib/libopenblas.so.0 (0x00007fcb51bfb000)
        libgfortran.so.5 => /gnu/store/79fw0qqlgpk7n8vll6lnlc4ahahn4gbw-profile/lib/libgfortran.so.5 (0x00007fcb5178c000)
        libquadmath.so.0 => /gnu/store/bmaxmigwnlbdpls20px2ipq1fll36ncd-gcc-8.2.0-lib/lib/libquadmath.so.0 (0x00007fcb5154c000)
        libstdc++.so.6 => /gnu/store/bmaxmigwnlbdpls20px2ipq1fll36ncd-gcc-8.2.0-lib/lib/libstdc++.so.6 (0x00007fcb511c4000)
        libm.so.6 => /gnu/store/l4lr0f5cjd0nbsaaf8b5dmcw1a1yypr3-glibc-2.27/lib/libm.so.6 (0x00007fcb50e2e000)
        libgcc_s.so.1 => /gnu/store/bmaxmigwnlbdpls20px2ipq1fll36ncd-gcc-8.2.0-lib/lib/libgcc_s.so.1 (0x00007fcb50c16000)
        libpthread.so.0 => /gnu/store/l4lr0f5cjd0nbsaaf8b5dmcw1a1yypr3-glibc-2.27/lib/libpthread.so.0 (0x00007fcb509f8000)
        libc.so.6 => /gnu/store/l4lr0f5cjd0nbsaaf8b5dmcw1a1yypr3-glibc-2.27/lib/libc.so.6 (0x00007fcb50645000)
        libgfortran.so.3 => /gnu/store/1yym4xrvnlsvcnbzgxy967cg6dlb19gq-gfortran-5.5.0-lib/lib/libgfortran.so.3 (0x00007fcb50322000)
        /gnu/store/l4lr0f5cjd0nbsaaf8b5dmcw1a1yypr3-glibc-2.27/lib/ld-linux-x86-64.so.2 (0x0000561ae24a8000)
#+END_SRC

#+BEGIN_SRC bash
time ./bin/gemma -g ./example/mouse_hs1940.geno.txt.gz -p ./example/mouse_hs1940.pheno.txt -a ./example/mouse_hs1940.anno.txt -gk -no-check
GEMMA 0.98 (2018-09-26) by Xiang Zhou and team (C) 2012-2018
Reading Files ...
## number of total individuals = 1940
## number of analyzed individuals = 1410
## number of covariates = 1
## number of phenotypes = 1
## number of total SNPs/var        =    12226
## number of analyzed SNPs         =    10768
Calculating Relatedness Matrix ...
================================================== 100%

real    0m7.299s
user    0m13.632s
sys     0m1.468s
#+END_SRC

#+BEGIN_SRC bash
time ./bin/gemma -g ./example/mouse_hs1940.geno.txt.gz -p ./example/mouse_hs1940.pheno.txt -n 1 -a ./example/mouse_hs1940.anno.txt -k ./output/result.cXX.txt -lmm -no-check
GEMMA 0.98 (2018-09-26) by Xiang Zhou and team (C) 2012-2018
Reading Files ...
## number of total individuals = 1940
## number of analyzed individuals = 1410
## number of covariates = 1
## number of phenotypes = 1
## number of total SNPs/var        =    12226
## number of analyzed SNPs         =    10768
Start Eigen-Decomposition...
pve estimate =0.608801
se(pve) =0.032774
================================================== 100%

real    0m12.395s
user    0m15.748s
sys     0m3.000s
#+END_SRC

Full multivariate analysis is still slow. Mostly because of CalcQi - see above profiling.

