1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
|
/*
Genome-wide Efficient Mixed Model Association (GEMMA)
Copyright (C) 2011-2017 Xiang Zhou
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "gsl/gsl_linalg.h"
#include "gsl/gsl_matrix.h"
#include "gsl/gsl_vector.h"
#include <cmath>
#include <iostream>
#include <vector>
using namespace std;
extern "C" void sgemm_(char *TRANSA, char *TRANSB, int *M, int *N, int *K,
float *ALPHA, float *A, int *LDA, float *B, int *LDB,
float *BETA, float *C, int *LDC);
extern "C" void spotrf_(char *UPLO, int *N, float *A, int *LDA, int *INFO);
extern "C" void spotrs_(char *UPLO, int *N, int *NRHS, float *A, int *LDA,
float *B, int *LDB, int *INFO);
extern "C" void ssyev_(char *JOBZ, char *UPLO, int *N, float *A, int *LDA,
float *W, float *WORK, int *LWORK, int *INFO);
extern "C" void ssyevr_(char *JOBZ, char *RANGE, char *UPLO, int *N, float *A,
int *LDA, float *VL, float *VU, int *IL, int *IU,
float *ABSTOL, int *M, float *W, float *Z, int *LDZ,
int *ISUPPZ, float *WORK, int *LWORK, int *IWORK,
int *LIWORK, int *INFO);
extern "C" double sdot_(int *N, float *DX, int *INCX, float *DY, int *INCY);
extern "C" void dgemm_(char *TRANSA, char *TRANSB, int *M, int *N, int *K,
double *ALPHA, double *A, int *LDA, double *B, int *LDB,
double *BETA, double *C, int *LDC);
extern "C" void dpotrf_(char *UPLO, int *N, double *A, int *LDA, int *INFO);
extern "C" void dpotrs_(char *UPLO, int *N, int *NRHS, double *A, int *LDA,
double *B, int *LDB, int *INFO);
extern "C" void dsyev_(char *JOBZ, char *UPLO, int *N, double *A, int *LDA,
double *W, double *WORK, int *LWORK, int *INFO);
extern "C" void dsyevr_(char *JOBZ, char *RANGE, char *UPLO, int *N, double *A,
int *LDA, double *VL, double *VU, int *IL, int *IU,
double *ABSTOL, int *M, double *W, double *Z, int *LDZ,
int *ISUPPZ, double *WORK, int *LWORK, int *IWORK,
int *LIWORK, int *INFO);
extern "C" double ddot_(int *N, double *DX, int *INCX, double *DY, int *INCY);
// Cholesky decomposition, A is destroyed.
void lapack_float_cholesky_decomp(gsl_matrix_float *A) {
int N = A->size1, LDA = A->size1, INFO;
char UPLO = 'L';
if (N != (int)A->size2) {
cout << "Matrix needs to be symmetric and same dimension in "
<< "lapack_cholesky_decomp." << endl;
return;
}
spotrf_(&UPLO, &N, A->data, &LDA, &INFO);
if (INFO != 0) {
cout << "Cholesky decomposition unsuccessful in "
<< "lapack_cholesky_decomp." << endl;
return;
}
return;
}
// Cholesky decomposition, A is destroyed.
void lapack_cholesky_decomp(gsl_matrix *A) {
int N = A->size1, LDA = A->size1, INFO;
char UPLO = 'L';
if (N != (int)A->size2) {
cout << "Matrix needs to be symmetric and same dimension in "
<< "lapack_cholesky_decomp." << endl;
return;
}
dpotrf_(&UPLO, &N, A->data, &LDA, &INFO);
if (INFO != 0) {
cout << "Cholesky decomposition unsuccessful in "
<< "lapack_cholesky_decomp." << endl;
return;
}
return;
}
// Cholesky solve, A is decomposed.
void lapack_float_cholesky_solve(gsl_matrix_float *A, const gsl_vector_float *b,
gsl_vector_float *x) {
int N = A->size1, NRHS = 1, LDA = A->size1, LDB = b->size, INFO;
char UPLO = 'L';
if (N != (int)A->size2 || N != LDB) {
cout << "Matrix needs to be symmetric and same dimension in "
<< "lapack_cholesky_solve." << endl;
return;
}
gsl_vector_float_memcpy(x, b);
spotrs_(&UPLO, &N, &NRHS, A->data, &LDA, x->data, &LDB, &INFO);
if (INFO != 0) {
cout << "Cholesky solve unsuccessful in lapack_cholesky_solve." << endl;
return;
}
return;
}
// Cholesky solve, A is decomposed.
