1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
|
/*
Genome-wide Efficient Mixed Model Association (GEMMA)
Copyright (C) 2011 Xiang Zhou
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <iostream>
#include <fstream>
#include <string>
#include <cstring>
#include <sys/stat.h>
#include <cmath>
#include <algorithm>
#ifdef FORCE_FLOAT
#include "param_float.h"
#include "io_float.h"
#else
#include "param.h"
#include "io.h"
#endif
using namespace std;
PARAM::PARAM(void):
mode_silence (false), a_mode (0), k_mode(1), d_pace (100000),
file_out("result"), path_out("./output/"),
miss_level(0.05), maf_level(0.01), hwe_level(0), r2_level(0.9999),
l_min(1e-5), l_max(1e5), n_region(10),p_nr(0.001),em_prec(0.0001),nr_prec(0.0001),em_iter(10000),nr_iter(100),crt(0),
pheno_mean(0),
h_min(-1), h_max(-1), h_scale(-1),
rho_min(0.0), rho_max(1.0), rho_scale(-1),
logp_min(0.0), logp_max(0.0), logp_scale(-1),
s_min(0), s_max(300),
w_step(100000), s_step(1000000),
r_pace(10), w_pace(1000),
n_accept(0),
n_mh(10),
geo_mean(2000.0),
randseed(-1),
error(false),
n_cvt(1), n_vc(1),
time_total(0.0), time_G(0.0), time_eigen(0.0), time_UtX(0.0), time_UtZ(0.0), time_opt(0.0), time_Omega(0.0)
{}
//read files
//obtain ns_total, ng_total, ns_test, ni_test
void PARAM::ReadFiles (void)
{
string file_str;
if (!file_mk.empty()) {
if (CountFileLines (file_mk, n_vc)==false) {error=true;}
}
if (!file_snps.empty()) {
if (ReadFile_snps (file_snps, setSnps)==false) {error=true;}
} else {
setSnps.clear();
}
//for prediction
if (!file_epm.empty()) {
if (ReadFile_est (file_epm, est_column, mapRS2est)==false) {error=true;}
if (!file_bfile.empty()) {
file_str=file_bfile+".bim";
if (ReadFile_bim (file_str, snpInfo)==false) {error=true;}
file_str=file_bfile+".fam";
if (ReadFile_fam (file_str, indicator_pheno, pheno, mapID2num, p_column)==false) {error=true;}
}
if (!file_geno.empty()) {
if (ReadFile_pheno (file_pheno, indicator_pheno, pheno, p_column)==false) {error=true;}
if (CountFileLines (file_geno, ns_total)==false) {error=true;}
}
if (!file_ebv.empty() ) {
if (ReadFile_column (file_ebv, indicator_bv, vec_bv, 1)==false) {error=true;}
}
if (!file_log.empty() ) {
if (ReadFile_log (file_log, pheno_mean)==false) {error=true;}
}
//convert indicator_pheno to indicator_idv
int k=1;
for (size_t i=0; i<indicator_pheno.size(); i++) {
k=1;
for (size_t j=0; j<indicator_pheno[i].size(); j++) {
if (indicator_pheno[i][j]==0) {k=0;}
}
indicator_idv.push_back(k);
}
ns_test=0;
return;
}
//read covariates before the genotype files
if (!file_cvt.empty() ) {
if (ReadFile_cvt (file_cvt, indicator_cvt, cvt, n_cvt)==false) {error=true;}
if ((indicator_cvt).size()==0) {
n_cvt=1;
}
} else {
n_cvt=1;
}
//read genotype and phenotype file for plink format
if (!file_bfile.empty()) {
file_str=file_bfile+".bim";
if (ReadFile_bim (file_str, snpInfo)==false) {error=true;}
file_str=file_bfile+".fam";
if (ReadFile_fam (file_str, indicator_pheno, pheno, mapID2num, p_column)==false) {error=true;}
//post-process covariates and phenotypes, obtain ni_test, save all useful covariates
ProcessCvtPhen();