#+BEGIN_SRC bash
time ./bin/gemma -g ./example/mouse_hs1940.geno.txt.gz -p ./example/mouse_hs1940.pheno.txt -n 1 2 -a ./example/mouse_hs1940.anno.txt -k ./output/result.cXX.txt -lmm -no-check
GEMMA 0.98 (2018-09-26) by Xiang Zhou and team (C) 2012-2018
Reading Files ...
## number of total individuals = 1940
## number of analyzed individuals = 757
## number of covariates = 1
## number of phenotypes = 2
## number of total SNPs/var        =    12226
## number of analyzed SNPs         =    10775
Start Eigen-Decomposition...
REMLE estimate for Vg in the null model:
1.3270
1.3270  1.3270
se(Vg):
0.8217
0.7152  0.7198
REMLE estimate for Ve in the null model:
0.3251
0.3251  0.3251
se(Ve):
1.9191
2.6491  1.9101
REMLE likelihood = 0.0000
MLE estimate for Vg in the null model:
1.3263
1.3263  1.3263
se(Vg):
0.8217
0.7152  0.7198
MLE estimate for Ve in the null model:
0.3246
0.3246  0.3246
se(Ve):
1.9191
2.6491  1.9101
MLE likelihood = 0.0000
================================================== 100%

real    0m12.076s
user    0m13.324s
sys     0m2.260s

#+END_SRC

using GSL inline functions improved it a bit. The obvious way to
further improve things is to rejig these CalcXHiY, CalcQi and
CalcSigma functions.

* GEMMA 0.98-pre

#+BEGIN_SRC bash
/gnu/store/icz3hd36aqpjz5slyp4hhr8wsfbgiml1-bash-minimal-4.4.12/bin/bash: warning: setlocale: LC_ALL: cannot change locale (en_GB.UTF-8)
        linux-vdso.so.1 (0x00007ffe2abe1000)
        libgsl.so.23 => /home/wrk/opt/gemma-dev-env/lib/libgsl.so.23 (0x00007f685a9c0000)
        libopenblas.so.0 => /home/wrk/opt/gemma-dev-env/lib/libopenblas.so.0 (0x00007f6858422000)
        libz.so.1 => /home/wrk/opt/gemma-dev-env/lib/libz.so.1 (0x00007f6858207000)
        libgfortran.so.3 => /home/wrk/opt/gemma-dev-env/lib/libgfortran.so.3 (0x00007f6857ee6000)
        libquadmath.so.0 => /home/wrk/opt/gemma-dev-env/lib/libquadmath.so.0 (0x00007f6857ca5000)
        libstdc++.so.6 => /home/wrk/opt/gemma-dev-env/lib/libstdc++.so.6 (0x00007f685792a000)
        libm.so.6 => /home/wrk/opt/gemma-dev-env/lib/libm.so.6 (0x00007f68575de000)
        libgcc_s.so.1 => /home/wrk/opt/gemma-dev-env/lib/libgcc_s.so.1 (0x00007f68573c7000)
        libpthread.so.0 => /home/wrk/opt/gemma-dev-env/lib/libpthread.so.0 (0x00007f68571a9000)
        libc.so.6 => /home/wrk/opt/gemma-dev-env/lib/libc.so.6 (0x00007f6856df7000)
        /gnu/store/n6acaivs0jwiwpidjr551dhdni5kgpcr-glibc-2.26.105-g0890d5379c/lib/ld-linux-x86-64.so.2 => /gnu/store/gf30mz7cfx4fyj4cckgxfxwlsc3c7a8r-glibc-2.26.105-g0890d5379c/lib/ld-linux-x86-64.so.2 (0x000055ae91968000)
#+END_SRC

#+BEGIN_SRC bash
lario:~/izip/git/opensource/genenetwork/gemma$ time ./bin/gemma -g ~/tmp/mouse_hs1940/mouse_hs1940.geno.txt.gz -p ~/tmp/mouse_hs1940/mouse_hs1940.pheno.txt -a ~/tmp/mouse_hs1940/mouse_hs1940.anno.txt -gk
GEMMA 0.98-pre1 (2018/02/10) by Xiang Zhou and team (C) 2012-2018
Reading Files ...
## number of total individuals = 1940
## number of analyzed individuals = 1410
## number of covariates = 1
## number of phenotypes = 1
## number of total SNPs/var        =    12226
## number of analyzed SNPs         =    10768
Calculating Relatedness Matrix ...
================================================== 100%

