1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
|
#ifndef LOGISTIC_H_ /* Include guard */
#define LOGISTIC_H_
/* Mixed interface */
void logistic_mixed_pred(gsl_vector *beta // Vector of parameters length = 1 + Sum_k(C_k - 1) + Kc
,gsl_matrix_int *X //Matrix Nobs x K
,gsl_vector_int *nlev // Vector with number categories
,gsl_matrix *Xc // continuous covariates Matrix Nobs x Kc
,gsl_vector *yhat //Vector of prob. predicted by the logistic
);
int logistic_mixed_fit(gsl_vector *beta // Vector of parameters length = 1 + Sum_k(C_k - 1) + Kc
,gsl_matrix_int *X //Matrix Nobs x K
,gsl_vector_int *nlev // Vector with number categories
,gsl_matrix *Xc // continuous covariates Matrix Nobs x Kc
,gsl_vector *y //Vector of prob. to predict
,double lambdaL1 // Regularization L1 0.0 if not used
,double lambdaL2); // Regularization L2 0.0 if not used
double fLogit_mixed(gsl_vector *beta
,gsl_matrix_int *X
,gsl_vector_int *nlev
,gsl_matrix *Xc // continuous covariates Matrix Nobs x Kc
,gsl_vector *y
,double lambdaL1
,double lambdaL2);
/* Categorical only interface */
void logistic_cat_pred(gsl_vector *beta // Vector of parameters length = 1 + Sum_k(C_k - 1) + Kc
,gsl_matrix_int *X //Matrix Nobs x K
,gsl_vector_int *nlev // Vector with number categories
,gsl_vector *yhat //Vector of prob. predicted by the logistic
);
int logistic_cat_fit(gsl_vector *beta // Vector of parameters length = 1 + Sum_k(C_k - 1) + Kc
,gsl_matrix_int *X //Matrix Nobs x K
,gsl_vector_int *nlev // Vector with number categories
,gsl_vector *y //Vector of prob. to predict
,double lambdaL1 // Regularization L1 0.0 if not used
,double lambdaL2); // Regularization L2 0.0 if not used
double fLogit_cat(gsl_vector *beta
,gsl_matrix_int *X
,gsl_vector_int *nlev
,gsl_vector *y
,double lambdaL1
,double lambdaL2);
/* Continuous only interface */
void logistic_cont_pred(gsl_vector *beta // Vector of parameters length = 1 + Sum_k(C_k - 1) + Kc
,gsl_matrix *Xc // continuous covariates Matrix Nobs x Kc
,gsl_vector *yhat //Vector of prob. predicted by the logistic
);
int logistic_cont_fit(gsl_vector *beta // Vector of parameters length = 1 + Sum_k(C_k - 1) + Kc
,gsl_matrix *Xc // continuous covariates Matrix Nobs x Kc
,gsl_vector *y //Vector of prob. to predict
,double lambdaL1 // Regularization L1 0.0 if not used
,double lambdaL2); // Regularization L2 0.0 if not used
double fLogit_cont(gsl_vector *beta
,gsl_matrix *Xc // continuous covariates Matrix Nobs x Kc
,gsl_vector *y
,double lambdaL1
,double lambdaL2);
#endif // LOGISTIC_H_
|