//obtain covariate matrix
gsl_matrix *W=gsl_matrix_alloc (ni_test, n_cvt);
CopyCvt (W);
file_str=file_bfile+".bed";
if (ReadFile_bed (file_str, setSnps, W, indicator_idv, indicator_snp, snpInfo, maf_level, miss_level, hwe_level, r2_level, ns_test)==false) {error=true;}
gsl_matrix_free(W);
ns_total=indicator_snp.size();
}
//read genotype and phenotype file for bimbam format
if (!file_geno.empty()) {
//annotation file before genotype file
if (!file_anno.empty() ) {
if (ReadFile_anno (file_anno, mapRS2chr, mapRS2bp, mapRS2cM)==false) {error=true;}
}
//phenotype file before genotype file
if (ReadFile_pheno (file_pheno, indicator_pheno, pheno, p_column)==false) {error=true;}
//post-process covariates and phenotypes, obtain ni_test, save all useful covariates
ProcessCvtPhen();
//obtain covariate matrix
gsl_matrix *W=gsl_matrix_alloc (ni_test, n_cvt);
CopyCvt (W);
if (ReadFile_geno (file_geno, setSnps, W, indicator_idv, indicator_snp, maf_level, miss_level, hwe_level, r2_level, mapRS2chr, mapRS2bp, mapRS2cM, snpInfo, ns_test)==false) {error=true;}
gsl_matrix_free(W);
ns_total=indicator_snp.size();
}
if (!file_gene.empty()) {
if (ReadFile_pheno (file_pheno, indicator_pheno, pheno, p_column)==false) {error=true;}
//convert indicator_pheno to indicator_idv
int k=1;
for (size_t i=0; i<indicator_pheno.size(); i++) {
k=1;
for (size_t j=0; j<indicator_pheno[i].size(); j++) {
if (indicator_pheno[i][j]==0) {k=0;}
}
indicator_idv.push_back(k);
}
if (ReadFile_gene (file_gene, vec_read, snpInfo, ng_total)==false) {error=true;}
}
//read is after gene file
if (!file_read.empty() ) {
if (ReadFile_column (file_read, indicator_read, vec_read, 1)==false) {error=true;}
ni_test=0;
for (vector<int>::size_type i=0; i<(indicator_idv).size(); ++i) {
indicator_idv[i]*=indicator_read[i];
ni_test+=indicator_idv[i];
}
if (ni_test==0) {
error=true;
cout<<"error! number of analyzed individuals equals 0. "<<endl;
return;
}
}
//for ridge prediction, read phenotype only
if (file_geno.empty() && file_gene.empty() && !file_pheno.empty()) {
if (ReadFile_pheno (file_pheno, indicator_pheno, pheno, p_column)==false) {error=true;}
//post-process covariates and phenotypes, obtain ni_test, save all useful covariates
ProcessCvtPhen();
}
return;
}
void PARAM::CheckParam (void)
{
struct stat fileInfo;
string str;
//check parameters
if (k_mode!=1 && k_mode!=2) {cout<<"error! unknown kinship/relatedness input mode: "<<k_mode<<endl; error=true;}
if (a_mode!=1 && a_mode!=2 && a_mode!=3 && a_mode!=4 && a_mode!=5 && a_mode!=11 && a_mode!=12 && a_mode!=13 && a_mode!=21 && a_mode!=22 && a_mode!=31 && a_mode!=41 && a_mode!=42 && a_mode!=43 && a_mode!=51 && a_mode!=52 && a_mode!=53 && a_mode!=54 && a_mode!=61)
{cout<<"error! unknown analysis mode: "<<a_mode<<". make sure -gk or -eigen or -lmm or -bslmm or -predict is sepcified correctly."<<endl; error=true;}
if (miss_level>1) {cout<<"error! missing level needs to be between 0 and 1. current value = "<<miss_level<<endl; error=true;}
if (maf_level>0.5) {cout<<"error! maf level needs to be between 0 and 0.5. current value = "<<maf_level<<endl; error=true;}