void lapack_cholesky_solve(gsl_matrix *A, const gsl_vector *b, gsl_vector *x) {
int N = A->size1, NRHS = 1, LDA = A->size1, LDB = b->size, INFO;
char UPLO = 'L';
if (N != (int)A->size2 || N != LDB) {
cout << "Matrix needs to be symmetric and same dimension in "
<< "lapack_cholesky_solve." << endl;
return;
}
gsl_vector_memcpy(x, b);
dpotrs_(&UPLO, &N, &NRHS, A->data, &LDA, x->data, &LDB, &INFO);
if (INFO != 0) {
cout << "Cholesky solve unsuccessful in lapack_cholesky_solve." << endl;
return;
}
return;
}
void lapack_sgemm(char *TransA, char *TransB, float alpha,
const gsl_matrix_float *A, const gsl_matrix_float *B,
float beta, gsl_matrix_float *C) {
int M, N, K1, K2, LDA = A->size1, LDB = B->size1, LDC = C->size2;
if (*TransA == 'N' || *TransA == 'n') {
M = A->size1;
K1 = A->size2;
} else if (*TransA == 'T' || *TransA == 't') {
M = A->size2;
K1 = A->size1;
} else {
cout << "need 'N' or 'T' in lapack_sgemm" << endl;
return;
}
if (*TransB == 'N' || *TransB == 'n') {
N = B->size2;
K2 = B->size1;
} else if (*TransB == 'T' || *TransB == 't') {
N = B->size1;
K2 = B->size2;
} else {
cout << "need 'N' or 'T' in lapack_sgemm" << endl;
return;
}
if (K1 != K2) {
cout << "A and B not compatible in lapack_sgemm" << endl;
return;
}
if (C->size1 != (size_t)M || C->size2 != (size_t)N) {
cout << "C not compatible in lapack_sgemm" << endl;
return;
}
gsl_matrix_float *A_t = gsl_matrix_float_alloc(A->size2, A->size1);
gsl_matrix_float_transpose_memcpy(A_t, A);
gsl_matrix_float *B_t = gsl_matrix_float_alloc(B->size2, B->size1);
gsl_matrix_float_transpose_memcpy(B_t, B);
gsl_matrix_float *C_t = gsl_matrix_float_alloc(C->size2, C->size1);
gsl_matrix_float_transpose_memcpy(C_t, C);
sgemm_(TransA, TransB, &M, &N, &K1, &alpha, A_t->data, &LDA, B_t->data, &LDB,
&beta, C_t->data, &LDC);
gsl_matrix_float_transpose_memcpy(C, C_t);
gsl_matrix_float_free(A_t);
gsl_matrix_float_free(B_t);
gsl_matrix_float_free(C_t);
return;
}
void lapack_dgemm(char *TransA, char *TransB, double alpha, const gsl_matrix *A,
const gsl_matrix *B, double beta, gsl_matrix *C) {
int M, N, K1, K2, LDA = A->size1, LDB = B->size1, LDC = C->size2;
if (*TransA == 'N' || *TransA == 'n') {
M = A->size1;
K1 = A->size2;
} else if (*TransA == 'T' || *TransA == 't') {
M = A->size2;
K1 = A->size1;
} else {
cout << "need 'N' or 'T' in lapack_dgemm" << endl;
return;
}
if (*TransB == 'N' || *TransB == 'n') {
N = B->size2;
K2 = B->size1;
} else if (*TransB == 'T' || *TransB == 't') {
N = B->size1;
K2 = B->size2;
} else {
cout << "need 'N' or 'T' in lapack_dgemm" << endl;
return;
}
if (K1 != K2) {
cout << "A and B not compatible in lapack_dgemm" << endl;
return;
}
if (C->size1 != (size_t)M || C->size2 != (size_t)N) {
cout << "C not compatible in lapack_dgemm" << endl;
return;
}
gsl_matrix *A_t = gsl_matrix_alloc(A->size2, A->size1);
gsl_matrix_transpose_memcpy(A_t, A);
gsl_matrix *B_t = gsl_matrix_alloc(B->size2, B->size1);
gsl_matrix_transpose_memcpy(B_t, B);
gsl_matrix *C_t = gsl_matrix_alloc(C->size2, C->size1);
gsl_matrix_transpose_memcpy(C_t, C);
dgemm_(TransA, TransB, &M, &N, &K1, &alpha, A_t->data, &LDA, B_t->data, &LDB,
&beta, C_t->data, &LDC);
gsl_matrix_transpose_memcpy(C, C_t);
gsl_matrix_free(A_t);
gsl_matrix_free(B_t);
gsl_matrix_free(C_t);
return;
}
// Eigen value decomposition, matrix A is destroyed, float seems to
// have problem with large matrices (in mac).