real    0m15.995s
user    0m31.884s
sys     0m4.680s
#+END_SRC

#+BEGIN_SRC bash
lario:~/izip/git/opensource/genenetwork/gemma$ time bin/gemma -g ~/tmp/mouse_hs1940/mouse_hs1940.geno.txt.gz -p ~/tmp/mouse_hs1940/mouse_hs1940.pheno.txt -n 1 -a ~/tmp/mouse_hs1940/mouse_hs1940.anno.txt -k ./output/result.cXX.txt -lmm
GEMMA 0.98-pre1 (2018/02/10) by Xiang Zhou and team (C) 2012-2018
Reading Files ...
## number of total individuals = 1940
## number of analyzed individuals = 1410
## number of covariates = 1
## number of phenotypes = 1
## number of total SNPs/var        =    12226
## number of analyzed SNPs         =    10768
Start Eigen-Decomposition...
pve estimate =0.608801
se(pve) =0.032774
================================================== 100%

real    0m13.440s
user    0m20.528s
sys     0m4.324s
#+END_SRC

* GEMMA 0.97

#+BEGIN_SRC bash
lario:~/tmp/gemma-release-0.97$ ldd gemma-gn2-0.97-c760aa0-xqhsidq7h5/bin/gemma
        linux-vdso.so.1 (0x00007ffc237a8000)
        libgsl.so.23 => /home/wrk/tmp/gemma-release-0.97/gsl-2.4-as8vm64028/lib/libgsl.so.23 (0x00007f8b415f5000)
        libopenblas.so.0 => /home/wrk/tmp/gemma-release-0.97/openblas-0.2.19-f7j1vq0ncc/lib/libopenblas.so.0 (0x00007f8b3fbc3000)
        libz.so.1 => /home/wrk/tmp/gemma-release-0.97/zlib-1.2.11-sfx1wh27i6/lib/libz.so.1 (0x00007f8b3f9a8000)
        libgfortran.so.3 => /home/wrk/tmp/gemma-release-0.97/gfortran-5.4.0-lib-15plffwjdv/lib/libgfortran.so.3 (0x00007f8b3f687000)
        libquadmath.so.0 => /home/wrk/tmp/gemma-release-0.97/gcc-5.4.0-lib-3x53yv4v14/lib/libquadmath.so.0 (0x00007f8b3f448000)
        liblapack.so.3 => /home/wrk/tmp/gemma-release-0.97/lapack-3.7.1-nyd19c9ccy/lib/liblapack.so.3 (0x00007f8b3eb83000)
        libstdc++.so.6 => /home/wrk/tmp/gemma-release-0.97/gcc-5.4.0-lib-3x53yv4v14/lib/libstdc++.so.6 (0x00007f8b3e809000)
        libm.so.6 => /home/wrk/tmp/gemma-release-0.97/glibc-2.25-n6nvxlk2j8/lib/libm.so.6 (0x00007f8b3e4f7000)
        libgcc_s.so.1 => /home/wrk/tmp/gemma-release-0.97/gcc-5.4.0-lib-3x53yv4v14/lib/libgcc_s.so.1 (0x00007f8b3e2e0000)
        libpthread.so.0 => /home/wrk/tmp/gemma-release-0.97/glibc-2.25-n6nvxlk2j8/lib/libpthread.so.0 (0x00007f8b3e0c2000)
        libc.so.6 => /home/wrk/tmp/gemma-release-0.97/glibc-2.25-n6nvxlk2j8/lib/libc.so.6 (0x00007f8b3dd23000)
        libblas.so.3 => /home/wrk/tmp/gemma-release-0.97/lapack-3.7.1-nyd19c9ccy/lib/libblas.so.3 (0x00007f8b3dacb000)
        /home/wrk/tmp/gemma-release-0.97/glibc-2.25-n6nvxlk2j8/lib/ld-linux-x86-64.so.2 (0x00007f8b41a5c000)
#+END_SRC

#+BEGIN_SRC bash
lario:~/tmp/gemma-release-0.97$ time ./gemma-gn2-0.97-c760aa0-xqhsidq7h5/bin/gemma -g ~/tmp/mouse_hs1940/mouse_hs1940.geno.txt.gz -p ~/tmp/mouse_hs1940/mouse_hs1940.pheno.txt -a ~/tmp/mouse_hs1940/mouse_hs1940.anno.txt -gk
GEMMA 0.97 (2017/12/27) by Xiang Zhou and team (C) 2012-2017
Reading Files ...
## number of total individuals = 1940
## number of analyzed individuals = 1410
## number of covariates = 1
## number of phenotypes = 1
## number of total SNPs/var        =    12226
## number of analyzed SNPs         =    10768
Calculating Relatedness Matrix ...
================================================== 100%