if (hwe_level>1) {cout<<"error! hwe level needs to be between 0 and 1. current value = "<<hwe_level<<endl; error=true;}
if (r2_level>1) {cout<<"error! r2 level needs to be between 0 and 1. current value = "<<r2_level<<endl; error=true;}
if (l_max<l_min) {cout<<"error! maximum lambda value must be larger than the minimal value. current values = "<<l_max<<" and "<<l_min<<endl; error=true;}
if (h_max<h_min) {cout<<"error! maximum h value must be larger than the minimal value. current values = "<<h_max<<" and "<<h_min<<endl; error=true;}
if (s_max<s_min) {cout<<"error! maximum s value must be larger than the minimal value. current values = "<<s_max<<" and "<<s_min<<endl; error=true;}
if (rho_max<rho_min) {cout<<"error! maximum rho value must be larger than the minimal value. current values = "<<rho_max<<" and "<<rho_min<<endl; error=true;}
if (logp_max<logp_min) {cout<<"error! maximum logp value must be larger than the minimal value. current values = "<<logp_max/log(10)<<" and "<<logp_min/log(10)<<endl; error=true;}
if (h_max>1) {cout<<"error! h values must be bewtween 0 and 1. current values = "<<h_max<<" and "<<h_min<<endl; error=true;}
if (rho_max>1) {cout<<"error! rho values must be between 0 and 1. current values = "<<rho_max<<" and "<<rho_min<<endl; error=true;}
if (logp_max>0) {cout<<"error! maximum logp value must be smaller than 0. current values = "<<logp_max/log(10)<<" and "<<logp_min/log(10)<<endl; error=true;}
if (l_max<l_min) {cout<<"error! maximum lambda value must be larger than the minimal value. current values = "<<l_max<<" and "<<l_min<<endl; error=true;}
if (h_scale>1.0) {cout<<"error! hscale value must be between 0 and 1. current value = "<<h_scale<<endl; error=true;}
if (rho_scale>1.0) {cout<<"error! rscale value must be between 0 and 1. current value = "<<rho_scale<<endl; error=true;}
if (logp_scale>1.0) {cout<<"error! pscale value must be between 0 and 1. current value = "<<logp_scale<<endl; error=true;}
if (rho_max==1 && rho_min==1 && a_mode==12) {cout<<"error! ridge regression does not support a rho parameter. current values = "<<rho_max<<" and "<<rho_min<<endl; error=true;}
//check p_column, and (no need to) sort p_column into ascending order
if (p_column.size()==0) {
p_column.push_back(1);
} else {
for (size_t i=0; i<p_column.size(); i++) {
for (size_t j=0; j<i; j++) {
if (p_column[i]==p_column[j]) {cout<<"error! identical phenotype columns: "<<p_column[i]<<endl; error=true;}
}
}
}
//sort (p_column.begin(), p_column.end() );
n_ph=p_column.size();
//only lmm option (and one prediction option) can deal with multiple phenotypes
//and no gene expression files
if (n_ph>1 && a_mode!=1 && a_mode!=2 && a_mode!=3 && a_mode!=4 && a_mode!=43) {
cout<<"error! the current analysis mode "<<a_mode<<" can not deal with multiple phenotypes."<<endl; error=true;
}
if (n_ph>1 && !file_gene.empty() ) {
cout<<"error! multiple phenotype analysis option not allowed with gene expression files. "<<endl; error=true;
}
if (p_nr>1) {
