aboutsummaryrefslogtreecommitdiff
path: root/src/mathfunc.cpp
blob: 09e58dca9be39e5c91c60ec88e3a72736808a30c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
/*
 Genome-wide Efficient Mixed Model Association (GEMMA)
 Copyright (C) 2011  Xiang Zhou
 
 This program is free software: you can redistribute it and/or modify
 it under the terms of the GNU General Public License as published by
 the Free Software Foundation, either version 3 of the License, or
 (at your option) any later version.
 
 This program is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 GNU General Public License for more details.
 
 You should have received a copy of the GNU General Public License
 along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */


#include <iostream>
#include <fstream>
#include <sstream>
#include <string>
#include <iomanip>
#include <bitset>
#include <vector>
#include <map>
#include <set>
#include <cstring>
#include <cmath>
#include <stdio.h>
#include <stdlib.h> 

#include "gsl/gsl_vector.h"
#include "gsl/gsl_matrix.h"
#include "gsl/gsl_linalg.h"
#include "gsl/gsl_blas.h"
#include "gsl/gsl_cdf.h"

#ifdef FORCE_FLOAT
#include "mathfunc_float.h"
#else
#include "mathfunc.h"
#endif


using namespace std;



//calculate variance of a vector
double VectorVar (const gsl_vector *v)
{
	double d, m=0.0, m2=0.0;
	for (size_t i=0; i<v->size; ++i) {
		d=gsl_vector_get (v, i);
		m+=d;
		m2+=d*d;
	}
	m/=(double)v->size;
	m2/=(double)v->size;
	return m2-m*m;
}



//center the matrix G	
void CenterMatrix (gsl_matrix *G)
{		
	double d;
	gsl_vector *w=gsl_vector_alloc (G->size1);
	gsl_vector *Gw=gsl_vector_alloc (G->size1);
	gsl_vector_set_all (w, 1.0);
	
	gsl_blas_dgemv (CblasNoTrans, 1.0, G, w, 0.0, Gw);			
	gsl_blas_dsyr2 (CblasUpper, -1.0/(double)G->size1, Gw, w, G);
	gsl_blas_ddot (w, Gw, &d);		
	gsl_blas_dsyr (CblasUpper, d/((double)G->size1*(double)G->size1), w, G);
	
	for (size_t i=0; i<G->size1; ++i) {
		for (size_t j=0; j<i; ++j) {
			d=gsl_matrix_get (G, j, i);
			gsl_matrix_set (G, i, j, d);
		}
	}
	
	gsl_vector_free(w);
	gsl_vector_free(Gw);
	
	return;
}


//center the matrix G	
void CenterMatrix (gsl_matrix *G, gsl_vector *w)
{		
	double d, wtw;
	gsl_vector *Gw=gsl_vector_alloc (G->size1);
	
	gsl_blas_ddot (w, w, &wtw);	
	gsl_blas_dgemv (CblasNoTrans, 1.0, G, w, 0.0, Gw);			
	gsl_blas_dsyr2 (CblasUpper, -1.0/wtw, Gw, w, G);
	gsl_blas_ddot (w, Gw, &d);		
	gsl_blas_dsyr (CblasUpper, d/(wtw*wtw), w, G);
	
	for (size_t i=0; i<G->size1; ++i) {
		for (size_t j=0; j<i; ++j) {
			d=gsl_matrix_get (G, j, i);
			gsl_matrix_set (G, i, j, d);
		}
	}
	
	gsl_vector_free(Gw);
	
	return;
}


//scale the matrix G such that the mean diagonal = 1
void ScaleMatrix (gsl_matrix *G)
{		
	double d=0.0;
	
	for (size_t i=0; i<G->size1; ++i) {
		d+=gsl_matrix_get(G, i, i);
	}
	d/=(double)G->size1;
	
	gsl_matrix_scale (G, 1.0/d);
	
	return;
}


//center the vector y
double CenterVector (gsl_vector *y)
{		
	double d=0.0;
	
	for (size_t i=0; i<y->size; ++i) {
		d+=gsl_vector_get (y, i);
	}
	d/=(double)y->size;
	
	gsl_vector_add_constant (y, -1.0*d);
	
	return d;
}


//calculate UtX
void CalcUtX (const gsl_matrix *U, gsl_matrix *UtX) 
{
	gsl_vector *Utx_vec=gsl_vector_alloc (UtX->size1);
	for (size_t i=0; i<UtX->size2; ++i) {
		gsl_vector_view UtX_col=gsl_matrix_column (UtX, i);
		gsl_blas_dgemv (CblasTrans, 1.0, U, &UtX_col.vector, 0.0, Utx_vec);
		gsl_vector_memcpy (&UtX_col.vector, Utx_vec);
	}	
	gsl_vector_free (Utx_vec);
	return;
}


void CalcUtX (const gsl_matrix *U, const gsl_matrix *X, gsl_matrix *UtX) 
{
	for (size_t i=0; i<X->size2; ++i) {
		gsl_vector_const_view X_col=gsl_matrix_const_column (X, i);
		gsl_vector_view UtX_col=gsl_matrix_column (UtX, i);
		gsl_blas_dgemv (CblasTrans, 1.0, U, &X_col.vector, 0.0, &UtX_col.vector);
	}
	return;
}

void CalcUtX (const gsl_matrix *U, const gsl_vector *x, gsl_vector *Utx) 
{
	gsl_blas_dgemv (CblasTrans, 1.0, U, x, 0.0, Utx);
	return;
}