void lapack_float_eigen_symmv(gsl_matrix_float *A, gsl_vector_float *eval,
gsl_matrix_float *evec,
const size_t flag_largematrix) {
if (flag_largematrix == 1) {
int N = A->size1, LDA = A->size1, INFO, LWORK = -1;
char JOBZ = 'V', UPLO = 'L';
if (N != (int)A->size2 || N != (int)eval->size) {
cout << "Matrix needs to be symmetric and same "
<< "dimension in lapack_eigen_symmv." << endl;
return;
}
LWORK = 3 * N;
float *WORK = new float[LWORK];
ssyev_(&JOBZ, &UPLO, &N, A->data, &LDA, eval->data, WORK, &LWORK, &INFO);
if (INFO != 0) {
cout << "Eigen decomposition unsuccessful in "
<< "lapack_eigen_symmv." << endl;
return;
}
gsl_matrix_float_view A_sub = gsl_matrix_float_submatrix(A, 0, 0, N, N);
gsl_matrix_float_memcpy(evec, &A_sub.matrix);
gsl_matrix_float_transpose(evec);
delete[] WORK;
} else {
int N = A->size1, LDA = A->size1, LDZ = A->size1, INFO, LWORK = -1,
LIWORK = -1;
char JOBZ = 'V', UPLO = 'L', RANGE = 'A';
float ABSTOL = 1.0E-7;
// VL, VU, IL, IU are not referenced; M equals N if RANGE='A'.
float VL = 0.0, VU = 0.0;
int IL = 0, IU = 0, M;
if (N != (int)A->size2 || N != (int)eval->size) {
cout << "Matrix needs to be symmetric and same "
<< "dimension in lapack_float_eigen_symmv." << endl;
return;
}
int *ISUPPZ = new int[2 * N];
float WORK_temp[1];
int IWORK_temp[1];
ssyevr_(&JOBZ, &RANGE, &UPLO, &N, A->data, &LDA, &VL, &VU, &IL, &IU,
&ABSTOL, &M, eval->data, evec->data, &LDZ, ISUPPZ, WORK_temp,
&LWORK, IWORK_temp, &LIWORK, &INFO);
if (INFO != 0) {
cout << "Work space estimate unsuccessful in "
<< "lapack_float_eigen_symmv." << endl;
return;
}
LWORK = (int)WORK_temp[0];
LIWORK = (int)IWORK_temp[0];
float *WORK = new float[LWORK];
int *IWORK = new int[LIWORK];
ssyevr_(&JOBZ, &RANGE, &UPLO, &N, A->data, &LDA, &VL, &VU, &IL, &IU,
&ABSTOL, &M, eval->data, evec->data, &LDZ, ISUPPZ, WORK, &LWORK,
IWORK, &LIWORK, &INFO);
if (INFO != 0) {
cout << "Eigen decomposition unsuccessful in "
<< "lapack_float_eigen_symmv." << endl;
return;
}
gsl_matrix_float_transpose(evec);
delete[] ISUPPZ;
delete[] WORK;
delete[] IWORK;
}
return;
}
// Eigenvalue decomposition, matrix A is destroyed.
void lapack_eigen_symmv(gsl_matrix *A, gsl_vector *eval, gsl_matrix *evec,
const size_t flag_largematrix) {
if (flag_largematrix == 1) {
int N = A->size1, LDA = A->size1, INFO, LWORK = -1;
char JOBZ = 'V', UPLO = 'L';
if (N != (int)A->size2 || N != (int)eval->size) {
cout << "Matrix needs to be symmetric and same "
<< "dimension in lapack_eigen_symmv." << endl;
return;
}
LWORK = 3 * N;
double *WORK = new double[LWORK];
dsyev_(&JOBZ, &UPLO, &N, A->data, &LDA, eval->data, WORK, &LWORK, &INFO);
if (INFO != 0) {
cout << "Eigen decomposition unsuccessful in "
<< "lapack_eigen_symmv." << endl;
return;
}
gsl_matrix_view A_sub = gsl_matrix_submatrix(A, 0, 0, N, N);
gsl_matrix_memcpy(evec, &A_sub.matrix);
gsl_matrix_transpose(evec);
delete[] WORK;
} else {
int N = A->size1, LDA = A->size1, LDZ = A->size1, INFO;
int LWORK = -1, LIWORK = -1;
char JOBZ = 'V', UPLO = 'L', RANGE = 'A';
double ABSTOL = 1.0E-7;
// VL, VU, IL, IU are not referenced; M equals N if RANGE='A'.