cout<<"error! pnr value must be between 0 and 1. current value = "<<p_nr<<endl; error=true;
}
//check est_column
if (est_column.size()==0) {
if (file_ebv.empty()) {
est_column.push_back(2);
est_column.push_back(5);
est_column.push_back(6);
est_column.push_back(7);
} else {
est_column.push_back(2);
est_column.push_back(0);
est_column.push_back(6);
est_column.push_back(7);
}
}
if (est_column.size()!=4) {cout<<"error! -en not followed by four numbers. current number = "<<est_column.size()<<endl; error=true;}
if (est_column[0]==0) {cout<<"error! -en rs column can not be zero. current number = "<<est_column.size()<<endl; error=true;}
//check if files are compatible with each other, and if files exist
if (!file_bfile.empty()) {
str=file_bfile+".bim";
if (stat(str.c_str(),&fileInfo)==-1) {cout<<"error! fail to open .bim file: "<<str<<endl; error=true;}
str=file_bfile+".bed";
if (stat(str.c_str(),&fileInfo)==-1) {cout<<"error! fail to open .bed file: "<<str<<endl; error=true;}
str=file_bfile+".fam";
if (stat(str.c_str(),&fileInfo)==-1) {cout<<"error! fail to open .fam file: "<<str<<endl; error=true;}
}
if ((!file_geno.empty() || !file_gene.empty()) ) {
str=file_pheno;
if (stat(str.c_str(),&fileInfo)==-1) {cout<<"error! fail to open phenotype file: "<<str<<endl; error=true;}
}
str=file_geno;
if (!str.empty() && stat(str.c_str(),&fileInfo)==-1 ) {cout<<"error! fail to open mean genotype file: "<<str<<endl; error=true;}
str=file_gene;
if (!str.empty() && stat(str.c_str(),&fileInfo)==-1 ) {cout<<"error! fail to open gene expression file: "<<str<<endl; error=true;}
size_t flag=0;
if (!file_bfile.empty()) {flag++;}
if (!file_geno.empty()) {flag++;}
if (!file_gene.empty()) {flag++;}
if (flag!=1 && a_mode!=43 && a_mode!=5 && a_mode!=61) {
cout<<"error! either plink binary files, or bimbam mean genotype files, or gene expression files are required."<<endl; error=true;
}
if (file_pheno.empty() && (a_mode==43 || a_mode==5 || a_mode==61) ) {
cout<<"error! phenotype file is required."<<endl; error=true;
}
if (!file_epm.empty() && file_bfile.empty() && file_geno.empty() ) {cout<<"error! estimated parameter file also requires genotype file."<<endl; error=true;}
if (!file_ebv.empty() && file_kin.empty()) {cout<<"error! estimated breeding value file also requires relatedness file."<<endl; error=true;}
if (!file_log.empty() && pheno_mean!=0) {cout<<"error! either log file or mu value can be provide."<<endl; error=true;}
str=file_snps;
if (!str.empty() && stat(str.c_str(),&fileInfo)==-1 ) {cout<<"error! fail to open snps file: "<<str<<endl; error=true;}
str=file_log;
if (!str.empty() && stat(str.c_str(),&fileInfo)==-1 ) {cout<<"error! fail to open log file: "<<str<<endl; error=true;}
str=file_anno;
if (!str.empty() && stat(str.c_str(),&fileInfo)==-1 ) {cout<<"error! fail to open annotation file: "<<str<<endl; error=true;}
str=file_kin;
if (!str.empty() && stat(str.c_str(),&fileInfo)==-1 ) {cout<<"error! fail to open relatedness matrix file: "<<str<<endl; error=true;}
str=file_mk;
if (!str.empty() && stat(str.c_str(),&fileInfo)==-1 ) {cout<<"error! fail to open relatedness matrix file: "<<str<<endl; error=true;}