real    0m21.389s
user    0m34.980s
sys     0m4.560s
#+END_SRC

#+BEGIN_SRC bash
lario:~/tmp/gemma-release-0.97$ time ./gemma-gn2-0.97-c760aa0-xqhsidq7h5/bin/gemma -g ~/tmp/mouse_hs1940/mouse_hs1940.geno.txt.gz -p ~/tmp/mouse_hs1940/mouse_hs1940.pheno.txt -n 1 -a ~/tmp/mouse_hs1940/mouse_hs1940.anno.txt -k ./output/result.cXX.txt -lmm
GEMMA 0.97 (2017/12/27) by Xiang Zhou and team (C) 2012-2017
Reading Files ...
## number of total individuals = 1940
## number of analyzed individuals = 1410
## number of covariates = 1
## number of phenotypes = 1
## number of total SNPs/var        =    12226
## number of analyzed SNPs         =    10768
Start Eigen-Decomposition...
pve estimate =0.608801
se(pve) =0.032774
================================================== 100%

real    0m13.296s
user    0m18.332s
sys     0m5.020s
#+END_SRC

* GEMMA 0.96

#+BEGIN_SRC bash
lario:~/tmp/gemma-release-0.96$ ldd gemma.linux
        linux-vdso.so.1 (0x00007ffd9ee8f000)
        libz.so.1 => /lib/x86_64-linux-gnu/libz.so.1 (0x00007fc2a94a1000)
        libgfortran.so.3 => /usr/lib/x86_64-linux-gnu/libgfortran.so.3 (0x00007fc2a9183000)
        libstdc++.so.6 => /usr/lib/x86_64-linux-gnu/libstdc++.so.6 (0x00007fc2a8e01000)
        libm.so.6 => /lib/x86_64-linux-gnu/libm.so.6 (0x00007fc2a8afd000)
        libgcc_s.so.1 => /lib/x86_64-linux-gnu/libgcc_s.so.1 (0x00007fc2a88e6000)
        libpthread.so.0 => /lib/x86_64-linux-gnu/libpthread.so.0 (0x00007fc2a86c9000)
        libc.so.6 => /lib/x86_64-linux-gnu/libc.so.6 (0x00007fc2a832b000)
        libquadmath.so.0 => /usr/lib/x86_64-linux-gnu/libquadmath.so.0 (0x00007fc2a80ec000)
        /lib64/ld-linux-x86-64.so.2 (0x00007fc2a96bb000)
#+END_SRC

#+BEGIN_SRC bash
lario:~/tmp/gemma-release-0.96$ time ./gemma.linux -g ~/tmp/mouse_hs1940/mouse_hs1940.geno.txt.gz -p ~/tmp/mouse_hs1940/mouse_hs1940.pheno.txt -a ~/tmp/mouse_hs1940/mouse_hs1940.anno.txt -gk
Reading Files ...
## number of total individuals = 1940
## number of analyzed individuals = 1410
## number of covariates = 1
## number of phenotypes = 1
## number of total SNPs = 12226
## number of analyzed SNPs = 10768
Calculating Relatedness Matrix ...
Reading SNPs  ==================================================100.00%

real    0m16.347s
user    0m16.204s
sys     0m0.116s
#+END_SRC


#+BEGIN_SRC bash
lario:~/tmp/gemma-release-0.96$ time ./gemma.linux -g ~/tmp/mouse_hs1940/mouse_hs1940.geno.txt.gz -p ~/tmp/mouse_hs1940/mouse_hs1940.pheno.txt -n 1 -a ~/tmp/mouse_hs1940/mouse_hs1940.anno.txt -k ./output/result.cXX.txt -lmm
Reading Files ...
## number of total individuals = 1940
## number of analyzed individuals = 1410
## number of covariates = 1
## number of phenotypes = 1
## number of total SNPs = 12226
## number of analyzed SNPs = 10768
Start Eigen-Decomposition...
pve estimate =0.608801
se(pve) =0.032774
Reading SNPs  ==================================================100.00%

real    0m20.377s
user    0m20.240s
sys     0m0.132s
#+END_SRC