double VL = 0.0, VU = 0.0;
int IL = 0, IU = 0, M;
if (N != (int)A->size2 || N != (int)eval->size) {
cout << "Matrix needs to be symmetric and same "
<< "dimension in lapack_eigen_symmv." << endl;
return;
}
int *ISUPPZ = new int[2 * N];
double WORK_temp[1];
int IWORK_temp[1];
dsyevr_(&JOBZ, &RANGE, &UPLO, &N, A->data, &LDA, &VL, &VU, &IL, &IU,
&ABSTOL, &M, eval->data, evec->data, &LDZ, ISUPPZ, WORK_temp,
&LWORK, IWORK_temp, &LIWORK, &INFO);
if (INFO != 0) {
cout << "Work space estimate unsuccessful in "
<< "lapack_eigen_symmv." << endl;
return;
}
LWORK = (int)WORK_temp[0];
LIWORK = (int)IWORK_temp[0];
double *WORK = new double[LWORK];
int *IWORK = new int[LIWORK];
dsyevr_(&JOBZ, &RANGE, &UPLO, &N, A->data, &LDA, &VL, &VU, &IL, &IU,
&ABSTOL, &M, eval->data, evec->data, &LDZ, ISUPPZ, WORK, &LWORK,
IWORK, &LIWORK, &INFO);
if (INFO != 0) {
cout << "Eigen decomposition unsuccessful in "
<< "lapack_eigen_symmv." << endl;
return;
}
gsl_matrix_transpose(evec);
delete[] ISUPPZ;
delete[] WORK;
delete[] IWORK;
}
return;
}
// DO NOT set eigenvalues to be positive.
double EigenDecomp(gsl_matrix *G, gsl_matrix *U, gsl_vector *eval,
const size_t flag_largematrix) {
lapack_eigen_symmv(G, eval, U, flag_largematrix);
// Calculate track_G=mean(diag(G)).
double d = 0.0;
for (size_t i = 0; i < eval->size; ++i) {
d += gsl_vector_get(eval, i);
}
d /= (double)eval->size;
return d;
}
// DO NOT set eigen values to be positive.
double EigenDecomp(gsl_matrix_float *G, gsl_matrix_float *U,
gsl_vector_float *eval, const size_t flag_largematrix) {
lapack_float_eigen_symmv(G, eval, U, flag_largematrix);
// Calculate track_G=mean(diag(G)).
double d = 0.0;
for (size_t i = 0; i < eval->size; ++i) {
d += gsl_vector_float_get(eval, i);
}
d /= (double)eval->size;
return d;
}
double CholeskySolve(gsl_matrix *Omega, gsl_vector *Xty, gsl_vector *OiXty) {
double logdet_O = 0.0;
lapack_cholesky_decomp(Omega);
for (size_t i = 0; i < Omega->size1; ++i) {
logdet_O += log(gsl_matrix_get(Omega, i, i));
}
logdet_O *= 2.0;
lapack_cholesky_solve(Omega, Xty, OiXty);
return logdet_O;
}
double CholeskySolve(gsl_matrix_float *Omega, gsl_vector_float *Xty,
gsl_vector_float *OiXty) {
double logdet_O = 0.0;
lapack_float_cholesky_decomp(Omega);
for (size_t i = 0; i < Omega->size1; ++i) {
logdet_O += log(gsl_matrix_float_get(Omega, i, i));
}
logdet_O *= 2.0;
lapack_float_cholesky_solve(Omega, Xty, OiXty);
return logdet_O;
}
// LU decomposition.
void LUDecomp(gsl_matrix *LU, gsl_permutation *p, int *signum) {
gsl_linalg_LU_decomp(LU, p, signum);
return;
}
void LUDecomp(gsl_matrix_float *LU, gsl_permutation *p, int *signum) {
gsl_matrix *LU_double = gsl_matrix_alloc(LU->size1, LU->size2);
// Copy float matrix to double.
for (size_t i = 0; i < LU->size1; i++) {
for (size_t j = 0; j < LU->size2; j++) {
gsl_matrix_set(LU_double, i, j, gsl_matrix_float_get(LU, i, j));
}
}
// LU decomposition.
