1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
|
/*
Genome-wide Efficient Mixed Model Association (GEMMA)
Copyright © 2011-2017, Xiang Zhou
Copyright © 2017, Peter Carbonetto
Copyright © 2017-2018, Pjotr Prins
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <bitset>
#include <cmath>
#include <cstring>
#include <fstream>
#include <iomanip>
#include <iostream>
#include <limits.h>
#include <map>
#include <regex>
#include <set>
#include <sstream>
#include <stdio.h>
#include <stdlib.h>
#include <string>
#include <tuple>
#include <vector>
// #include "Eigen/Dense"
#include "gsl/gsl_version.h"
#if GSL_MAJOR_VERSION < 2
#pragma message "GSL version " GSL_VERSION
#endif
#include "gsl/gsl_sys.h" // for gsl_isnan, gsl_isinf, gsl_isfinite
#include "gsl/gsl_blas.h"
#include "gsl/gsl_cdf.h"
#include "gsl/gsl_linalg.h"
#include "gsl/gsl_matrix.h"
#include "gsl/gsl_vector.h"
#include "gsl/gsl_eigen.h"
#include "debug.h"
// #include "eigenlib.h"
#include "fastblas.h"
#include "lapack.h"
#include "mathfunc.h"
using namespace std;
// using namespace Eigen;
bool has_nan(const vector<double> v) {
if (!is_check_mode()) return false;
for (const auto& e: v) {
if (is_nan(e))
return true;
}
return false;
}
bool has_nan(const gsl_vector *v) {
if (!is_check_mode()) return false;
for (size_t i = 0; i < v->size; ++i)
if (is_nan(gsl_vector_get(v,i))) return true;
return false;
}
bool has_inf(const gsl_vector *v) {
if (!is_check_mode()) return false;
for (size_t i = 0; i < v->size; ++i) {
auto value = gsl_vector_get(v,i);
if (is_inf(value) != 0) return true;
}
return false;
}
bool has_nan(const gsl_matrix *m) {
if (!is_check_mode()) return false;
for (size_t i = 0; i < m->size1; ++i)
for (size_t j = 0; j < m->size2; ++j)
if (is_nan(gsl_matrix_get(m,i,j))) return true;
return false;
}
bool has_inf(const gsl_matrix *m) {
if (!is_check_mode()) return false;
for (size_t i = 0; i < m->size1; ++i)
for (size_t j = 0; j < m->size2; ++j) {
auto value = gsl_matrix_get(m,i,j);
if (is_inf(value) != 0) return true;
}
return false;
}
bool is_integer(const std::string & s){
return std::regex_match(s, std::regex("^[0-9]+$"));
}
bool is_float(const std::string & s){
return std::regex_match(s, std::regex("^[+-]?([0-9]*[.])?[0-9]+$"));
}
double safe_log(const double d) {
if (!is_legacy_mode() && (is_check_mode() || is_debug_mode()))
enforce_msg(d > 0.0, (std::string("Trying to take the log of ") + std::to_string(d)).c_str());
return log(d);
}
double safe_sqrt(const double d) {
double d1 = d;
if (fabs(d < 0.001))
d1 = fabs(d);
if (!is_legacy_mode() && (is_check_mode() || is_debug_mode()))
enforce_msg(d1 >= 0.0, (std::string("Trying to take the sqrt of ") + std::to_string(d)).c_str());
if (d1 < 0.0 )
return nan("");
return sqrt(d1);
}
// calculate variance of a vector
double VectorVar(const gsl_vector *v) {
double d, m = 0.0, m2 = 0.0;
for (size_t i = 0; i < v->size; ++i) {
d = gsl_vector_get(v, i);
m += d;
m2 += d * d;
}
m /= (double)v->size;
m2 /= (double)v->size;
return m2 - m * m;
}
// Center the matrix G.