str=file_cvt;
if (!str.empty() && stat(str.c_str(),&fileInfo)==-1 ) {cout<<"error! fail to open covariates file: "<<str<<endl; error=true;}
str=file_epm;
if (!str.empty() && stat(str.c_str(),&fileInfo)==-1 ) {cout<<"error! fail to open estimated parameter file: "<<str<<endl; error=true;}
str=file_ebv;
if (!str.empty() && stat(str.c_str(),&fileInfo)==-1 ) {cout<<"error! fail to open estimated breeding value file: "<<str<<endl; error=true;}
str=file_read;
if (!str.empty() && stat(str.c_str(),&fileInfo)==-1 ) {cout<<"error! fail to open total read file: "<<str<<endl; error=true;}
//check if files are compatible with analysis mode
if (k_mode==2 && !file_geno.empty() ) {cout<<"error! use \"-km 1\" when using bimbam mean genotype file. "<<endl; error=true;}
if ((a_mode==1 || a_mode==2 || a_mode==3 || a_mode==4 || a_mode==5 || a_mode==31) && (file_kin.empty() && (file_ku.empty()||file_kd.empty())) ) {cout<<"error! missing relatedness file. "<<endl; error=true;}
if (a_mode==61 && (file_kin.empty() && (file_ku.empty()||file_kd.empty()) && file_mk.empty() ) ) {cout<<"error! missing relatedness file. "<<endl; error=true;}
if ((a_mode==43) && file_kin.empty()) {cout<<"error! missing relatedness file. -predict option requires -k option to provide a relatedness file."<<endl; error=true;}
if ((a_mode==11 || a_mode==12 || a_mode==13) && !file_cvt.empty() ) {cout<<"error! -bslmm option does not support covariates files."<<endl; error=true;}
if (a_mode==41 || a_mode==42) {
if (!file_cvt.empty() ) {cout<<"error! -predict option does not support covariates files."<<endl; error=true;}
if (file_epm.empty() ) {cout<<"error! -predict option requires estimated parameter files."<<endl; error=true;}
}
return;
}
void PARAM::CheckData (void) {
if ((file_cvt).empty() || (indicator_cvt).size()==0) {
n_cvt=1;
}
if ( (indicator_cvt).size()!=0 && (indicator_cvt).size()!=(indicator_idv).size()) {
error=true;
cout<<"error! number of rows in the covariates file do not match the number of individuals. "<<endl;
return;
}
if ( (indicator_read).size()!=0 && (indicator_read).size()!=(indicator_idv).size()) {
error=true;
cout<<"error! number of rows in the total read file do not match the number of individuals. "<<endl;
return;
}
//calculate ni_total and ni_test, and set indicator_idv to 0 whenever indicator_cvt=0
//and calculate np_obs and np_miss
ni_total=(indicator_idv).size();
ni_test=0;
for (vector<int>::size_type i=0; i<(indicator_idv).size(); ++i) {
if (indicator_idv[i]==0) {continue;}
ni_test++;
}
ni_cvt=0;
for (size_t i=0; i<indicator_cvt.size(); i++) {
if (indicator_cvt[i]==0) {continue;}
ni_cvt++;
}
np_obs=0; np_miss=0;
for (size_t i=0; i<indicator_pheno.size(); i++) {
if (indicator_cvt.size()!=0) {
if (indicator_cvt[i]==0) {continue;}
}
for (size_t j=0; j<indicator_pheno[i].size(); j++) {
if (indicator_pheno[i][j]==0) {
np_miss++;
} else {
np_obs++;
}
}
}
/*
if ((indicator_cvt).size()!=0) {
ni_test=0;
for (vector<int>::size_type i=0; i<(indicator_idv).size(); ++i) {
indicator_idv[i]*=indicator_cvt[i];
