1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
|
/*
Genome-wide Efficient Mixed Model Association (GEMMA)
Copyright (C) 2011-2017 Xiang Zhou
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "gsl/gsl_linalg.h"
#include "gsl/gsl_matrix.h"
#include "gsl/gsl_vector.h"
#include <cmath>
#include <iostream>
#include <vector>
#include "debug.h"
#include "lapack.h"
#include "mathfunc.h"
using namespace std;
extern "C" void dgemm_(char *TRANSA, char *TRANSB, int *M, int *N, int *K,
double *ALPHA, double *A, int *LDA, double *B, int *LDB,
double *BETA, double *C, int *LDC);
extern "C" void dpotrf_(char *UPLO, int *N, double *A, int *LDA, int *INFO);
extern "C" void dpotrs_(char *UPLO, int *N, int *NRHS, double *A, int *LDA,
double *B, int *LDB, int *INFO);
extern "C" void dsyev_(char *JOBZ, char *UPLO, int *N, double *A, int *LDA,
double *W, double *WORK, int *LWORK, int *INFO);
extern "C" void dsyevr_(char *JOBZ, char *RANGE, char *UPLO, int *N, double *A,
int *LDA, double *VL, double *VU, int *IL, int *IU,
double *ABSTOL, int *M, double *W, double *Z, int *LDZ,
int *ISUPPZ, double *WORK, int *LWORK, int *IWORK,
int *LIWORK, int *INFO);
extern "C" double ddot_(int *N, double *DX, int *INCX, double *DY, int *INCY);
// Cholesky decomposition, A is destroyed.
void lapack_cholesky_decomp(gsl_matrix *A) {
int N = A->size1, LDA = A->size1, INFO;
char UPLO = 'L';
if (N != (int)A->size2) {
cout << "Matrix needs to be symmetric and same dimension in "
<< "lapack_cholesky_decomp." << endl;
return;
}
dpotrf_(&UPLO, &N, A->data, &LDA, &INFO);
if (INFO != 0) {
cout << "Cholesky decomposition unsuccessful in "
<< "lapack_cholesky_decomp." << endl;
return;
}
return;
}
// Cholesky solve, A is decomposed.
void lapack_cholesky_solve(gsl_matrix *A, const gsl_vector *b, gsl_vector *x) {
int N = A->size1, NRHS = 1, LDA = A->size1, LDB = b->size, INFO;
char UPLO = 'L';
if (N != (int)A->size2 || N != LDB) {
cout << "Matrix needs to be symmetric and same dimension in "
<< "lapack_cholesky_solve." << endl;
return;
}
gsl_vector_memcpy(x, b);
dpotrs_(&UPLO, &N, &NRHS, A->data, &LDA, x->data, &LDB, &INFO);
if (INFO != 0) {
cout << "Cholesky solve unsuccessful in lapack_cholesky_solve." << endl;
return;
}
return;
}
void lapack_dgemm(char *TransA, char *TransB, double alpha, const gsl_matrix *A,
const gsl_matrix *B, double beta, gsl_matrix *C) {
int M, N, K1, K2, LDA = A->size1, LDB = B->size1, LDC = C->size2;
if (*TransA == 'N' || *TransA == 'n') {
M = A->size1;
K1 = A->size2;
} else if (*TransA == 'T' || *TransA == 't') {
M = A->size2;
K1 = A->size1;
} else {
cout << "need 'N' or 'T' in lapack_dgemm" << endl;
return;
}
if (*TransB == 'N' || *TransB == 'n') {
N = B->size2;
K2 = B->size1;
} else if (*TransB == 'T' || *TransB == 't') {
N = B->size1;
K2 = B->size2;
} else {
cout << "need 'N' or 'T' in lapack_dgemm" << endl;
return;
}
if (K1 != K2) {
cout << "A and B not compatible in lapack_dgemm" << endl;
return;
}
if (C->size1 != (size_t)M || C->size2 != (size_t)N) {
cout << "C not compatible in lapack_dgemm" << endl;
return;
}
gsl_matrix *A_t = gsl_matrix_alloc(A->size2, A->size1);
gsl_matrix_transpose_memcpy(A_t, A);
gsl_matrix *B_t = gsl_matrix_alloc(B->size2, B->size1);
gsl_matrix_transpose_memcpy(B_t, B);
gsl_matrix *C_t = gsl_matrix_alloc(C->size2, C->size1);
gsl_matrix_transpose_memcpy(C_t, C);
check_int_mult_overflow(M,K1);
check_int_mult_overflow(N,K1);
check_int_mult_overflow(M,N);
dgemm_(TransA, TransB, &M, &N, &K1, &alpha, A_t->data, &LDA, B_t->data, &LDB,
&beta, C_t->data, &LDC);
gsl_matrix_transpose_memcpy(C, C_t);
gsl_matrix_free(A_t);
gsl_matrix_free(B_t);
gsl_matrix_free(C_t);
return;
}
// Eigenvalue decomposition, matrix A is destroyed. Returns eigenvalues in
// 'eval'. Also returns matrix 'evec' (U).