void CenterMatrix(gsl_matrix *G) {
double d;
gsl_vector *w = gsl_vector_safe_alloc(G->size1);
gsl_vector *Gw = gsl_vector_safe_alloc(G->size1);
gsl_vector_set_all(w, 1.0);
// y := alpha*A*x+ beta*y or Gw = G*w
gsl_blas_dgemv(CblasNoTrans, 1.0, G, w, 0.0, Gw);
// int gsl_blas_dsyr2(CBLAS_UPLO_t Uplo, double alpha, const gsl_vector * x, const gsl_vector * y, gsl_matrix * A)
// compute the symmetric rank-2 update A = \alpha x y^T + \alpha y x^T + A of the symmetric matrix A. Since the matrix A is symmetric only its upper half or lower half need to be stored
// or G = (UpperTriangle) alpha*Gw*w' + alpha*w*Gw' + G
gsl_blas_dsyr2(CblasUpper, -1.0 / (double)G->size1, Gw, w, G);
// compute dot product of vectors w.Gw and store in d
gsl_blas_ddot(w, Gw, &d);
// G = (upper) alpha w*w' + G
gsl_blas_dsyr(CblasUpper, d / ((double)G->size1 * (double)G->size1), w, G);
// Transpose the matrix
for (size_t i = 0; i < G->size1; ++i) {
for (size_t j = 0; j < i; ++j) {
d = gsl_matrix_get(G, j, i);
gsl_matrix_set(G, i, j, d);
}
}
gsl_vector_safe_free(w);
gsl_vector_safe_free(Gw);
return;
}
// Center the matrix G.
// Only used in vc
void CenterMatrix(gsl_matrix *G, const gsl_vector *w) {
double d, wtw;
gsl_vector *Gw = gsl_vector_safe_alloc(G->size1);
gsl_blas_ddot(w, w, &wtw);
gsl_blas_dgemv(CblasNoTrans, 1.0, G, w, 0.0, Gw);
gsl_blas_dsyr2(CblasUpper, -1.0 / wtw, Gw, w, G);
gsl_blas_ddot(w, Gw, &d);
gsl_blas_dsyr(CblasUpper, d / (wtw * wtw), w, G);
for (size_t i = 0; i < G->size1; ++i) {
for (size_t j = 0; j < i; ++j) {
d = gsl_matrix_get(G, j, i);
gsl_matrix_set(G, i, j, d);
}
}
gsl_vector_safe_free(Gw);
return;
}
// Center the matrix G.
// Only used in vc
void CenterMatrix(gsl_matrix *G, const gsl_matrix *W) {
gsl_matrix *WtW = gsl_matrix_safe_alloc(W->size2, W->size2);
gsl_matrix *WtWi = gsl_matrix_safe_alloc(W->size2, W->size2);
gsl_matrix *WtWiWt = gsl_matrix_safe_alloc(W->size2, G->size1);
gsl_matrix *GW = gsl_matrix_safe_alloc(G->size1, W->size2);
gsl_matrix *WtGW = gsl_matrix_safe_alloc(W->size2, W->size2);
gsl_matrix *Gtmp = gsl_matrix_safe_alloc(G->size1, G->size1);
gsl_blas_dgemm(CblasTrans, CblasNoTrans, 1.0, W, W, 0.0, WtW);
int sig;
gsl_permutation *pmt = gsl_permutation_alloc(W->size2);
LUDecomp(WtW, pmt, &sig);
LUInvert(WtW, pmt, WtWi);
gsl_blas_dgemm(CblasNoTrans, CblasTrans, 1.0, WtWi, W, 0.0, WtWiWt);
gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, G, W, 0.0, GW);
gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, GW, WtWiWt, 0.0, Gtmp);
gsl_matrix_sub(G, Gtmp);
gsl_matrix_transpose(Gtmp);
gsl_matrix_sub(G, Gtmp);
gsl_blas_dgemm(CblasTrans, CblasNoTrans, 1.0, W, GW, 0.0, WtGW);
// GW is destroyed.
gsl_blas_dgemm(CblasTrans, CblasNoTrans, 1.0, WtWiWt, WtGW, 0.0, GW);
gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, GW, WtWiWt, 0.0, Gtmp);
gsl_matrix_add(G, Gtmp);
gsl_matrix_safe_free(WtW);
gsl_matrix_safe_free(WtWi);
gsl_matrix_safe_free(WtWiWt);
gsl_matrix_safe_free(GW);
gsl_matrix_safe_free(WtGW);
gsl_matrix_safe_free(Gtmp);
return;
}
// "Standardize" the matrix G such that all diagonal elements = 1.
