aboutsummaryrefslogtreecommitdiff
path: root/INSTALL.md
blob: 0a39604e2e78fd27dba72371710784fef8a6c5df (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
# INSTALL GEMMA: Genome-wide Efficient Mixed Model Association

## Check version

Simply run gemma once installed

    gemma

and it should give you the version.

## GEMMA dependencies

GEMMA runs on Linux and MAC OSX and the runtime has the following
dependencies:

* C++ tool chain >= 4.9
* GNU Science library (GSL) 1.x (note that 2.x is not yet supported)
* blas/openblas
* lapack
* [Eigen3 library](http://eigen.tuxfamily.org/dox/)
* zlib

See below for installation on Guix.

## Install GEMMA

### Debian and Ubuntu

Travis-CI uses Ubuntu for testing. Check the test logs for version numbers.

[![Build Status](https://travis-ci.org/genetics-statistics/GEMMA.svg?branch=master)](https://travis-ci.org/genetics-statistics/GEMMA)

Current settings can be found in [travis.yml](.travis.yml).

### Bioconda

(Note Bioconda install is a work in [progress](https://github.com/genetics-statistics/GEMMA/issues/52)

Recent versions of GEMMA can be installed with
[BioConda](http://ddocent.com/bioconda/) without root permissions using the following
command

    conda install gemma

### GNU Guix

The GNU Guix package manager can install recent versions of [GEMMA](https://www.gnu.org/software/guix/packages/g.html)
using the following command

    guix package -i gemma

To build GEMMA from source you can opt to install the build tools with GNU Guix

    guix package -i make gcc linux-libre-headers gsl eigen openblas lapack glibc ld-wrapper

### Install from source

Install listed dependencies and run

	make -j 4

(the -j switch builds on 4 cores).

if you get an Eigen error you may need to override the include
path. E.g. to build GEMMA on GNU Guix with shared libs the following
may work

    make EIGEN_INCLUDE_PATH=~/.guix-profile/include/eigen3

another example overriding optimization and LIB flags (so as to link
against gslv1) would be

    make EIGEN_INCLUDE_PATH=~/.guix-profile/include/eigen3 GCC_FLAGS="-Wall -isystem/$HOME/opt/gsl1/include" LIBS="$HOME/opt/gsl1/lib/libgsl.a $HOME/opt/gsl1/lib/libgslcblas.a -L$HOME/.guix-profile/lib -pthread -llapack -lblas -lz"

to run GEMMA tests

	time make check

You can run gemma in the debugger with, for example

	gdb --args \
		./bin/gemma -g example/mouse_hs1940.geno.txt.gz \
		-p example/mouse_hs1940.pheno.txt -a example/mouse_hs1940.anno.txt \
		-snps example/snps.txt -nind 400 -loco 1 -gk -debug -o myoutput

Note that if you get <optimized out> warnings on inspecting variables you
should compile with GCC_FLAGS="" to disable optimizations (-O3). E.g.

    make EIGEN_INCLUDE_PATH=~/.guix-profile/include/eigen3 GCC_FLAGS=

If you get older OpenBlas errors you may need to add
OPENBLAS_LEGACY=1.

Other options, such as compiling with warnings, are listed in the
Makefile.

## Run tests

GEMMA includes the shunit2 test framework (version 2.0).

    make check

or

    ./run_tests.sh

## Optimizing performance

### OpenBlas

Linking against a built-from-source OpenBlas is a first optimization
step because it will optimize code for the local architecture (on my
workstation it easily doubles speed). When you check the output .log
file of GEMMA after a run, it will tell you how the linked-in OpenBlas
was compiled.

To link a new version, compile OpenBlas as per
[instructions](http://www.openblas.net/).  You can start with the
default:

    make

and/or play with the switches (listed in OpenBlas Makefile.rule)

    make BINARY=64 NO_WARMUP=0 GEMM_MULTITHREAD_THRESHOLD=4 USE_THREAD=1 NO_AFFINITY=0 NO_LAPACK=1 NUM_THREADS=64 NO_SHARED=1

and you should see something like

    OpenBLAS build complete. (BLAS CBLAS)

      OS               ... Linux
      Architecture     ... x86_64
      BINARY           ... 64bit
      C compiler       ... GCC  (command line : gcc)
      Fortran compiler ... GFORTRAN  (command line : gfortran)
      Library Name     ... libopenblas_haswellp-r0.3.0.dev.a (Multi threaded; Max num-threads is 64)

Note that OpenBlas by default uses a 32-bit integer API which can
overflow with large matrix sizes. We don't include LAPACK - the
OpenBlas version gives problems around eigenvalues for some reason.

We now have a static library which you can link using the full path
with using the GEMMA Makefile:

    time env OPENBLAS_NUM_THREADS=4 make EIGEN_INCLUDE_PATH=~/.guix-profile/include/eigen3 LIBS="~/tmp/OpenBLAS/libopenblas_haswellp-r0.3.0.dev.a -lgsl -lgslcblas -pthread -lz  -llapack" -j 4 unittests

Latest (INT64, no gslcblas):

    time env OPENBLAS_NUM_THREADS=4 make EIGEN_INCLUDE_PATH=~/.guix-profile/include/eigen3 LIBS="~/opt/gsl2/lib/libgsl.a ~/tmp/OpenBLAS/libopenblas_haswellp-r0.3.0.dev.a -pthread -lz  -llapack" OPENBLAS_INCLUDE_PATH=~/tmp/OpenBLAS/ -j 4 fast-check


### OpenBlas 64-bit API

<i>Warning: This is work in progress (WIP)</i>

OpenBlas supports a 64-bit API which allows for large matrices. Unfortunately
GEMMA does not support it yet, see https://github.com/genetics-statistics/GEMMA/issues/120

For testing we can build

    make BINARY=64 INTERFACE64=1 NO_WARMUP=1 USE_THREAD=0 NO_LAPACK=0 NO_SHARED=1 -j 4

This builds a 64-bit binary and API and no external LAPACK. This is a very conservative
setting for testing the 64-bit API.

Note, for performance we want a 64-bit binary with threading.

    make EIGEN_INCLUDE_PATH=~/.guix-profile/include/eigen3 LIBS="~/opt/gsl2/lib/libgsl.a ~/tmp/OpenBLAS/libopenblas_haswell-r0.3.0.dev.a ~/.guix-profile/lib/libgfortran.a ~/.guix-profile/lib/libquadmath.a -pthread -lz" OPENBLAS_INCLUDE_PATH=~/tmp/OpenBLAS/ -j 4 fast-check

Note we don't include standard lapack, because it is 32-bits.