void lapack_eigen_symmv(gsl_matrix *A, gsl_vector *eval, gsl_matrix *evec,
const size_t flag_largematrix) {
if (flag_largematrix == 1) { // not sure this flag is used!
int N = A->size1, LDA = A->size1, INFO, LWORK = -1;
char JOBZ = 'V', UPLO = 'L';
if (N != (int)A->size2 || N != (int)eval->size) {
cout << "Matrix needs to be symmetric and same "
<< "dimension in lapack_eigen_symmv." << endl;
return;
}
LWORK = 3 * N;
double *WORK = new double[LWORK];
dsyev_(&JOBZ, &UPLO, &N, A->data, &LDA, eval->data, WORK, &LWORK, &INFO);
if (INFO != 0) {
cout << "Eigen decomposition unsuccessful in "
<< "lapack_eigen_symmv." << endl;
return;
}
gsl_matrix_view A_sub = gsl_matrix_submatrix(A, 0, 0, N, N);
gsl_matrix_memcpy(evec, &A_sub.matrix);
gsl_matrix_transpose(evec);
delete[] WORK;
} else {
// entering here
int N = A->size1, LDA = A->size1, LDZ = A->size1, INFO;
int LWORK = -1, LIWORK = -1;
char JOBZ = 'V', UPLO = 'L', RANGE = 'A';
double ABSTOL = 1.0E-7;
// VL, VU, IL, IU are not referenced; M equals N if RANGE='A'.
double VL = 0.0, VU = 0.0;
int IL = 0, IU = 0, M;
if (N != (int)A->size2 || N != (int)eval->size) {
cout << "Matrix needs to be symmetric and same "
<< "dimension in lapack_eigen_symmv." << endl;
return;
}
int *ISUPPZ = new int[2 * N];
double WORK_temp[1];
int IWORK_temp[1];
// disable fast NaN checking for now - dsyevr throws NaN errors,
// but fixes them (apparently)
if (is_check_mode()) disable_segfpe();
// DSYEVR - computes selected eigenvalues and, optionally,
// eigenvectors of a real symmetric matrix
// Here compute both (JOBZ is V), all eigenvalues (RANGE is A)
// Lower triangle is stored (UPLO is L)
dsyevr_(&JOBZ, &RANGE, &UPLO, &N, A->data, &LDA, &VL, &VU, &IL, &IU,
&ABSTOL, &M, eval->data, evec->data, &LDZ, ISUPPZ, WORK_temp,
&LWORK, IWORK_temp, &LIWORK, &INFO);
// If info = 0, the execution is successful.
// If info = -i, the i-th parameter had an illegal value.
// If info = i, an internal error has occurred.
if (INFO != 0) cerr << "ERROR: value of INFO is " << INFO;
enforce_msg(INFO == 0, "lapack_eigen_symmv failed");
LWORK = (int)WORK_temp[0]; // The dimension of the array work.
LIWORK = (int)IWORK_temp[0]; // The dimension of the array iwork, lwork≥ max(1, 10n).
double *WORK = new double[LWORK];
int *IWORK = new int[LIWORK];
dsyevr_(&JOBZ, &RANGE, &UPLO, &N, A->data, &LDA, &VL, &VU, &IL, &IU,
&ABSTOL, &M, eval->data, evec->data, &LDZ, ISUPPZ, WORK, &LWORK,
IWORK, &LIWORK, &INFO);
if (INFO != 0) cerr << "ERROR: value of INFO is " << INFO;
enforce_msg(INFO == 0, "lapack_eigen_symmv failed");
if (is_check_mode()) enable_segfpe(); // reinstate fast NaN checking
gsl_matrix_transpose(evec);
delete[] ISUPPZ;
delete[] WORK;
delete[] IWORK;
}
return;
}
// Does NOT set eigenvalues to be positive. G gets destroyed. Returns
// eigen trace and values in U and eval (eigenvalues).