// (only used by vc)
void StandardizeMatrix(gsl_matrix *G) {
double d = 0.0;
vector<double> vec_d;
for (size_t i = 0; i < G->size1; ++i) {
vec_d.push_back(gsl_matrix_get(G, i, i));
}
for (size_t i = 0; i < G->size1; ++i) {
for (size_t j = i; j < G->size2; ++j) {
if (j == i) {
gsl_matrix_set(G, i, j, 1);
} else {
d = gsl_matrix_get(G, i, j);
d /= sqrt(vec_d[i] * vec_d[j]);
gsl_matrix_set(G, i, j, d);
gsl_matrix_set(G, j, i, d);
}
}
}
return;
}
// Scale the matrix G such that the mean diagonal = 1.
double ScaleMatrix(gsl_matrix *G) {
double d = 0.0;
// Compute mean of diagonal
for (size_t i = 0; i < G->size1; ++i) {
d += gsl_matrix_get(G, i, i);
}
d /= (double)G->size1;
// Scale the matrix using the diagonal mean
if (d != 0) {
gsl_matrix_scale(G, 1.0 / d);
}
return d;
}
bool isMatrixSymmetric(const gsl_matrix *G) {
enforce(G->size1 == G->size2);
auto m = G->data;
// upper triangle
auto size = G->size1;
for(size_t c = 0; c < size; c++) {
for(size_t r = 0; r < c; r++) {
int x1 = c, y1 = r, x2 = r, y2 = c;
auto idx1 = y1*size+x1, idx2 = y2*size+x2;
// printf("(%d,%d %f - %d,%d %f)",x1,y1,m[idx1],x2,y2,m[idx2]);
if(m[idx1] != m[idx2]) {
cout << "Mismatch coordinates (" << c << "," << r << ")" << m[idx1] << ":" << m[idx2] << "!" << endl;
return false;
}
}
}
return true;
}
bool isMatrixPositiveDefinite(const gsl_matrix *G) {
enforce(G->size1 == G->size2);
auto G2 = gsl_matrix_safe_alloc(G->size1, G->size2);
enforce_gsl(gsl_matrix_safe_memcpy(G2,G));
auto handler = gsl_set_error_handler_off();
#if GSL_MAJOR_VERSION >= 2 && GSL_MINOR_VERSION >= 3
auto s = gsl_linalg_cholesky_decomp1(G2);
#else
auto s = gsl_linalg_cholesky_decomp(G2);
#endif
gsl_set_error_handler(handler);
if (s == GSL_SUCCESS) {
gsl_matrix_safe_free(G2);
return true;
}
gsl_matrix_free(G2);
return (false);
}
gsl_vector *getEigenValues(const gsl_matrix *G) {
enforce(G->size1 == G->size2);
auto G2 = gsl_matrix_safe_alloc(G->size1, G->size2);
enforce_gsl(gsl_matrix_safe_memcpy(G2,G));
auto eworkspace = gsl_eigen_symm_alloc(G->size1);
enforce(eworkspace);
gsl_vector *eigenvalues = gsl_vector_safe_alloc(G->size1);
enforce_gsl(gsl_eigen_symm(G2, eigenvalues, eworkspace));
gsl_eigen_symm_free(eworkspace);
gsl_matrix_safe_free(G2);
return eigenvalues;
}
// Check whether eigen values are larger than *min*
// by default 1E-5.
// Returns success, eigen min, eigen min-but-1, eigen max
tuple<double, double, double> minmax(const gsl_vector *v) {
auto min = v->data[0];
auto min1 = min;
auto max = min;
for (size_t i=1; i<v->size; i++) {
auto value = std::abs(v->data[i]);
if (value < min) {
min1 = min;
min = value;
}
if (value > max)
max = value;
}
return std::make_tuple(min, min1, max);
}
tuple<double, double, double> abs_minmax(const gsl_vector *v) {
auto min = std::abs(v->data[0]);
auto min1 = min;
auto max = min;
for (size_t i=1; i<v->size; i++) {
auto value = std::abs(v->data[i]);
if (value < min) {
min1 = min;
min = value;
}
if (value > max)
max = value;
}
return std::make_tuple(min, min1, max);
}
// Check for negative values. skip_min will leave out
// the lowest value
bool has_negative_values_but_one(const gsl_vector *v) {
bool one_skipped = false;
for (size_t i=0; i<v->size; i++) {
if (v->data[i] < -EIGEN_MINVALUE) {
if (one_skipped)
return true;
one_skipped = true;
}
}
return false;
}
uint count_abs_small_values(const gsl_vector *v, double min) {
uint count = 0;
for (size_t i=0; i<v->size; i++) {
if (std::abs(v->data[i]) < min) {
count += 1;
}
}
return count;
}
// Check for matrix being ill conditioned by taking the eigen values
// and the ratio of max and min but one (min is expected to be zero).