ni_test+=indicator_idv[i];
}
}
if ((indicator_read).size()!=0) {
ni_test=0;
for (vector<int>::size_type i=0; i<(indicator_idv).size(); ++i) {
indicator_idv[i]*=indicator_read[i];
ni_test+=indicator_idv[i];
}
}
*/
if (ni_test==0) {
error=true;
cout<<"error! number of analyzed individuals equals 0. "<<endl;
return;
}
if (a_mode==43) {
if (ni_cvt==ni_test) {
error=true;
cout<<"error! no individual has missing phenotypes."<<endl;
return;
}
if ((np_obs+np_miss)!=(ni_cvt*n_ph)) {
error=true;
//cout<<ni_cvt<<"\t"<<ni_test<<"\t"<<ni_total<<"\t"<<np_obs<<"\t"<<np_miss<<"\t"<<indicator_cvt.size()<<endl;
cout<<"error! number of phenotypes do not match the summation of missing and observed phenotypes."<<endl;
return;
}
}
//output some information
cout<<"## number of total individuals = "<<ni_total<<endl;
if (a_mode==43) {
cout<<"## number of analyzed individuals = "<<ni_cvt<<endl;
cout<<"## number of individuals with full phenotypes = "<<ni_test<<endl;
} else {
cout<<"## number of analyzed individuals = "<<ni_test<<endl;
}
cout<<"## number of covariates = "<<n_cvt<<endl;
cout<<"## number of phenotypes = "<<n_ph<<endl;
if (a_mode==43) {
cout<<"## number of observed data = "<<np_obs<<endl;
cout<<"## number of missing data = "<<np_miss<<endl;
}
if (!file_gene.empty()) {
cout<<"## number of total genes = "<<ng_total<<endl;
} else if (file_epm.empty() && a_mode!=43 && a_mode!=5) {
cout<<"## number of total SNPs = "<<ns_total<<endl;
cout<<"## number of analyzed SNPs = "<<ns_test<<endl;
} else {}
//set d_pace to 1000 for gene expression
if (!file_gene.empty() && d_pace==100000) {
d_pace=1000;
}
//for case-control studies, count #cases and #controls
int flag_cc=0;
if (a_mode==13) {
ni_case=0;
ni_control=0;
for (size_t i=0; i<indicator_idv.size(); i++) {
if (indicator_idv[i]==0) {continue;}
if (pheno[i][0]==0) {ni_control++;}
else if (pheno[i][0]==1) {ni_case++;}
else {flag_cc=1;}
}
cout<<"## number of cases = "<<ni_case<<endl;
cout<<"## number of controls = "<<ni_control<<endl;
}
if (flag_cc==1) {cout<<"Unexpected non-binary phenotypes for case/control analysis. Use default (BSLMM) analysis instead."<<endl; a_mode=11;}
//set parameters for BSLMM
//and check for predict
if (a_mode==11 || a_mode==12 || a_mode==13) {
if (a_mode==11) {n_mh=1;}
if (logp_min==0) {logp_min=-1.0*log((double)ns_test);}
if (h_scale==-1) {h_scale=min(1.0, 10.0/sqrt((double)ni_test) );}
if (rho_scale==-1) {rho_scale=min(1.0, 10.0/sqrt((double)ni_test) );}
if (logp_scale==-1) {logp_scale=min(1.0, 5.0/sqrt((double)ni_test) );}
if (h_min==-1) {h_min=0.0;}
if (h_max==-1) {h_max=1.0;}
if (s_max>ns_test) {s_max=ns_test; cout<<"s_max is re-set to the number of analyzed SNPs."<<endl;}
if (s_max<s_min) {cout<<"error! maximum s value must be larger than the minimal value. current values = "<<s_max<<" and "<<s_min<<endl; error=true;}
} else if (a_mode==41 || a_mode==42) {
if (indicator_bv.size()!=0) {
if (indicator_idv.size()!=indicator_bv.size()) {
cout<<"error! number of rows in the phenotype file does not match that in the estimated breeding value file: "<<indicator_idv.size()<<"\t"<<indicator_bv.size()<<endl;