//Kronecker product
void Kronecker(const gsl_matrix *K, const gsl_matrix *V, gsl_matrix *H) 
{
	for (size_t i=0; i<K->size1; i++) {
		for (size_t j=0; j<K->size2; j++) {
			gsl_matrix_view H_sub=gsl_matrix_submatrix (H, i*V->size1, j*V->size2, V->size1, V->size2);
			gsl_matrix_memcpy (&H_sub.matrix, V);
			gsl_matrix_scale (&H_sub.matrix, gsl_matrix_get (K, i, j));
		}
	}
	return;
}

//symmetric K matrix
void KroneckerSym(const gsl_matrix *K, const gsl_matrix *V, gsl_matrix *H) 
{
	for (size_t i=0; i<K->size1; i++) {
		for (size_t j=i; j<K->size2; j++) {
			gsl_matrix_view H_sub=gsl_matrix_submatrix (H, i*V->size1, j*V->size2, V->size1, V->size2);
			gsl_matrix_memcpy (&H_sub.matrix, V);
			gsl_matrix_scale (&H_sub.matrix, gsl_matrix_get (K, i, j));
			
			if (i!=j) {
				gsl_matrix_view H_sub_sym=gsl_matrix_submatrix (H, j*V->size1, i*V->size2, V->size1, V->size2);
				gsl_matrix_memcpy (&H_sub_sym.matrix, &H_sub.matrix);
			}
		}
	}
	return;
}


// this function calculates HWE p value with methods described in Wigginton et al., 2005 AJHG; 
// it is based on the code in plink 1.07
double CalcHWE (const size_t n_hom1, const size_t n_hom2, const size_t n_ab)
{
	if ( (n_hom1+n_hom2+n_ab)==0 ) {return 1;}
	
	//aa is the rare allele
	int n_aa=n_hom1 < n_hom2 ? n_hom1 : n_hom2;
	int n_bb=n_hom1 < n_hom2 ? n_hom2 : n_hom1;
	
	int rare_copies = 2 * n_aa + n_ab;
	int genotypes   = n_ab + n_bb + n_aa;
	
	double * het_probs = (double *) malloc( (rare_copies + 1) * sizeof(double));
	if (het_probs == NULL) 
		cout<<"Internal error: SNP-HWE: Unable to allocate array"<<endl;
		
		int i;
	for (i = 0; i <= rare_copies; i++)
		het_probs[i] = 0.0;
		
	/* start at midpoint */
		int mid = rare_copies * (2 * genotypes - rare_copies) / (2 * genotypes);
		
	/* check to ensure that midpoint and rare alleles have same parity */
		if ((rare_copies & 1) ^ (mid & 1))
			mid++;
	
	int curr_hets = mid;
	int curr_homr = (rare_copies - mid) / 2;
	int curr_homc = genotypes - curr_hets - curr_homr;
	
	het_probs[mid] = 1.0;
	double sum = het_probs[mid];
	for (curr_hets = mid; curr_hets > 1; curr_hets -= 2)
    {
		het_probs[curr_hets - 2] = het_probs[curr_hets] * curr_hets * (curr_hets - 1.0)
		/ (4.0 * (curr_homr + 1.0) * (curr_homc + 1.0));
		sum += het_probs[curr_hets - 2];
		
		/* 2 fewer heterozygotes for next iteration -> add one rare, one common homozygote */
		curr_homr++;
		curr_homc++;
    }
	
	curr_hets = mid;
	curr_homr = (rare_copies - mid) / 2;
	curr_homc = genotypes - curr_hets - curr_homr;
	for (curr_hets = mid; curr_hets <= rare_copies - 2; curr_hets += 2)
    {
		het_probs[curr_hets + 2] = het_probs[curr_hets] * 4.0 * curr_homr * curr_homc
		/((curr_hets + 2.0) * (curr_hets + 1.0));
		sum += het_probs[curr_hets + 2];
		
		/* add 2 heterozygotes for next iteration -> subtract one rare, one common homozygote */
		curr_homr--;
		curr_homc--;
    }
	
	for (i = 0; i <= rare_copies; i++)
		het_probs[i] /= sum;
		
	/* alternate p-value calculation for p_hi/p_lo
	 double p_hi = het_probs[n_ab];
	 for (i = n_ab + 1; i <= rare_copies; i++)
     p_hi += het_probs[i];
	 
	 double p_lo = het_probs[n_ab];
	 for (i = n_ab - 1; i >= 0; i--)
	 p_lo += het_probs[i];
	 
	 double p_hi_lo = p_hi < p_lo ? 2.0 * p_hi : 2.0 * p_lo;
	 */
		
		double p_hwe = 0.0;
	/*  p-value calculation for p_hwe  */
		for (i = 0; i <= rare_copies; i++)
		{
			if (het_probs[i] > het_probs[n_ab])
				continue;
			p_hwe += het_probs[i];
		}
	
	p_hwe = p_hwe > 1.0 ? 1.0 : p_hwe;
	
	free(het_probs);
	
	return p_hwe;
}