1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
|
/*
Genome-wide Efficient Mixed Model Association (GEMMA)
Copyright (C) 2011 Xiang Zhou
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef __PARAM_H__
#define __PARAM_H__
#include <vector>
#include <map>
#include <set>
#include "gsl/gsl_vector.h"
#include "gsl/gsl_matrix.h"
using namespace std;
class SNPINFO {
public:
string chr;
string rs_number;
double cM;
long int base_position;
string a_minor;
string a_major;
size_t n_miss;
double missingness;
double maf;
};
//results for lmm
class SUMSTAT {
public:
double beta; //REML estimator for beta
double se; //SE for beta
double lambda_remle; //REML estimator for lambda
double lambda_mle; //MLE estimator for lambda
double p_wald; //p value from a Wald test
double p_lrt; //p value from a likelihood ratio test
double p_score; //p value from a score test
};
//results for mvlmm
class MPHSUMSTAT {
public:
vector<double> v_beta; //REML estimator for beta
double p_wald; //p value from a Wald test
double p_lrt; //p value from a likelihood ratio test
double p_score; //p value from a score test
vector<double> v_Vg; //estimator for Vg, right half
vector<double> v_Ve; //estimator for Ve, right half
vector<double> v_Vbeta; //estimator for Vbeta, right half
};
//hyper-parameters for bslmm
class HYPBSLMM {
public:
double h;
double pve;
double rho;
double pge;
double logp;
size_t n_gamma;
};
class PARAM {
public:
// IO related parameters
bool mode_silence;
int a_mode; //analysis mode, 1/2/3/4 for Frequentist tests
int k_mode; //kinship read mode: 1: n by n matrix, 2: id/id/k_value;
vector<size_t> p_column; //which phenotype column needs analysis
size_t d_pace; //display pace
string file_bfile;
string file_geno;
string file_pheno;
string file_anno; //optional
string file_cvt; //optional
string file_kin;
string file_ku, file_kd;
string file_mk;
string file_out;
string path_out;
string file_epm; //estimated parameter file
string file_ebv; //estimated breeding value file
string file_log; //log file containing mean estimate
string file_read; //file containing total number of reads
string file_gene; //gene expression file
string file_snps; //file containing analyzed snps or genes
// QC related parameters
double miss_level;
double maf_level;
double hwe_level;
double r2_level;
// LMM related parameters
double l_min;
double l_max;
size_t n_region;
double l_mle_null, l_remle_null;
double logl_mle_H0, logl_remle_H0;
double pve_null, pve_se_null;
double vg_remle_null, ve_remle_null, vg_mle_null, ve_mle_null;
vector<double> Vg_remle_null, Ve_remle_null, Vg_mle_null, Ve_mle_null;
vector<double> VVg_remle_null, VVe_remle_null, VVg_mle_null, VVe_mle_null;
vector<double> beta_remle_null, se_beta_remle_null, beta_mle_null, se_beta_mle_null;
double p_nr;
double em_prec, nr_prec;
size_t em_iter, nr_iter;
size_t crt;
double pheno_mean; //phenotype mean from bslmm fitting or for prediction
//for fitting multiple variance components
//the first three are of size n_vc, and the next two are of size n_vc+1
vector<double> v_traceG;
vector<double> v_pve;
vector<double> v_se_pve;
vector<double> v_sigma2;
vector<double> v_se_sigma2;
vector<double> v_beta;
vector<double> v_se_beta;
// BSLMM MCMC related parameters
double h_min, h_max, h_scale; //priors for h
double rho_min, rho_max, rho_scale; //priors for rho
double logp_min, logp_max, logp_scale; //priors for log(pi)
size_t s_min, s_max; //minimum and maximum number of gammas
size_t w_step; //number of warm up/burn in iterations
size_t s_step; //number of sampling iterations
size_t r_pace; //record pace
size_t w_pace; //write pace
size_t n_accept; //number of acceptance
size_t n_mh; //number of MH steps within each iteration
double geo_mean; //mean of the geometric distribution
long int randseed;
double trace_G;
HYPBSLMM cHyp_initial;
// Summary statistics
bool error;
size_t ni_total, ni_test, ni_cvt; //number of individuals
size_t np_obs, np_miss; //number of observed and missing phenotypes
size_t ns_total, ns_test; //number of snps
size_t ng_total, ng_test; //number of genes
size_t ni_control, ni_case; //number of controls and number of cases
size_t n_cvt; //number of covariates
size_t n_ph; //number of phenotypes
size_t n_vc; //number of variance components (including the diagonal matrix)
double time_total; //record total time
double time_G; //time spent on reading files the second time and calculate K
double time_eigen; //time spent on eigen-decomposition
double time_UtX; //time spent on calculating UX and Uy
double time_UtZ; //time spent on calculating UtZ, for probit BSLMM
double time_opt; //time spent on optimization iterations/or mcmc
double time_Omega; //time spent on calculating Omega
double time_hyp; //time spent on sampling hyper-parameters, in PMM
double time_Proposal; //time spend on constructing the proposal distribution (i.e. the initial lmm or lm analysis)
// Data
vector<vector<double> > pheno; //a vector record all phenotypes, NA replaced with -9
vector<vector<double> > cvt; //a vector record all covariates, NA replaced with -9
vector<vector<int> > indicator_pheno; //a matrix record when a phenotype is missing for an individual; 0 missing, 1 available
vector<int> indicator_idv; //indicator for individuals (phenotypes), 0 missing, 1 available for analysis
vector<int> indicator_snp; //sequence indicator for SNPs: 0 ignored because of (a) maf, (b) miss, (c) non-poly; 1 available for analysis
vector<int> indicator_cvt; //indicator for covariates, 0 missing, 1 available for analysis
vector<int> indicator_bv; //indicator for estimated breeding value file, 0 missing, 1 available for analysis
vector<int> indicator_read; //indicator for read file, 0 missing, 1 available for analysis
vector<double> vec_read; //total number of reads
vector<double> vec_bv; //breeding values
vector<size_t> est_column;
map<string, int> mapID2num; //map small ID number to number, from 0 to n-1
map<string, string> mapRS2chr; //map rs# to chromosome location
map<string, long int> mapRS2bp; //map rs# to base position
map<string, double> mapRS2cM; //map rs# to cM
map<string, double> mapRS2est; //map rs# to parameters
vector<SNPINFO> snpInfo; //record SNP information
set<string> setSnps; //a set of snps for analysis
//constructor
PARAM();
//functions
void ReadFiles ();
void CheckParam ();
void CheckData ();
void PrintSummary ();
void ReadGenotypes (gsl_matrix *UtX, gsl_matrix *K, const bool calc_K);
void CheckCvt ();
void CopyCvt (gsl_matrix *W);
void ProcessCvtPhen();
void CopyCvtPhen (gsl_matrix *W, gsl_vector *y, size_t flag);
void CopyCvtPhen (gsl_matrix *W, gsl_matrix *Y, size_t flag);
void CalcKin (gsl_matrix *matrix_kin);
void WriteMatrix (const gsl_matrix *matrix_U, const string suffix);
void WriteVector (const gsl_vector *vector_D, const string suffix);
void CopyRead (gsl_vector *log_N);
};
#endif
|