double EigenDecomp(gsl_matrix *G, gsl_matrix *U, gsl_vector *eval,
const size_t flag_largematrix) {
lapack_eigen_symmv(G, eval, U, flag_largematrix);
assert(!has_nan(eval));
// write(eval,"eval");
// Calculate track_G=mean(diag(G)).
double d = 0.0;
for (size_t i = 0; i < eval->size; ++i)
d += gsl_vector_get(eval, i);
d /= (double)eval->size;
return d;
}
// Same as EigenDecomp but zeroes eigenvalues close to zero. When
// negative eigenvalues remain a warning is issued.
double EigenDecomp_Zeroed(gsl_matrix *G, gsl_matrix *U, gsl_vector *eval,
const size_t flag_largematrix) {
EigenDecomp(G,U,eval,flag_largematrix);
auto d = 0.0;
int count_zero_eigenvalues = 0;
int count_negative_eigenvalues = 0;
for (size_t i = 0; i < eval->size; i++) {
if (std::abs(gsl_vector_get(eval, i)) < EIGEN_MINVALUE)
gsl_vector_set(eval, i, 0.0);
// checks
if (gsl_vector_get(eval,i) == 0.0)
count_zero_eigenvalues += 1;
if (gsl_vector_get(eval,i) < 0.0) // count smaller than -EIGEN_MINVALUE
count_negative_eigenvalues += 1;
d += gsl_vector_get(eval, i);
}
d /= (double)eval->size;
if (count_zero_eigenvalues > 1) {
write(eval,"eigenvalues");
std::string msg = "Matrix G has ";
msg += std::to_string(count_zero_eigenvalues);
msg += " eigenvalues close to zero";
warning_msg(msg);
}
if (count_negative_eigenvalues > 0) {
write(eval,"eigenvalues");
warning_msg("Matrix G has more than one negative eigenvalues!");
}
return d;
}
double CholeskySolve(gsl_matrix *Omega, gsl_vector *Xty, gsl_vector *OiXty) {
double logdet_O = 0.0;
lapack_cholesky_decomp(Omega);
for (size_t i = 0; i < Omega->size1; ++i) {
logdet_O += log(gsl_matrix_get(Omega, i, i));
}
logdet_O *= 2.0;
lapack_cholesky_solve(Omega, Xty, OiXty);
return logdet_O;
}
// LU decomposition.
void LUDecomp(gsl_matrix *LU, gsl_permutation *p, int *signum) {
// debug_msg("entering");
enforce_gsl(gsl_linalg_LU_decomp(LU, p, signum));
return;
}
// LU invert. Returns inverse. Note that GSL does not recommend using
// this function
// These functions compute the inverse of a matrix A from its LU
// decomposition (LU,p), storing the result in the matrix inverse. The
// inverse is computed by solving the system A x = b for each column
// of the identity matrix. It is preferable to avoid direct use of the
// inverse whenever possible, as the linear solver functions can
// obtain the same result more efficiently and reliably (consult any
// introductory textbook on numerical linear algebra for details).
void LUInvert(const gsl_matrix *LU, const gsl_permutation *p, gsl_matrix *ret_inverse) {
// debug_msg("entering");
auto det = LULndet(LU);
enforce_msg(det != 1.0,"LU determinant is zero -> LU is not invertable");
enforce_gsl(gsl_linalg_LU_invert(LU, p, ret_inverse));
}
// LU lndet.
// These functions compute the logarithm of the absolute value of the
// determinant of a matrix A, \ln|\det(A)|, from its LU decomposition,
// LU. This function may be useful if the direct computation of the
// determinant would overflow or underflow.
double LULndet(const gsl_matrix *LU) {
// debug_msg("entering");
double res = gsl_linalg_LU_lndet((gsl_matrix *)LU);
enforce_msg(!is_inf(res), "LU determinant is zero -> LU is not invertable");
return res;
}
// LU solve.
void LUSolve(const gsl_matrix *LU, const gsl_permutation *p,
const gsl_vector *b, gsl_vector *x) {
// debug_msg("entering");
enforce_gsl(gsl_linalg_LU_solve(LU, p, b, x));
return;
}
bool lapack_ddot(vector<double> &x, vector<double> &y, double &v) {
bool flag = false;
int incx = 1;
int incy = 1;
int n = (int)x.size();
if (x.size() == y.size()) {
v = ddot_(&n, &x[0], &incx, &y[0], &incy);
flag = true;
}
return flag;
}
|