error=true;
} else {
size_t flag_bv=0;
for (size_t i=0; i<(indicator_bv).size(); ++i) {
if (indicator_idv[i]!=indicator_bv[i]) {flag_bv++;}
}
if (flag_bv!=0) {
cout<<"error! individuals with missing value in the phenotype file does not match that in the estimated breeding value file: "<<flag_bv<<endl;
error=true;
}
}
}
}
//file_mk needs to contain more than one line
if (n_vc==1 && !file_mk.empty()) {cout<<"error! -mk file should contain more than one line."<<endl; error=true;}
return;
}
void PARAM::PrintSummary ()
{
if (n_ph==1) {
cout<<"pve estimate ="<<pve_null<<endl;
cout<<"se(pve) ="<<pve_se_null<<endl;
} else {
}
return;
}
void PARAM::ReadGenotypes (gsl_matrix *UtX, gsl_matrix *K, const bool calc_K) {
string file_str;
if (!file_bfile.empty()) {
file_str=file_bfile+".bed";
if (ReadFile_bed (file_str, indicator_idv, indicator_snp, UtX, K, calc_K)==false) {error=true;}
}
else {
if (ReadFile_geno (file_geno, indicator_idv, indicator_snp, UtX, K, calc_K)==false) {error=true;}
}
return;
}
void PARAM::CalcKin (gsl_matrix *matrix_kin) {
string file_str;
gsl_matrix_set_zero (matrix_kin);
if (!file_bfile.empty() ) {
file_str=file_bfile+".bed";
if (PlinkKin (file_str, indicator_snp, a_mode-20, d_pace, matrix_kin)==false) {error=true;}
}
else {
file_str=file_geno;
if (BimbamKin (file_str, indicator_snp, a_mode-20, d_pace, matrix_kin)==false) {error=true;}
}
return;
}
void PARAM::WriteMatrix (const gsl_matrix *matrix_U, const string suffix)
{
string file_str;
file_str=path_out+"/"+file_out;
file_str+=".";
file_str+=suffix;
file_str+=".txt";
ofstream outfile (file_str.c_str(), ofstream::out);
if (!outfile) {cout<<"error writing file: "<<file_str.c_str()<<endl; return;}
outfile.precision(10);
for (size_t i=0; i<matrix_U->size1; ++i) {
for (size_t j=0; j<matrix_U->size2; ++j) {
outfile<<gsl_matrix_get (matrix_U, i, j)<<"\t";
}
outfile<<endl;
}
outfile.close();
outfile.clear();
return;
}
void PARAM::WriteVector (const gsl_vector *vector_D, const string suffix)
{
string file_str;
file_str=path_out+"/"+file_out;
file_str+=".";
file_str+=suffix;
file_str+=".txt";
ofstream outfile (file_str.c_str(), ofstream::out);
if (!outfile) {cout<<"error writing file: "<<file_str.c_str()<<endl; return;}
outfile.precision(10);
for (size_t i=0; i<vector_D->size; ++i) {
outfile<<gsl_vector_get (vector_D, i)<<endl;
}
outfile.close();
outfile.clear();
return;
}
void PARAM::CheckCvt ()
{
if (indicator_cvt.size()==0) {return;}
size_t ci_test=0;
gsl_matrix *W=gsl_matrix_alloc (ni_test, n_cvt);
for (vector<int>::size_type i=0; i<indicator_idv.size(); ++i) {
if (indicator_idv[i]==0 || indicator_cvt[i]==0) {continue;}
for (size_t j=0; j<n_cvt; ++j) {
gsl_matrix_set (W, ci_test, j, (cvt)[i][j]);
}
ci_test++;
}
size_t flag_ipt=0;
double v_min, v_max;
set<size_t> set_remove;
//check if any columns is an intercept
for (size_t i=0; i<W->size2; i++) {
gsl_vector_view w_col=gsl_matrix_column (W, i);
gsl_vector_minmax (&w_col.vector, &v_min, &v_max);
if (v_min==v_max) {flag_ipt=1; set_remove.insert (i);}
}
//add an intecept term if needed