bool isMatrixIllConditioned(const gsl_vector *eigenvalues, double max_ratio) {
auto t = abs_minmax(eigenvalues);
#if !defined NDEBUG
auto absmin = get<0>(t);
#endif
auto absmin1 = get<1>(t);
auto absmax = get<2>(t);
if (absmax/absmin1 > max_ratio) {
#if !NDEBUG
cerr << "**** DEBUG: Ratio |eigenmax|/|eigenmin| suggests matrix is ill conditioned for double precision" << endl;
auto t = minmax(eigenvalues);
auto min = get<0>(t);
auto min1 = get<1>(t);
auto max = get<2>(t);
cerr << "**** DEBUG: Abs eigenvalues [Min " << absmin << ", " << absmin1 << " ... " << absmax << " Max] Ratio (" << absmax << "/" << absmin1 << ") = " << absmax/absmin1 << endl;
cerr << "**** DEBUG: Eigenvalues [Min " << min << ", " << min1 << " ... " << max << " Max]" << endl;
#endif
return true;
}
return false;
}
double sum(const double *m, size_t rows, size_t cols) {
double sum = 0.0;
for (size_t i = 0; i<rows*cols; i++)
sum += m[i];
return sum;
}
double SumVector(const gsl_vector *v) {
double sum = 0;
for (size_t i = 0; i < v->size; i++ ) {
sum += gsl_vector_get(v, i);
}
return( sum );
}
// Center the vector y.
double CenterVector(gsl_vector *y) {
double d = 0.0;
for (size_t i = 0; i < y->size; ++i) {
d += gsl_vector_get(y, i);
}
d /= (double)y->size;
gsl_vector_add_constant(y, -1.0 * d);
return d;
}
// Center the vector y.
void CenterVector(gsl_vector *y, const gsl_matrix *W) {
gsl_matrix *WtW = gsl_matrix_safe_alloc(W->size2, W->size2);
gsl_vector *Wty = gsl_vector_safe_alloc(W->size2);
gsl_vector *WtWiWty = gsl_vector_safe_alloc(W->size2);
gsl_blas_dgemm(CblasTrans, CblasNoTrans, 1.0, W, W, 0.0, WtW);
gsl_blas_dgemv(CblasTrans, 1.0, W, y, 0.0, Wty);
int sig;
gsl_permutation *pmt = gsl_permutation_alloc(W->size2);
LUDecomp(WtW, pmt, &sig);
LUSolve(WtW, pmt, Wty, WtWiWty);
gsl_blas_dgemv(CblasNoTrans, -1.0, W, WtWiWty, 1.0, y);
gsl_matrix_safe_free(WtW);
gsl_vector_safe_free(Wty);
gsl_vector_safe_free(WtWiWty);
return;
}
// "Standardize" vector y to have mean 0 and y^ty/n=1.
void StandardizeVector(gsl_vector *y) {
double d = 0.0, m = 0.0, v = 0.0;
for (size_t i = 0; i < y->size; ++i) {
d = gsl_vector_get(y, i);
m += d;
v += d * d;
}
m /= (double)y->size;
v /= (double)y->size;
v -= m * m;
gsl_vector_add_constant(y, -1.0 * m);
gsl_vector_scale(y, 1.0 / sqrt(v));
return;
}
// Calculate UtX (U gets transposed)
void CalcUtX(const gsl_matrix *U, gsl_matrix *UtX) {
gsl_matrix *X = gsl_matrix_safe_alloc(UtX->size1, UtX->size2);
gsl_matrix_safe_memcpy(X, UtX);
fast_dgemm("T", "N", 1.0, U, X, 0.0, UtX);
gsl_matrix_safe_free(X);
}
void CalcUtX(const gsl_matrix *U, const gsl_matrix *X, gsl_matrix *UtX) {
fast_dgemm("T", "N", 1.0, U, X, 0.0, UtX);
}
void CalcUtX(const gsl_matrix *U, const gsl_vector *x, gsl_vector *Utx) {
gsl_blas_dgemv(CblasTrans, 1.0, U, x, 0.0, Utx);
}
// Kronecker product.