gsl_linalg_LU_decomp(LU_double, p, signum);
// Copy float matrix to double.
for (size_t i = 0; i < LU->size1; i++) {
for (size_t j = 0; j < LU->size2; j++) {
gsl_matrix_float_set(LU, i, j, gsl_matrix_get(LU_double, i, j));
}
}
// Free matrix.
gsl_matrix_free(LU_double);
return;
}
// LU invert.
void LUInvert(const gsl_matrix *LU, const gsl_permutation *p,
gsl_matrix *inverse) {
gsl_linalg_LU_invert(LU, p, inverse);
return;
}
void LUInvert(const gsl_matrix_float *LU, const gsl_permutation *p,
gsl_matrix_float *inverse) {
gsl_matrix *LU_double = gsl_matrix_alloc(LU->size1, LU->size2);
gsl_matrix *inverse_double = gsl_matrix_alloc(inverse->size1, inverse->size2);
// Copy float matrix to double.
for (size_t i = 0; i < LU->size1; i++) {
for (size_t j = 0; j < LU->size2; j++) {
gsl_matrix_set(LU_double, i, j, gsl_matrix_float_get(LU, i, j));
}
}
// LU decomposition.
gsl_linalg_LU_invert(LU_double, p, inverse_double);
// Copy float matrix to double.
for (size_t i = 0; i < inverse->size1; i++) {
for (size_t j = 0; j < inverse->size2; j++) {
gsl_matrix_float_set(inverse, i, j, gsl_matrix_get(inverse_double, i, j));
}
}
// Free matrix.
gsl_matrix_free(LU_double);
gsl_matrix_free(inverse_double);
return;
}
// LU lndet.
double LULndet(gsl_matrix *LU) {
double d;
d = gsl_linalg_LU_lndet(LU);
return d;
}
double LULndet(gsl_matrix_float *LU) {
gsl_matrix *LU_double = gsl_matrix_alloc(LU->size1, LU->size2);
double d;
// Copy float matrix to double.
for (size_t i = 0; i < LU->size1; i++) {
for (size_t j = 0; j < LU->size2; j++) {
gsl_matrix_set(LU_double, i, j, gsl_matrix_float_get(LU, i, j));
}
}
// LU decomposition.
d = gsl_linalg_LU_lndet(LU_double);
// Free matrix
gsl_matrix_free(LU_double);
return d;
}
// LU solve.
void LUSolve(const gsl_matrix *LU, const gsl_permutation *p,
const gsl_vector *b, gsl_vector *x) {
gsl_linalg_LU_solve(LU, p, b, x);
return;
}
void LUSolve(const gsl_matrix_float *LU, const gsl_permutation *p,
const gsl_vector_float *b, gsl_vector_float *x) {
gsl_matrix *LU_double = gsl_matrix_alloc(LU->size1, LU->size2);
gsl_vector *b_double = gsl_vector_alloc(b->size);
gsl_vector *x_double = gsl_vector_alloc(x->size);
// Copy float matrix to double.
for (size_t i = 0; i < LU->size1; i++) {
for (size_t j = 0; j < LU->size2; j++) {
gsl_matrix_set(LU_double, i, j, gsl_matrix_float_get(LU, i, j));
}
}
for (size_t i = 0; i < b->size; i++) {
gsl_vector_set(b_double, i, gsl_vector_float_get(b, i));
}
for (size_t i = 0; i < x->size; i++) {
gsl_vector_set(x_double, i, gsl_vector_float_get(x, i));
}
// LU decomposition.
gsl_linalg_LU_solve(LU_double, p, b_double, x_double);
// Copy float matrix to double.
for (size_t i = 0; i < x->size; i++) {
gsl_vector_float_set(x, i, gsl_vector_get(x_double, i));
}
// Free matrix.
gsl_matrix_free(LU_double);
gsl_vector_free(b_double);
gsl_vector_free(x_double);
return;
}
bool lapack_ddot(vector<double> &x, vector<double> &y, double &v) {
bool flag = false;
int incx = 1;
int incy = 1;
int n = (int)x.size();
if (x.size() == y.size()) {
v = ddot_(&n, &x[0], &incx, &y[0], &incy);
flag = true;
}
return flag;
}
bool lapack_sdot(vector<float> &x, vector<float> &y, double &v) {
bool flag = false;
int incx = 1;
int incy = 1;
int n = (int)x.size();
if (x.size() == y.size()) {
v = sdot_(&n, &x[0], &incx, &y[0], &incy);
flag = true;
}
return flag;
}
|