if (n_cvt==set_remove.size()) {
indicator_cvt.clear();
n_cvt=1;
} else if (flag_ipt==0) {
cout<<"no intecept term is found in the cvt file. a column of 1s is added."<<endl;
for (vector<int>::size_type i=0; i<indicator_idv.size(); ++i) {
if (indicator_idv[i]==0 || indicator_cvt[i]==0) {continue;}
cvt[i].push_back(1.0);
}
n_cvt++;
} else {}
gsl_matrix_free(W);
return;
}
//post-process phentoypes, covariates
void PARAM::ProcessCvtPhen ()
{
//convert indicator_pheno to indicator_idv
int k=1;
indicator_idv.clear();
for (size_t i=0; i<indicator_pheno.size(); i++) {
k=1;
for (size_t j=0; j<indicator_pheno[i].size(); j++) {
if (indicator_pheno[i][j]==0) {k=0;}
}
indicator_idv.push_back(k);
}
//remove individuals with missing covariates
if ((indicator_cvt).size()!=0) {
for (vector<int>::size_type i=0; i<(indicator_idv).size(); ++i) {
indicator_idv[i]*=indicator_cvt[i];
}
}
//obtain ni_test
ni_test=0;
for (vector<int>::size_type i=0; i<(indicator_idv).size(); ++i) {
if (indicator_idv[i]==0) {continue;}
ni_test++;
}
if (ni_test==0) {
error=true;
cout<<"error! number of analyzed individuals equals 0. "<<endl;
return;
}
//check covariates to see if they are correlated with each other, and to see if the intercept term is included
//after getting ni_test
//add or remove covariates
if (indicator_cvt.size()!=0) {
CheckCvt();
} else {
vector<double> cvt_row;
cvt_row.push_back(1);
for (vector<int>::size_type i=0; i<(indicator_idv).size(); ++i) {
indicator_cvt.push_back(1);
cvt.push_back(cvt_row);
}
}
return;
}
void PARAM::CopyCvt (gsl_matrix *W)
{
size_t ci_test=0;
for (vector<int>::size_type i=0; i<indicator_idv.size(); ++i) {
if (indicator_idv[i]==0 || indicator_cvt[i]==0) {continue;}
for (size_t j=0; j<n_cvt; ++j) {
gsl_matrix_set (W, ci_test, j, (cvt)[i][j]);
}
ci_test++;
}
return;
}
//if flag=0, then use indicator_idv to load W and Y
//else, use indicator_cvt to load them
void PARAM::CopyCvtPhen (gsl_matrix *W, gsl_vector *y, size_t flag)
{
size_t ci_test=0;
for (vector<int>::size_type i=0; i<indicator_idv.size(); ++i) {
if (flag==0) {
if (indicator_idv[i]==0) {continue;}
} else {
if (indicator_cvt[i]==0) {continue;}
}
gsl_vector_set (y, ci_test, (pheno)[i][0]);
for (size_t j=0; j<n_cvt; ++j) {
gsl_matrix_set (W, ci_test, j, (cvt)[i][j]);
}
ci_test++;
}
return;
}
//if flag=0, then use indicator_idv to load W and Y
//else, use indicator_cvt to load them
void PARAM::CopyCvtPhen (gsl_matrix *W, gsl_matrix *Y, size_t flag)
{
size_t ci_test=0;
for (vector<int>::size_type i=0; i<indicator_idv.size(); ++i) {
if (flag==0) {
if (indicator_idv[i]==0) {continue;}
} else {
if (indicator_cvt[i]==0) {continue;}
}
for (size_t j=0; j<n_ph; ++j) {
gsl_matrix_set (Y, ci_test, j, (pheno)[i][j]);
}
for (size_t j=0; j<n_cvt; ++j) {
gsl_matrix_set (W, ci_test, j, (cvt)[i][j]);
}
ci_test++;
}
return;
}
void PARAM::CopyRead (gsl_vector *log_N)
{
size_t ci_test=0;
for (vector<int>::size_type i=0; i<indicator_idv.size(); ++i) {
if (indicator_idv[i]==0) {continue;}
gsl_vector_set (log_N, ci_test, log(vec_read[i]) );
ci_test++;
}
return;
}
|