void Kronecker(const gsl_matrix *K, const gsl_matrix *V, gsl_matrix *H) {
for (size_t i = 0; i < K->size1; i++) {
for (size_t j = 0; j < K->size2; j++) {
gsl_matrix_view H_sub = gsl_matrix_submatrix(
H, i * V->size1, j * V->size2, V->size1, V->size2);
gsl_matrix_safe_memcpy(&H_sub.matrix, V);
gsl_matrix_scale(&H_sub.matrix, gsl_matrix_get(K, i, j));
}
}
return;
}
// Symmetric K matrix.
void KroneckerSym(const gsl_matrix *K, const gsl_matrix *V, gsl_matrix *H) {
for (size_t i = 0; i < K->size1; i++) {
for (size_t j = i; j < K->size2; j++) {
gsl_matrix_view H_sub = gsl_matrix_submatrix(
H, i * V->size1, j * V->size2, V->size1, V->size2);
gsl_matrix_safe_memcpy(&H_sub.matrix, V);
gsl_matrix_scale(&H_sub.matrix, gsl_matrix_get(K, i, j));
if (i != j) {
gsl_matrix_view H_sub_sym = gsl_matrix_submatrix(
H, j * V->size1, i * V->size2, V->size1, V->size2);
gsl_matrix_safe_memcpy(&H_sub_sym.matrix, &H_sub.matrix);
}
}
}
return;
}
// This function calculates HWE p value with methods described in
// Wigginton et al. (2005) AJHG; it is based on the code in plink 1.07.
double CalcHWE(const size_t n_hom1, const size_t n_hom2, const size_t n_ab) {
if ((n_hom1 + n_hom2 + n_ab) == 0) {
return 1;
}
// "AA" is the rare allele.
int n_aa = n_hom1 < n_hom2 ? n_hom1 : n_hom2;
int n_bb = n_hom1 < n_hom2 ? n_hom2 : n_hom1;
int rare_copies = 2 * n_aa + n_ab;
int genotypes = n_ab + n_bb + n_aa;
double *het_probs = (double *)malloc((rare_copies + 1) * sizeof(double));
if (het_probs == NULL)
cout << "Internal error: SNP-HWE: Unable to allocate array" << endl;
int i;
for (i = 0; i <= rare_copies; i++)
het_probs[i] = 0.0;
// Start at midpoint.
// XZ modified to add (long int)
int mid = ((long int)rare_copies *
(2 * (long int)genotypes - (long int)rare_copies)) /
(2 * (long int)genotypes);
// Check to ensure that midpoint and rare alleles have same
// parity.
if ((rare_copies & 1) ^ (mid & 1))
mid++;
int curr_hets = mid;
int curr_homr = (rare_copies - mid) / 2;
int curr_homc = genotypes - curr_hets - curr_homr;
het_probs[mid] = 1.0;
double sum = het_probs[mid];
for (curr_hets = mid; curr_hets > 1; curr_hets -= 2) {
het_probs[curr_hets - 2] = het_probs[curr_hets] * curr_hets *
(curr_hets - 1.0) /
(4.0 * (curr_homr + 1.0) * (curr_homc + 1.0));
sum += het_probs[curr_hets - 2];
// Two fewer heterozygotes for next iteration; add one
// rare, one common homozygote.
curr_homr++;
curr_homc++;
}
curr_hets = mid;
curr_homr = (rare_copies - mid) / 2;
curr_homc = genotypes - curr_hets - curr_homr;
for (curr_hets = mid; curr_hets <= rare_copies - 2; curr_hets += 2) {
het_probs[curr_hets + 2] = het_probs[curr_hets] * 4.0 * curr_homr *
curr_homc /
((curr_hets + 2.0) * (curr_hets + 1.0));
sum += het_probs[curr_hets + 2];
// Add 2 heterozygotes for next iteration; subtract
// one rare, one common homozygote.
curr_homr--;
curr_homc--;
}
for (i = 0; i <= rare_copies; i++)
het_probs[i] /= sum;
double p_hwe = 0.0;
// p-value calculation for p_hwe.
for (i = 0; i <= rare_copies; i++) {
if (het_probs[i] > het_probs[n_ab])
continue;
p_hwe += het_probs[i];
}
p_hwe = p_hwe > 1.0 ? 1.0 : p_hwe;
free(het_probs);
return p_hwe;
}
double UcharToDouble02(const unsigned char c) { return (double)c * 0.01; }
unsigned char Double02ToUchar(const double dosage) {
return (int)(dosage * 100);
}
|